github.com/gagliardetto/golang-go@v0.0.0-20201020153340-53909ea70814/cmd/link/internal/ppc64/asm.go (about)

     1  // Inferno utils/5l/asm.c
     2  // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/5l/asm.c
     3  //
     4  //	Copyright © 1994-1999 Lucent Technologies Inc.  All rights reserved.
     5  //	Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
     6  //	Portions Copyright © 1997-1999 Vita Nuova Limited
     7  //	Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
     8  //	Portions Copyright © 2004,2006 Bruce Ellis
     9  //	Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
    10  //	Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
    11  //	Portions Copyright © 2009 The Go Authors. All rights reserved.
    12  //
    13  // Permission is hereby granted, free of charge, to any person obtaining a copy
    14  // of this software and associated documentation files (the "Software"), to deal
    15  // in the Software without restriction, including without limitation the rights
    16  // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    17  // copies of the Software, and to permit persons to whom the Software is
    18  // furnished to do so, subject to the following conditions:
    19  //
    20  // The above copyright notice and this permission notice shall be included in
    21  // all copies or substantial portions of the Software.
    22  //
    23  // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    24  // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    25  // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
    26  // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    27  // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    28  // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    29  // THE SOFTWARE.
    30  
    31  package ppc64
    32  
    33  import (
    34  	"github.com/gagliardetto/golang-go/cmd/internal/objabi"
    35  	"github.com/gagliardetto/golang-go/cmd/internal/sys"
    36  	"github.com/gagliardetto/golang-go/cmd/link/internal/ld"
    37  	"github.com/gagliardetto/golang-go/cmd/link/internal/sym"
    38  	"debug/elf"
    39  	"encoding/binary"
    40  	"fmt"
    41  	"log"
    42  	"strings"
    43  )
    44  
    45  func genplt(ctxt *ld.Link) {
    46  	// The ppc64 ABI PLT has similar concepts to other
    47  	// architectures, but is laid out quite differently. When we
    48  	// see an R_PPC64_REL24 relocation to a dynamic symbol
    49  	// (indicating that the call needs to go through the PLT), we
    50  	// generate up to three stubs and reserve a PLT slot.
    51  	//
    52  	// 1) The call site will be bl x; nop (where the relocation
    53  	//    applies to the bl).  We rewrite this to bl x_stub; ld
    54  	//    r2,24(r1).  The ld is necessary because x_stub will save
    55  	//    r2 (the TOC pointer) at 24(r1) (the "TOC save slot").
    56  	//
    57  	// 2) We reserve space for a pointer in the .plt section (once
    58  	//    per referenced dynamic function).  .plt is a data
    59  	//    section filled solely by the dynamic linker (more like
    60  	//    .plt.got on other architectures).  Initially, the
    61  	//    dynamic linker will fill each slot with a pointer to the
    62  	//    corresponding x@plt entry point.
    63  	//
    64  	// 3) We generate the "call stub" x_stub (once per dynamic
    65  	//    function/object file pair).  This saves the TOC in the
    66  	//    TOC save slot, reads the function pointer from x's .plt
    67  	//    slot and calls it like any other global entry point
    68  	//    (including setting r12 to the function address).
    69  	//
    70  	// 4) We generate the "symbol resolver stub" x@plt (once per
    71  	//    dynamic function).  This is solely a branch to the glink
    72  	//    resolver stub.
    73  	//
    74  	// 5) We generate the glink resolver stub (only once).  This
    75  	//    computes which symbol resolver stub we came through and
    76  	//    invokes the dynamic resolver via a pointer provided by
    77  	//    the dynamic linker. This will patch up the .plt slot to
    78  	//    point directly at the function so future calls go
    79  	//    straight from the call stub to the real function, and
    80  	//    then call the function.
    81  
    82  	// NOTE: It's possible we could make ppc64 closer to other
    83  	// architectures: ppc64's .plt is like .plt.got on other
    84  	// platforms and ppc64's .glink is like .plt on other
    85  	// platforms.
    86  
    87  	// Find all R_PPC64_REL24 relocations that reference dynamic
    88  	// imports. Reserve PLT entries for these symbols and
    89  	// generate call stubs. The call stubs need to live in .text,
    90  	// which is why we need to do this pass this early.
    91  	//
    92  	// This assumes "case 1" from the ABI, where the caller needs
    93  	// us to save and restore the TOC pointer.
    94  	var stubs []*sym.Symbol
    95  	for _, s := range ctxt.Textp {
    96  		for i := range s.R {
    97  			r := &s.R[i]
    98  			if r.Type != objabi.ElfRelocOffset+objabi.RelocType(elf.R_PPC64_REL24) || r.Sym.Type != sym.SDYNIMPORT {
    99  				continue
   100  			}
   101  
   102  			// Reserve PLT entry and generate symbol
   103  			// resolver
   104  			addpltsym(ctxt, r.Sym)
   105  
   106  			// Generate call stub
   107  			n := fmt.Sprintf("%s.%s", s.Name, r.Sym.Name)
   108  
   109  			stub := ctxt.Syms.Lookup(n, 0)
   110  			if s.Attr.Reachable() {
   111  				stub.Attr |= sym.AttrReachable
   112  			}
   113  			if stub.Size == 0 {
   114  				// Need outer to resolve .TOC.
   115  				stub.Outer = s
   116  				stubs = append(stubs, stub)
   117  				gencallstub(ctxt, 1, stub, r.Sym)
   118  			}
   119  
   120  			// Update the relocation to use the call stub
   121  			r.Sym = stub
   122  
   123  			// Restore TOC after bl. The compiler put a
   124  			// nop here for us to overwrite.
   125  			const o1 = 0xe8410018 // ld r2,24(r1)
   126  			ctxt.Arch.ByteOrder.PutUint32(s.P[r.Off+4:], o1)
   127  		}
   128  	}
   129  	// Put call stubs at the beginning (instead of the end).
   130  	// So when resolving the relocations to calls to the stubs,
   131  	// the addresses are known and trampolines can be inserted
   132  	// when necessary.
   133  	ctxt.Textp = append(stubs, ctxt.Textp...)
