github.com/geraldss/go/src@v0.0.0-20210511222824-ac7d0ebfc235/bytes/bytes.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package bytes implements functions for the manipulation of byte slices. 6 // It is analogous to the facilities of the strings package. 7 package bytes 8 9 import ( 10 "internal/bytealg" 11 "unicode" 12 "unicode/utf8" 13 ) 14 15 // Equal reports whether a and b 16 // are the same length and contain the same bytes. 17 // A nil argument is equivalent to an empty slice. 18 func Equal(a, b []byte) bool { 19 // Neither cmd/compile nor gccgo allocates for these string conversions. 20 return string(a) == string(b) 21 } 22 23 // Compare returns an integer comparing two byte slices lexicographically. 24 // The result will be 0 if a==b, -1 if a < b, and +1 if a > b. 25 // A nil argument is equivalent to an empty slice. 26 func Compare(a, b []byte) int { 27 return bytealg.Compare(a, b) 28 } 29 30 // explode splits s into a slice of UTF-8 sequences, one per Unicode code point (still slices of bytes), 31 // up to a maximum of n byte slices. Invalid UTF-8 sequences are chopped into individual bytes. 32 func explode(s []byte, n int) [][]byte { 33 if n <= 0 { 34 n = len(s) 35 } 36 a := make([][]byte, n) 37 var size int 38 na := 0 39 for len(s) > 0 { 40 if na+1 >= n { 41 a[na] = s 42 na++ 43 break 44 } 45 _, size = utf8.DecodeRune(s) 46 a[na] = s[0:size:size] 47 s = s[size:] 48 na++ 49 } 50 return a[0:na] 51 } 52 53 // Count counts the number of non-overlapping instances of sep in s. 54 // If sep is an empty slice, Count returns 1 + the number of UTF-8-encoded code points in s. 55 func Count(s, sep []byte) int { 56 // special case 57 if len(sep) == 0 { 58 return utf8.RuneCount(s) + 1 59 } 60 if len(sep) == 1 { 61 return bytealg.Count(s, sep[0]) 62 } 63 n := 0 64 for { 65 i := Index(s, sep) 66 if i == -1 { 67 return n 68 } 69 n++ 70 s = s[i+len(sep):] 71 } 72 } 73 74 // Contains reports whether subslice is within b. 75 func Contains(b, subslice []byte) bool { 76 return Index(b, subslice) != -1 77 } 78 79 // ContainsAny reports whether any of the UTF-8-encoded code points in chars are within b. 80 func ContainsAny(b []byte, chars string) bool { 81 return IndexAny(b, chars) >= 0 82 } 83 84 // ContainsRune reports whether the rune is contained in the UTF-8-encoded byte slice b. 85 func ContainsRune(b []byte, r rune) bool { 86 return IndexRune(b, r) >= 0 87 } 88 89 // IndexByte returns the index of the first instance of c in b, or -1 if c is not present in b. 90 func IndexByte(b []byte, c byte) int { 91 return bytealg.IndexByte(b, c) 92 } 93 94 func indexBytePortable(s []byte, c byte) int { 95 for i, b := range s { 96 if b == c { 97 return i 98 } 99 } 100 return -1 101 } 102 103 // LastIndex returns the index of the last instance of sep in s, or -1 if sep is not present in s. 104 func LastIndex(s, sep []byte) int { 105 n := len(sep) 106 switch { 107 case n == 0: 108 return len(s) 109 case n == 1: 110 return LastIndexByte(s, sep[0]) 111 case n == len(s): 112 if Equal(s, sep) { 113 return 0 114 } 115 return -1 116 case n > len(s): 117 return -1 118 } 119 // Rabin-Karp search from the end of the string 120 hashss, pow := bytealg.HashStrRevBytes(sep) 121 last := len(s) - n 122 var h uint32 123 for i := len(s) - 1; i >= last; i-- { 124 h = h*bytealg.PrimeRK + uint32(s[i]) 125 } 126 if h == hashss && Equal(s[last:], sep) { 127 return last 128 } 129 for i := last - 1; i >= 0; i-- { 130 h *= bytealg.PrimeRK 131 h += uint32(s[i]) 132 h -= pow * uint32(s[i+n]) 133 if h == hashss && Equal(s[i:i+n], sep) { 134 return i 135 } 136 } 137 return -1 138 } 139 140 // LastIndexByte returns the index of the last instance of c in s, or -1 if c is not present in s. 141 func LastIndexByte(s []byte, c byte) int { 142 for i := len(s) - 1; i >= 0; i-- { 143 if s[i] == c { 144 return i 145 } 146 } 147 return -1 148 } 149 150 // IndexRune interprets s as a sequence of UTF-8-encoded code points. 151 // It returns the byte index of the first occurrence in s of the given rune. 152 // It returns -1 if rune is not present in s. 153 // If r is utf8.RuneError, it returns the first instance of any 154 // invalid UTF-8 byte sequence. 155 func IndexRune(s []byte, r rune) int { 156 switch { 157 case 0 <= r && r < utf8.RuneSelf: 158 return IndexByte(s, byte(r)) 159 case r == utf8.RuneError: 160 for i := 0; i < len(s); { 161 r1, n := utf8.DecodeRune(s[i:]) 162 if r1 == utf8.RuneError { 163 return i 164 } 165 i += n 166 } 167 return -1 168 case !utf8.ValidRune(r): 169 return -1 170 default: 171 var b [utf8.UTFMax]byte 172 n := utf8.EncodeRune(b[:], r) 173 return Index(s, b[:n]) 174 } 175 } 176 177 // IndexAny interprets s as a sequence of UTF-8-encoded Unicode code points. 178 // It returns the byte index of the first occurrence in s of any of the Unicode 179 // code points in chars. It returns -1 if chars is empty or if there is no code 180 // point in common. 181 func IndexAny(s []byte, chars string) int { 182 if chars == "" { 183 // Avoid scanning all of s. 184 return -1 185 } 186 if len(s) == 1 { 187 r := rune(s[0]) 188 if r >= utf8.RuneSelf { 189 // search utf8.RuneError. 190 for _, r = range chars { 191 if r == utf8.RuneError { 192 return 0 193 } 194 } 195 return -1 196 } 197 if bytealg.IndexByteString(chars, s[0]) >= 0 { 198 return 0 199 } 200 return -1 201 } 202 if len(chars) == 1 { 203 r := rune(chars[0]) 204 if r >= utf8.RuneSelf { 205 r = utf8.RuneError 206 } 207 return IndexRune(s, r) 208 } 209 if len(s) > 8 { 210 if as, isASCII := makeASCIISet(chars); isASCII { 211 for i, c := range s { 212 if as.contains(c) { 213 return i 214 } 215 } 216 return -1 217 } 218 } 219 var width int 220 for i := 0; i < len(s); i += width { 221 r := rune(s[i]) 222 if r < utf8.RuneSelf { 223 if bytealg.IndexByteString(chars, s[i]) >= 0 { 224 return i 225 } 226 width = 1 227 continue 228 } 229 r, width = utf8.DecodeRune(s[i:]) 230 if r != utf8.RuneError { 231 // r is 2 to 4 bytes 232 if len(chars) == width { 233 if chars == string(r) { 234 return i 235 } 236 continue 237 } 238 // Use bytealg.IndexString for performance if available. 239 if bytealg.MaxLen >= width { 240 if bytealg.IndexString(chars, string(r)) >= 0 { 241 return i 242 } 243 continue 244 } 245 } 246 for _, ch := range chars { 247 if r == ch { 248 return i 249 } 250 } 251 } 252 return -1 253 } 254 255 // LastIndexAny interprets s as a sequence of UTF-8-encoded Unicode code 256 // points. It returns the byte index of the last occurrence in s of any of 257 // the Unicode code points in chars. It returns -1 if chars is empty or if 258 // there is no code point in common. 