github.com/gagliardetto/golang-go@v0.0.0-20201020153340-53909ea70814/cmd/internal/obj/link.go (about) 1 // Derived from Inferno utils/6l/l.h and related files. 2 // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/6l/l.h 3 // 4 // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. 5 // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) 6 // Portions Copyright © 1997-1999 Vita Nuova Limited 7 // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) 8 // Portions Copyright © 2004,2006 Bruce Ellis 9 // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) 10 // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others 11 // Portions Copyright © 2009 The Go Authors. All rights reserved. 12 // 13 // Permission is hereby granted, free of charge, to any person obtaining a copy 14 // of this software and associated documentation files (the "Software"), to deal 15 // in the Software without restriction, including without limitation the rights 16 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 17 // copies of the Software, and to permit persons to whom the Software is 18 // furnished to do so, subject to the following conditions: 19 // 20 // The above copyright notice and this permission notice shall be included in 21 // all copies or substantial portions of the Software. 22 // 23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 24 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 26 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 28 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 29 // THE SOFTWARE. 30 31 package obj 32 33 import ( 34 "bufio" 35 "github.com/gagliardetto/golang-go/cmd/internal/dwarf" 36 "github.com/gagliardetto/golang-go/cmd/internal/objabi" 37 "github.com/gagliardetto/golang-go/cmd/internal/src" 38 "github.com/gagliardetto/golang-go/cmd/internal/sys" 39 "fmt" 40 "sync" 41 ) 42 43 // An Addr is an argument to an instruction. 44 // The general forms and their encodings are: 45 // 46 // sym±offset(symkind)(reg)(index*scale) 47 // Memory reference at address &sym(symkind) + offset + reg + index*scale. 48 // Any of sym(symkind), ±offset, (reg), (index*scale), and *scale can be omitted. 49 // If (reg) and *scale are both omitted, the resulting expression (index) is parsed as (reg). 50 // To force a parsing as index*scale, write (index*1). 51 // Encoding: 52 // type = TYPE_MEM 53 // name = symkind (NAME_AUTO, ...) or 0 (NAME_NONE) 54 // sym = sym 55 // offset = ±offset 56 // reg = reg (REG_*) 57 // index = index (REG_*) 58 // scale = scale (1, 2, 4, 8) 59 // 60 // $<mem> 61 // Effective address of memory reference <mem>, defined above. 62 // Encoding: same as memory reference, but type = TYPE_ADDR. 63 // 64 // $<±integer value> 65 // This is a special case of $<mem>, in which only ±offset is present. 66 // It has a separate type for easy recognition. 67 // Encoding: 68 // type = TYPE_CONST 69 // offset = ±integer value 70 // 71 // *<mem> 72 // Indirect reference through memory reference <mem>, defined above. 73 // Only used on x86 for CALL/JMP *sym(SB), which calls/jumps to a function 74 // pointer stored in the data word sym(SB), not a function named sym(SB). 75 // Encoding: same as above, but type = TYPE_INDIR. 76 // 77 // $*$<mem> 78 // No longer used. 79 // On machines with actual SB registers, $*$<mem> forced the 80 // instruction encoding to use a full 32-bit constant, never a 81 // reference relative to SB. 82 // 83 // $<floating point literal> 84 // Floating point constant value. 