github.com/gagliardetto/golang-go@v0.0.0-20201020153340-53909ea70814/cmd/go/not-internal/work/buildid.go (about) 1 // Copyright 2017 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package work 6 7 import ( 8 "bytes" 9 "fmt" 10 "io/ioutil" 11 "os" 12 "os/exec" 13 "strings" 14 15 "github.com/gagliardetto/golang-go/cmd/go/not-internal/base" 16 "github.com/gagliardetto/golang-go/cmd/go/not-internal/cache" 17 "github.com/gagliardetto/golang-go/cmd/go/not-internal/cfg" 18 "github.com/gagliardetto/golang-go/cmd/go/not-internal/str" 19 "github.com/gagliardetto/golang-go/cmd/internal/buildid" 20 ) 21 22 // Build IDs 23 // 24 // Go packages and binaries are stamped with build IDs that record both 25 // the action ID, which is a hash of the inputs to the action that produced 26 // the packages or binary, and the content ID, which is a hash of the action 27 // output, namely the archive or binary itself. The hash is the same one 28 // used by the build artifact cache (see cmd/go/internal/cache), but 29 // truncated when stored in packages and binaries, as the full length is not 30 // needed and is a bit unwieldy. The precise form is 31 // 32 // actionID/[.../]contentID 33 // 34 // where the actionID and contentID are prepared by hashToString below. 35 // and are found by looking for the first or last slash. 36 // Usually the buildID is simply actionID/contentID, but see below for an 37 // exception. 38 // 39 // The build ID serves two primary purposes. 40 // 41 // 1. The action ID half allows installed packages and binaries to serve as 42 // one-element cache entries. If we intend to build math.a with a given 43 // set of inputs summarized in the action ID, and the installed math.a already 44 // has that action ID, we can reuse the installed math.a instead of rebuilding it. 45 // 46 // 2. The content ID half allows the easy preparation of action IDs for steps 47 // that consume a particular package or binary. The content hash of every 48 // input file for a given action must be included in the action ID hash. 49 // Storing the content ID in the build ID lets us read it from the file with 50 // minimal I/O, instead of reading and hashing the entire file. 51 // This is especially effective since packages and binaries are typically 52 // the largest inputs to an action. 53 // 54 // Separating action ID from content ID is important for reproducible builds. 55 // The compiler is compiled with itself. If an output were represented by its 56 // own action ID (instead of content ID) when computing the action ID of 57 // the next step in the build process, then the compiler could never have its 58 // own input action ID as its output action ID (short of a miraculous hash collision). 59 // Instead we use the content IDs to compute the next action ID, and because 60 // the content IDs converge, so too do the action IDs and therefore the 61 // build IDs and the overall compiler binary. See cmd/dist's cmdbootstrap 62 // for the actual convergence sequence. 63 // 64 // The “one-element cache” purpose is a bit more complex for installed 65 // binaries. For a binary, like cmd/gofmt, there are two steps: compile 66 // cmd/gofmt/*.go into main.a, and then link main.a into the gofmt binary. 67 // We do not install gofmt's main.a, only the gofmt binary. Being able to 68 // decide that the gofmt binary is up-to-date means computing the action ID 69 // for the final link of the gofmt binary and comparing it against the 70 // already-installed gofmt binary. But computing the action ID for the link 71 // means knowing the content ID of main.a, which we did not keep. 72 // To sidestep this problem, each binary actually stores an expanded build ID: 73 // 74 // actionID(binary)/actionID(main.a)/contentID(main.a)/contentID(binary) 75 // 76 // (Note that this can be viewed equivalently as: 77 // 78 // actionID(binary)/buildID(main.a)/contentID(binary) 79 // 80 // Storing the buildID(main.a) in the middle lets the computations that care 81 // about the prefix or suffix halves ignore the middle and preserves the 82 // original build ID as a contiguous string.) 