259 func LastIndexAny(s []byte, chars string) int { 260 if chars == "" { 261 // Avoid scanning all of s. 262 return -1 263 } 264 if len(s) > 8 { 265 if as, isASCII := makeASCIISet(chars); isASCII { 266 for i := len(s) - 1; i >= 0; i-- { 267 if as.contains(s[i]) { 268 return i 269 } 270 } 271 return -1 272 } 273 } 274 if len(s) == 1 { 275 r := rune(s[0]) 276 if r >= utf8.RuneSelf { 277 for _, r = range chars { 278 if r == utf8.RuneError { 279 return 0 280 } 281 } 282 return -1 283 } 284 if bytealg.IndexByteString(chars, s[0]) >= 0 { 285 return 0 286 } 287 return -1 288 } 289 if len(chars) == 1 { 290 cr := rune(chars[0]) 291 if cr >= utf8.RuneSelf { 292 cr = utf8.RuneError 293 } 294 for i := len(s); i > 0; { 295 r, size := utf8.DecodeLastRune(s[:i]) 296 i -= size 297 if r == cr { 298 return i 299 } 300 } 301 return -1 302 } 303 for i := len(s); i > 0; { 304 r := rune(s[i-1]) 305 if r < utf8.RuneSelf { 306 if bytealg.IndexByteString(chars, s[i-1]) >= 0 { 307 return i - 1 308 } 309 i-- 310 continue 311 } 312 r, size := utf8.DecodeLastRune(s[:i]) 313 i -= size 314 if r != utf8.RuneError { 315 // r is 2 to 4 bytes 316 if len(chars) == size { 317 if chars == string(r) { 318 return i 319 } 320 continue 321 } 322 // Use bytealg.IndexString for performance if available. 323 if bytealg.MaxLen >= size { 324 if bytealg.IndexString(chars, string(r)) >= 0 { 325 return i 326 } 327 continue 328 } 329 } 330 for _, ch := range chars { 331 if r == ch { 332 return i 333 } 334 } 335 } 336 return -1 337 } 338 339 // Generic split: splits after each instance of sep, 340 // including sepSave bytes of sep in the subslices. 341 func genSplit(s, sep []byte, sepSave, n int) [][]byte { 342 if n == 0 { 343 return nil 344 } 345 if len(sep) == 0 { 346 return explode(s, n) 347 } 348 if n < 0 { 349 n = Count(s, sep) + 1 350 } 351 352 a := make([][]byte, n) 353 n-- 354 i := 0 355 for i < n { 356 m := Index(s, sep) 357 if m < 0 { 358 break 359 } 360 a[i] = s[: m+sepSave : m+sepSave] 361 s = s[m+len(sep):] 362 i++ 363 } 364 a[i] = s 365 return a[:i+1] 366 } 367 368 // SplitN slices s into subslices separated by sep and returns a slice of 369 // the subslices between those separators. 370 // If sep is empty, SplitN splits after each UTF-8 sequence. 371 // The count determines the number of subslices to return: 372 // n > 0: at most n subslices; the last subslice will be the unsplit remainder. 373 // n == 0: the result is nil (zero subslices) 374 // n < 0: all subslices 375 func SplitN(s, sep []byte, n int) [][]byte { return genSplit(s, sep, 0, n) } 376 377 // SplitAfterN slices s into subslices after each instance of sep and 378 // returns a slice of those subslices. 379 // If sep is empty, SplitAfterN splits after each UTF-8 sequence. 380 // The count determines the number of subslices to return: 381 // n > 0: at most n subslices; the last subslice will be the unsplit remainder. 382 // n == 0: the result is nil (zero subslices) 383 // n < 0: all subslices 384 func SplitAfterN(s, sep []byte, n int) [][]byte { 385 return genSplit(s, sep, len(sep), n) 386 } 387 388 // Split slices s into all subslices separated by sep and returns a slice of 389 // the subslices between those separators. 