github.com/gagliardetto/golang-go@v0.0.0-20201020153340-53909ea70814/cmd/link/internal/ppc64/asm.go (about) 1 // Inferno utils/5l/asm.c 2 // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/5l/asm.c 3 // 4 // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. 5 // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) 6 // Portions Copyright © 1997-1999 Vita Nuova Limited 7 // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) 8 // Portions Copyright © 2004,2006 Bruce Ellis 9 // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) 10 // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others 11 // Portions Copyright © 2009 The Go Authors. All rights reserved. 12 // 13 // Permission is hereby granted, free of charge, to any person obtaining a copy 14 // of this software and associated documentation files (the "Software"), to deal 15 // in the Software without restriction, including without limitation the rights 16 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 17 // copies of the Software, and to permit persons to whom the Software is 18 // furnished to do so, subject to the following conditions: 19 // 20 // The above copyright notice and this permission notice shall be included in 21 // all copies or substantial portions of the Software. 22 // 23 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 24 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 25 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 26 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 27 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 28 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 29 // THE SOFTWARE. 30 31 package ppc64 32 33 import ( 34 "github.com/gagliardetto/golang-go/cmd/internal/objabi" 35 "github.com/gagliardetto/golang-go/cmd/internal/sys" 36 "github.com/gagliardetto/golang-go/cmd/link/internal/ld" 37 "github.com/gagliardetto/golang-go/cmd/link/internal/sym" 38 "debug/elf" 39 "encoding/binary" 40 "fmt" 41 "log" 42 "strings" 43 ) 44 45 func genplt(ctxt *ld.Link) { 46 // The ppc64 ABI PLT has similar concepts to other 47 // architectures, but is laid out quite differently. When we 48 // see an R_PPC64_REL24 relocation to a dynamic symbol 49 // (indicating that the call needs to go through the PLT), we 50 // generate up to three stubs and reserve a PLT slot. 51 // 52 // 1) The call site will be bl x; nop (where the relocation 53 // applies to the bl). We rewrite this to bl x_stub; ld 54 // r2,24(r1). The ld is necessary because x_stub will save 55 // r2 (the TOC pointer) at 24(r1) (the "TOC save slot"). 56 // 57 // 2) We reserve space for a pointer in the .plt section (once 58 // per referenced dynamic function). .plt is a data 59 // section filled solely by the dynamic linker (more like 60 // .plt.got on other architectures). Initially, the 61 // dynamic linker will fill each slot with a pointer to the 62 // corresponding x@plt entry point. 63 // 64 // 3) We generate the "call stub" x_stub (once per dynamic 65 // function/object file pair). This saves the TOC in the 66 // TOC save slot, reads the function pointer from x's .plt 67 // slot and calls it like any other global entry point 68 // (including setting r12 to the function address). 69 // 70 // 4) We generate the "symbol resolver stub" x@plt (once per 71 // dynamic function). This is solely a branch to the glink 72 // resolver stub. 73 // 74 // 5) We generate the glink resolver stub (only once). This 75 // computes which symbol resolver stub we came through and 76 // invokes the dynamic resolver via a pointer provided by 77 // the dynamic linker. This will patch up the .plt slot to 78 // point directly at the function so future calls go 79 // straight from the call stub to the real function, and 80 // then call the function. 81 82 // NOTE: It's possible we could make ppc64 closer to other 83 // architectures: ppc64's .plt is like .plt.got on other 84 // platforms and ppc64's .glink is like .plt on other 85 // platforms. 86 87 // Find all R_PPC64_REL24 relocations that reference dynamic 88 // imports. Reserve PLT entries for these symbols and 89 // generate call stubs. The call stubs need to live in .text, 90 // which is why we need to do this pass this early. 91 // 92 // This assumes "case 1" from the ABI, where the caller needs 93 // us to save and restore the TOC pointer. 94 var stubs []*sym.Symbol 95 for _, s := range ctxt.Textp { 96 for i := range s.R { 97 r := &s.R[i] 98 if r.Type != objabi.ElfRelocOffset+objabi.RelocType(elf.R_PPC64_REL24) || r.Sym.Type != sym.SDYNIMPORT { 99 continue 100 } 101 102 // Reserve PLT entry and generate symbol 103 // resolver 104 addpltsym(ctxt, r.Sym) 105 106 // Generate call stub 107 n := fmt.Sprintf("%s.