85 // Encoding: 86 // type = TYPE_FCONST 87 // val = floating point value 88 // 89 // $<string literal, up to 8 chars> 90 // String literal value (raw bytes used for DATA instruction). 91 // Encoding: 92 // type = TYPE_SCONST 93 // val = string 94 // 95 // <register name> 96 // Any register: integer, floating point, control, segment, and so on. 97 // If looking for specific register kind, must check type and reg value range. 98 // Encoding: 99 // type = TYPE_REG 100 // reg = reg (REG_*) 101 // 102 // x(PC) 103 // Encoding: 104 // type = TYPE_BRANCH 105 // val = Prog* reference OR ELSE offset = target pc (branch takes priority) 106 // 107 // $±x-±y 108 // Final argument to TEXT, specifying local frame size x and argument size y. 109 // In this form, x and y are integer literals only, not arbitrary expressions. 110 // This avoids parsing ambiguities due to the use of - as a separator. 111 // The ± are optional. 112 // If the final argument to TEXT omits the -±y, the encoding should still 113 // use TYPE_TEXTSIZE (not TYPE_CONST), with u.argsize = ArgsSizeUnknown. 114 // Encoding: 115 // type = TYPE_TEXTSIZE 116 // offset = x 117 // val = int32(y) 118 // 119 // reg<<shift, reg>>shift, reg->shift, reg@>shift 120 // Shifted register value, for ARM and ARM64. 121 // In this form, reg must be a register and shift can be a register or an integer constant. 122 // Encoding: 123 // type = TYPE_SHIFT 124 // On ARM: 125 // offset = (reg&15) | shifttype<<5 | count 126 // shifttype = 0, 1, 2, 3 for <<, >>, ->, @> 127 // count = (reg&15)<<8 | 1<<4 for a register shift count, (n&31)<<7 for an integer constant. 128 // On ARM64: 129 // offset = (reg&31)<<16 | shifttype<<22 | (count&63)<<10 130 // shifttype = 0, 1, 2 for <<, >>, -> 131 // 132 // (reg, reg) 133 // A destination register pair. When used as the last argument of an instruction, 134 // this form makes clear that both registers are destinations. 135 // Encoding: 136 // type = TYPE_REGREG 137 // reg = first register 138 // offset = second register 139 // 140 // [reg, reg, reg-reg] 141 // Register list for ARM, ARM64, 386/AMD64. 142 // Encoding: 143 // type = TYPE_REGLIST 144 // On ARM: 145 // offset = bit mask of registers in list; R0 is low bit. 146 // On ARM64: 147 // offset = register count (Q:size) | arrangement (opcode) | first register 148 // On 386/AMD64: 149 // reg = range low register 150 // offset = 2 packed registers + kind tag (see x86.EncodeRegisterRange) 151 // 152 // reg, reg 153 // Register pair for ARM. 154 // TYPE_REGREG2 155 // 156 // (reg+reg) 157 // Register pair for PPC64. 158 // Encoding: 159 // type = TYPE_MEM 160 // reg = first register 161 // index = second register 162 // scale = 1 163 // 164 // reg.[US]XT[BHWX] 165 // Register extension for ARM64 166 // Encoding: 167 // type = TYPE_REG 168 // reg = REG_[US]XT[BHWX] + register + shift amount 169 // offset = ((reg&31) << 16) | (exttype << 13) | (amount<<10) 170 // 171 // reg.<T> 172 // Register arrangement for ARM64 SIMD register 173 // e.g.: V1.S4, V2.S2, V7.D2, V2.H4, V6.B16 174 // Encoding: 175 // type = TYPE_REG 176 // reg = REG_ARNG + register + arrangement 177 // 178 // reg.<T>[index] 179 // Register element for ARM64 180 // Encoding: 181 // type = TYPE_REG 182 // reg = REG_ELEM + register + arrangement 183 // index = element index 184 185 type Addr struct { 186 Reg int16 187 Index int16 188 Scale int16 // Sometimes holds a register. 