github.com/gagliardetto/golang-go@v0.0.0-20201020153340-53909ea70814/cmd/compile/internal/ssa/schedule.go (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package ssa 6 7 import ( 8 "container/heap" 9 "sort" 10 ) 11 12 const ( 13 ScorePhi = iota // towards top of block 14 ScoreArg 15 ScoreNilCheck 16 ScoreReadTuple 17 ScoreVarDef 18 ScoreMemory 19 ScoreReadFlags 20 ScoreDefault 21 ScoreFlags 22 ScoreControl // towards bottom of block 23 ) 24 25 type ValHeap struct { 26 a []*Value 27 score []int8 28 } 29 30 func (h ValHeap) Len() int { return len(h.a) } 31 func (h ValHeap) Swap(i, j int) { a := h.a; a[i], a[j] = a[j], a[i] } 32 33 func (h *ValHeap) Push(x interface{}) { 34 // Push and Pop use pointer receivers because they modify the slice's length, 35 // not just its contents. 36 v := x.(*Value) 37 h.a = append(h.a, v) 38 } 39 func (h *ValHeap) Pop() interface{} { 40 old := h.a 41 n := len(old) 42 x := old[n-1] 43 h.a = old[0 : n-1] 44 return x 45 } 46 func (h ValHeap) Less(i, j int) bool { 47 x := h.a[i] 48 y := h.a[j] 49 sx := h.score[x.ID] 50 sy := h.score[y.ID] 51 if c := sx - sy; c != 0 { 52 return c > 0 // higher score comes later. 53 } 54 if x.Pos != y.Pos { // Favor in-order line stepping 55 return x.Pos.After(y.Pos) 56 } 57 if x.Op != OpPhi { 58 if c := len(x.Args) - len(y.Args); c != 0 { 59 return c < 0 // smaller args comes later 60 } 61 } 62 return x.ID > y.ID 63 } 64 65 func (op Op) isLoweredGetClosurePtr() bool { 66 switch op { 67 case OpAMD64LoweredGetClosurePtr, OpPPC64LoweredGetClosurePtr, OpARMLoweredGetClosurePtr, OpARM64LoweredGetClosurePtr, 68 Op386LoweredGetClosurePtr, OpMIPS64LoweredGetClosurePtr, OpS390XLoweredGetClosurePtr, OpMIPSLoweredGetClosurePtr, 69 OpRISCV64LoweredGetClosurePtr, OpWasmLoweredGetClosurePtr: 70 return true 71 } 72 return false 73 } 74 75 // Schedule the Values in each Block. After this phase returns, the 76 // order of b.Values matters and is the order in which those values 77 // will appear in the assembly output. For now it generates a 78 // reasonable valid schedule using a priority queue. TODO(khr): 79 // schedule smarter. 80 func schedule(f *Func) { 81 // For each value, the number of times it is used in the block 82 // by values that have not been scheduled yet. 83 uses := make([]int32, f.NumValues()) 84 85 // reusable priority queue 86 priq := new(ValHeap) 87 88 // "priority" for a value 89 score := make([]int8, f.NumValues()) 90 91 // scheduling order. We queue values in this list in reverse order. 92 // A constant bound allows this to be stack-allocated. 64 is 93 // enough to cover almost every schedule call. 94 order := make([]*Value, 0, 64) 95 96 // maps mem values to the next live memory value 97 nextMem := make([]*Value, f.NumValues()) 98 // additional pretend arguments for each Value. Used to enforce load/store ordering. 99 additionalArgs := make([][]*Value, f.NumValues()) 100 101 for _, b := range f.Blocks { 102 // Compute score. Larger numbers are scheduled closer to the end of the block. 103 for _, v := range b.Values { 104 switch { 105 case v.Op.isLoweredGetClosurePtr(): 106 // We also score GetLoweredClosurePtr as early as possible to ensure that the 107 // context register is not stomped. GetLoweredClosurePtr should only appear 108 // in the entry block where there are no phi functions, so there is no 109 // conflict or ambiguity here. 110 if b != f.Entry { 111 f.Fatalf("LoweredGetClosurePtr appeared outside of entry block, b=%s", b.String()) 112 } 113 score[v.ID] = ScorePhi 114 case v.Op == OpAMD64LoweredNilCheck || v.Op == OpPPC64LoweredNilCheck || 115 v.Op == OpARMLoweredNilCheck || v.Op == OpARM64LoweredNilCheck || 116 v.Op == Op386LoweredNilCheck || v.Op == OpMIPS64LoweredNilCheck || 117 v.Op == OpS390XLoweredNilCheck || v.Op == OpMIPSLoweredNilCheck || 118 v.Op == OpRISCV64LoweredNilCheck || v.Op == OpWasmLoweredNilCheck: 119 // Nil checks must come before loads from the same address. 