83 // 84 // During the build, when it's time to build main.a, the gofmt binary has the 85 // information needed to decide whether the eventual link would produce 86 // the same binary: if the action ID for main.a's inputs matches and then 87 // the action ID for the link step matches when assuming the given main.a 88 // content ID, then the binary as a whole is up-to-date and need not be rebuilt. 89 // 90 // This is all a bit complex and may be simplified once we can rely on the 91 // main cache, but at least at the start we will be using the content-based 92 // staleness determination without a cache beyond the usual installed 93 // package and binary locations. 94 95 const buildIDSeparator = "/" 96 97 // actionID returns the action ID half of a build ID. 98 func actionID(buildID string) string { 99 i := strings.Index(buildID, buildIDSeparator) 100 if i < 0 { 101 return buildID 102 } 103 return buildID[:i] 104 } 105 106 // contentID returns the content ID half of a build ID. 107 func contentID(buildID string) string { 108 return buildID[strings.LastIndex(buildID, buildIDSeparator)+1:] 109 } 110 111 // hashToString converts the hash h to a string to be recorded 112 // in package archives and binaries as part of the build ID. 113 // We use the first 96 bits of the hash and encode it in base64, 114 // resulting in a 16-byte string. Because this is only used for 115 // detecting the need to rebuild installed files (not for lookups 116 // in the object file cache), 96 bits are sufficient to drive the 117 // probability of a false "do not need to rebuild" decision to effectively zero. 118 // We embed two different hashes in archives and four in binaries, 119 // so cutting to 16 bytes is a significant savings when build IDs are displayed. 120 // (16*4+3 = 67 bytes compared to 64*4+3 = 259 bytes for the 121 // more straightforward option of printing the entire h in hex). 122 func hashToString(h [cache.HashSize]byte) string { 123 const b64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_" 124 const chunks = 5 125 var dst [chunks * 4]byte 126 for i := 0; i < chunks; i++ { 127 v := uint32(h[3*i])<<16 | uint32(h[3*i+1])<<8 | uint32(h[3*i+2]) 128 dst[4*i+0] = b64[(v>>18)&0x3F] 129 dst[4*i+1] = b64[(v>>12)&0x3F] 130 dst[4*i+2] = b64[(v>>6)&0x3F] 131 dst[4*i+3] = b64[v&0x3F] 132 } 133 return string(dst[:]) 134 } 135 136 // toolID returns the unique ID to use for the current copy of the 137 // named tool (asm, compile, cover, link). 138 // 139 // It is important that if the tool changes (for example a compiler bug is fixed 140 // and the compiler reinstalled), toolID returns a different string, so that old 141 // package archives look stale and are rebuilt (with the fixed compiler). 142 // This suggests using a content hash of the tool binary, as stored in the build ID. 143 // 144 // Unfortunately, we can't just open the tool binary, because the tool might be 145 // invoked via a wrapper program specified by -toolexec and we don't know 146 // what the wrapper program does. In particular, we want "-toolexec toolstash" 147 // to continue working: it does no good if "-toolexec toolstash" is executing a 148 // stashed copy of the compiler but the go command is acting as if it will run 149 // the standard copy of the compiler. The solution is to ask the tool binary to tell 150 // us its own build ID using the "-V=full" flag now supported by all tools. 151 // Then we know we're getting the build ID of the compiler that will actually run 152 // during the build. (How does the compiler binary know its own content hash? 153 // We store it there using updateBuildID after the standard link step.) 154 // 155 // A final twist is that we'd prefer to have reproducible builds for release toolchains. 