189 Type AddrType 190 Name AddrName 191 Class int8 192 Offset int64 193 Sym *LSym 194 195 // argument value: 196 // for TYPE_SCONST, a string 197 // for TYPE_FCONST, a float64 198 // for TYPE_BRANCH, a *Prog (optional) 199 // for TYPE_TEXTSIZE, an int32 (optional) 200 Val interface{} 201 } 202 203 type AddrName int8 204 205 const ( 206 NAME_NONE AddrName = iota 207 NAME_EXTERN 208 NAME_STATIC 209 NAME_AUTO 210 NAME_PARAM 211 // A reference to name@GOT(SB) is a reference to the entry in the global offset 212 // table for 'name'. 213 NAME_GOTREF 214 // Indicates that this is a reference to a TOC anchor. 215 NAME_TOCREF 216 ) 217 218 //go:generate stringer -type AddrType 219 220 type AddrType uint8 221 222 const ( 223 TYPE_NONE AddrType = iota 224 TYPE_BRANCH 225 TYPE_TEXTSIZE 226 TYPE_MEM 227 TYPE_CONST 228 TYPE_FCONST 229 TYPE_SCONST 230 TYPE_REG 231 TYPE_ADDR 232 TYPE_SHIFT 233 TYPE_REGREG 234 TYPE_REGREG2 235 TYPE_INDIR 236 TYPE_REGLIST 237 ) 238 239 // Prog describes a single machine instruction. 240 // 241 // The general instruction form is: 242 // 243 // (1) As.Scond From [, ...RestArgs], To 244 // (2) As.Scond From, Reg [, ...RestArgs], To, RegTo2 245 // 246 // where As is an opcode and the others are arguments: 247 // From, Reg are sources, and To, RegTo2 are destinations. 248 // RestArgs can hold additional sources and destinations. 249 // Usually, not all arguments are present. 250 // For example, MOVL R1, R2 encodes using only As=MOVL, From=R1, To=R2. 251 // The Scond field holds additional condition bits for systems (like arm) 252 // that have generalized conditional execution. 253 // (2) form is present for compatibility with older code, 254 // to avoid too much changes in a single swing. 255 // (1) scheme is enough to express any kind of operand combination. 256 // 257 // Jump instructions use the Pcond field to point to the target instruction, 258 // which must be in the same linked list as the jump instruction. 259 // 260 // The Progs for a given function are arranged in a list linked through the Link field. 261 // 262 // Each Prog is charged to a specific source line in the debug information, 263 // specified by Pos.Line(). 264 // Every Prog has a Ctxt field that defines its context. 265 // For performance reasons, Progs usually are usually bulk allocated, cached, and reused; 266 // those bulk allocators should always be used, rather than new(Prog). 267 // 268 // The other fields not yet mentioned are for use by the back ends and should 269 // be left zeroed by creators of Prog lists. 270 type Prog struct { 271 Ctxt *Link // linker context 272 Link *Prog // next Prog in linked list 273 From Addr // first source operand 274 RestArgs []Addr // can pack any operands that not fit into {Prog.From, Prog.To} 275 To Addr // destination operand (second is RegTo2 below) 276 Pcond *Prog // target of conditional jump 277 Forwd *Prog // for x86 back end 278 Rel *Prog // for x86, arm back ends 279 Pc int64 // for back ends or assembler: virtual or actual program counter, depending on phase 280 Pos src.XPos // source position of this instruction 281 Spadj int32 // effect of instruction on stack pointer (increment or decrement amount) 282 As As // assembler opcode 283 Reg int16 // 2nd source operand 284 RegTo2 int16 // 2nd destination operand 285 Mark uint16 // bitmask of arch-specific items 286 Optab uint16 // arch-specific opcode index 287 Scond uint8 // bits that describe instruction suffixes (e.g. ARM conditions) 288 Back uint8 // for x86 back end: backwards branch state 289 Ft uint8 // for x86 back end: type index of Prog.From 290 Tt uint8 // for x86 back end: type index of Prog.To 291 Isize uint8 // for x86 back end: size of the instruction in bytes 292 } 293 294 // From3Type returns p.GetFrom3().Type, or TYPE_NONE when 295 // p.GetFrom3() returns nil. 296 // 297 // Deprecated: for the same reasons as Prog.GetFrom3. 