   134  }
   135  
   136  func genaddmoduledata(ctxt *ld.Link) {
   137  	addmoduledata := ctxt.Syms.ROLookup("runtime.addmoduledata", sym.SymVerABI0)
   138  	if addmoduledata.Type == sym.STEXT && ctxt.BuildMode != ld.BuildModePlugin {
   139  		return
   140  	}
   141  	addmoduledata.Attr |= sym.AttrReachable
   142  	initfunc := ctxt.Syms.Lookup("go.link.addmoduledata", 0)
   143  	initfunc.Type = sym.STEXT
   144  	initfunc.Attr |= sym.AttrLocal
   145  	initfunc.Attr |= sym.AttrReachable
   146  	o := func(op uint32) {
   147  		initfunc.AddUint32(ctxt.Arch, op)
   148  	}
   149  	// addis r2, r12, .TOC.-func@ha
   150  	rel := initfunc.AddRel()
   151  	rel.Off = int32(initfunc.Size)
   152  	rel.Siz = 8
   153  	rel.Sym = ctxt.Syms.Lookup(".TOC.", 0)
   154  	rel.Sym.Attr |= sym.AttrReachable
   155  	rel.Type = objabi.R_ADDRPOWER_PCREL
   156  	o(0x3c4c0000)
   157  	// addi r2, r2, .TOC.-func@l
   158  	o(0x38420000)
   159  	// mflr r31
   160  	o(0x7c0802a6)
   161  	// stdu r31, -32(r1)
   162  	o(0xf801ffe1)
   163  	// addis r3, r2, local.moduledata@got@ha
   164  	rel = initfunc.AddRel()
   165  	rel.Off = int32(initfunc.Size)
   166  	rel.Siz = 8
   167  	if s := ctxt.Syms.ROLookup("local.moduledata", 0); s != nil {
   168  		rel.Sym = s
   169  	} else if s := ctxt.Syms.ROLookup("local.pluginmoduledata", 0); s != nil {
   170  		rel.Sym = s
   171  	} else {
   172  		rel.Sym = ctxt.Syms.Lookup("runtime.firstmoduledata", 0)
   173  	}
   174  	rel.Sym.Attr |= sym.AttrReachable
   175  	rel.Sym.Attr |= sym.AttrLocal
   176  	rel.Type = objabi.R_ADDRPOWER_GOT
   177  	o(0x3c620000)
   178  	// ld r3, local.moduledata@got@l(r3)
   179  	o(0xe8630000)
   180  	// bl runtime.addmoduledata
   181  	rel = initfunc.AddRel()
   182  	rel.Off = int32(initfunc.Size)
   183  	rel.Siz = 4
   184  	rel.Sym = addmoduledata
   185  	rel.Type = objabi.R_CALLPOWER
   186  	o(0x48000001)
   187  	// nop
   188  	o(0x60000000)
   189  	// ld r31, 0(r1)
   190  	o(0xe8010000)
   191  	// mtlr r31
   192  	o(0x7c0803a6)
   193  	// addi r1,r1,32
   194  	o(0x38210020)
   195  	// blr
   196  	o(0x4e800020)
   197  
   198  	if ctxt.BuildMode == ld.BuildModePlugin {
   199  		ctxt.Textp = append(ctxt.Textp, addmoduledata)
   200  	}
   201  	initarray_entry := ctxt.Syms.Lookup("go.link.addmoduledatainit", 0)
   202  	ctxt.Textp = append(ctxt.Textp, initfunc)
   203  	initarray_entry.Attr |= sym.AttrReachable
   204  	initarray_entry.Attr |= sym.AttrLocal
   205  	initarray_entry.Type = sym.SINITARR
   206  	initarray_entry.AddAddr(ctxt.Arch, initfunc)
   207  }
   208  
   209  func gentext(ctxt *ld.Link) {
   210  	if ctxt.DynlinkingGo() {
   211  		genaddmoduledata(ctxt)
   212  	}
   213  
   214  	if ctxt.LinkMode == ld.LinkInternal {
   215  		genplt(ctxt)
   216  	}
   217  }
   218  
   219  // Construct a call stub in stub that calls symbol targ via its PLT
   220  // entry.
   221  func gencallstub(ctxt *ld.Link, abicase int, stub *sym.Symbol, targ *sym.Symbol) {
   222  	if abicase != 1 {
   223  		// If we see R_PPC64_TOCSAVE or R_PPC64_REL24_NOTOC
   224  		// relocations, we'll need to implement cases 2 and 3.
   225  		log.Fatalf("gencallstub only implements case 1 calls")
   226  	}
   227  
   228  	plt := ctxt.Syms.Lookup(".plt", 0)
   229  
   230  	stub.Type = sym.STEXT
   231  
   232  	// Save TOC pointer in TOC save slot
   233  	stub.AddUint32(ctxt.Arch, 0xf8410018) // std r2,24(r1)
   234  
   235  	// Load the function pointer from the PLT.
   236  	r := stub.AddRel()
   237  
   238  	r.Off = int32(stub.Size)
   239  	r.Sym = plt
   240  	r.Add = int64(targ.Plt())
   241  	r.Siz = 2
   242  	if ctxt.Arch.ByteOrder == binary.BigEndian {
   243  		r.Off += int32(r.Siz)
   244  	}
   245  	r.Type = objabi.R_POWER_TOC
   246  	r.Variant = sym.RV_POWER_HA
   247  	stub.AddUint32(ctxt.Arch, 0x3d820000) // addis r12,r2,targ@plt@toc@ha
   248  	r = stub.AddRel()
   249  	r.Off = int32(stub.Size)
   250  	r.Sym = plt
   251  	r.Add = int64(targ.Plt())
   252  	r.Siz = 2
   253  	if ctxt.Arch.ByteOrder == binary.BigEndian {
   254  		r.Off += int32(r.Siz)
   255  	}
   256  	r.Type = objabi.R_POWER_TOC
   257  	r.Variant = sym.RV_POWER_LO
   258  	stub.AddUint32(ctxt.Arch, 0xe98c0000) // ld r12,targ@plt@toc@l(r12)
   259  
   260  	// Jump to the loaded pointer
   261  	stub.AddUint32(ctxt.Arch, 0x7d8903a6) // mtctr r12
   262  	stub.AddUint32(ctxt.Arch, 0x4e800420) // bctr
   263  }
   264  
   265  func adddynrel(ctxt *ld.Link, s *sym.Symbol, r *sym.Reloc) bool {
   266  	if ctxt.IsELF {
   267  		return addelfdynrel(ctxt, s, r)
   268  	} else if ctxt.HeadType == objabi.Haix {
   269  		return ld.Xcoffadddynrel(ctxt, s, r)
   270  	}
   271  	return false
   272  }
   273  func addelfdynrel(ctxt *ld.Link, s *sym.Symbol, r *sym.Reloc) bool {
   274  	targ := r.Sym
   275  	r.InitExt()
   276  
   277  	switch r.Type {
   278  	default:
   279  		if r.Type >= objabi.ElfRelocOffset {
   280  			ld.Errorf(s, "unexpected relocation type %d (%s)", r.Type, sym.RelocName(ctxt.Arch, r.Type))
   281  			return false
   282  		}
   283  
   284  		// Handle relocations found in ELF object files.
   285  	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL24):
   286  		r.Type = objabi.R_CALLPOWER
   287  
   288  		// This is a local call, so the caller isn't setting
   289  		// up r12 and r2 is the same for the caller and
   290  		// callee. Hence, we need to go to the local entry
   291  		// point.  (If we don't do this, the callee will try
   292  		// to use r12 to compute r2.)