156 // It should be possible to cross-compile for Windows from either Linux or Mac 157 // or Windows itself and produce the same binaries, bit for bit. If the tool ID, 158 // which influences the action ID half of the build ID, is based on the content ID, 159 // then the Linux compiler binary and Mac compiler binary will have different tool IDs 160 // and therefore produce executables with different action IDs. 161 // To avoid this problem, for releases we use the release version string instead 162 // of the compiler binary's content hash. This assumes that all compilers built 163 // on all different systems are semantically equivalent, which is of course only true 164 // modulo bugs. (Producing the exact same executables also requires that the different 165 // build setups agree on details like $GOROOT and file name paths, but at least the 166 // tool IDs do not make it impossible.) 167 func (b *Builder) toolID(name string) string { 168 b.id.Lock() 169 id := b.toolIDCache[name] 170 b.id.Unlock() 171 172 if id != "" { 173 return id 174 } 175 176 path := base.Tool(name) 177 desc := "go tool " + name 178 179 // Special case: undocumented -vettool overrides usual vet, 180 // for testing vet or supplying an alternative analysis tool. 181 if name == "vet" && VetTool != "" { 182 path = VetTool 183 desc = VetTool 184 } 185 186 cmdline := str.StringList(cfg.BuildToolexec, path, "-V=full") 187 cmd := exec.Command(cmdline[0], cmdline[1:]...) 188 cmd.Env = base.EnvForDir(cmd.Dir, os.Environ()) 189 var stdout, stderr bytes.Buffer 190 cmd.Stdout = &stdout 191 cmd.Stderr = &stderr 192 if err := cmd.Run(); err != nil { 193 base.Fatalf("%s: %v\n%s%s", desc, err, stdout.Bytes(), stderr.Bytes()) 194 } 195 196 line := stdout.String() 197 f := strings.Fields(line) 198 if len(f) < 3 || f[0] != name && path != VetTool || f[1] != "version" || f[2] == "devel" && !strings.HasPrefix(f[len(f)-1], "buildID=") { 199 base.Fatalf("%s -V=full: unexpected output:\n\t%s", desc, line) 200 } 201 if f[2] == "devel" { 202 // On the development branch, use the content ID part of the build ID. 203 id = contentID(f[len(f)-1]) 204 } else { 205 // For a release, the output is like: "compile version go1.9.1 X:framepointer". 206 // Use the whole line. 207 id = strings.TrimSpace(line) 208 } 209 210 b.id.Lock() 211 b.toolIDCache[name] = id 212 b.id.Unlock() 213 214 return id 215 } 216 217 // gccToolID returns the unique ID to use for a tool that is invoked 218 // by the GCC driver. This is used particularly for gccgo, but this can also 219 // be used for gcc, g++, gfortran, etc.; those tools all use the GCC 220 // driver under different names. The approach used here should also 221 // work for sufficiently new versions of clang. Unlike toolID, the 222 // name argument is the program to run. The language argument is the 223 // type of input file as passed to the GCC driver's -x option. 224 // 225 // For these tools we have no -V=full option to dump the build ID, 226 // but we can run the tool with -v -### to reliably get the compiler proper 227 // and hash that. That will work in the presence of -toolexec. 228 // 229 // In order to get reproducible builds for released compilers, we 230 // detect a released compiler by the absence of "experimental" in the 231 // --version output, and in that case we just use the version string. 232 func (b *Builder) gccgoToolID(name, language string) (string, error) { 233 key := name + "." + language 234 b.id.Lock() 235 id := b.toolIDCache[key] 236 b.id.Unlock() 237 238 if id != "" { 239 return id, nil 240 } 241 242 // Invoke the driver with -### to see the subcommands and the 243 // version strings. Use -x to set the language. Pretend to 244 // compile an empty file on standard input. 245 cmdline := str.StringList(cfg.BuildToolexec, name, "-###", "-x", language, "-c", "-") 246 cmd := exec.Command(cmdline[0], cmdline[1:]...) 247 cmd.Env = base.EnvForDir(cmd.Dir, os.Environ()) 248 // Force untranslated output so that we see the string "version". 