298 func (p *Prog) From3Type() AddrType { 299 if p.RestArgs == nil { 300 return TYPE_NONE 301 } 302 return p.RestArgs[0].Type 303 } 304 305 // GetFrom3 returns second source operand (the first is Prog.From). 306 // In combination with Prog.From and Prog.To it makes common 3 operand 307 // case easier to use. 308 // 309 // Should be used only when RestArgs is set with SetFrom3. 310 // 311 // Deprecated: better use RestArgs directly or define backend-specific getters. 312 // Introduced to simplify transition to []Addr. 313 // Usage of this is discouraged due to fragility and lack of guarantees. 314 func (p *Prog) GetFrom3() *Addr { 315 if p.RestArgs == nil { 316 return nil 317 } 318 return &p.RestArgs[0] 319 } 320 321 // SetFrom3 assigns []Addr{a} to p.RestArgs. 322 // In pair with Prog.GetFrom3 it can help in emulation of Prog.From3. 323 // 324 // Deprecated: for the same reasons as Prog.GetFrom3. 325 func (p *Prog) SetFrom3(a Addr) { 326 p.RestArgs = []Addr{a} 327 } 328 329 // An As denotes an assembler opcode. 330 // There are some portable opcodes, declared here in package obj, 331 // that are common to all architectures. 332 // However, the majority of opcodes are arch-specific 333 // and are declared in their respective architecture's subpackage. 334 type As int16 335 336 // These are the portable opcodes. 337 const ( 338 AXXX As = iota 339 ACALL 340 ADUFFCOPY 341 ADUFFZERO 342 AEND 343 AFUNCDATA 344 AJMP 345 ANOP 346 APCALIGN 347 APCDATA 348 ARET 349 AGETCALLERPC 350 ATEXT 351 AUNDEF 352 A_ARCHSPECIFIC 353 ) 354 355 // Each architecture is allotted a distinct subspace of opcode values 356 // for declaring its arch-specific opcodes. 357 // Within this subspace, the first arch-specific opcode should be 358 // at offset A_ARCHSPECIFIC. 359 // 360 // Subspaces are aligned to a power of two so opcodes can be masked 361 // with AMask and used as compact array indices. 362 const ( 363 ABase386 = (1 + iota) << 11 364 ABaseARM 365 ABaseAMD64 366 ABasePPC64 367 ABaseARM64 368 ABaseMIPS 369 ABaseRISCV 370 ABaseS390X 371 ABaseWasm 372 373 AllowedOpCodes = 1 << 11 // The number of opcodes available for any given architecture. 374 AMask = AllowedOpCodes - 1 // AND with this to use the opcode as an array index. 375 ) 376 377 // An LSym is the sort of symbol that is written to an object file. 378 // It represents Go symbols in a flat pkg+"."+name namespace. 379 type LSym struct { 380 Name string 381 Type objabi.SymKind 382 Attribute 383 384 RefIdx int // Index of this symbol in the symbol reference list. 385 Size int64 386 Gotype *LSym 387 P []byte 388 R []Reloc 389 390 Func *FuncInfo 391 392 Pkg string 393 PkgIdx int32 394 SymIdx int32 // TODO: replace RefIdx 395 } 396 397 // A FuncInfo contains extra fields for STEXT symbols. 398 type FuncInfo struct { 399 Args int32 400 Locals int32 401 Text *Prog 402 Autot map[*LSym]struct{} 403 Pcln Pcln 404 InlMarks []InlMark 405 406 dwarfInfoSym *LSym 407 dwarfLocSym *LSym 408 dwarfRangesSym *LSym 409 dwarfAbsFnSym *LSym 410 dwarfDebugLinesSym *LSym 411 412 GCArgs *LSym 413 GCLocals *LSym 414 GCRegs *LSym 415 StackObjects *LSym 416 OpenCodedDeferInfo *LSym 417 418 FuncInfoSym *LSym 419 } 420 421 type InlMark struct { 422 // When unwinding from an instruction in an inlined body, mark 423 // where we should unwind to. 424 // id records the global inlining id of the inlined body. 425 // p records the location of an instruction in the parent (inliner) frame. 