%s", s.Name, r.Sym.Name) 108 109 stub := ctxt.Syms.Lookup(n, 0) 110 if s.Attr.Reachable() { 111 stub.Attr |= sym.AttrReachable 112 } 113 if stub.Size == 0 { 114 // Need outer to resolve .TOC. 115 stub.Outer = s 116 stubs = append(stubs, stub) 117 gencallstub(ctxt, 1, stub, r.Sym) 118 } 119 120 // Update the relocation to use the call stub 121 r.Sym = stub 122 123 // Restore TOC after bl. The compiler put a 124 // nop here for us to overwrite. 125 const o1 = 0xe8410018 // ld r2,24(r1) 126 ctxt.Arch.ByteOrder.PutUint32(s.P[r.Off+4:], o1) 127 } 128 } 129 // Put call stubs at the beginning (instead of the end). 130 // So when resolving the relocations to calls to the stubs, 131 // the addresses are known and trampolines can be inserted 132 // when necessary. 133 ctxt.Textp = append(stubs, ctxt.Textp...) 134 } 135 136 func genaddmoduledata(ctxt *ld.Link) { 137 addmoduledata := ctxt.Syms.ROLookup("runtime.addmoduledata", sym.SymVerABI0) 138 if addmoduledata.Type == sym.STEXT && ctxt.BuildMode != ld.BuildModePlugin { 139 return 140 } 141 addmoduledata.Attr |= sym.AttrReachable 142 initfunc := ctxt.Syms.Lookup("go.link.addmoduledata", 0) 143 initfunc.Type = sym.STEXT 144 initfunc.Attr |= sym.AttrLocal 145 initfunc.Attr |= sym.AttrReachable 146 o := func(op uint32) { 147 initfunc.AddUint32(ctxt.Arch, op) 148 } 149 // addis r2, r12, .TOC.-func@ha 150 rel := initfunc.AddRel() 151 rel.Off = int32(initfunc.Size) 152 rel.Siz = 8 153 rel.Sym = ctxt.Syms.Lookup(".TOC.", 0) 154 rel.Sym.Attr |= sym.AttrReachable 155 rel.Type = objabi.R_ADDRPOWER_PCREL 156 o(0x3c4c0000) 157 // addi r2, r2, .TOC.-func@l 158 o(0x38420000) 159 // mflr r31 160 o(0x7c0802a6) 161 // stdu r31, -32(r1) 162 o(0xf801ffe1) 163 // addis r3, r2, local.moduledata@got@ha 164 rel = initfunc.AddRel() 165 rel.Off = int32(initfunc.Size) 166 rel.Siz = 8 167 if s := ctxt.Syms.ROLookup("local.moduledata", 0); s != nil { 168 rel.Sym = s 169 } else if s := ctxt.Syms.ROLookup("local.pluginmoduledata", 0); s != nil { 170 rel.Sym = s 171 } else { 172 rel.Sym = ctxt.Syms.Lookup("runtime.firstmoduledata", 0) 173 } 174 rel.Sym.Attr |= sym.AttrReachable 175 rel.Sym.Attr |= sym.AttrLocal 176 rel.Type = objabi.R_ADDRPOWER_GOT 177 o(0x3c620000) 178 // ld r3, local.moduledata@got@l(r3) 179 o(0xe8630000) 180 // bl runtime.addmoduledata 181 rel = initfunc.AddRel() 182 rel.Off = int32(initfunc.Size) 183 rel.Siz = 4 184 rel.Sym = addmoduledata 185 rel.Type = objabi.R_CALLPOWER 186 o(0x48000001) 187 // nop 188 o(0x60000000) 189 // ld r31, 0(r1) 190 o(0xe8010000) 191 // mtlr r31 192 o(0x7c0803a6) 193 // addi r1,r1,32 194 o(0x38210020) 195 // blr 196 o(0x4e800020) 197 198 if ctxt.BuildMode == ld.BuildModePlugin { 199 ctxt.Textp = append(ctxt.Textp, addmoduledata) 200 } 201 initarray_entry := ctxt.Syms.Lookup("go.link.addmoduledatainit", 0) 202 ctxt.Textp = append(ctxt.Textp, initfunc) 203 initarray_entry.Attr |= sym.AttrReachable 204 initarray_entry.Attr |= sym.AttrLocal 205 initarray_entry.Type = sym.SINITARR 206 initarray_entry.AddAddr(ctxt.Arch, initfunc) 207 } 208 209 func gentext(ctxt *ld.Link) { 210 if ctxt.DynlinkingGo() { 211 genaddmoduledata(ctxt) 212 } 213 214 if ctxt.LinkMode == ld.LinkInternal { 215 genplt(ctxt) 216 } 217 } 218 219 // Construct a call stub in stub that calls symbol targ via its PLT 220 // entry. 221 func gencallstub(ctxt *ld.Link, abicase int, stub *sym.Symbol, targ *sym.Symbol) { 222 if abicase != 1 { 223 // If we see R_PPC64_TOCSAVE or R_PPC64_REL24_NOTOC 224 // relocations, we'll need to implement cases 2 and 3. 225 log.Fatalf("gencallstub only implements case 1 calls") 226 } 227 228 plt := ctxt.Syms.Lookup(".plt", 0) 229 230 stub.Type = sym.STEXT 231 232 // Save TOC pointer in TOC save slot 233 stub.AddUint32(ctxt.Arch, 0xf8410018) // std r2,24(r1) 234 235 // Load the function pointer from the PLT. 236 r := stub.AddRel() 237 238 r.Off = int32(stub.Size) 239 r.Sym = plt 240 r.Add = int64(targ.Plt()) 241 r.Siz = 2 242 if ctxt.Arch.ByteOrder == binary.BigEndian { 243 r.Off += int32(r.Siz) 244 } 245 r.Type = objabi.R_POWER_TOC 246 r.Variant = sym.RV_POWER_HA 247 stub.AddUint32(ctxt.Arch, 0x3d820000) // addis r12,r2,targ@plt@toc@ha 248 r = stub.AddRel() 249 r.Off = int32(stub.Size) 250 r.Sym = plt 251 r.Add = int64(targ.Plt()) 252 r.Siz = 2 253 if ctxt.Arch.ByteOrder == binary.BigEndian { 254 r.Off += int32(r.Siz) 255 } 256 r.Type = objabi.R_POWER_TOC 257 r.Variant = sym.RV_POWER_LO 258 stub.AddUint32(ctxt.Arch, 0xe98c0000) // ld r12,targ@plt@toc@l(r12) 259 260 // Jump to the loaded pointer 261 stub.AddUint32(ctxt.Arch, 0x7d8903a6) // mtctr r12 262 stub.AddUint32(ctxt.Arch, 0x4e800420) // bctr 263 } 264 265 func adddynrel(ctxt *ld.Link, s *sym.Symbol, r *sym.Reloc) bool { 266 if ctxt.IsELF { 267 return addelfdynrel(ctxt, s, r) 268 } else if ctxt.HeadType == objabi.Haix { 269 return ld.Xcoffadddynrel(ctxt, s, r) 270 } 271 return false 272 } 273 func addelfdynrel(ctxt *ld.Link, s *sym.Symbol, r *sym.Reloc) bool { 274 targ := r.Sym 275 r.InitExt() 276 277 switch r.Type { 278 default: 279 if r.Type >= objabi.ElfRelocOffset { 280 ld.Errorf(s, "unexpected relocation type %d (%s)", r.Type, sym.RelocName(ctxt.Arch, r.Type)) 281 return false 282 } 283 284 // Handle relocations found in ELF object files. 