249 cmd.Env = append(cmd.Env, "LC_ALL=C") 250 out, err := cmd.CombinedOutput() 251 if err != nil { 252 return "", fmt.Errorf("%s: %v; output: %q", name, err, out) 253 } 254 255 version := "" 256 lines := strings.Split(string(out), "\n") 257 for _, line := range lines { 258 if fields := strings.Fields(line); len(fields) > 1 && fields[1] == "version" { 259 version = line 260 break 261 } 262 } 263 if version == "" { 264 return "", fmt.Errorf("%s: can not find version number in %q", name, out) 265 } 266 267 if !strings.Contains(version, "experimental") { 268 // This is a release. Use this line as the tool ID. 269 id = version 270 } else { 271 // This is a development version. The first line with 272 // a leading space is the compiler proper. 273 compiler := "" 274 for _, line := range lines { 275 if len(line) > 1 && line[0] == ' ' { 276 compiler = line 277 break 278 } 279 } 280 if compiler == "" { 281 return "", fmt.Errorf("%s: can not find compilation command in %q", name, out) 282 } 283 284 fields := strings.Fields(compiler) 285 if len(fields) == 0 { 286 return "", fmt.Errorf("%s: compilation command confusion %q", name, out) 287 } 288 exe := fields[0] 289 if !strings.ContainsAny(exe, `/\`) { 290 if lp, err := exec.LookPath(exe); err == nil { 291 exe = lp 292 } 293 } 294 id, err = buildid.ReadFile(exe) 295 if err != nil { 296 return "", err 297 } 298 299 // If we can't find a build ID, use a hash. 300 if id == "" { 301 id = b.fileHash(exe) 302 } 303 } 304 305 b.id.Lock() 306 b.toolIDCache[key] = id 307 b.id.Unlock() 308 309 return id, nil 310 } 311 312 // Check if assembler used by gccgo is GNU as. 313 func assemblerIsGas() bool { 314 cmd := exec.Command(BuildToolchain.compiler(), "-print-prog-name=as") 315 assembler, err := cmd.Output() 316 if err == nil { 317 cmd := exec.Command(strings.TrimSpace(string(assembler)), "--version") 318 out, err := cmd.Output() 319 return err == nil && strings.Contains(string(out), "GNU") 320 } else { 321 return false 322 } 323 } 324 325 // gccgoBuildIDFile creates an assembler file that records the 326 // action's build ID in an SHF_EXCLUDE section for ELF files or 327 // in a CSECT in XCOFF files. 328 func (b *Builder) gccgoBuildIDFile(a *Action) (string, error) { 329 sfile := a.Objdir + "_buildid.s" 330 331 var buf bytes.Buffer 332 if cfg.Goos == "aix" { 333 fmt.Fprintf(&buf, "\t.csect .go.buildid[XO]\n") 334 } else if (cfg.Goos != "solaris" && cfg.Goos != "illumos") || assemblerIsGas() { 335 fmt.Fprintf(&buf, "\t"+`.section .go.buildid,"e"`+"\n") 336 } else if cfg.Goarch == "sparc" || cfg.Goarch == "sparc64" { 337 fmt.Fprintf(&buf, "\t"+`.section ".go.buildid",#exclude`+"\n") 338 } else { // cfg.Goarch == "386" || cfg.Goarch == "amd64" 339 fmt.Fprintf(&buf, "\t"+`.section .go.buildid,#exclude`+"\n") 340 } 341 fmt.Fprintf(&buf, "\t.byte ") 342 for i := 0; i < len(a.buildID); i++ { 343 if i > 0 { 344 if i%8 == 0 { 345 fmt.Fprintf(&buf, "\n\t.byte ") 346 } else { 347 fmt.Fprintf(&buf, ",") 348 } 349 } 350 fmt.Fprintf(&buf, "%#02x", a.buildID[i]) 351 } 352 fmt.Fprintf(&buf, "\n") 353 if cfg.Goos != "solaris" && cfg.Goos != "illumos" && cfg.Goos != "aix" { 354 secType := "@progbits" 355 if cfg.Goarch == "arm" { 356 secType = "%progbits" 357 } 358 fmt.Fprintf(&buf, "\t"+`.section .note.GNU-stack,"",%s`+"\n", secType) 359 fmt.Fprintf(&buf, "\t"+`.section .note.GNU-split-stack,"",%s`+"\n", secType) 360 } 361 362 if cfg.BuildN || cfg.BuildX { 363 for _, line := range bytes.Split(buf.Bytes(), []byte("\n")) { 364 b.Showcmd("", "echo '%s' >> %s", line, sfile) 365 } 366 if cfg.BuildN { 367 return sfile, nil 368 } 369 } 370 371 if err := ioutil.WriteFile(sfile, buf.Bytes(), 0666); err != nil { 372 return "", err 373 } 374 375 return sfile, nil 376 } 377 378 // buildID returns the build ID found in the given file. 379 // If no build ID is found, buildID returns the content hash of the file. 380 func (b *Builder) buildID(file string) string { 381 b.id.Lock() 382 id := b.buildIDCache[file] 383 b.id.Unlock() 384 385 if id != "" { 386 return id 387 } 388 389 id, err := buildid.ReadFile(file) 390 if err != nil { 391 id = b.fileHash(file) 392 } 393 394 b.id.Lock() 395 b.buildIDCache[file] = id 396 b.id.Unlock() 397 398 return id 399 } 400 401 // fileHash returns the content hash of the named file. 402 func (b *Builder) fileHash(file string) string { 403 sum, err := cache.FileHash(file) 404 if err != nil { 405 return "" 406 } 407 return hashToString(sum) 408 } 409 410 // useCache tries to satisfy the action a, which has action ID actionHash, 411 // by using a cached result from an earlier build. At the moment, the only 412 // cached result is the installed package or binary at target. 