   293  		r.Add += int64(r.Sym.Localentry()) * 4
   294  
   295  		if targ.Type == sym.SDYNIMPORT {
   296  			// Should have been handled in elfsetupplt
   297  			ld.Errorf(s, "unexpected R_PPC64_REL24 for dyn import")
   298  		}
   299  
   300  		return true
   301  
   302  	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC_REL32):
   303  		r.Type = objabi.R_PCREL
   304  		r.Add += 4
   305  
   306  		if targ.Type == sym.SDYNIMPORT {
   307  			ld.Errorf(s, "unexpected R_PPC_REL32 for dyn import")
   308  		}
   309  
   310  		return true
   311  
   312  	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_ADDR64):
   313  		r.Type = objabi.R_ADDR
   314  		if targ.Type == sym.SDYNIMPORT {
   315  			// These happen in .toc sections
   316  			ld.Adddynsym(ctxt, targ)
   317  
   318  			rela := ctxt.Syms.Lookup(".rela", 0)
   319  			rela.AddAddrPlus(ctxt.Arch, s, int64(r.Off))
   320  			rela.AddUint64(ctxt.Arch, ld.ELF64_R_INFO(uint32(targ.Dynid), uint32(elf.R_PPC64_ADDR64)))
   321  			rela.AddUint64(ctxt.Arch, uint64(r.Add))
   322  			r.Type = objabi.ElfRelocOffset // ignore during relocsym
   323  		}
   324  
   325  		return true
   326  
   327  	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16):
   328  		r.Type = objabi.R_POWER_TOC
   329  		r.Variant = sym.RV_POWER_LO | sym.RV_CHECK_OVERFLOW
   330  		return true
   331  
   332  	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_LO):
   333  		r.Type = objabi.R_POWER_TOC
   334  		r.Variant = sym.RV_POWER_LO
   335  		return true
   336  
   337  	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_HA):
   338  		r.Type = objabi.R_POWER_TOC
   339  		r.Variant = sym.RV_POWER_HA | sym.RV_CHECK_OVERFLOW
   340  		return true
   341  
   342  	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_HI):
   343  		r.Type = objabi.R_POWER_TOC
   344  		r.Variant = sym.RV_POWER_HI | sym.RV_CHECK_OVERFLOW
   345  		return true
   346  
   347  	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_DS):
   348  		r.Type = objabi.R_POWER_TOC
   349  		r.Variant = sym.RV_POWER_DS | sym.RV_CHECK_OVERFLOW
   350  		return true
   351  
   352  	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_TOC16_LO_DS):
   353  		r.Type = objabi.R_POWER_TOC
   354  		r.Variant = sym.RV_POWER_DS
   355  		return true
   356  
   357  	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL16_LO):
   358  		r.Type = objabi.R_PCREL
   359  		r.Variant = sym.RV_POWER_LO
   360  		r.Add += 2 // Compensate for relocation size of 2
   361  		return true
   362  
   363  	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL16_HI):
   364  		r.Type = objabi.R_PCREL
   365  		r.Variant = sym.RV_POWER_HI | sym.RV_CHECK_OVERFLOW
   366  		r.Add += 2
   367  		return true
   368  
   369  	case objabi.ElfRelocOffset + objabi.RelocType(elf.R_PPC64_REL16_HA):
   370  		r.Type = objabi.R_PCREL
   371  		r.Variant = sym.RV_POWER_HA | sym.RV_CHECK_OVERFLOW
   372  		r.Add += 2
   373  		return true
   374  	}
   375  
   376  	// Handle references to ELF symbols from our own object files.
   377  	if targ.Type != sym.SDYNIMPORT {
   378  		return true
   379  	}
   380  
   381  	// TODO(austin): Translate our relocations to ELF
   382  
   383  	return false
   384  }
   385  
   386  func xcoffreloc1(arch *sys.Arch, out *ld.OutBuf, s *sym.Symbol, r *sym.Reloc, sectoff int64) bool {
   387  	rs := r.Xsym
   388  
   389  	emitReloc := func(v uint16, off uint64) {
   390  		out.Write64(uint64(sectoff) + off)
   391  		out.Write32(uint32(rs.Dynid))
   392  		out.Write16(v)
   393  	}
   394  
   395  	var v uint16
   396  	switch r.Type {
   397  	default:
   398  		return false
   399  	case objabi.R_ADDR:
   400  		v = ld.XCOFF_R_POS
   401  		if r.Siz == 4 {
   402  			v |= 0x1F << 8
   403  		} else {
   404  			v |= 0x3F << 8
   405  		}
   406  		emitReloc(v, 0)
   407  	case objabi.R_ADDRPOWER_TOCREL:
   408  	case objabi.R_ADDRPOWER_TOCREL_DS:
   409  		emitReloc(ld.XCOFF_R_TOCU|(0x0F<<8), 2)
   410  		emitReloc(ld.XCOFF_R_TOCL|(0x0F<<8), 6)
   411  	case objabi.R_POWER_TLS_LE:
   412  		emitReloc(ld.XCOFF_R_TLS_LE|0x0F<<8, 2)
   413  	case objabi.R_CALLPOWER:
   414  		if r.Siz != 4 {
   415  			return false
   416  		}
   417  		emitReloc(ld.XCOFF_R_RBR|0x19<<8, 0)
   418  	case objabi.R_XCOFFREF:
   419  		emitReloc(ld.XCOFF_R_REF|0x3F<<8, 0)
   420  
   421  	}
   422  	return true
   423  
   424  }
   425  
   426  func elfreloc1(ctxt *ld.Link, r *sym.Reloc, sectoff int64) bool {
   427  	// Beware that bit0~bit15 start from the third byte of a instruction in Big-Endian machines.