285 case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL24): 286 r.Type = objabi.R_CALLPOWER 287 288 // This is a local call, so the caller isn't setting 289 // up r12 and r2 is the same for the caller and 290 // callee. Hence, we need to go to the local entry 291 // point. (If we don't do this, the callee will try 292 // to use r12 to compute r2.) 293 r.Add += int64(r.Sym.Localentry()) * 4 294 295 if targ.Type == sym.SDYNIMPORT { 296 // Should have been handled in elfsetupplt 297 ld.Errorf(s, "unexpected R_PPC64_REL24 for dyn import") 298 } 299 300 return true 301 302 case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC_REL32): 303 r.Type = objabi.R_PCREL 304 r.Add += 4 305 306 if targ.Type == sym.SDYNIMPORT { 307 ld.Errorf(s, "unexpected R_PPC_REL32 for dyn import") 308 } 309 310 return true 311 312 case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_ADDR64): 313 r.Type = objabi.R_ADDR 314 if targ.Type == sym.SDYNIMPORT { 315 // These happen in .toc sections 316 ld.Adddynsym(ctxt, targ) 317 318 rela := ctxt.Syms.Lookup(".rela", 0) 319 rela.AddAddrPlus(ctxt.Arch, s, int64(r.Off)) 320 rela.AddUint64(ctxt.Arch, ld.ELF64_R_INFO(uint32(targ.Dynid), uint32(elf.R_PPC64_ADDR64))) 321 rela.AddUint64(ctxt.Arch, uint64(r.Add)) 322 r.Type = objabi.ElfRelocOffset // ignore during relocsym 323 } 324 325 return true 326 327 case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16): 328 r.Type = objabi.R_POWER_TOC 329 r.Variant = sym.RV_POWER_LO | sym.RV_CHECK_OVERFLOW 330 return true 331 332 case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_LO): 333 r.Type = objabi.R_POWER_TOC 334 r.Variant = sym.RV_POWER_LO 335 return true 336 337 case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_HA): 338 r.Type = objabi.R_POWER_TOC 339 r.Variant = sym.RV_POWER_HA | sym.RV_CHECK_OVERFLOW 340 return true 341 342 case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_HI): 343 r.Type = objabi.R_POWER_TOC 344 r.Variant = sym.RV_POWER_HI | sym.RV_CHECK_OVERFLOW 345 return true 346 347 case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_DS): 348 r.Type = objabi.R_POWER_TOC 349 r.Variant = sym.RV_POWER_DS | sym.RV_CHECK_OVERFLOW 350 return true 351 352 case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_LO_DS): 353 r.Type = objabi.R_POWER_TOC 354 r.Variant = sym.RV_POWER_DS 355 return true 356 357 case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL16_LO): 358 r.Type = objabi.R_PCREL 359 r.Variant = sym.RV_POWER_LO 360 r.Add += 2 // Compensate for relocation size of 2 361 return true 362 363 case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL16_HI): 364 r.Type = objabi.R_PCREL 365 r.Variant = sym.RV_POWER_HI | sym.RV_CHECK_OVERFLOW 366 r.Add += 2 367 return true 368 369 case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL16_HA): 370 r.Type = objabi.R_PCREL 371 r.Variant = sym.RV_POWER_HA | sym.RV_CHECK_OVERFLOW 372 r.Add += 2 373 return true 374 } 375 376 // Handle references to ELF symbols from our own object files. 377 if targ.Type != sym.SDYNIMPORT { 378 return true 379 } 380 381 // TODO(austin): Translate our relocations to ELF 382 383 return false 384 } 385 386 func xcoffreloc1(arch *sys.Arch, out *ld.OutBuf, s *sym.Symbol, r *sym.Reloc, sectoff int64) bool { 387 rs := r.Xsym 388 389 emitReloc := func(v uint16, off uint64) { 390 out.Write64(uint64(sectoff) + off) 391 out.Write32(uint32(rs.Dynid)) 392 out.Write16(v) 393 } 394 395 var v uint16 396 switch r.Type { 397 default: 398 return false 399 case objabi.R_ADDR: 400 v = ld.XCOFF_R_POS 401 if r.Siz == 4 { 402 v |= 0x1F << 8 403 } else { 404 v |= 0x3F << 8 405 } 406 emitReloc(v, 0) 407 case objabi.R_ADDRPOWER_TOCREL: 408 case objabi.R_ADDRPOWER_TOCREL_DS: 409 emitReloc(ld.XCOFF_R_TOCU|(0x0F<<8), 2) 410 emitReloc(ld.XCOFF_R_TOCL|(0x0F<<8), 6) 411 case objabi.R_POWER_TLS_LE: 412 emitReloc(ld.XCOFF_R_TLS_LE|0x0F<<8, 2) 413 case objabi.R_CALLPOWER: 414 if r.Siz != 4 { 415 return false 416 } 417 emitReloc(ld.XCOFF_R_RBR|0x19<<8, 0) 418 case objabi.R_XCOFFREF: 419 emitReloc(ld.XCOFF_R_REF|0x3F<<8, 0) 420 421 } 422 return true 423 424 } 425 426 func elfreloc1(ctxt *ld.Link, r *sym.Reloc, sectoff int64) bool { 427 // Beware that bit0~bit15 start from the third byte of a instruction in Big-Endian machines. 