413 // If useCache decides that the cache can be used, it sets a.buildID 414 // and a.built for use by parent actions and then returns true. 415 // Otherwise it sets a.buildID to a temporary build ID for use in the build 416 // and returns false. When useCache returns false the expectation is that 417 // the caller will build the target and then call updateBuildID to finish the 418 // build ID computation. 419 // When useCache returns false, it may have initiated buffering of output 420 // during a's work. The caller should defer b.flushOutput(a), to make sure 421 // that flushOutput is eventually called regardless of whether the action 422 // succeeds. The flushOutput call must happen after updateBuildID. 423 func (b *Builder) useCache(a *Action, actionHash cache.ActionID, target string) bool { 424 // The second half of the build ID here is a placeholder for the content hash. 425 // It's important that the overall buildID be unlikely verging on impossible 426 // to appear in the output by chance, but that should be taken care of by 427 // the actionID half; if it also appeared in the input that would be like an 428 // engineered 96-bit partial SHA256 collision. 429 a.actionID = actionHash 430 actionID := hashToString(actionHash) 431 if a.json != nil { 432 a.json.ActionID = actionID 433 } 434 contentID := actionID // temporary placeholder, likely unique 435 a.buildID = actionID + buildIDSeparator + contentID 436 437 // Executable binaries also record the main build ID in the middle. 438 // See "Build IDs" comment above. 439 if a.Mode == "link" { 440 mainpkg := a.Deps[0] 441 a.buildID = actionID + buildIDSeparator + mainpkg.buildID + buildIDSeparator + contentID 442 } 443 444 // Check to see if target exists and matches the expected action ID. 445 // If so, it's up to date and we can reuse it instead of rebuilding it. 446 var buildID string 447 if target != "" && !cfg.BuildA { 448 buildID, _ = buildid.ReadFile(target) 449 if strings.HasPrefix(buildID, actionID+buildIDSeparator) { 450 a.buildID = buildID 451 if a.json != nil { 452 a.json.BuildID = a.buildID 453 } 454 a.built = target 455 // Poison a.Target to catch uses later in the build. 456 a.Target = "DO NOT USE - " + a.Mode 457 return true 458 } 459 } 460 461 // Special case for building a main package: if the only thing we 462 // want the package for is to link a binary, and the binary is 463 // already up-to-date, then to avoid a rebuild, report the package 464 // as up-to-date as well. See "Build IDs" comment above. 465 // TODO(rsc): Rewrite this code to use a TryCache func on the link action. 466 if target != "" && !cfg.BuildA && !b.NeedExport && a.Mode == "build" && len(a.triggers) == 1 && a.triggers[0].Mode == "link" { 467 buildID, err := buildid.ReadFile(target) 468 if err == nil { 469 id := strings.Split(buildID, buildIDSeparator) 470 if len(id) == 4 && id[1] == actionID { 471 // Temporarily assume a.buildID is the package build ID 472 // stored in the installed binary, and see if that makes 473 // the upcoming link action ID a match. If so, report that 474 // we built the package, safe in the knowledge that the 475 // link step will not ask us for the actual package file. 476 // Note that (*Builder).LinkAction arranged that all of 477 // a.triggers[0]'s dependencies other than a are also 478 // dependencies of a, so that we can be sure that, 479 // other than a.buildID, b.linkActionID is only accessing 480 // build IDs of completed actions. 481 oldBuildID := a.buildID 482 a.buildID = id[1] + buildIDSeparator + id[2] 483 linkID := hashToString(b.linkActionID(a.triggers[0])) 484 if id[0] == linkID { 485 // Best effort attempt to display output from the compile and link steps. 