   428  	if r.Type == objabi.R_ADDR || r.Type == objabi.R_POWER_TLS || r.Type == objabi.R_CALLPOWER {
   429  	} else {
   430  		if ctxt.Arch.ByteOrder == binary.BigEndian {
   431  			sectoff += 2
   432  		}
   433  	}
   434  	ctxt.Out.Write64(uint64(sectoff))
   435  
   436  	elfsym := r.Xsym.ElfsymForReloc()
   437  	switch r.Type {
   438  	default:
   439  		return false
   440  	case objabi.R_ADDR:
   441  		switch r.Siz {
   442  		case 4:
   443  			ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR32) | uint64(elfsym)<<32)
   444  		case 8:
   445  			ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR64) | uint64(elfsym)<<32)
   446  		default:
   447  			return false
   448  		}
   449  	case objabi.R_POWER_TLS:
   450  		ctxt.Out.Write64(uint64(elf.R_PPC64_TLS) | uint64(elfsym)<<32)
   451  	case objabi.R_POWER_TLS_LE:
   452  		ctxt.Out.Write64(uint64(elf.R_PPC64_TPREL16) | uint64(elfsym)<<32)
   453  	case objabi.R_POWER_TLS_IE:
   454  		ctxt.Out.Write64(uint64(elf.R_PPC64_GOT_TPREL16_HA) | uint64(elfsym)<<32)
   455  		ctxt.Out.Write64(uint64(r.Xadd))
   456  		ctxt.Out.Write64(uint64(sectoff + 4))
   457  		ctxt.Out.Write64(uint64(elf.R_PPC64_GOT_TPREL16_LO_DS) | uint64(elfsym)<<32)
   458  	case objabi.R_ADDRPOWER:
   459  		ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR16_HA) | uint64(elfsym)<<32)
   460  		ctxt.Out.Write64(uint64(r.Xadd))
   461  		ctxt.Out.Write64(uint64(sectoff + 4))
   462  		ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR16_LO) | uint64(elfsym)<<32)
   463  	case objabi.R_ADDRPOWER_DS:
   464  		ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR16_HA) | uint64(elfsym)<<32)
   465  		ctxt.Out.Write64(uint64(r.Xadd))
   466  		ctxt.Out.Write64(uint64(sectoff + 4))
   467  		ctxt.Out.Write64(uint64(elf.R_PPC64_ADDR16_LO_DS) | uint64(elfsym)<<32)
   468  	case objabi.R_ADDRPOWER_GOT:
   469  		ctxt.Out.Write64(uint64(elf.R_PPC64_GOT16_HA) | uint64(elfsym)<<32)
   470  		ctxt.Out.Write64(uint64(r.Xadd))
   471  		ctxt.Out.Write64(uint64(sectoff + 4))
   472  		ctxt.Out.Write64(uint64(elf.R_PPC64_GOT16_LO_DS) | uint64(elfsym)<<32)
   473  	case objabi.R_ADDRPOWER_PCREL:
   474  		ctxt.Out.Write64(uint64(elf.R_PPC64_REL16_HA) | uint64(elfsym)<<32)
   475  		ctxt.Out.Write64(uint64(r.Xadd))
   476  		ctxt.Out.Write64(uint64(sectoff + 4))
   477  		ctxt.Out.Write64(uint64(elf.R_PPC64_REL16_LO) | uint64(elfsym)<<32)
   478  		r.Xadd += 4
   479  	case objabi.R_ADDRPOWER_TOCREL:
   480  		ctxt.Out.Write64(uint64(elf.R_PPC64_TOC16_HA) | uint64(elfsym)<<32)
   481  		ctxt.Out.Write64(uint64(r.Xadd))
   482  		ctxt.Out.Write64(uint64(sectoff + 4))
   483  		ctxt.Out.Write64(uint64(elf.R_PPC64_TOC16_LO) | uint64(elfsym)<<32)
   484  	case objabi.R_ADDRPOWER_TOCREL_DS:
   485  		ctxt.Out.Write64(uint64(elf.R_PPC64_TOC16_HA) | uint64(elfsym)<<32)
   486  		ctxt.Out.Write64(uint64(r.Xadd))
   487  		ctxt.Out.Write64(uint64(sectoff + 4))
   488  		ctxt.Out.Write64(uint64(elf.R_PPC64_TOC16_LO_DS) | uint64(elfsym)<<32)
   489  	case objabi.R_CALLPOWER:
   490  		if r.Siz != 4 {
   491  			return false
   492  		}
   493  		ctxt.Out.Write64(uint64(elf.R_PPC64_REL24) | uint64(elfsym)<<32)
   494  
   495  	}
   496  	ctxt.Out.Write64(uint64(r.Xadd))
   497  
   498  	return true
   499  }
   500  
   501  func elfsetupplt(ctxt *ld.Link) {
   502  	plt := ctxt.Syms.Lookup(".plt", 0)
   503  	if plt.Size == 0 {
   504  		// The dynamic linker stores the address of the
   505  		// dynamic resolver and the DSO identifier in the two
   506  		// doublewords at the beginning of the .plt section
   507  		// before the PLT array. Reserve space for these.
   508  		plt.Size = 16
   509  	}
   510  }
   511  
   512  func machoreloc1(arch *sys.Arch, out *ld.OutBuf, s *sym.Symbol, r *sym.Reloc, sectoff int64) bool {
   513  	return false
   514  }
   515  
   516  // Return the value of .TOC. for symbol s
   517  func symtoc(ctxt *ld.Link, s *sym.Symbol) int64 {
   518  	var toc *sym.Symbol
   519  
   520  	if s.Outer != nil {
   521  		toc = ctxt.Syms.ROLookup(".TOC.", int(s.Outer.Version))
   522  	} else {
   523  		toc = ctxt.Syms.ROLookup(".TOC.", int(s.Version))
   524  	}
   525  
   526  	if toc == nil {
   527  		ld.Errorf(s, "TOC-relative relocation in object without .TOC.")
   528  		return 0
   529  	}
   530  
   531  	return toc.Value
   532  }
   533  
   534  // archreloctoc relocates a TOC relative symbol.
   535  // If the symbol pointed by this TOC relative symbol is in .data or .bss, the
   536  // default load instruction can be changed to an addi instruction and the
   537  // symbol address can be used directly.
   538  // This code is for AIX only.
   539  func archreloctoc(ctxt *ld.Link, r *sym.Reloc, s *sym.Symbol, val int64) int64 {
   540  	if ctxt.HeadType == objabi.Hlinux {
   541  		ld.Errorf(s, "archrelocaddr called for %s relocation\n", r.Sym.Name)
   542  	}
   543  	var o1, o2 uint32
   544  
   545  	o1 = uint32(val >> 32)
   546  	o2 = uint32(val)
   547  
   548  	var t int64
   549  	useAddi := false
   550  	const prefix = "TOC."
   551  	var tarSym *sym.Symbol
   552  	if strings.HasPrefix(r.Sym.Name, prefix) {
   553  		tarSym = r.Sym.R[0].Sym
   554  	} else {
   555  		ld.Errorf(s, "archreloctoc called for a symbol without TOC anchor")
   556  	}
   557  
   558  	if ctxt.LinkMode == ld.LinkInternal && tarSym != nil && tarSym.Attr.Reachable() && (tarSym.Sect.Seg == &ld.Segdata) {
   559  		t = ld.Symaddr(tarSym) + r.Add - ctxt.Syms.ROLookup("TOC", 0).Value
   560  		// change ld to addi in the second instruction
   561  		o2 = (o2 & 0x03FF0000) | 0xE<<26
   562  		useAddi = true
   563  	} else {
   564  		t = ld.Symaddr(r.Sym) + r.Add - ctxt.Syms.ROLookup("TOC", 0).Value
   565  	}
   566  
   567  	if t != int64(int32(t)) {
   568  		ld.Errorf(s, "TOC relocation for %s is too big to relocate %s: 0x%x", s.Name, r.Sym, t)
   569  	}
   570  
   571  	if t&0x8000 != 0 {
   572  		t += 0x10000
   573  	}
   574  
   575  	o1 |= uint32((t >> 16) & 0xFFFF)
   576  
   577  	switch r.Type {
   578  	case objabi.R_ADDRPOWER_TOCREL_DS:
   579  		if useAddi {
   580  			o2 |= uint32(t) & 0xFFFF
   581  		} else {
   582  			if t&3 != 0 {
   583  				ld.Errorf(s, "bad DS reloc for %s: %d", s.Name, ld.Symaddr(r.Sym))
   584  			}
   585  			o2 |= uint32(t) & 0xFFFC
   586  		}
   587  	default:
   588  		return -1
   589  	}
   590  
   591  	return int64(o1)<<32 | int64(o2)
   592  }
   593  
   594  // archrelocaddr relocates a symbol address.
   595  // This code is for AIX only.