426 p *Prog 427 id int32 428 } 429 430 // Mark p as the instruction to set as the pc when 431 // "unwinding" the inlining global frame id. Usually it should be 432 // instruction with a file:line at the callsite, and occur 433 // just before the body of the inlined function. 434 func (fi *FuncInfo) AddInlMark(p *Prog, id int32) { 435 fi.InlMarks = append(fi.InlMarks, InlMark{p: p, id: id}) 436 } 437 438 // Record the type symbol for an auto variable so that the linker 439 // an emit DWARF type information for the type. 440 func (fi *FuncInfo) RecordAutoType(gotype *LSym) { 441 if fi.Autot == nil { 442 fi.Autot = make(map[*LSym]struct{}) 443 } 444 fi.Autot[gotype] = struct{}{} 445 } 446 447 //go:generate stringer -type ABI 448 449 // ABI is the calling convention of a text symbol. 450 type ABI uint8 451 452 const ( 453 // ABI0 is the stable stack-based ABI. It's important that the 454 // value of this is "0": we can't distinguish between 455 // references to data and ABI0 text symbols in assembly code, 456 // and hence this doesn't distinguish between symbols without 457 // an ABI and text symbols with ABI0. 458 ABI0 ABI = iota 459 460 // ABIInternal is the internal ABI that may change between Go 461 // versions. All Go functions use the internal ABI and the 462 // compiler generates wrappers for calls to and from other 463 // ABIs. 464 ABIInternal 465 466 ABICount 467 ) 468 469 // Attribute is a set of symbol attributes. 470 type Attribute uint32 471 472 const ( 473 AttrDuplicateOK Attribute = 1 << iota 474 AttrCFunc 475 AttrNoSplit 476 AttrLeaf 477 AttrWrapper 478 AttrNeedCtxt 479 AttrNoFrame 480 AttrSeenGlobl 481 AttrOnList 482 AttrStatic 483 484 // MakeTypelink means that the type should have an entry in the typelink table. 485 AttrMakeTypelink 486 487 // ReflectMethod means the function may call reflect.Type.Method or 488 // reflect.Type.MethodByName. Matching is imprecise (as reflect.Type 489 // can be used through a custom interface), so ReflectMethod may be 490 // set in some cases when the reflect package is not called. 491 // 492 // Used by the linker to determine what methods can be pruned. 493 AttrReflectMethod 494 495 // Local means make the symbol local even when compiling Go code to reference Go 496 // symbols in other shared libraries, as in this mode symbols are global by 497 // default. "local" here means in the sense of the dynamic linker, i.e. not 498 // visible outside of the module (shared library or executable) that contains its 499 // definition. (When not compiling to support Go shared libraries, all symbols are 500 // local in this sense unless there is a cgo_export_* directive). 501 AttrLocal 502 503 // For function symbols; indicates that the specified function was the 504 // target of an inline during compilation 505 AttrWasInlined 506 507 // TopFrame means that this function is an entry point and unwinders should not 508 // keep unwinding beyond this frame. 509 AttrTopFrame 510 511 // Indexed indicates this symbol has been assigned with an index (when using the 512 // new object file format). 513 AttrIndexed 514 515 // attrABIBase is the value at which the ABI is encoded in 516 // Attribute. This must be last; all bits after this are 517 // assumed to be an ABI value. 