486 // If it doesn't work, it doesn't work: reusing the cached binary is more 487 // important than reprinting diagnostic information. 488 if c := cache.Default(); c != nil { 489 showStdout(b, c, a.actionID, "stdout") // compile output 490 showStdout(b, c, a.actionID, "link-stdout") // link output 491 } 492 493 // Poison a.Target to catch uses later in the build. 494 a.Target = "DO NOT USE - main build pseudo-cache Target" 495 a.built = "DO NOT USE - main build pseudo-cache built" 496 if a.json != nil { 497 a.json.BuildID = a.buildID 498 } 499 return true 500 } 501 // Otherwise restore old build ID for main build. 502 a.buildID = oldBuildID 503 } 504 } 505 } 506 507 // Special case for linking a test binary: if the only thing we 508 // want the binary for is to run the test, and the test result is cached, 509 // then to avoid the link step, report the link as up-to-date. 510 // We avoid the nested build ID problem in the previous special case 511 // by recording the test results in the cache under the action ID half. 512 if !cfg.BuildA && len(a.triggers) == 1 && a.triggers[0].TryCache != nil && a.triggers[0].TryCache(b, a.triggers[0]) { 513 // Best effort attempt to display output from the compile and link steps. 514 // If it doesn't work, it doesn't work: reusing the test result is more 515 // important than reprinting diagnostic information. 516 if c := cache.Default(); c != nil { 517 showStdout(b, c, a.Deps[0].actionID, "stdout") // compile output 518 showStdout(b, c, a.Deps[0].actionID, "link-stdout") // link output 519 } 520 521 // Poison a.Target to catch uses later in the build. 522 a.Target = "DO NOT USE - pseudo-cache Target" 523 a.built = "DO NOT USE - pseudo-cache built" 524 return true 525 } 526 527 if b.IsCmdList { 528 // Invoked during go list to compute and record staleness. 529 if p := a.Package; p != nil && !p.Stale { 530 p.Stale = true 531 if cfg.BuildA { 532 p.StaleReason = "build -a flag in use" 533 } else { 534 p.StaleReason = "build ID mismatch" 535 for _, p1 := range p.Internal.Imports { 536 if p1.Stale && p1.StaleReason != "" { 537 if strings.HasPrefix(p1.StaleReason, "stale dependency: ") { 538 p.StaleReason = p1.StaleReason 539 break 540 } 541 if strings.HasPrefix(p.StaleReason, "build ID mismatch") { 542 p.StaleReason = "stale dependency: " + p1.ImportPath 543 } 544 } 545 } 546 } 547 } 548 549 // Fall through to update a.buildID from the build artifact cache, 550 // which will affect the computation of buildIDs for targets 551 // higher up in the dependency graph. 552 } 553 554 // Check the build artifact cache. 555 // We treat hits in this cache as being "stale" for the purposes of go list 556 // (in effect, "stale" means whether p.Target is up-to-date), 557 // but we're still happy to use results from the build artifact cache. 558 if c := cache.Default(); c != nil { 559 if !cfg.BuildA { 560 if file, _, err := c.GetFile(actionHash); err == nil { 561 if buildID, err := buildid.ReadFile(file); err == nil { 562 if err := showStdout(b, c, a.actionID, "stdout"); err == nil { 563 a.built = file 564 a.Target = "DO NOT USE - using cache" 565 a.buildID = buildID 566 if a.json != nil { 567 a.json.BuildID = a.buildID 568 } 569 if p := a.Package; p != nil { 570 // Clearer than explaining that something else is stale. 571 p.StaleReason = "not installed but available in build cache" 572 } 573 return true 574 } 575 } 576 } 577 } 578 579 // Begin saving output for later writing to cache. 580 a.output = []byte{} 581 } 582 583 return false 584 } 585 586 func showStdout(b *Builder, c *cache.Cache, actionID cache.ActionID, key string) error { 587 stdout, stdoutEntry, err := c.GetBytes(cache.Subkey(actionID, key)) 588 if err != nil { 589 return err 590 } 591 592 if len(stdout) > 0 { 593 if cfg.BuildX || cfg.BuildN { 594 b.Showcmd("", "%s # internal", joinUnambiguously(str.StringList("cat", c.OutputFile(stdoutEntry.OutputID)))) 595 } 596 if !cfg.BuildN { 597 b.Print(string(stdout)) 598 } 599 } 600 return nil 601 } 602 603 // flushOutput flushes the output being queued in a. 604 func (b *Builder) flushOutput(a *Action) { 605 b.Print(string(a.output)) 606 a.output = nil 607 } 608 609 // updateBuildID updates the build ID in the target written by action a. 610 // It requires that useCache was called for action a and returned false, 611 // and that the build was then carried out and given the temporary 612 // a.buildID to record as the build ID in the resulting package or binary. 