   596  func archrelocaddr(ctxt *ld.Link, r *sym.Reloc, s *sym.Symbol, val int64) int64 {
   597  	if ctxt.HeadType == objabi.Haix {
   598  		ld.Errorf(s, "archrelocaddr called for %s relocation\n", r.Sym.Name)
   599  	}
   600  	var o1, o2 uint32
   601  	if ctxt.Arch.ByteOrder == binary.BigEndian {
   602  		o1 = uint32(val >> 32)
   603  		o2 = uint32(val)
   604  	} else {
   605  		o1 = uint32(val)
   606  		o2 = uint32(val >> 32)
   607  	}
   608  
   609  	// We are spreading a 31-bit address across two instructions, putting the
   610  	// high (adjusted) part in the low 16 bits of the first instruction and the
   611  	// low part in the low 16 bits of the second instruction, or, in the DS case,
   612  	// bits 15-2 (inclusive) of the address into bits 15-2 of the second
   613  	// instruction (it is an error in this case if the low 2 bits of the address
   614  	// are non-zero).
   615  
   616  	t := ld.Symaddr(r.Sym) + r.Add
   617  	if t < 0 || t >= 1<<31 {
   618  		ld.Errorf(s, "relocation for %s is too big (>=2G): 0x%x", s.Name, ld.Symaddr(r.Sym))
   619  	}
   620  	if t&0x8000 != 0 {
   621  		t += 0x10000
   622  	}
   623  
   624  	switch r.Type {
   625  	case objabi.R_ADDRPOWER:
   626  		o1 |= (uint32(t) >> 16) & 0xffff
   627  		o2 |= uint32(t) & 0xffff
   628  	case objabi.R_ADDRPOWER_DS:
   629  		o1 |= (uint32(t) >> 16) & 0xffff
   630  		if t&3 != 0 {
   631  			ld.Errorf(s, "bad DS reloc for %s: %d", s.Name, ld.Symaddr(r.Sym))
   632  		}
   633  		o2 |= uint32(t) & 0xfffc
   634  	default:
   635  		return -1
   636  	}
   637  
   638  	if ctxt.Arch.ByteOrder == binary.BigEndian {
   639  		return int64(o1)<<32 | int64(o2)
   640  	}
   641  	return int64(o2)<<32 | int64(o1)
   642  }
   643  
   644  // resolve direct jump relocation r in s, and add trampoline if necessary
   645  func trampoline(ctxt *ld.Link, r *sym.Reloc, s *sym.Symbol) {
   646  
   647  	// Trampolines are created if the branch offset is too large and the linker cannot insert a call stub to handle it.
   648  	// For internal linking, trampolines are always created for long calls.
   649  	// For external linking, the linker can insert a call stub to handle a long call, but depends on having the TOC address in
   650  	// r2.  For those build modes with external linking where the TOC address is not maintained in r2, trampolines must be created.
   651  	if ctxt.LinkMode == ld.LinkExternal && (ctxt.DynlinkingGo() || ctxt.BuildMode == ld.BuildModeCArchive || ctxt.BuildMode == ld.BuildModeCShared || ctxt.BuildMode == ld.BuildModePIE) {
   652  		// No trampolines needed since r2 contains the TOC
   653  		return
   654  	}
   655  
   656  	t := ld.Symaddr(r.Sym) + r.Add - (s.Value + int64(r.Off))
   657  	switch r.Type {
   658  	case objabi.R_CALLPOWER:
   659  
   660  		// If branch offset is too far then create a trampoline.
   661  
   662  		if (ctxt.LinkMode == ld.LinkExternal && s.Sect != r.Sym.Sect) || (ctxt.LinkMode == ld.LinkInternal && int64(int32(t<<6)>>6) != t) || (*ld.FlagDebugTramp > 1 && s.File != r.Sym.File) {
   663  			var tramp *sym.Symbol
   664  			for i := 0; ; i++ {
   665  
   666  				// Using r.Add as part of the name is significant in functions like duffzero where the call
   667  				// target is at some offset within the function.  Calls to duff+8 and duff+256 must appear as
   668  				// distinct trampolines.
   669  
   670  				name := r.Sym.Name
   671  				if r.Add == 0 {
   672  					name = name + fmt.Sprintf("-tramp%d", i)
   673  				} else {
   674  					name = name + fmt.Sprintf("%+x-tramp%d", r.Add, i)
   675  				}
   676  
   677  				// Look up the trampoline in case it already exists
   678  
   679  				tramp = ctxt.Syms.Lookup(name, int(r.Sym.Version))
   680  				if tramp.Value == 0 {
   681  					break
   682  				}
   683  
   684  				t = ld.Symaddr(tramp) + r.Add - (s.Value + int64(r.Off))
   685  
   686  				// With internal linking, the trampoline can be used if it is not too far.
   687  				// With external linking, the trampoline must be in this section for it to be reused.
   688  				if (ctxt.LinkMode == ld.LinkInternal && int64(int32(t<<6)>>6) == t) || (ctxt.LinkMode == ld.LinkExternal && s.Sect == tramp.Sect) {
   689  					break
   690  				}
   691  			}
   692  			if tramp.Type == 0 {
   693  				if ctxt.DynlinkingGo() || ctxt.BuildMode == ld.BuildModeCArchive || ctxt.BuildMode == ld.BuildModeCShared || ctxt.BuildMode == ld.BuildModePIE {
   694  					// Should have returned for above cases
   695  					ld.Errorf(s, "unexpected trampoline for shared or dynamic linking\n")
   696  				} else {
   697  					ctxt.AddTramp(tramp)
   698  					gentramp(ctxt, tramp, r.Sym, r.Add)
   699  				}
   700  			}
   701  			r.Sym = tramp
   702  			r.Add = 0 // This was folded into the trampoline target address
   703  			r.Done = false
   704  		}
   705  	default:
   706  		ld.Errorf(s, "trampoline called with non-jump reloc: %d (%s)", r.Type, sym.RelocName(ctxt.Arch, r.Type))
   707  	}
   708  }
   709  
   710  func gentramp(ctxt *ld.Link, tramp, target *sym.Symbol, offset int64) {
   711  	tramp.Size = 16 // 4 instructions
   712  	tramp.P = make([]byte, tramp.Size)
   713  	t := ld.Symaddr(target) + offset
   714  	var o1, o2 uint32
   715  
   716  	if ctxt.HeadType == objabi.Haix {
   717  		// On AIX, the address is retrieved with a TOC symbol.
   718  		// For internal linking, the "Linux" way might still be used.
   719  		// However, all text symbols are accessed with a TOC symbol as
   720  		// text relocations aren't supposed to be possible.
   721  		// So, keep using the external linking way to be more AIX friendly.
   722  		o1 = uint32(0x3fe20000) // lis r2, toctargetaddr hi
   723  		o2 = uint32(0xebff0000) // ld r31, toctargetaddr lo
   724  
   725  		toctramp := ctxt.Syms.Lookup("TOC."+tramp.Name, 0)
   726  		toctramp.Type = sym.SXCOFFTOC
   727  		toctramp.Attr |= sym.AttrReachable
   728  		toctramp.AddAddr(ctxt.Arch, target)
   729  
   730  		tr := tramp.AddRel()
   731  		tr.Off = 0
   732  		tr.Type = objabi.R_ADDRPOWER_TOCREL_DS
   733  		tr.Siz = 8 // generates 2 relocations:  HA + LO
   734  		tr.Sym = toctramp
   735  		tr.Add = offset
   736  	} else {
   737  		// Used for default build mode for an executable
   738  		// Address of the call target is generated using
   739  		// relocation and doesn't depend on r2 (TOC).