120 score[v.ID] = ScoreNilCheck 121 case v.Op == OpPhi: 122 // We want all the phis first. 123 score[v.ID] = ScorePhi 124 case v.Op == OpVarDef: 125 // We want all the vardefs next. 126 score[v.ID] = ScoreVarDef 127 case v.Op == OpArg: 128 // We want all the args as early as possible, for better debugging. 129 score[v.ID] = ScoreArg 130 case v.Type.IsMemory(): 131 // Schedule stores as early as possible. This tends to 132 // reduce register pressure. It also helps make sure 133 // VARDEF ops are scheduled before the corresponding LEA. 134 score[v.ID] = ScoreMemory 135 case v.Op == OpSelect0 || v.Op == OpSelect1: 136 // Schedule the pseudo-op of reading part of a tuple 137 // immediately after the tuple-generating op, since 138 // this value is already live. This also removes its 139 // false dependency on the other part of the tuple. 140 // Also ensures tuple is never spilled. 141 score[v.ID] = ScoreReadTuple 142 case v.Type.IsFlags() || v.Type.IsTuple() && v.Type.FieldType(1).IsFlags(): 143 // Schedule flag register generation as late as possible. 144 // This makes sure that we only have one live flags 145 // value at a time. 146 score[v.ID] = ScoreFlags 147 default: 148 score[v.ID] = ScoreDefault 149 // If we're reading flags, schedule earlier to keep flag lifetime short. 150 for _, a := range v.Args { 151 if a.Type.IsFlags() { 152 score[v.ID] = ScoreReadFlags 153 } 154 } 155 } 156 } 157 } 158 159 for _, b := range f.Blocks { 160 // Find store chain for block. 161 // Store chains for different blocks overwrite each other, so 162 // the calculated store chain is good only for this block. 163 for _, v := range b.Values { 164 if v.Op != OpPhi && v.Type.IsMemory() { 165 for _, w := range v.Args { 166 if w.Type.IsMemory() { 167 nextMem[w.ID] = v 168 } 169 } 170 } 171 } 172 173 // Compute uses. 174 for _, v := range b.Values { 175 if v.Op == OpPhi { 176 // If a value is used by a phi, it does not induce 177 // a scheduling edge because that use is from the 178 // previous iteration. 179 continue 180 } 181 for _, w := range v.Args { 182 if w.Block == b { 183 uses[w.ID]++ 184 } 185 // Any load must come before the following store. 186 if !v.Type.IsMemory() && w.Type.IsMemory() { 187 // v is a load. 188 s := nextMem[w.ID] 189 if s == nil || s.Block != b { 190 continue 191 } 192 additionalArgs[s.ID] = append(additionalArgs[s.ID], v) 193 uses[v.ID]++ 194 } 195 } 196 } 197 198 for _, c := range b.ControlValues() { 199 // Force the control values to be scheduled at the end, 200 // unless they are phi values (which must be first). 201 // OpArg also goes first -- if it is stack it register allocates 202 // to a LoadReg, if it is register it is from the beginning anyway. 203 if c.Op == OpPhi || c.Op == OpArg { 204 continue 205 } 206 score[c.ID] = ScoreControl 207 208 // Schedule values dependent on the control values at the end. 209 // This reduces the number of register spills. We don't find 210 // all values that depend on the controls, just values with a 211 // direct dependency. This is cheaper and in testing there 212 // was no difference in the number of spills. 213 for _, v := range b.Values { 214 if v.Op != OpPhi { 215 for _, a := range v.Args { 216 if a == c { 217 score[v.ID] = ScoreControl 218 } 219 } 220 } 221 } 222 223 } 224 225 // To put things into a priority queue 226 // The values that should come last are least. 227 priq.score = score 228 priq.a = priq.a[:0] 229 230 // Initialize priority queue with schedulable values. 