428 if r.Type == objabi.R_ADDR || r.Type == objabi.R_POWER_TLS || r.Type == objabi.R_CALLPOWER { 429 } else { 430 if ctxt.Arch.ByteOrder == binary.BigEndian { 431 sectoff += 2 432 } 433 } 434 ctxt.Out.Write64(uint64(sectoff)) 435 436 elfsym := r.Xsym.ElfsymForReloc() 437 switch r.Type { 438 default: 439 return false 440 case objabi.R_ADDR: 441 switch r.Siz { 442 case 4: 443 ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR32) | uint64(elfsym)<<32) 444 case 8: 445 ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR64) | uint64(elfsym)<<32) 446 default: 447 return false 448 } 449 case objabi.R_POWER_TLS: 450 ctxt.Out.Write64(uint64(elf.R_PPC64_TLS) | uint64(elfsym)<<32) 451 case objabi.R_POWER_TLS_LE: 452 ctxt.Out.Write64(uint64(elf.R_PPC64_TPREL16) | uint64(elfsym)<<32) 453 case objabi.R_POWER_TLS_IE: 454 ctxt.Out.Write64(uint64(elf.R_PPC64_GOT_TPREL16_HA) | uint64(elfsym)<<32) 455 ctxt.Out.Write64(uint64(r.Xadd)) 456 ctxt.Out.Write64(uint64(sectoff + 4)) 457 ctxt.Out.Write64(uint64(elf.R_PPC64_GOT_TPREL16_LO_DS) | uint64(elfsym)<<32) 458 case objabi.R_ADDRPOWER: 459 ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR16_HA) | uint64(elfsym)<<32) 460 ctxt.Out.Write64(uint64(r.Xadd)) 461 ctxt.Out.Write64(uint64(sectoff + 4)) 462 ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR16_LO) | uint64(elfsym)<<32) 463 case objabi.R_ADDRPOWER_DS: 464 ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR16_HA) | uint64(elfsym)<<32) 465 ctxt.Out.Write64(uint64(r.Xadd)) 466 ctxt.Out.Write64(uint64(sectoff + 4)) 467 ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR16_LO_DS) | uint64(elfsym)<<32) 468 case objabi.R_ADDRPOWER_GOT: 469 ctxt.Out.Write64(uint64(elf.R_PPC64_GOT16_HA) | uint64(elfsym)<<32) 470 ctxt.Out.Write64(uint64(r.Xadd)) 471 ctxt.Out.Write64(uint64(sectoff + 4)) 472 ctxt.Out.Write64(uint64(elf.R_PPC64_GOT16_LO_DS) | uint64(elfsym)<<32) 473 case objabi.R_ADDRPOWER_PCREL: 474 ctxt.Out.Write64(uint64(elf.R_PPC64_REL16_HA) | uint64(elfsym)<<32) 475 ctxt.Out.Write64(uint64(r.Xadd)) 476 ctxt.Out.Write64(uint64(sectoff + 4)) 477 ctxt.Out.Write64(uint64(elf.R_PPC64_REL16_LO) | uint64(elfsym)<<32) 478 r.Xadd += 4 479 case objabi.R_ADDRPOWER_TOCREL: 480 ctxt.Out.Write64(uint64(elf.R_PPC64_TOC16_HA) | uint64(elfsym)<<32) 481 ctxt.Out.Write64(uint64(r.Xadd)) 482 ctxt.Out.Write64(uint64(sectoff + 4)) 483 ctxt.Out.Write64(uint64(elf.R_PPC64_TOC16_LO) | uint64(elfsym)<<32) 484 case objabi.R_ADDRPOWER_TOCREL_DS: 485 ctxt.Out.Write64(uint64(elf.R_PPC64_TOC16_HA) | uint64(elfsym)<<32) 486 ctxt.Out.Write64(uint64(r.Xadd)) 487 ctxt.Out.Write64(uint64(sectoff + 4)) 488 ctxt.Out.Write64(uint64(elf.R_PPC64_TOC16_LO_DS) | uint64(elfsym)<<32) 489 case objabi.R_CALLPOWER: 490 if r.Siz != 4 { 491 return false 492 } 493 ctxt.Out.Write64(uint64(elf.R_PPC64_REL24) | uint64(elfsym)<<32) 494 495 } 496 ctxt.Out.Write64(uint64(r.Xadd)) 497 498 return true 499 } 500 501 func elfsetupplt(ctxt *ld.Link) { 502 plt := ctxt.Syms.Lookup(".plt", 0) 503 if plt.Size == 0 { 504 // The dynamic linker stores the address of the 505 // dynamic resolver and the DSO identifier in the two 506 // doublewords at the beginning of the .plt section 507 // before the PLT array. Reserve space for these. 508 plt.Size = 16 509 } 510 } 511 512 func machoreloc1(arch *sys.Arch, out *ld.OutBuf, s *sym.Symbol, r *sym.Reloc, sectoff int64) bool { 513 return false 514 } 515 516 // Return the value of .TOC. for symbol s 517 func symtoc(ctxt *ld.Link, s *sym.Symbol) int64 { 518 var toc *sym.Symbol 519 520 if s.Outer != nil { 521 toc = ctxt.Syms.ROLookup(".TOC.", int(s.Outer.Version)) 522 } else { 523 toc = ctxt.Syms.ROLookup(".TOC.", int(s.Version)) 524 } 525 526 if toc == nil { 527 ld.Errorf(s, "TOC-relative relocation in object without .TOC.") 528 return 0 529 } 530 531 return toc.Value 532 } 533 534 // archreloctoc relocates a TOC relative symbol. 535 // If the symbol pointed by this TOC relative symbol is in .data or .bss, the 536 // default load instruction can be changed to an addi instruction and the 537 // symbol address can be used directly. 538 // This code is for AIX only. 539 func archreloctoc(ctxt *ld.Link, r *sym.Reloc, s *sym.Symbol, val int64) int64 { 540 if ctxt.HeadType == objabi.Hlinux { 541 ld.Errorf(s, "archrelocaddr called for %s relocation\n", r.Sym.Name) 542 } 543 var o1, o2 uint32 544 545 o1 = uint32(val >> 32) 546 o2 = uint32(val) 547 548 var t int64 549 useAddi := false 550 const prefix = "TOC." 551 var tarSym *sym.Symbol 552 if strings.HasPrefix(r.Sym.Name, prefix) { 553 tarSym = r.Sym.R[0].Sym 554 } else { 555 ld.Errorf(s, "archreloctoc called for a symbol without TOC anchor") 556 } 557 558 if ctxt.LinkMode == ld.LinkInternal && tarSym != nil && tarSym.Attr.Reachable() && (tarSym.Sect.Seg == &ld.Segdata) { 559 t = ld.Symaddr(tarSym) + r.Add - ctxt.Syms.ROLookup("TOC", 0).Value 560 // change ld to addi in the second instruction 561 o2 = (o2 & 0x03FF0000) | 0xE<<26 562 useAddi = true 563 } else { 564 t = ld.Symaddr(r.Sym) + r.Add - ctxt.Syms.ROLookup("TOC", 0).Value 565 } 566 567 if t != int64(int32(t)) { 568 ld.Errorf(s, "TOC relocation for %s is too big to relocate %s: 0x%x", s.Name, r.Sym, t) 569 } 570 571 if t&0x8000 != 0 { 572 t += 0x10000 573 } 574 575 o1 |= uint32((t >> 16) & 0xFFFF) 576 577 switch r.Type { 578 case objabi.R_ADDRPOWER_TOCREL_DS: 579 if useAddi { 580 o2 |= uint32(t) & 0xFFFF 581 } else { 582 if t&3 != 0 { 583 ld.Errorf(s, "bad DS reloc for %s: %d", s.Name, ld.Symaddr(r.Sym)) 584 } 585 o2 |= uint32(t) & 0xFFFC 586 } 587 default: 588 return -1 589 } 590 591 return int64(o1)<<32 | int64(o2) 592 } 593 594 // archrelocaddr relocates a symbol address. 