613 // updateBuildID computes the final content ID and updates the build IDs 614 // in the binary. 615 // 616 // Keep in sync with src/cmd/buildid/buildid.go 617 func (b *Builder) updateBuildID(a *Action, target string, rewrite bool) error { 618 if cfg.BuildX || cfg.BuildN { 619 if rewrite { 620 b.Showcmd("", "%s # internal", joinUnambiguously(str.StringList(base.Tool("buildid"), "-w", target))) 621 } 622 if cfg.BuildN { 623 return nil 624 } 625 } 626 627 // Cache output from compile/link, even if we don't do the rest. 628 if c := cache.Default(); c != nil { 629 switch a.Mode { 630 case "build": 631 c.PutBytes(cache.Subkey(a.actionID, "stdout"), a.output) 632 case "link": 633 // Even though we don't cache the binary, cache the linker text output. 634 // We might notice that an installed binary is up-to-date but still 635 // want to pretend to have run the linker. 636 // Store it under the main package's action ID 637 // to make it easier to find when that's all we have. 638 for _, a1 := range a.Deps { 639 if p1 := a1.Package; p1 != nil && p1.Name == "main" { 640 c.PutBytes(cache.Subkey(a1.actionID, "link-stdout"), a.output) 641 break 642 } 643 } 644 } 645 } 646 647 // Find occurrences of old ID and compute new content-based ID. 648 r, err := os.Open(target) 649 if err != nil { 650 return err 651 } 652 matches, hash, err := buildid.FindAndHash(r, a.buildID, 0) 653 r.Close() 654 if err != nil { 655 return err 656 } 657 newID := a.buildID[:strings.LastIndex(a.buildID, buildIDSeparator)] + buildIDSeparator + hashToString(hash) 658 if len(newID) != len(a.buildID) { 659 return fmt.Errorf("internal error: build ID length mismatch %q vs %q", a.buildID, newID) 660 } 661 662 // Replace with new content-based ID. 663 a.buildID = newID 664 if a.json != nil { 665 a.json.BuildID = a.buildID 666 } 667 if len(matches) == 0 { 668 // Assume the user specified -buildid= to override what we were going to choose. 669 return nil 670 } 671 672 if rewrite { 673 w, err := os.OpenFile(target, os.O_WRONLY, 0) 674 if err != nil { 675 return err 676 } 677 err = buildid.Rewrite(w, matches, newID) 678 if err != nil { 679 w.Close() 680 return err 681 } 682 if err := w.Close(); err != nil { 683 return err 684 } 685 } 686 687 // Cache package builds, but not binaries (link steps). 688 // The expectation is that binaries are not reused 689 // nearly as often as individual packages, and they're 690 // much larger, so the cache-footprint-to-utility ratio 691 // of binaries is much lower for binaries. 692 // Not caching the link step also makes sure that repeated "go run" at least 693 // always rerun the linker, so that they don't get too fast. 694 // (We don't want people thinking go is a scripting language.) 695 // Note also that if we start caching binaries, then we will 696 // copy the binaries out of the cache to run them, and then 697 // that will mean the go process is itself writing a binary 698 // and then executing it, so we will need to defend against 699 // ETXTBSY problems as discussed in exec.go and golang.org/issue/22220. 700 if c := cache.Default(); c != nil && a.Mode == "build" { 701 r, err := os.Open(target) 702 if err == nil { 703 if a.output == nil { 704 panic("internal error: a.output not set") 705 } 706 outputID, _, err := c.Put(a.actionID, r) 707 r.Close() 708 if err == nil && cfg.BuildX { 709 b.Showcmd("", "%s # internal", joinUnambiguously(str.StringList("cp", target, c.OutputFile(outputID)))) 710 } 711 if b.NeedExport { 712 if err != nil { 713 return err 714 } 715 a.Package.Export = c.OutputFile(outputID) 716 } 717 } 718 } 719 720 return nil 721 }