   740  		o1 = uint32(0x3fe00000) // lis r31,targetaddr hi
   741  		o2 = uint32(0x3bff0000) // addi r31,targetaddr lo
   742  
   743  		// With external linking, the target address must be
   744  		// relocated using LO and HA
   745  		if ctxt.LinkMode == ld.LinkExternal {
   746  			tr := tramp.AddRel()
   747  			tr.Off = 0
   748  			tr.Type = objabi.R_ADDRPOWER
   749  			tr.Siz = 8 // generates 2 relocations:  HA + LO
   750  			tr.Sym = target
   751  			tr.Add = offset
   752  
   753  		} else {
   754  			// adjustment needed if lo has sign bit set
   755  			// when using addi to compute address
   756  			val := uint32((t & 0xffff0000) >> 16)
   757  			if t&0x8000 != 0 {
   758  				val += 1
   759  			}
   760  			o1 |= val                // hi part of addr
   761  			o2 |= uint32(t & 0xffff) // lo part of addr
   762  		}
   763  	}
   764  
   765  	o3 := uint32(0x7fe903a6) // mtctr r31
   766  	o4 := uint32(0x4e800420) // bctr
   767  	ctxt.Arch.ByteOrder.PutUint32(tramp.P, o1)
   768  	ctxt.Arch.ByteOrder.PutUint32(tramp.P[4:], o2)
   769  	ctxt.Arch.ByteOrder.PutUint32(tramp.P[8:], o3)
   770  	ctxt.Arch.ByteOrder.PutUint32(tramp.P[12:], o4)
   771  }
   772  
   773  func archreloc(ctxt *ld.Link, r *sym.Reloc, s *sym.Symbol, val int64) (int64, bool) {
   774  	if ctxt.LinkMode == ld.LinkExternal {
   775  		// On AIX, relocations (except TLS ones) must be also done to the
   776  		// value with the current addresses.
   777  		switch r.Type {
   778  		default:
   779  			if ctxt.HeadType != objabi.Haix {
   780  				return val, false
   781  			}
   782  		case objabi.R_POWER_TLS, objabi.R_POWER_TLS_LE, objabi.R_POWER_TLS_IE:
   783  			r.Done = false
   784  			// check Outer is nil, Type is TLSBSS?
   785  			r.Xadd = r.Add
   786  			r.Xsym = r.Sym
   787  			return val, true
   788  		case objabi.R_ADDRPOWER,
   789  			objabi.R_ADDRPOWER_DS,
   790  			objabi.R_ADDRPOWER_TOCREL,
   791  			objabi.R_ADDRPOWER_TOCREL_DS,
   792  			objabi.R_ADDRPOWER_GOT,
   793  			objabi.R_ADDRPOWER_PCREL:
   794  			r.Done = false
   795  
   796  			// set up addend for eventual relocation via outer symbol.
   797  			rs := r.Sym
   798  			r.Xadd = r.Add
   799  			for rs.Outer != nil {
   800  				r.Xadd += ld.Symaddr(rs) - ld.Symaddr(rs.Outer)
   801  				rs = rs.Outer
   802  			}
   803  
   804  			if rs.Type != sym.SHOSTOBJ && rs.Type != sym.SDYNIMPORT && rs.Type != sym.SUNDEFEXT && rs.Sect == nil {
   805  				ld.Errorf(s, "missing section for %s", rs.Name)
   806  			}
   807  			r.Xsym = rs
   808  
   809  			if ctxt.HeadType != objabi.Haix {
   810  				return val, true
   811  			}
   812  		case objabi.R_CALLPOWER:
   813  			r.Done = false
   814  			r.Xsym = r.Sym
   815  			r.Xadd = r.Add
   816  			if ctxt.HeadType != objabi.Haix {
   817  				return val, true
   818  			}
   819  		}
   820  	}
   821  
   822  	switch r.Type {
   823  	case objabi.R_CONST:
   824  		return r.Add, true
   825  	case objabi.R_GOTOFF:
   826  		return ld.Symaddr(r.Sym) + r.Add - ld.Symaddr(ctxt.Syms.Lookup(".got", 0)), true
   827  	case objabi.R_ADDRPOWER_TOCREL, objabi.R_ADDRPOWER_TOCREL_DS:
   828  		return archreloctoc(ctxt, r, s, val), true
   829  	case objabi.R_ADDRPOWER, objabi.R_ADDRPOWER_DS:
   830  		return archrelocaddr(ctxt, r, s, val), true
   831  	case objabi.R_CALLPOWER:
   832  		// Bits 6 through 29 = (S + A - P) >> 2
   833  
   834  		t := ld.Symaddr(r.Sym) + r.Add - (s.Value + int64(r.Off))
   835  
   836  		if t&3 != 0 {
   837  			ld.Errorf(s, "relocation for %s+%d is not aligned: %d", r.Sym.Name, r.Off, t)
   838  		}
   839  		// If branch offset is too far then create a trampoline.
   840  
   841  		if int64(int32(t<<6)>>6) != t {
   842  			ld.Errorf(s, "direct call too far: %s %x", r.Sym.Name, t)
   843  		}
   844  		return val | int64(uint32(t)&^0xfc000003), true
   845  	case objabi.R_POWER_TOC: // S + A - .TOC.
   846  		return ld.Symaddr(r.Sym) + r.Add - symtoc(ctxt, s), true
   847  
   848  	case objabi.R_POWER_TLS_LE:
   849  		// The thread pointer points 0x7000 bytes after the start of the
   850  		// thread local storage area as documented in section "3.7.2 TLS
   851  		// Runtime Handling" of "Power Architecture 64-Bit ELF V2 ABI
   852  		// Specification".
   853  		v := r.Sym.Value - 0x7000
   854  		if ctxt.HeadType == objabi.Haix {
   855  			// On AIX, the thread pointer points 0x7800 bytes after
   856  			// the TLS.