595 // This code is for AIX only. 596 func archrelocaddr(ctxt *ld.Link, r *sym.Reloc, s *sym.Symbol, val int64) int64 { 597 if ctxt.HeadType == objabi.Haix { 598 ld.Errorf(s, "archrelocaddr called for %s relocation\n", r.Sym.Name) 599 } 600 var o1, o2 uint32 601 if ctxt.Arch.ByteOrder == binary.BigEndian { 602 o1 = uint32(val >> 32) 603 o2 = uint32(val) 604 } else { 605 o1 = uint32(val) 606 o2 = uint32(val >> 32) 607 } 608 609 // We are spreading a 31-bit address across two instructions, putting the 610 // high (adjusted) part in the low 16 bits of the first instruction and the 611 // low part in the low 16 bits of the second instruction, or, in the DS case, 612 // bits 15-2 (inclusive) of the address into bits 15-2 of the second 613 // instruction (it is an error in this case if the low 2 bits of the address 614 // are non-zero). 615 616 t := ld.Symaddr(r.Sym) + r.Add 617 if t < 0 || t >= 1<<31 { 618 ld.Errorf(s, "relocation for %s is too big (>=2G): 0x%x", s.Name, ld.Symaddr(r.Sym)) 619 } 620 if t&0x8000 != 0 { 621 t += 0x10000 622 } 623 624 switch r.Type { 625 case objabi.R_ADDRPOWER: 626 o1 |= (uint32(t) >> 16) & 0xffff 627 o2 |= uint32(t) & 0xffff 628 case objabi.R_ADDRPOWER_DS: 629 o1 |= (uint32(t) >> 16) & 0xffff 630 if t&3 != 0 { 631 ld.Errorf(s, "bad DS reloc for %s: %d", s.Name, ld.Symaddr(r.Sym)) 632 } 633 o2 |= uint32(t) & 0xfffc 634 default: 635 return -1 636 } 637 638 if ctxt.Arch.ByteOrder == binary.BigEndian { 639 return int64(o1)<<32 | int64(o2) 640 } 641 return int64(o2)<<32 | int64(o1) 642 } 643 644 // resolve direct jump relocation r in s, and add trampoline if necessary 645 func trampoline(ctxt *ld.Link, r *sym.Reloc, s *sym.Symbol) { 646 647 // Trampolines are created if the branch offset is too large and the linker cannot insert a call stub to handle it. 648 // For internal linking, trampolines are always created for long calls. 649 // For external linking, the linker can insert a call stub to handle a long call, but depends on having the TOC address in 650 // r2. For those build modes with external linking where the TOC address is not maintained in r2, trampolines must be created. 651 if ctxt.LinkMode == ld.LinkExternal && (ctxt.DynlinkingGo() || ctxt.BuildMode == ld.BuildModeCArchive || ctxt.BuildMode == ld.BuildModeCShared || ctxt.BuildMode == ld.BuildModePIE) { 652 // No trampolines needed since r2 contains the TOC 653 return 654 } 655 656 t := ld.Symaddr(r.Sym) + r.Add - (s.Value + int64(r.Off)) 657 switch r.Type { 658 case objabi.R_CALLPOWER: 659 660 // If branch offset is too far then create a trampoline. 661 662 if (ctxt.LinkMode == ld.LinkExternal && s.Sect != r.Sym.Sect) || (ctxt.LinkMode == ld.LinkInternal && int64(int32(t<<6)>>6) != t) || (*ld.FlagDebugTramp > 1 && s.File != r.Sym.File) { 663 var tramp *sym.Symbol 664 for i := 0; ; i++ { 665 666 // Using r.Add as part of the name is significant in functions like duffzero where the call 667 // target is at some offset within the function. Calls to duff+8 and duff+256 must appear as 668 // distinct trampolines. 669 670 name := r.Sym.Name 671 if r.Add == 0 { 672 name = name + fmt.Sprintf("-tramp%d", i) 673 } else { 674 name = name + fmt.Sprintf("%+x-tramp%d", r.Add, i) 675 } 676 677 // Look up the trampoline in case it already exists 678 679 tramp = ctxt.Syms.Lookup(name, int(r.Sym.Version)) 680 if tramp.Value == 0 { 681 break 682 } 683 684 t = ld.Symaddr(tramp) + r.Add - (s.Value + int64(r.Off)) 685 686 // With internal linking, the trampoline can be used if it is not too far. 687 // With external linking, the trampoline must be in this section for it to be reused. 688 if (ctxt.LinkMode == ld.LinkInternal && int64(int32(t<<6)>>6) == t) || (ctxt.LinkMode == ld.LinkExternal && s.Sect == tramp.Sect) { 689 break 690 } 691 } 692 if tramp.Type == 0 { 693 if ctxt.DynlinkingGo() || ctxt.BuildMode == ld.BuildModeCArchive || ctxt.BuildMode == ld.BuildModeCShared || ctxt.BuildMode == ld.BuildModePIE { 694 // Should have returned for above cases 695 ld.Errorf(s, "unexpected trampoline for shared or dynamic linking\n") 696 } else { 697 ctxt.AddTramp(tramp) 698 gentramp(ctxt, tramp, r.Sym, r.Add) 699 } 700 } 701 r.Sym = tramp 702 r.Add = 0 // This was folded into the trampoline target address 703 r.Done = false 704 } 705 default: 706 ld.Errorf(s, "trampoline called with non-jump reloc: %d (%s)", r.Type, sym.RelocName(ctxt.Arch, r.Type)) 707 } 708 } 709 710 func gentramp(ctxt *ld.Link, tramp, target *sym.Symbol, offset int64) { 711 tramp.Size = 16 // 4 instructions 712 tramp.P = make([]byte, tramp.Size) 713 t := ld.Symaddr(target) + offset 714 var o1, o2 uint32 715 716 if ctxt.HeadType == objabi.Haix { 717 // On AIX, the address is retrieved with a TOC symbol. 