github.com/gagliardetto/golang-go@v0.0.0-20201020153340-53909ea70814/cmd/internal/obj/pcln.go (about)

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package obj
     6  
     7  import (
     8  	"encoding/binary"
     9  	"log"
    10  )
    11  
    12  // funcpctab writes to dst a pc-value table mapping the code in func to the values
    13  // returned by valfunc parameterized by arg. The invocation of valfunc to update the
    14  // current value is, for each p,
    15  //
    16  //	val = valfunc(func, val, p, 0, arg);
    17  //	record val as value at p->pc;
    18  //	val = valfunc(func, val, p, 1, arg);
    19  //
    20  // where func is the function, val is the current value, p is the instruction being
    21  // considered, and arg can be used to further parameterize valfunc.
    22  func funcpctab(ctxt *Link, dst *Pcdata, func_ *LSym, desc string, valfunc func(*Link, *LSym, int32, *Prog, int32, interface{}) int32, arg interface{}) {
    23  	dbg := desc == ctxt.Debugpcln
    24  
    25  	dst.P = dst.P[:0]
    26  
    27  	if dbg {
    28  		ctxt.Logf("funcpctab %s [valfunc=%s]\n", func_.Name, desc)
    29  	}
    30  
    31  	val := int32(-1)
    32  	oldval := val
    33  	if func_.Func.Text == nil {
    34  		return
    35  	}
    36  
    37  	pc := func_.Func.Text.Pc
    38  
    39  	if dbg {
    40  		ctxt.Logf("%6x %6d %v\n", uint64(pc), val, func_.Func.Text)
    41  	}
    42  
    43  	buf := make([]byte, binary.MaxVarintLen32)
    44  	started := false
    45  	for p := func_.Func.Text; p != nil; p = p.Link {
    46  		// Update val. If it's not changing, keep going.
    47  		val = valfunc(ctxt, func_, val, p, 0, arg)
    48  
    49  		if val == oldval && started {
    50  			val = valfunc(ctxt, func_, val, p, 1, arg)
    51  			if dbg {
    52  				ctxt.Logf("%6x %6s %v\n", uint64(p.Pc), "", p)
    53  			}
    54  			continue
    55  		}
    56  
    57  		// If the pc of the next instruction is the same as the
    58  		// pc of this instruction, this instruction is not a real
    59  		// instruction. Keep going, so that we only emit a delta
    60  		// for a true instruction boundary in the program.
    61  		if p.Link != nil && p.Link.Pc == p.Pc {
    62  			val = valfunc(ctxt, func_, val, p, 1, arg)
    63  			if dbg {
    64  				ctxt.Logf("%6x %6s %v\n", uint64(p.Pc), "", p)
    65  			}
    66  			continue
    67  		}
    68  
    69  		// The table is a sequence of (value, pc) pairs, where each
    70  		// pair states that the given value is in effect from the current position
    71  		// up to the given pc, which becomes the new current position.
    72  		// To generate the table as we scan over the program instructions,
    73  		// we emit a "(value" when pc == func->value, and then
    74  		// each time we observe a change in value we emit ", pc) (value".
    75  		// When the scan is over, we emit the closing ", pc)".
    76  		//
    77  		// The table is delta-encoded. The value deltas are signed and
    78  		// transmitted in zig-zag form, where a complement bit is placed in bit 0,
    79  		// and the pc deltas are unsigned. Both kinds of deltas are sent
    80  		// as variable-length little-endian base-128 integers,
    81  		// where the 0x80 bit indicates that the integer continues.
    82  
    83  		if dbg {
    84  			ctxt.Logf("%6x %6d %v\n", uint64(p.Pc), val, p)
    85  		}
    86  
    87  		if started {
    88  			pcdelta := (p.Pc - pc) / int64(ctxt.Arch.MinLC)
    89  			n := binary.PutUvarint(buf, uint64(pcdelta))
    90  			dst.P = append(dst.P, buf[:n]...)
    91  			pc = p.Pc
    92  		}
    93  
    94  		delta := val - oldval
    95  		n := binary.PutVarint(buf, int64(delta))
    96  		dst.P = append(dst.P, buf[:n]...)