518 // 519 // MUST BE LAST since all bits above this comprise the ABI. 520 attrABIBase 521 ) 522 523 func (a Attribute) DuplicateOK() bool { return a&AttrDuplicateOK != 0 } 524 func (a Attribute) MakeTypelink() bool { return a&AttrMakeTypelink != 0 } 525 func (a Attribute) CFunc() bool { return a&AttrCFunc != 0 } 526 func (a Attribute) NoSplit() bool { return a&AttrNoSplit != 0 } 527 func (a Attribute) Leaf() bool { return a&AttrLeaf != 0 } 528 func (a Attribute) SeenGlobl() bool { return a&AttrSeenGlobl != 0 } 529 func (a Attribute) OnList() bool { return a&AttrOnList != 0 } 530 func (a Attribute) ReflectMethod() bool { return a&AttrReflectMethod != 0 } 531 func (a Attribute) Local() bool { return a&AttrLocal != 0 } 532 func (a Attribute) Wrapper() bool { return a&AttrWrapper != 0 } 533 func (a Attribute) NeedCtxt() bool { return a&AttrNeedCtxt != 0 } 534 func (a Attribute) NoFrame() bool { return a&AttrNoFrame != 0 } 535 func (a Attribute) Static() bool { return a&AttrStatic != 0 } 536 func (a Attribute) WasInlined() bool { return a&AttrWasInlined != 0 } 537 func (a Attribute) TopFrame() bool { return a&AttrTopFrame != 0 } 538 func (a Attribute) Indexed() bool { return a&AttrIndexed != 0 } 539 540 func (a *Attribute) Set(flag Attribute, value bool) { 541 if value { 542 *a |= flag 543 } else { 544 *a &^= flag 545 } 546 } 547 548 func (a Attribute) ABI() ABI { return ABI(a / attrABIBase) } 549 func (a *Attribute) SetABI(abi ABI) { 550 const mask = 1 // Only one ABI bit for now. 551 *a = (*a &^ (mask * attrABIBase)) | Attribute(abi)*attrABIBase 552 } 553 554 var textAttrStrings = [...]struct { 555 bit Attribute 556 s string 557 }{ 558 {bit: AttrDuplicateOK, s: "DUPOK"}, 559 {bit: AttrMakeTypelink, s: ""}, 560 {bit: AttrCFunc, s: "CFUNC"}, 561 {bit: AttrNoSplit, s: "NOSPLIT"}, 562 {bit: AttrLeaf, s: "LEAF"}, 563 {bit: AttrSeenGlobl, s: ""}, 564 {bit: AttrOnList, s: ""}, 565 {bit: AttrReflectMethod, s: "REFLECTMETHOD"}, 566 {bit: AttrLocal, s: "LOCAL"}, 567 {bit: AttrWrapper, s: "WRAPPER"}, 568 {bit: AttrNeedCtxt, s: "NEEDCTXT"}, 569 {bit: AttrNoFrame, s: "NOFRAME"}, 570 {bit: AttrStatic, s: "STATIC"}, 571 {bit: AttrWasInlined, s: ""}, 572 {bit: AttrTopFrame, s: "TOPFRAME"}, 573 {bit: AttrIndexed, s: ""}, 574 } 575 576 // TextAttrString formats a for printing in as part of a TEXT prog. 577 func (a Attribute) TextAttrString() string { 578 var s string 579 for _, x := range textAttrStrings { 580 if a&x.bit != 0 { 581 if x.s != "" { 582 s += x.s + "|" 583 } 584 a &^= x.bit 585 } 586 } 587 switch a.ABI() { 588 case ABI0: 589 case ABIInternal: 590 s += "ABIInternal|" 591 a.SetABI(0) // Clear ABI so we don't print below. 592 } 593 if a != 0 { 594 s += fmt.Sprintf("UnknownAttribute(%d)|", a) 595 } 596 // Chop off trailing |, if present. 597 if len(s) > 0 { 598 s = s[:len(s)-1] 599 } 600 return s 601 } 602 603 // The compiler needs LSym to satisfy fmt.Stringer, because it stores 604 // an LSym in ssa.ExternSymbol. 605 func (s *LSym) String() string { 606 return s.Name 607 } 608 609 type Pcln struct { 610 Pcsp Pcdata 611 Pcfile Pcdata 612 Pcline Pcdata 613 Pcinline Pcdata 614 Pcdata []Pcdata 615 Funcdata []*LSym 616 Funcdataoff []int64 617 File []string 618 Lastfile string 619 Lastindex int 620 InlTree InlTree // per-function inlining tree extracted from the global tree 621 } 622 623 type Reloc struct { 624 Off int32 625 Siz uint8 626 Type objabi.RelocType 627 Add int64 628 Sym *LSym 629 } 630 631 type Auto struct { 632 Asym *LSym 633 Aoffset int32 634 Name AddrName 635 Gotype *LSym 636 } 637 638 type Pcdata struct { 639 P []byte 640 } 641 642 // Link holds the context for writing object code from a compiler 643 // to be linker input or for reading that input into the linker. 