718 // For internal linking, the "Linux" way might still be used. 719 // However, all text symbols are accessed with a TOC symbol as 720 // text relocations aren't supposed to be possible. 721 // So, keep using the external linking way to be more AIX friendly. 722 o1 = uint32(0x3fe20000) // lis r2, toctargetaddr hi 723 o2 = uint32(0xebff0000) // ld r31, toctargetaddr lo 724 725 toctramp := ctxt.Syms.Lookup("TOC."+tramp.Name, 0) 726 toctramp.Type = sym.SXCOFFTOC 727 toctramp.Attr |= sym.AttrReachable 728 toctramp.AddAddr(ctxt.Arch, target) 729 730 tr := tramp.AddRel() 731 tr.Off = 0 732 tr.Type = objabi.R_ADDRPOWER_TOCREL_DS 733 tr.Siz = 8 // generates 2 relocations: HA + LO 734 tr.Sym = toctramp 735 tr.Add = offset 736 } else { 737 // Used for default build mode for an executable 738 // Address of the call target is generated using 739 // relocation and doesn't depend on r2 (TOC). 740 o1 = uint32(0x3fe00000) // lis r31,targetaddr hi 741 o2 = uint32(0x3bff0000) // addi r31,targetaddr lo 742 743 // With external linking, the target address must be 744 // relocated using LO and HA 745 if ctxt.LinkMode == ld.LinkExternal { 746 tr := tramp.AddRel() 747 tr.Off = 0 748 tr.Type = objabi.R_ADDRPOWER 749 tr.Siz = 8 // generates 2 relocations: HA + LO 750 tr.Sym = target 751 tr.Add = offset 752 753 } else { 754 // adjustment needed if lo has sign bit set 755 // when using addi to compute address 756 val := uint32((t & 0xffff0000) >> 16) 757 if t&0x8000 != 0 { 758 val += 1 759 } 760 o1 |= val // hi part of addr 761 o2 |= uint32(t & 0xffff) // lo part of addr 762 } 763 } 764 765 o3 := uint32(0x7fe903a6) // mtctr r31 766 o4 := uint32(0x4e800420) // bctr 767 ctxt.Arch.ByteOrder.PutUint32(tramp.P, o1) 768 ctxt.Arch.ByteOrder.PutUint32(tramp.P[4:], o2) 769 ctxt.Arch.ByteOrder.PutUint32(tramp.P[8:], o3) 770 ctxt.Arch.ByteOrder.PutUint32(tramp.P[12:], o4) 771 } 772 773 func archreloc(ctxt *ld.Link, r *sym.Reloc, s *sym.Symbol, val int64) (int64, bool) { 774 if ctxt.LinkMode == ld.LinkExternal { 775 // On AIX, relocations (except TLS ones) must be also done to the 776 // value with the current addresses. 777 switch r.Type { 778 default: 779 if ctxt.HeadType != objabi.Haix { 780 return val, false 781 } 782 case objabi.R_POWER_TLS, objabi.R_POWER_TLS_LE, objabi.R_POWER_TLS_IE: 783 r.Done = false 784 // check Outer is nil, Type is TLSBSS? 785 r.Xadd = r.Add 786 r.Xsym = r.Sym 787 return val, true 788 case objabi.R_ADDRPOWER, 789 objabi.R_ADDRPOWER_DS, 790 objabi.R_ADDRPOWER_TOCREL, 791 objabi.R_ADDRPOWER_TOCREL_DS, 792 objabi.R_ADDRPOWER_GOT, 793 objabi.R_ADDRPOWER_PCREL: 794 r.Done = false 795 796 // set up addend for eventual relocation via outer symbol. 797 rs := r.Sym 798 r.Xadd = r.Add 799 for rs.Outer != nil { 800 r.Xadd += ld.Symaddr(rs) - ld.Symaddr(rs.Outer) 801 rs = rs.Outer 802 } 803 804 if rs.Type != sym.SHOSTOBJ && rs.Type != sym.SDYNIMPORT && rs.Type != sym.SUNDEFEXT && rs.Sect == nil { 805 ld.Errorf(s, "missing section for %s", rs.Name) 806 } 807 r.Xsym = rs 808 809 if ctxt.HeadType != objabi.Haix { 810 return val, true 811 } 812 case objabi.R_CALLPOWER: 813 r.Done = false 814 r.Xsym = r.Sym 815 r.Xadd = r.Add 816 if ctxt.HeadType != objabi.Haix { 817 return val, true 818 } 819 } 820 } 821 822 switch r.Type { 823 case objabi.R_CONST: 824 return r.Add, true 825 case objabi.R_GOTOFF: 826 return ld.Symaddr(r.Sym) + r.Add - ld.Symaddr(ctxt.Syms.Lookup(".got", 0)), true 827 case objabi.R_ADDRPOWER_TOCREL, objabi.R_ADDRPOWER_TOCREL_DS: 828 return archreloctoc(ctxt, r, s, val), true 829 case objabi.R_ADDRPOWER, objabi.R_ADDRPOWER_DS: 830 return archrelocaddr(ctxt, r, s, val), true 831 case objabi.R_CALLPOWER: 832 // Bits 6 through 29 = (S + A - P) >> 2 833 834 t := ld.Symaddr(r.Sym) + r.Add - (s.Value + int64(r.Off)) 835 836 if t&3 != 0 { 837 ld.Errorf(s, "relocation for %s+%d is not aligned: %d", r.Sym.Name, r.Off, t) 838 } 839 // If branch offset is too far then create a trampoline. 840 841 if int64(int32(t<<6)>>6) != t { 842 ld.Errorf(s, "direct call too far: %s %x", r.Sym.Name, t) 843 } 844 return val | int64(uint32(t)&^0xfc000003), true 845 case objabi.R_POWER_TOC: // S + A - .TOC. 846 return ld.Symaddr(r.Sym) + r.Add - symtoc(ctxt, s), true 847 848 case objabi.R_POWER_TLS_LE: 849 // The thread pointer points 0x7000 bytes after the start of the 850 // thread local storage area as documented in section "3.7.2 TLS 851 // Runtime Handling" of "Power Architecture 64-Bit ELF V2 ABI 852 // Specification". 