    97  		oldval = val
    98  		started = true
    99  		val = valfunc(ctxt, func_, val, p, 1, arg)
   100  	}
   101  
   102  	if started {
   103  		if dbg {
   104  			ctxt.Logf("%6x done\n", uint64(func_.Func.Text.Pc+func_.Size))
   105  		}
   106  		v := (func_.Size - pc) / int64(ctxt.Arch.MinLC)
   107  		if v < 0 {
   108  			ctxt.Diag("negative pc offset: %v", v)
   109  		}
   110  		n := binary.PutUvarint(buf, uint64(v))
   111  		dst.P = append(dst.P, buf[:n]...)
   112  		// add terminating varint-encoded 0, which is just 0
   113  		dst.P = append(dst.P, 0)
   114  	}
   115  
   116  	if dbg {
   117  		ctxt.Logf("wrote %d bytes to %p\n", len(dst.P), dst)
   118  		for _, p := range dst.P {
   119  			ctxt.Logf(" %02x", p)
   120  		}
   121  		ctxt.Logf("\n")
   122  	}
   123  }
   124  
   125  // pctofileline computes either the file number (arg == 0)
   126  // or the line number (arg == 1) to use at p.
   127  // Because p.Pos applies to p, phase == 0 (before p)
   128  // takes care of the update.
   129  func pctofileline(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 {
   130  	if p.As == ATEXT || p.As == ANOP || p.Pos.Line() == 0 || phase == 1 {
   131  		return oldval
   132  	}
   133  	f, l := linkgetlineFromPos(ctxt, p.Pos)
   134  	if arg == nil {
   135  		return l
   136  	}
   137  	pcln := arg.(*Pcln)
   138  
   139  	if f == pcln.Lastfile {
   140  		return int32(pcln.Lastindex)
   141  	}
   142  
   143  	for i, file := range pcln.File {
   144  		if file == f {
   145  			pcln.Lastfile = f
   146  			pcln.Lastindex = i
   147  			return int32(i)
   148  		}
   149  	}
   150  	i := len(pcln.File)
   151  	pcln.File = append(pcln.File, f)
   152  	pcln.Lastfile = f
   153  	pcln.Lastindex = i
   154  	return int32(i)
   155  }
   156  
   157  // pcinlineState holds the state used to create a function's inlining
   158  // tree and the PC-value table that maps PCs to nodes in that tree.
   159  type pcinlineState struct {
   160  	globalToLocal map[int]int
   161  	localTree     InlTree
   162  }
   163  
   164  // addBranch adds a branch from the global inlining tree in ctxt to
   165  // the function's local inlining tree, returning the index in the local tree.
   166  func (s *pcinlineState) addBranch(ctxt *Link, globalIndex int) int {
   167  	if globalIndex < 0 {
   168  		return -1
   169  	}
   170  
   171  	localIndex, ok := s.globalToLocal[globalIndex]
   172  	if ok {
   173  		return localIndex
   174  	}
   175  
   176  	// Since tracebacks don't include column information, we could
   177  	// use one node for multiple calls of the same function on the
   178  	// same line (e.g., f(x) + f(y)). For now, we use one node for
   179  	// each inlined call.
   180  	call := ctxt.InlTree.nodes[globalIndex]
   181  	call.Parent = s.addBranch(ctxt, call.Parent)
   182  	localIndex = len(s.localTree.nodes)
   183  	s.localTree.nodes = append(s.localTree.nodes, call)
   184  	s.globalToLocal[globalIndex] = localIndex
   185  	return localIndex
   186  }
   187  
   188  func (s *pcinlineState) setParentPC(ctxt *Link, globalIndex int, pc int32) {
   189  	localIndex, ok := s.globalToLocal[globalIndex]
   190  	if !ok {
   191  		// We know where to unwind to when we need to unwind a body identified
   192  		// by globalIndex. But there may be no instructions generated by that
   193  		// body (it's empty, or its instructions were CSEd with other things, etc.).
   194  		// In that case, we don't need an unwind entry.
   195  		// TODO: is this really right? Seems to happen a whole lot...
   196  		return
   197  	}
   198  	s.localTree.setParentPC(localIndex, pc)
   199  }
   200  
   201  // pctoinline computes the index into the local inlining tree to use at p.
   202  // If p is not the result of inlining, pctoinline returns -1. Because p.Pos
   203  // applies to p, phase == 0 (before p) takes care of the update.