390 // If sep is empty, Split splits after each UTF-8 sequence. 391 // It is equivalent to SplitN with a count of -1. 392 func Split(s, sep []byte) [][]byte { return genSplit(s, sep, 0, -1) } 393 394 // SplitAfter slices s into all subslices after each instance of sep and 395 // returns a slice of those subslices. 396 // If sep is empty, SplitAfter splits after each UTF-8 sequence. 397 // It is equivalent to SplitAfterN with a count of -1. 398 func SplitAfter(s, sep []byte) [][]byte { 399 return genSplit(s, sep, len(sep), -1) 400 } 401 402 var asciiSpace = [256]uint8{'\t': 1, '\n': 1, '\v': 1, '\f': 1, '\r': 1, ' ': 1} 403 404 // Fields interprets s as a sequence of UTF-8-encoded code points. 405 // It splits the slice s around each instance of one or more consecutive white space 406 // characters, as defined by unicode.IsSpace, returning a slice of subslices of s or an 407 // empty slice if s contains only white space. 408 func Fields(s []byte) [][]byte { 409 // First count the fields. 410 // This is an exact count if s is ASCII, otherwise it is an approximation. 411 n := 0 412 wasSpace := 1 413 // setBits is used to track which bits are set in the bytes of s. 414 setBits := uint8(0) 415 for i := 0; i < len(s); i++ { 416 r := s[i] 417 setBits |= r 418 isSpace := int(asciiSpace[r]) 419 n += wasSpace & ^isSpace 420 wasSpace = isSpace 421 } 422 423 if setBits >= utf8.RuneSelf { 424 // Some runes in the input slice are not ASCII. 425 return FieldsFunc(s, unicode.IsSpace) 426 } 427 428 // ASCII fast path 429 a := make([][]byte, n) 430 na := 0 431 fieldStart := 0 432 i := 0 433 // Skip spaces in the front of the input. 434 for i < len(s) && asciiSpace[s[i]] != 0 { 435 i++ 436 } 437 fieldStart = i 438 for i < len(s) { 439 if asciiSpace[s[i]] == 0 { 440 i++ 441 continue 442 } 443 a[na] = s[fieldStart:i:i] 444 na++ 445 i++ 446 // Skip spaces in between fields. 447 for i < len(s) && asciiSpace[s[i]] != 0 { 448 i++ 449 } 450 fieldStart = i 451 } 452 if fieldStart < len(s) { // Last field might end at EOF. 453 a[na] = s[fieldStart:len(s):len(s)] 454 } 455 return a 456 } 457 458 // FieldsFunc interprets s as a sequence of UTF-8-encoded code points. 459 // It splits the slice s at each run of code points c satisfying f(c) and 460 // returns a slice of subslices of s. If all code points in s satisfy f(c), or 461 // len(s) == 0, an empty slice is returned. 462 // 463 // FieldsFunc makes no guarantees about the order in which it calls f(c) 464 // and assumes that f always returns the same value for a given c. 465 func FieldsFunc(s []byte, f func(rune) bool) [][]byte { 466 // A span is used to record a slice of s of the form s[start:end]. 467 // The start index is inclusive and the end index is exclusive. 468 type span struct { 469 start int 470 end int 471 } 472 spans := make([]span, 0, 32) 473 474 // Find the field start and end indices. 475 // Doing this in a separate pass (rather than slicing the string s 476 // and collecting the result substrings right away) is significantly 477 // more efficient, possibly due to cache effects. 