853 v := r.Sym.Value - 0x7000 854 if ctxt.HeadType == objabi.Haix { 855 // On AIX, the thread pointer points 0x7800 bytes after 856 // the TLS. 857 v -= 0x800 858 } 859 if int64(int16(v)) != v { 860 ld.Errorf(s, "TLS offset out of range %d", v) 861 } 862 return (val &^ 0xffff) | (v & 0xffff), true 863 } 864 865 return val, false 866 } 867 868 func archrelocvariant(ctxt *ld.Link, r *sym.Reloc, s *sym.Symbol, t int64) int64 { 869 switch r.Variant & sym.RV_TYPE_MASK { 870 default: 871 ld.Errorf(s, "unexpected relocation variant %d", r.Variant) 872 fallthrough 873 874 case sym.RV_NONE: 875 return t 876 877 case sym.RV_POWER_LO: 878 if r.Variant&sym.RV_CHECK_OVERFLOW != 0 { 879 // Whether to check for signed or unsigned 880 // overflow depends on the instruction 881 var o1 uint32 882 if ctxt.Arch.ByteOrder == binary.BigEndian { 883 o1 = binary.BigEndian.Uint32(s.P[r.Off-2:]) 884 } else { 885 o1 = binary.LittleEndian.Uint32(s.P[r.Off:]) 886 } 887 switch o1 >> 26 { 888 case 24, // ori 889 26, // xori 890 28: // andi 891 if t>>16 != 0 { 892 goto overflow 893 } 894 895 default: 896 if int64(int16(t)) != t { 897 goto overflow 898 } 899 } 900 } 901 902 return int64(int16(t)) 903 904 case sym.RV_POWER_HA: 905 t += 0x8000 906 fallthrough 907 908 // Fallthrough 909 case sym.RV_POWER_HI: 910 t >>= 16 911 912 if r.Variant&sym.RV_CHECK_OVERFLOW != 0 { 913 // Whether to check for signed or unsigned 914 // overflow depends on the instruction 915 var o1 uint32 916 if ctxt.Arch.ByteOrder == binary.BigEndian { 917 o1 = binary.BigEndian.Uint32(s.P[r.Off-2:]) 918 } else { 919 o1 = binary.LittleEndian.Uint32(s.P[r.Off:]) 920 } 921 switch o1 >> 26 { 922 case 25, // oris 923 27, // xoris 924 29: // andis 925 if t>>16 != 0 { 926 goto overflow 927 } 928 929 default: 930 if int64(int16(t)) != t { 931 goto overflow 932 } 933 } 934 } 935 936 return int64(int16(t)) 937 938 case sym.RV_POWER_DS: 939 var o1 uint32 940 if ctxt.Arch.ByteOrder == binary.BigEndian { 941 o1 = uint32(binary.BigEndian.Uint16(s.P[r.Off:])) 942 } else { 943 o1 = uint32(binary.LittleEndian.Uint16(s.P[r.Off:])) 944 } 945 if t&3 != 0 { 946 ld.Errorf(s, "relocation for %s+%d is not aligned: %d", r.Sym.Name, r.Off, t) 947 } 948 if (r.Variant&sym.RV_CHECK_OVERFLOW != 0) && int64(int16(t)) != t { 949 goto overflow 950 } 951 return int64(o1)&0x3 | int64(int16(t)) 952 } 953 954 overflow: 955 ld.Errorf(s, "relocation for %s+%d is too big: %d", r.Sym.Name, r.Off, t) 956 return t 957 } 958 959 func addpltsym(ctxt *ld.Link, s *sym.Symbol) { 960 if s.Plt() >= 0 { 961 return 962 } 963 964 ld.Adddynsym(ctxt, s) 965 966 if ctxt.IsELF { 967 plt := ctxt.Syms.Lookup(".plt", 0) 968 rela := ctxt.Syms.Lookup(".rela.plt", 0) 969 if plt.Size == 0 { 970 elfsetupplt(ctxt) 971 } 972 973 // Create the glink resolver if necessary 974 glink := ensureglinkresolver(ctxt) 975 976 // Write symbol resolver stub (just a branch to the 977 // glink resolver stub) 978 r := glink.AddRel() 979 980 r.Sym = glink 981 r.Off = int32(glink.Size) 982 r.Siz = 4 983 r.Type = objabi.R_CALLPOWER 984 glink.AddUint32(ctxt.Arch, 0x48000000) // b .glink 985 986 // In the ppc64 ABI, the dynamic linker is responsible 987 // for writing the entire PLT. We just need to 988 // reserve 8 bytes for each PLT entry and generate a 989 // JMP_SLOT dynamic relocation for it. 990 // 991 // TODO(austin): ABI v1 is different 992 s.SetPlt(int32(plt.Size)) 993 994 plt.Size += 8 995 996 rela.AddAddrPlus(ctxt.Arch, plt, int64(s.Plt())) 997 rela.AddUint64(ctxt.Arch, ld.ELF64_R_INFO(uint32(s.Dynid), uint32(elf.R_PPC64_JMP_SLOT))) 998 rela.AddUint64(ctxt.Arch, 0) 999 } else { 1000 ld.Errorf(s, "addpltsym: unsupported binary format") 1001 } 1002 } 1003 1004 // Generate the glink resolver stub if necessary and return the .glink section 1005 func ensureglinkresolver(ctxt *ld.Link) *sym.Symbol { 1006 glink := ctxt.Syms.Lookup(".glink", 0) 1007 if glink.Size != 0 { 1008 return glink 1009 } 1010 1011 // This is essentially the resolver from the ppc64 ELF ABI. 1012 // At entry, r12 holds the address of the symbol resolver stub 1013 // for the target routine and the argument registers hold the 1014 // arguments for the target routine. 1015 // 1016 // This stub is PIC, so first get the PC of label 1 into r11. 1017 // Other things will be relative to this. 1018 glink.AddUint32(ctxt.Arch, 0x7c0802a6) // mflr r0 1019 glink.AddUint32(ctxt.Arch, 0x429f0005) // bcl 20,31,1f 1020 glink.AddUint32(ctxt.Arch, 0x7d6802a6) // 1: mflr r11 1021 glink.AddUint32(ctxt.Arch, 0x7c0803a6) // mtlf r0 1022 1023 // Compute the .plt array index from the entry point address. 