231 for _, v := range b.Values { 232 if uses[v.ID] == 0 { 233 heap.Push(priq, v) 234 } 235 } 236 237 // Schedule highest priority value, update use counts, repeat. 238 order = order[:0] 239 tuples := make(map[ID][]*Value) 240 for priq.Len() > 0 { 241 // Find highest priority schedulable value. 242 // Note that schedule is assembled backwards. 243 244 v := heap.Pop(priq).(*Value) 245 246 // Add it to the schedule. 247 // Do not emit tuple-reading ops until we're ready to emit the tuple-generating op. 248 //TODO: maybe remove ReadTuple score above, if it does not help on performance 249 switch { 250 case v.Op == OpSelect0: 251 if tuples[v.Args[0].ID] == nil { 252 tuples[v.Args[0].ID] = make([]*Value, 2) 253 } 254 tuples[v.Args[0].ID][0] = v 255 case v.Op == OpSelect1: 256 if tuples[v.Args[0].ID] == nil { 257 tuples[v.Args[0].ID] = make([]*Value, 2) 258 } 259 tuples[v.Args[0].ID][1] = v 260 case v.Type.IsTuple() && tuples[v.ID] != nil: 261 if tuples[v.ID][1] != nil { 262 order = append(order, tuples[v.ID][1]) 263 } 264 if tuples[v.ID][0] != nil { 265 order = append(order, tuples[v.ID][0]) 266 } 267 delete(tuples, v.ID) 268 fallthrough 269 default: 270 order = append(order, v) 271 } 272 273 // Update use counts of arguments. 274 for _, w := range v.Args { 275 if w.Block != b { 276 continue 277 } 278 uses[w.ID]-- 279 if uses[w.ID] == 0 { 280 // All uses scheduled, w is now schedulable. 281 heap.Push(priq, w) 282 } 283 } 284 for _, w := range additionalArgs[v.ID] { 285 uses[w.ID]-- 286 if uses[w.ID] == 0 { 287 // All uses scheduled, w is now schedulable. 288 heap.Push(priq, w) 289 } 290 } 291 } 292 if len(order) != len(b.Values) { 293 f.Fatalf("schedule does not include all values in block %s", b) 294 } 295 for i := 0; i < len(b.Values); i++ { 296 b.Values[i] = order[len(b.Values)-1-i] 297 } 298 } 299 300 f.scheduled = true 301 } 302 303 // storeOrder orders values with respect to stores. That is, 304 // if v transitively depends on store s, v is ordered after s, 305 // otherwise v is ordered before s. 306 // Specifically, values are ordered like 307 // store1 308 // NilCheck that depends on store1 309 // other values that depends on store1 310 // store2 311 // NilCheck that depends on store2 312 // other values that depends on store2 313 // ... 314 // The order of non-store and non-NilCheck values are undefined 315 // (not necessarily dependency order). This should be cheaper 316 // than a full scheduling as done above. 317 // Note that simple dependency order won't work: there is no 318 // dependency between NilChecks and values like IsNonNil. 319 // Auxiliary data structures are passed in as arguments, so 320 // that they can be allocated in the caller and be reused. 321 // This function takes care of reset them. 322 func storeOrder(values []*Value, sset *sparseSet, storeNumber []int32) []*Value { 323 if len(values) == 0 { 324 return values 325 } 326 327 f := values[0].Block.Func 328 329 // find all stores 330 331 // Members of values that are store values. 332 // A constant bound allows this to be stack-allocated. 64 is 333 // enough to cover almost every storeOrder call. 334 stores := make([]*Value, 0, 64) 335 hasNilCheck := false 336 sset.clear() // sset is the set of stores that are used in other values 337 for _, v := range values { 338 if v.Type.IsMemory() { 339 stores = append(stores, v) 340 if v.Op == OpInitMem || v.Op == OpPhi { 341 continue 342 } 343 sset.add(v.MemoryArg().ID) // record that v's memory arg is used 344 } 345 if v.Op == OpNilCheck { 346 hasNilCheck = true 347 } 348 } 349 if len(stores) == 0 || !hasNilCheck && f.pass.name == "nilcheckelim" { 350 // there is no store, the order does not matter 351 return values 352 } 353 354 // find last store, which is the one that is not used by other stores 355 var last *Value 356 for _, v := range stores { 357 if !sset.contains(v.ID) { 358 if last != nil { 359 f.Fatalf("two stores live simultaneously: %v and %v", v, last) 360 } 361 last = v 362 } 363 } 364 365 // We assign a store number to each value. Store number is the 366 // index of the latest store that this value transitively depends. 