478 start := -1 // valid span start if >= 0 479 for i := 0; i < len(s); { 480 size := 1 481 r := rune(s[i]) 482 if r >= utf8.RuneSelf { 483 r, size = utf8.DecodeRune(s[i:]) 484 } 485 if f(r) { 486 if start >= 0 { 487 spans = append(spans, span{start, i}) 488 start = -1 489 } 490 } else { 491 if start < 0 { 492 start = i 493 } 494 } 495 i += size 496 } 497 498 // Last field might end at EOF. 499 if start >= 0 { 500 spans = append(spans, span{start, len(s)}) 501 } 502 503 // Create subslices from recorded field indices. 504 a := make([][]byte, len(spans)) 505 for i, span := range spans { 506 a[i] = s[span.start:span.end:span.end] 507 } 508 509 return a 510 } 511 512 // Join concatenates the elements of s to create a new byte slice. The separator 513 // sep is placed between elements in the resulting slice. 514 func Join(s [][]byte, sep []byte) []byte { 515 if len(s) == 0 { 516 return []byte{} 517 } 518 if len(s) == 1 { 519 // Just return a copy. 520 return append([]byte(nil), s[0]...) 521 } 522 n := len(sep) * (len(s) - 1) 523 for _, v := range s { 524 n += len(v) 525 } 526 527 b := make([]byte, n) 528 bp := copy(b, s[0]) 529 for _, v := range s[1:] { 530 bp += copy(b[bp:], sep) 531 bp += copy(b[bp:], v) 532 } 533 return b 534 } 535 536 // HasPrefix tests whether the byte slice s begins with prefix. 537 func HasPrefix(s, prefix []byte) bool { 538 return len(s) >= len(prefix) && Equal(s[0:len(prefix)], prefix) 539 } 540 541 // HasSuffix tests whether the byte slice s ends with suffix. 542 func HasSuffix(s, suffix []byte) bool { 543 return len(s) >= len(suffix) && Equal(s[len(s)-len(suffix):], suffix) 544 } 545 546 // Map returns a copy of the byte slice s with all its characters modified 547 // according to the mapping function. If mapping returns a negative value, the character is 548 // dropped from the byte slice with no replacement. The characters in s and the 549 // output are interpreted as UTF-8-encoded code points. 550 func Map(mapping func(r rune) rune, s []byte) []byte { 551 // In the worst case, the slice can grow when mapped, making 552 // things unpleasant. But it's so rare we barge in assuming it's 553 // fine. It could also shrink but that falls out naturally. 554 maxbytes := len(s) // length of b 555 nbytes := 0 // number of bytes encoded in b 556 b := make([]byte, maxbytes) 557 for i := 0; i < len(s); { 558 wid := 1 559 r := rune(s[i]) 560 if r >= utf8.RuneSelf { 561 r, wid = utf8.DecodeRune(s[i:]) 562 } 563 r = mapping(r) 564 if r >= 0 { 565 rl := utf8.RuneLen(r) 566 if rl < 0 { 567 rl = len(string(utf8.RuneError)) 568 } 569 if nbytes+rl > maxbytes { 570 // Grow the buffer. 571 maxbytes = maxbytes*2 + utf8.UTFMax 572 nb := make([]byte, maxbytes) 573 copy(nb, b[0:nbytes]) 574 b = nb 575 } 576 nbytes += utf8.EncodeRune(b[nbytes:maxbytes], r) 577 } 578 i += wid 579 } 580 return b[0:nbytes] 581 } 582 583 // Repeat returns a new byte slice consisting of count copies of b. 584 // 585 // It panics if count is negative or if 586 // the result of (len(b) * count) overflows. 587 func Repeat(b []byte, count int) []byte { 588 if count == 0 { 589 return []byte{} 590 } 591 // Since we cannot return an error on overflow, 592 // we should panic if the repeat will generate 593 // an overflow. 594 // See Issue golang.org/issue/16237. 