644 type Link struct { 645 Headtype objabi.HeadType 646 Arch *LinkArch 647 Debugasm int 648 Debugvlog bool 649 Debugpcln string 650 Flag_shared bool 651 Flag_dynlink bool 652 Flag_linkshared bool 653 Flag_optimize bool 654 Flag_locationlists bool 655 Flag_newobj bool // use new object file format 656 Bso *bufio.Writer 657 Pathname string 658 hashmu sync.Mutex // protects hash, funchash 659 hash map[string]*LSym // name -> sym mapping 660 funchash map[string]*LSym // name -> sym mapping for ABIInternal syms 661 statichash map[string]*LSym // name -> sym mapping for static syms 662 PosTable src.PosTable 663 InlTree InlTree // global inlining tree used by gc/inl.go 664 DwFixups *DwarfFixupTable 665 Imports []string 666 DiagFunc func(string, ...interface{}) 667 DiagFlush func() 668 DebugInfo func(fn *LSym, info *LSym, curfn interface{}) ([]dwarf.Scope, dwarf.InlCalls) // if non-nil, curfn is a *gc.Node 669 GenAbstractFunc func(fn *LSym) 670 Errors int 671 672 InParallel bool // parallel backend phase in effect 673 Framepointer_enabled bool 674 UseBASEntries bool // Use Base Address Selection Entries in location lists and PC ranges 675 676 // state for writing objects 677 Text []*LSym 678 Data []*LSym 679 680 // ABIAliases are text symbols that should be aliased to all 681 // ABIs. These symbols may only be referenced and not defined 682 // by this object, since the need for an alias may appear in a 683 // different object than the definition. Hence, this 684 // information can't be carried in the symbol definition. 685 // 686 // TODO(austin): Replace this with ABI wrappers once the ABIs 687 // actually diverge. 688 ABIAliases []*LSym 689 690 // pkgIdx maps package path to index. The index is used for 691 // symbol reference in the object file. 692 pkgIdx map[string]int32 693 694 defs []*LSym // list of defined symbols in the current package 695 nonpkgdefs []*LSym // list of defined non-package symbols 696 nonpkgrefs []*LSym // list of referenced non-package symbols 697 } 698 699 func (ctxt *Link) Diag(format string, args ...interface{}) { 700 ctxt.Errors++ 701 ctxt.DiagFunc(format, args...) 702 } 703 704 func (ctxt *Link) Logf(format string, args ...interface{}) { 705 fmt.Fprintf(ctxt.Bso, format, args...) 706 ctxt.Bso.Flush() 707 } 708 709 // The smallest possible offset from the hardware stack pointer to a local 710 // variable on the stack. Architectures that use a link register save its value 711 // on the stack in the function prologue and so always have a pointer between 712 // the hardware stack pointer and the local variable area. 713 func (ctxt *Link) FixedFrameSize() int64 { 714 switch ctxt.Arch.Family { 715 case sys.AMD64, sys.I386, sys.Wasm: 716 return 0 717 case sys.PPC64: 718 // PIC code on ppc64le requires 32 bytes of stack, and it's easier to 719 // just use that much stack always on ppc64x. 720 return int64(4 * ctxt.Arch.PtrSize) 721 default: 722 return int64(ctxt.Arch.PtrSize) 723 } 724 } 725 726 // LinkArch is the definition of a single architecture. 727 type LinkArch struct { 728 *sys.Arch 729 Init func(*Link) 730 Preprocess func(*Link, *LSym, ProgAlloc) 731 Assemble func(*Link, *LSym, ProgAlloc) 732 Progedit func(*Link, *Prog, ProgAlloc) 733 UnaryDst map[As]bool // Instruction takes one operand, a destination. 734 DWARFRegisters map[int16]int16 735 }