367 // The i-th store in the current block gets store number 3*i. A nil 368 // check that depends on the i-th store gets store number 3*i+1. 369 // Other values that depends on the i-th store gets store number 3*i+2. 370 // Special case: 0 -- unassigned, 1 or 2 -- the latest store it depends 371 // is in the previous block (or no store at all, e.g. value is Const). 372 // First we assign the number to all stores by walking back the store chain, 373 // then assign the number to other values in DFS order. 374 count := make([]int32, 3*(len(stores)+1)) 375 sset.clear() // reuse sparse set to ensure that a value is pushed to stack only once 376 for n, w := len(stores), last; n > 0; n-- { 377 storeNumber[w.ID] = int32(3 * n) 378 count[3*n]++ 379 sset.add(w.ID) 380 if w.Op == OpInitMem || w.Op == OpPhi { 381 if n != 1 { 382 f.Fatalf("store order is wrong: there are stores before %v", w) 383 } 384 break 385 } 386 w = w.MemoryArg() 387 } 388 var stack []*Value 389 for _, v := range values { 390 if sset.contains(v.ID) { 391 // in sset means v is a store, or already pushed to stack, or already assigned a store number 392 continue 393 } 394 stack = append(stack, v) 395 sset.add(v.ID) 396 397 for len(stack) > 0 { 398 w := stack[len(stack)-1] 399 if storeNumber[w.ID] != 0 { 400 stack = stack[:len(stack)-1] 401 continue 402 } 403 if w.Op == OpPhi { 404 // Phi value doesn't depend on store in the current block. 405 // Do this early to avoid dependency cycle. 406 storeNumber[w.ID] = 2 407 count[2]++ 408 stack = stack[:len(stack)-1] 409 continue 410 } 411 412 max := int32(0) // latest store dependency 413 argsdone := true 414 for _, a := range w.Args { 415 if a.Block != w.Block { 416 continue 417 } 418 if !sset.contains(a.ID) { 419 stack = append(stack, a) 420 sset.add(a.ID) 421 argsdone = false 422 break 423 } 424 if storeNumber[a.ID]/3 > max { 425 max = storeNumber[a.ID] / 3 426 } 427 } 428 if !argsdone { 429 continue 430 } 431 432 n := 3*max + 2 433 if w.Op == OpNilCheck { 434 n = 3*max + 1 435 } 436 storeNumber[w.ID] = n 437 count[n]++ 438 stack = stack[:len(stack)-1] 439 } 440 } 441 442 // convert count to prefix sum of counts: count'[i] = sum_{j<=i} count[i] 443 for i := range count { 444 if i == 0 { 445 continue 446 } 447 count[i] += count[i-1] 448 } 449 if count[len(count)-1] != int32(len(values)) { 450 f.Fatalf("storeOrder: value is missing, total count = %d, values = %v", count[len(count)-1], values) 451 } 452 453 // place values in count-indexed bins, which are in the desired store order 454 order := make([]*Value, len(values)) 455 for _, v := range values { 456 s := storeNumber[v.ID] 457 order[count[s-1]] = v 458 count[s-1]++ 459 } 460 461 // Order nil checks in source order. We want the first in source order to trigger. 462 // If two are on the same line, we don't really care which happens first. 463 // See issue 18169. 464 if hasNilCheck { 465 start := -1 466 for i, v := range order { 467 if v.Op == OpNilCheck { 468 if start == -1 { 469 start = i 470 } 471 } else { 472 if start != -1 { 473 sort.Sort(bySourcePos(order[start:i])) 474 start = -1 475 } 476 } 477 } 478 if start != -1 { 479 sort.Sort(bySourcePos(order[start:])) 480 } 481 } 482 483 return order 484 } 485 486 type bySourcePos []*Value 487 488 func (s bySourcePos) Len() int { return len(s) } 489 func (s bySourcePos) Swap(i, j int) { s[i], s[j] = s[j], s[i] } 490 func (s bySourcePos) Less(i, j int) bool { return s[i].Pos.Before(s[j].Pos) }