   204  func (s *pcinlineState) pctoinline(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 {
   205  	if phase == 1 {
   206  		return oldval
   207  	}
   208  
   209  	posBase := ctxt.PosTable.Pos(p.Pos).Base()
   210  	if posBase == nil {
   211  		return -1
   212  	}
   213  
   214  	globalIndex := posBase.InliningIndex()
   215  	if globalIndex < 0 {
   216  		return -1
   217  	}
   218  
   219  	if s.globalToLocal == nil {
   220  		s.globalToLocal = make(map[int]int)
   221  	}
   222  
   223  	return int32(s.addBranch(ctxt, globalIndex))
   224  }
   225  
   226  // pctospadj computes the sp adjustment in effect.
   227  // It is oldval plus any adjustment made by p itself.
   228  // The adjustment by p takes effect only after p, so we
   229  // apply the change during phase == 1.
   230  func pctospadj(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 {
   231  	if oldval == -1 { // starting
   232  		oldval = 0
   233  	}
   234  	if phase == 0 {
   235  		return oldval
   236  	}
   237  	if oldval+p.Spadj < -10000 || oldval+p.Spadj > 1100000000 {
   238  		ctxt.Diag("overflow in spadj: %d + %d = %d", oldval, p.Spadj, oldval+p.Spadj)
   239  		ctxt.DiagFlush()
   240  		log.Fatalf("bad code")
   241  	}
   242  
   243  	return oldval + p.Spadj
   244  }
   245  
   246  // pctopcdata computes the pcdata value in effect at p.
   247  // A PCDATA instruction sets the value in effect at future
   248  // non-PCDATA instructions.
   249  // Since PCDATA instructions have no width in the final code,
   250  // it does not matter which phase we use for the update.
   251  func pctopcdata(ctxt *Link, sym *LSym, oldval int32, p *Prog, phase int32, arg interface{}) int32 {
   252  	if phase == 0 || p.As != APCDATA || p.From.Offset != int64(arg.(uint32)) {
   253  		return oldval
   254  	}
   255  	if int64(int32(p.To.Offset)) != p.To.Offset {
   256  		ctxt.Diag("overflow in PCDATA instruction: %v", p)
   257  		ctxt.DiagFlush()
   258  		log.Fatalf("bad code")
   259  	}
   260  
   261  	return int32(p.To.Offset)
   262  }
   263  
   264  func linkpcln(ctxt *Link, cursym *LSym) {
   265  	pcln := &cursym.Func.Pcln
   266  
   267  	npcdata := 0
   268  	nfuncdata := 0
   269  	for p := cursym.Func.Text; p != nil; p = p.Link {
   270  		// Find the highest ID of any used PCDATA table. This ignores PCDATA table
   271  		// that consist entirely of "-1", since that's the assumed default value.
   272  		//   From.Offset is table ID
   273  		//   To.Offset is data
   274  		if p.As == APCDATA && p.From.Offset >= int64(npcdata) && p.To.Offset != -1 { // ignore -1 as we start at -1, if we only see -1, nothing changed
   275  			npcdata = int(p.From.Offset + 1)
   276  		}
   277  		// Find the highest ID of any FUNCDATA table.
   278  		//   From.Offset is table ID
   279  		if p.As == AFUNCDATA && p.From.Offset >= int64(nfuncdata) {
   280  			nfuncdata = int(p.From.Offset + 1)
   281  		}
   282  	}
   283  
   284  	pcln.Pcdata = make([]Pcdata, npcdata)
   285  	pcln.Pcdata = pcln.Pcdata[:npcdata]
   286  	pcln.Funcdata = make([]*LSym, nfuncdata)
   287  	pcln.Funcdataoff = make([]int64, nfuncdata)
   288  	pcln.Funcdataoff = pcln.Funcdataoff[:nfuncdata]
   289  
   290  	funcpctab(ctxt, &pcln.Pcsp, cursym, "pctospadj", pctospadj, nil)
   291  	funcpctab(ctxt, &pcln.Pcfile, cursym, "pctofile", pctofileline, pcln)
   292  	funcpctab(ctxt, &pcln.Pcline, cursym, "pctoline", pctofileline, nil)
   293  
   294  	pcinlineState := new(pcinlineState)
   295  	funcpctab(ctxt, &pcln.Pcinline, cursym, "pctoinline", pcinlineState.pctoinline, nil)
   296  	for _, inlMark := range cursym.Func.InlMarks {
   297  		pcinlineState.setParentPC(ctxt, int(inlMark.id), int32(inlMark.p.Pc))
   298  	}
   299  	pcln.InlTree = pcinlineState.localTree
   300  	if ctxt.Debugpcln == "pctoinline" && len(pcln.InlTree.nodes) > 0 {
   301  		ctxt.Logf("-- inlining tree for %s:\n", cursym)
   302  		dumpInlTree(ctxt, pcln.InlTree)
   303  		ctxt.Logf("--\n")
   304  	}
   305  
   306  	// tabulate which pc and func data we have.