   857  			v -= 0x800
   858  		}
   859  		if int64(int16(v)) != v {
   860  			ld.Errorf(s, "TLS offset out of range %d", v)
   861  		}
   862  		return (val &^ 0xffff) | (v & 0xffff), true
   863  	}
   864  
   865  	return val, false
   866  }
   867  
   868  func archrelocvariant(ctxt *ld.Link, r *sym.Reloc, s *sym.Symbol, t int64) int64 {
   869  	switch r.Variant & sym.RV_TYPE_MASK {
   870  	default:
   871  		ld.Errorf(s, "unexpected relocation variant %d", r.Variant)
   872  		fallthrough
   873  
   874  	case sym.RV_NONE:
   875  		return t
   876  
   877  	case sym.RV_POWER_LO:
   878  		if r.Variant&sym.RV_CHECK_OVERFLOW != 0 {
   879  			// Whether to check for signed or unsigned
   880  			// overflow depends on the instruction
   881  			var o1 uint32
   882  			if ctxt.Arch.ByteOrder == binary.BigEndian {
   883  				o1 = binary.BigEndian.Uint32(s.P[r.Off-2:])
   884  			} else {
   885  				o1 = binary.LittleEndian.Uint32(s.P[r.Off:])
   886  			}
   887  			switch o1 >> 26 {
   888  			case 24, // ori
   889  				26, // xori
   890  				28: // andi
   891  				if t>>16 != 0 {
   892  					goto overflow
   893  				}
   894  
   895  			default:
   896  				if int64(int16(t)) != t {
   897  					goto overflow
   898  				}
   899  			}
   900  		}
   901  
   902  		return int64(int16(t))
   903  
   904  	case sym.RV_POWER_HA:
   905  		t += 0x8000
   906  		fallthrough
   907  
   908  		// Fallthrough
   909  	case sym.RV_POWER_HI:
   910  		t >>= 16
   911  
   912  		if r.Variant&sym.RV_CHECK_OVERFLOW != 0 {
   913  			// Whether to check for signed or unsigned
   914  			// overflow depends on the instruction
   915  			var o1 uint32
   916  			if ctxt.Arch.ByteOrder == binary.BigEndian {
   917  				o1 = binary.BigEndian.Uint32(s.P[r.Off-2:])
   918  			} else {
   919  				o1 = binary.LittleEndian.Uint32(s.P[r.Off:])
   920  			}
   921  			switch o1 >> 26 {
   922  			case 25, // oris
   923  				27, // xoris
   924  				29: // andis
   925  				if t>>16 != 0 {
   926  					goto overflow
   927  				}
   928  
   929  			default:
   930  				if int64(int16(t)) != t {
   931  					goto overflow
   932  				}
   933  			}
   934  		}
   935  
   936  		return int64(int16(t))
   937  
   938  	case sym.RV_POWER_DS:
   939  		var o1 uint32
   940  		if ctxt.Arch.ByteOrder == binary.BigEndian {
   941  			o1 = uint32(binary.BigEndian.Uint16(s.P[r.Off:]))
   942  		} else {
   943  			o1 = uint32(binary.LittleEndian.Uint16(s.P[r.Off:]))
   944  		}
   945  		if t&3 != 0 {
   946  			ld.Errorf(s, "relocation for %s+%d is not aligned: %d", r.Sym.Name, r.Off, t)
   947  		}
   948  		if (r.Variant&sym.RV_CHECK_OVERFLOW != 0) && int64(int16(t)) != t {
   949  			goto overflow
   950  		}
   951  		return int64(o1)&0x3 | int64(int16(t))
   952  	}
   953  
   954  overflow:
   955  	ld.Errorf(s, "relocation for %s+%d is too big: %d", r.Sym.Name, r.Off, t)
   956  	return t
   957  }
   958  
   959  func addpltsym(ctxt *ld.Link, s *sym.Symbol) {
   960  	if s.Plt() >= 0 {
   961  		return
   962  	}
   963  
   964  	ld.Adddynsym(ctxt, s)
   965  
   966  	if ctxt.IsELF {
   967  		plt := ctxt.Syms.Lookup(".plt", 0)
   968  		rela := ctxt.Syms.Lookup(".rela.plt", 0)
   969  		if plt.Size == 0 {
   970  			elfsetupplt(ctxt)
   971  		}
   972  
   973  		// Create the glink resolver if necessary
   974  		glink := ensureglinkresolver(ctxt)
   975  
   976  		// Write symbol resolver stub (just a branch to the
   977  		// glink resolver stub)
   978  		r := glink.AddRel()
   979  
   980  		r.Sym = glink
   981  		r.Off = int32(glink.Size)
   982  		r.Siz = 4
   983  		r.Type = objabi.R_CALLPOWER
   984  		glink.AddUint32(ctxt.Arch, 0x48000000) // b .glink
   985  
   986  		// In the ppc64 ABI, the dynamic linker is responsible
   987  		// for writing the entire PLT.  We just need to
   988  		// reserve 8 bytes for each PLT entry and generate a
   989  		// JMP_SLOT dynamic relocation for it.
   990  		//
   991  		// TODO(austin): ABI v1 is different
   992  		s.SetPlt(int32(plt.Size))
   993  
   994  		plt.Size += 8
   995  
   996  		rela.AddAddrPlus(ctxt.Arch, plt, int64(s.Plt()))
   997  		rela.AddUint64(ctxt.Arch, ld.ELF64_R_INFO(uint32(s.Dynid), uint32(elf.R_PPC64_JMP_SLOT)))
   998  		rela.AddUint64(ctxt.Arch, 0)
   999  	} else {
  1000  		ld.Errorf(s, "addpltsym: unsupported binary format")
  1001  	}
  1002  }
  1003  
  1004  // Generate the glink resolver stub if necessary and return the .glink section
  1005  func ensureglinkresolver(ctxt *ld.Link) *sym.Symbol {
  1006  	glink := ctxt.Syms.Lookup(".glink", 0)
  1007  	if glink.Size != 0 {
  1008  		return glink
  1009  	}
  1010  
  1011  	// This is essentially the resolver from the ppc64 ELF ABI.
  1012  	// At entry, r12 holds the address of the symbol resolver stub
  1013  	// for the target routine and the argument registers hold the
  1014  	// arguments for the target routine.
  1015  	//
  1016  	// This stub is PIC, so first get the PC of label 1 into r11.
  1017  	// Other things will be relative to this.
  1018  	glink.AddUint32(ctxt.Arch, 0x7c0802a6) // mflr r0
  1019  	glink.AddUint32(ctxt.Arch, 0x429f0005) // bcl 20,31,1f
  1020  	glink.AddUint32(ctxt.Arch, 0x7d6802a6) // 1: mflr r11
  1021  	glink.AddUint32(ctxt.Arch, 0x7c0803a6) // mtlf r0
  1022  
  1023  	// Compute the .plt array index from the entry point address.
  1024  	// Because this is PIC, everything is relative to label 1b (in
  1025  	// r11):
  1026  	//   r0 = ((r12 - r11) - (res_0 - r11)) / 4 = (r12 - res_0) / 4
  1027  	glink.AddUint32(ctxt.Arch, 0x3800ffd0) // li r0,-(res_0-1b)=-48
  1028  	glink.AddUint32(ctxt.Arch, 0x7c006214) // add r0,r0,r12
  1029  	glink.AddUint32(ctxt.Arch, 0x7c0b0050) // sub r0,r0,r11
  1030  	glink.AddUint32(ctxt.Arch, 0x7800f082) // srdi r0,r0,2
  1031  
  1032  	// r11 = address of the first byte of the PLT
  1033  	r := glink.AddRel()
  1034  
  1035  	r.Off = int32(glink.Size)
  1036  	r.Sym = ctxt.Syms.Lookup(".plt", 0)
  1037  	r.Siz = 8
  1038  	r.Type = objabi.R_ADDRPOWER
  1039  
  1040  	glink.AddUint32(ctxt.Arch, 0x3d600000) // addis r11,0,.plt@ha
  1041  	glink.AddUint32(ctxt.Arch, 0x396b0000) // addi r11,r11,.plt@l
  1042  
  1043  	// Load r12 = dynamic resolver address and r11 = DSO
  1044  	// identifier from the first two doublewords of the PLT.