1024 // Because this is PIC, everything is relative to label 1b (in 1025 // r11): 1026 // r0 = ((r12 - r11) - (res_0 - r11)) / 4 = (r12 - res_0) / 4 1027 glink.AddUint32(ctxt.Arch, 0x3800ffd0) // li r0,-(res_0-1b)=-48 1028 glink.AddUint32(ctxt.Arch, 0x7c006214) // add r0,r0,r12 1029 glink.AddUint32(ctxt.Arch, 0x7c0b0050) // sub r0,r0,r11 1030 glink.AddUint32(ctxt.Arch, 0x7800f082) // srdi r0,r0,2 1031 1032 // r11 = address of the first byte of the PLT 1033 r := glink.AddRel() 1034 1035 r.Off = int32(glink.Size) 1036 r.Sym = ctxt.Syms.Lookup(".plt", 0) 1037 r.Siz = 8 1038 r.Type = objabi.R_ADDRPOWER 1039 1040 glink.AddUint32(ctxt.Arch, 0x3d600000) // addis r11,0,.plt@ha 1041 glink.AddUint32(ctxt.Arch, 0x396b0000) // addi r11,r11,.plt@l 1042 1043 // Load r12 = dynamic resolver address and r11 = DSO 1044 // identifier from the first two doublewords of the PLT. 1045 glink.AddUint32(ctxt.Arch, 0xe98b0000) // ld r12,0(r11) 1046 glink.AddUint32(ctxt.Arch, 0xe96b0008) // ld r11,8(r11) 1047 1048 // Jump to the dynamic resolver 1049 glink.AddUint32(ctxt.Arch, 0x7d8903a6) // mtctr r12 1050 glink.AddUint32(ctxt.Arch, 0x4e800420) // bctr 1051 1052 // The symbol resolvers must immediately follow. 1053 // res_0: 1054 1055 // Add DT_PPC64_GLINK .dynamic entry, which points to 32 bytes 1056 // before the first symbol resolver stub. 1057 s := ctxt.Syms.Lookup(".dynamic", 0) 1058 1059 ld.Elfwritedynentsymplus(ctxt, s, ld.DT_PPC64_GLINK, glink, glink.Size-32) 1060 1061 return glink 1062 } 1063 1064 func asmb(ctxt *ld.Link) { 1065 if ctxt.IsELF { 1066 ld.Asmbelfsetup() 1067 } 1068 1069 for _, sect := range ld.Segtext.Sections { 1070 ctxt.Out.SeekSet(int64(sect.Vaddr - ld.Segtext.Vaddr + ld.Segtext.Fileoff)) 1071 // Handle additional text sections with Codeblk 1072 if sect.Name == ".text" { 1073 ld.Codeblk(ctxt, int64(sect.Vaddr), int64(sect.Length)) 1074 } else { 1075 ld.Datblk(ctxt, int64(sect.Vaddr), int64(sect.Length)) 1076 } 1077 } 1078 1079 if ld.Segrodata.Filelen > 0 { 1080 ctxt.Out.SeekSet(int64(ld.Segrodata.Fileoff)) 1081 ld.Datblk(ctxt, int64(ld.Segrodata.Vaddr), int64(ld.Segrodata.Filelen)) 1082 } 1083 if ld.Segrelrodata.Filelen > 0 { 1084 ctxt.Out.SeekSet(int64(ld.Segrelrodata.Fileoff)) 1085 ld.Datblk(ctxt, int64(ld.Segrelrodata.Vaddr), int64(ld.Segrelrodata.Filelen)) 1086 } 1087 1088 ctxt.Out.SeekSet(int64(ld.Segdata.Fileoff)) 1089 ld.Datblk(ctxt, int64(ld.Segdata.Vaddr), int64(ld.Segdata.Filelen)) 1090 1091 ctxt.Out.SeekSet(int64(ld.Segdwarf.Fileoff)) 1092 ld.Dwarfblk(ctxt, int64(ld.Segdwarf.Vaddr), int64(ld.Segdwarf.Filelen)) 1093 } 1094 1095 func asmb2(ctxt *ld.Link) { 1096 /* output symbol table */ 1097 ld.Symsize = 0 1098 1099 ld.Lcsize = 0 1100 symo := uint32(0) 1101 if !*ld.FlagS { 1102 // TODO: rationalize 1103 switch ctxt.HeadType { 1104 default: 1105 if ctxt.IsELF { 1106 symo = uint32(ld.Segdwarf.Fileoff + ld.Segdwarf.Filelen) 1107 symo = uint32(ld.Rnd(int64(symo), int64(*ld.FlagRound))) 1108 } 1109 1110 case objabi.Hplan9: 1111 symo = uint32(ld.Segdata.Fileoff + ld.Segdata.Filelen) 1112 1113 case objabi.Haix: 1114 // Nothing to do 1115 } 1116 1117 ctxt.Out.SeekSet(int64(symo)) 1118 switch ctxt.HeadType { 1119 default: 1120 if ctxt.IsELF { 1121 ld.Asmelfsym(ctxt) 1122 ctxt.Out.Flush() 1123 ctxt.Out.Write(ld.Elfstrdat) 1124 1125 if ctxt.LinkMode == ld.LinkExternal { 1126 ld.Elfemitreloc(ctxt) 1127 } 1128 } 1129 1130 case objabi.Hplan9: 1131 ld.Asmplan9sym(ctxt) 1132 ctxt.Out.Flush() 1133 1134 sym := ctxt.Syms.Lookup("pclntab", 0) 1135 if sym != nil { 1136 ld.Lcsize = int32(len(sym.P)) 1137 ctxt.Out.Write(sym.P) 1138 ctxt.Out.Flush() 1139 } 1140 1141 case objabi.Haix: 1142 // symtab must be added once sections have been created in ld.Asmbxcoff 1143 ctxt.Out.Flush() 1144 } 1145 } 1146 1147 ctxt.Out.SeekSet(0) 1148 switch ctxt.HeadType { 1149 default: 1150 case objabi.Hplan9: /* plan 9 */ 1151 ctxt.Out.Write32(0x647) /* magic */ 1152 ctxt.Out.Write32(uint32(ld.Segtext.Filelen)) /* sizes */ 1153 ctxt.Out.Write32(uint32(ld.Segdata.Filelen)) 1154 ctxt.Out.Write32(uint32(ld.Segdata.Length - ld.Segdata.Filelen)) 1155 ctxt.Out.Write32(uint32(ld.Symsize)) /* nsyms */ 1156 ctxt.Out.Write32(uint32(ld.Entryvalue(ctxt))) /* va of entry */ 1157 ctxt.Out.Write32(0) 1158 ctxt.Out.Write32(uint32(ld.Lcsize)) 1159 1160 case objabi.Hlinux, 1161 objabi.Hfreebsd, 1162 objabi.Hnetbsd, 1163 objabi.Hopenbsd: 1164 ld.Asmbelf(ctxt, int64(symo)) 1165 1166 case objabi.Haix: 1167 fileoff := uint32(ld.Segdwarf.Fileoff + ld.Segdwarf.Filelen) 1168 fileoff = uint32(ld.Rnd(int64(fileoff), int64(*ld.FlagRound))) 1169 ld.Asmbxcoff(ctxt, int64(fileoff)) 1170 } 1171 1172 ctxt.Out.Flush() 1173 if *ld.FlagC { 1174 fmt.Printf("textsize=%d\n", ld.Segtext.Filelen) 1175 fmt.Printf("datsize=%d\n", ld.Segdata.Filelen) 1176 fmt.Printf("bsssize=%d\n", ld.Segdata.Length-ld.Segdata.Filelen) 1177 fmt.Printf("symsize=%d\n", ld.Symsize) 1178 fmt.Printf("lcsize=%d\n", ld.Lcsize) 1179 fmt.Printf("total=%d\n", ld.Segtext.Filelen+ld.Segdata.Length+uint64(ld.Symsize)+uint64(ld.Lcsize)) 1180 } 1181 }