   307  	havepc := make([]uint32, (npcdata+31)/32)
   308  	havefunc := make([]uint32, (nfuncdata+31)/32)
   309  	for p := cursym.Func.Text; p != nil; p = p.Link {
   310  		if p.As == AFUNCDATA {
   311  			if (havefunc[p.From.Offset/32]>>uint64(p.From.Offset%32))&1 != 0 {
   312  				ctxt.Diag("multiple definitions for FUNCDATA $%d", p.From.Offset)
   313  			}
   314  			havefunc[p.From.Offset/32] |= 1 << uint64(p.From.Offset%32)
   315  		}
   316  
   317  		if p.As == APCDATA && p.To.Offset != -1 {
   318  			havepc[p.From.Offset/32] |= 1 << uint64(p.From.Offset%32)
   319  		}
   320  	}
   321  
   322  	// pcdata.
   323  	for i := 0; i < npcdata; i++ {
   324  		if (havepc[i/32]>>uint(i%32))&1 == 0 {
   325  			continue
   326  		}
   327  		funcpctab(ctxt, &pcln.Pcdata[i], cursym, "pctopcdata", pctopcdata, interface{}(uint32(i)))
   328  	}
   329  
   330  	// funcdata
   331  	if nfuncdata > 0 {
   332  		for p := cursym.Func.Text; p != nil; p = p.Link {
   333  			if p.As != AFUNCDATA {
   334  				continue
   335  			}
   336  			i := int(p.From.Offset)
   337  			pcln.Funcdataoff[i] = p.To.Offset
   338  			if p.To.Type != TYPE_CONST {
   339  				// TODO: Dedup.
   340  				//funcdata_bytes += p->to.sym->size;
   341  				pcln.Funcdata[i] = p.To.Sym
   342  			}
   343  		}
   344  	}
   345  }
   346  
   347  // PCIter iterates over encoded pcdata tables.
   348  type PCIter struct {
   349  	p       []byte
   350  	PC      uint32
   351  	NextPC  uint32
   352  	PCScale uint32
   353  	Value   int32
   354  	start   bool
   355  	Done    bool
   356  }
   357  
   358  // newPCIter creates a PCIter with a scale factor for the PC step size.
   359  func NewPCIter(pcScale uint32) *PCIter {
   360  	it := new(PCIter)
   361  	it.PCScale = pcScale
   362  	return it
   363  }
   364  
   365  // Next advances it to the Next pc.
   366  func (it *PCIter) Next() {
   367  	it.PC = it.NextPC
   368  	if it.Done {
   369  		return
   370  	}
   371  	if len(it.p) == 0 {
   372  		it.Done = true
   373  		return
   374  	}
   375  
   376  	// Value delta
   377  	val, n := binary.Varint(it.p)
   378  	if n <= 0 {
   379  		log.Fatalf("bad Value varint in pciterNext: read %v", n)
   380  	}
   381  	it.p = it.p[n:]
   382  
   383  	if val == 0 && !it.start {
   384  		it.Done = true
   385  		return
   386  	}
   387  
   388  	it.start = false
   389  	it.Value += int32(val)
   390  
   391  	// pc delta
   392  	pc, n := binary.Uvarint(it.p)
   393  	if n <= 0 {
   394  		log.Fatalf("bad pc varint in pciterNext: read %v", n)
   395  	}
   396  	it.p = it.p[n:]
   397  
   398  	it.NextPC = it.PC + uint32(pc)*it.PCScale
   399  }
   400  
   401  // init prepares it to iterate over p,
   402  // and advances it to the first pc.
   403  func (it *PCIter) Init(p []byte) {
   404  	it.p = p
   405  	it.PC = 0
   406  	it.NextPC = 0
   407  	it.Value = -1
   408  	it.start = true
   409  	it.Done = false
   410  	it.Next()
   411  }