  1045  	glink.AddUint32(ctxt.Arch, 0xe98b0000) // ld r12,0(r11)
  1046  	glink.AddUint32(ctxt.Arch, 0xe96b0008) // ld r11,8(r11)
  1047  
  1048  	// Jump to the dynamic resolver
  1049  	glink.AddUint32(ctxt.Arch, 0x7d8903a6) // mtctr r12
  1050  	glink.AddUint32(ctxt.Arch, 0x4e800420) // bctr
  1051  
  1052  	// The symbol resolvers must immediately follow.
  1053  	//   res_0:
  1054  
  1055  	// Add DT_PPC64_GLINK .dynamic entry, which points to 32 bytes
  1056  	// before the first symbol resolver stub.
  1057  	s := ctxt.Syms.Lookup(".dynamic", 0)
  1058  
  1059  	ld.Elfwritedynentsymplus(ctxt, s, ld.DT_PPC64_GLINK, glink, glink.Size-32)
  1060  
  1061  	return glink
  1062  }
  1063  
  1064  func asmb(ctxt *ld.Link) {
  1065  	if ctxt.IsELF {
  1066  		ld.Asmbelfsetup()
  1067  	}
  1068  
  1069  	for _, sect := range ld.Segtext.Sections {
  1070  		ctxt.Out.SeekSet(int64(sect.Vaddr - ld.Segtext.Vaddr + ld.Segtext.Fileoff))
  1071  		// Handle additional text sections with Codeblk
  1072  		if sect.Name == ".text" {
  1073  			ld.Codeblk(ctxt, int64(sect.Vaddr), int64(sect.Length))
  1074  		} else {
  1075  			ld.Datblk(ctxt, int64(sect.Vaddr), int64(sect.Length))
  1076  		}
  1077  	}
  1078  
  1079  	if ld.Segrodata.Filelen > 0 {
  1080  		ctxt.Out.SeekSet(int64(ld.Segrodata.Fileoff))
  1081  		ld.Datblk(ctxt, int64(ld.Segrodata.Vaddr), int64(ld.Segrodata.Filelen))
  1082  	}
  1083  	if ld.Segrelrodata.Filelen > 0 {
  1084  		ctxt.Out.SeekSet(int64(ld.Segrelrodata.Fileoff))
  1085  		ld.Datblk(ctxt, int64(ld.Segrelrodata.Vaddr), int64(ld.Segrelrodata.Filelen))
  1086  	}
  1087  
  1088  	ctxt.Out.SeekSet(int64(ld.Segdata.Fileoff))
  1089  	ld.Datblk(ctxt, int64(ld.Segdata.Vaddr), int64(ld.Segdata.Filelen))
  1090  
  1091  	ctxt.Out.SeekSet(int64(ld.Segdwarf.Fileoff))
  1092  	ld.Dwarfblk(ctxt, int64(ld.Segdwarf.Vaddr), int64(ld.Segdwarf.Filelen))
  1093  }
  1094  
  1095  func asmb2(ctxt *ld.Link) {
  1096  	/* output symbol table */
  1097  	ld.Symsize = 0
  1098  
  1099  	ld.Lcsize = 0
  1100  	symo := uint32(0)
  1101  	if !*ld.FlagS {
  1102  		// TODO: rationalize
  1103  		switch ctxt.HeadType {
  1104  		default:
  1105  			if ctxt.IsELF {
  1106  				symo = uint32(ld.Segdwarf.Fileoff + ld.Segdwarf.Filelen)
  1107  				symo = uint32(ld.Rnd(int64(symo), int64(*ld.FlagRound)))
  1108  			}
  1109  
  1110  		case objabi.Hplan9:
  1111  			symo = uint32(ld.Segdata.Fileoff + ld.Segdata.Filelen)
  1112  
  1113  		case objabi.Haix:
  1114  			// Nothing to do
  1115  		}
  1116  
  1117  		ctxt.Out.SeekSet(int64(symo))
  1118  		switch ctxt.HeadType {
  1119  		default:
  1120  			if ctxt.IsELF {
  1121  				ld.Asmelfsym(ctxt)
  1122  				ctxt.Out.Flush()
  1123  				ctxt.Out.Write(ld.Elfstrdat)
  1124  
  1125  				if ctxt.LinkMode == ld.LinkExternal {
  1126  					ld.Elfemitreloc(ctxt)
  1127  				}
  1128  			}
  1129  
  1130  		case objabi.Hplan9:
  1131  			ld.Asmplan9sym(ctxt)
  1132  			ctxt.Out.Flush()
  1133  
  1134  			sym := ctxt.Syms.Lookup("pclntab", 0)
  1135  			if sym != nil {
  1136  				ld.Lcsize = int32(len(sym.P))
  1137  				ctxt.Out.Write(sym.P)
  1138  				ctxt.Out.Flush()
  1139  			}
  1140  
  1141  		case objabi.Haix:
  1142  			// symtab must be added once sections have been created in ld.Asmbxcoff
  1143  			ctxt.Out.Flush()
  1144  		}
  1145  	}
  1146  
  1147  	ctxt.Out.SeekSet(0)
  1148  	switch ctxt.HeadType {
  1149  	default:
  1150  	case objabi.Hplan9: /* plan 9 */
  1151  		ctxt.Out.Write32(0x647)                      /* magic */
  1152  		ctxt.Out.Write32(uint32(ld.Segtext.Filelen)) /* sizes */
  1153  		ctxt.Out.Write32(uint32(ld.Segdata.Filelen))
  1154  		ctxt.Out.Write32(uint32(ld.Segdata.Length - ld.Segdata.Filelen))
  1155  		ctxt.Out.Write32(uint32(ld.Symsize))          /* nsyms */
  1156  		ctxt.Out.Write32(uint32(ld.Entryvalue(ctxt))) /* va of entry */
  1157  		ctxt.Out.Write32(0)
  1158  		ctxt.Out.Write32(uint32(ld.Lcsize))
  1159  
  1160  	case objabi.Hlinux,
  1161  		objabi.Hfreebsd,
  1162  		objabi.Hnetbsd,
  1163  		objabi.Hopenbsd:
  1164  		ld.Asmbelf(ctxt, int64(symo))
  1165  
  1166  	case objabi.Haix:
  1167  		fileoff := uint32(ld.Segdwarf.Fileoff + ld.Segdwarf.Filelen)
  1168  		fileoff = uint32(ld.Rnd(int64(fileoff), int64(*ld.FlagRound)))
  1169  		ld.Asmbxcoff(ctxt, int64(fileoff))
  1170  	}
  1171  
  1172  	ctxt.Out.Flush()
  1173  	if *ld.FlagC {
  1174  		fmt.Printf("textsize=%d\n", ld.Segtext.Filelen)
  1175  		fmt.Printf("datsize=%d\n", ld.Segdata.Filelen)
  1176  		fmt.Printf("bsssize=%d\n", ld.Segdata.Length-ld.Segdata.Filelen)
  1177  		fmt.Printf("symsize=%d\n", ld.Symsize)
  1178  		fmt.Printf("lcsize=%d\n", ld.Lcsize)
  1179  		fmt.Printf("total=%d\n", ld.Segtext.Filelen+ld.Segdata.Length+uint64(ld.Symsize)+uint64(ld.Lcsize))
  1180  	}
  1181  }