595 if count < 0 { 596 panic("bytes: negative Repeat count") 597 } else if len(b)*count/count != len(b) { 598 panic("bytes: Repeat count causes overflow") 599 } 600 601 nb := make([]byte, len(b)*count) 602 bp := copy(nb, b) 603 for bp < len(nb) { 604 copy(nb[bp:], nb[:bp]) 605 bp *= 2 606 } 607 return nb 608 } 609 610 // ToUpper returns a copy of the byte slice s with all Unicode letters mapped to 611 // their upper case. 612 func ToUpper(s []byte) []byte { 613 isASCII, hasLower := true, false 614 for i := 0; i < len(s); i++ { 615 c := s[i] 616 if c >= utf8.RuneSelf { 617 isASCII = false 618 break 619 } 620 hasLower = hasLower || ('a' <= c && c <= 'z') 621 } 622 623 if isASCII { // optimize for ASCII-only byte slices. 624 if !hasLower { 625 // Just return a copy. 626 return append([]byte(""), s...) 627 } 628 b := make([]byte, len(s)) 629 for i := 0; i < len(s); i++ { 630 c := s[i] 631 if 'a' <= c && c <= 'z' { 632 c -= 'a' - 'A' 633 } 634 b[i] = c 635 } 636 return b 637 } 638 return Map(unicode.ToUpper, s) 639 } 640 641 // ToLower returns a copy of the byte slice s with all Unicode letters mapped to 642 // their lower case. 643 func ToLower(s []byte) []byte { 644 isASCII, hasUpper := true, false 645 for i := 0; i < len(s); i++ { 646 c := s[i] 647 if c >= utf8.RuneSelf { 648 isASCII = false 649 break 650 } 651 hasUpper = hasUpper || ('A' <= c && c <= 'Z') 652 } 653 654 if isASCII { // optimize for ASCII-only byte slices. 655 if !hasUpper { 656 return append([]byte(""), s...) 657 } 658 b := make([]byte, len(s)) 659 for i := 0; i < len(s); i++ { 660 c := s[i] 661 if 'A' <= c && c <= 'Z' { 662 c += 'a' - 'A' 663 } 664 b[i] = c 665 } 666 return b 667 } 668 return Map(unicode.ToLower, s) 669 } 670 671 // ToTitle treats s as UTF-8-encoded bytes and returns a copy with all the Unicode letters mapped to their title case. 672 func ToTitle(s []byte) []byte { return Map(unicode.ToTitle, s) } 673 674 // ToUpperSpecial treats s as UTF-8-encoded bytes and returns a copy with all the Unicode letters mapped to their 675 // upper case, giving priority to the special casing rules. 676 func ToUpperSpecial(c unicode.SpecialCase, s []byte) []byte { 677 return Map(c.ToUpper, s) 678 } 679 680 // ToLowerSpecial treats s as UTF-8-encoded bytes and returns a copy with all the Unicode letters mapped to their 681 // lower case, giving priority to the special casing rules. 682 func ToLowerSpecial(c unicode.SpecialCase, s []byte) []byte { 683 return Map(c.ToLower, s) 684 } 685 686 // ToTitleSpecial treats s as UTF-8-encoded bytes and returns a copy with all the Unicode letters mapped to their 687 // title case, giving priority to the special casing rules. 688 func ToTitleSpecial(c unicode.SpecialCase, s []byte) []byte { 689 return Map(c.ToTitle, s) 690 } 691 692 // ToValidUTF8 treats s as UTF-8-encoded bytes and returns a copy with each run of bytes 693 // representing invalid UTF-8 replaced with the bytes in replacement, which may be empty. 694 func ToValidUTF8(s, replacement []byte) []byte { 695 b := make([]byte, 0, len(s)+len(replacement)) 696 invalid := false // previous byte was from an invalid UTF-8 sequence 697 for i := 0; i < len(s); { 698 c := s[i] 699 if c < utf8.RuneSelf { 700 i++ 701 invalid = false 702 b = append(b, byte(c)) 703 continue 704 } 705 _, wid := utf8.DecodeRune(s[i:]) 706 if wid == 1 { 707 i++ 708 if !invalid { 709 invalid = true 710 b = append(b, replacement...) 711 } 712 continue 713 } 714 invalid = false 715 b = append(b, s[i:i+wid]...) 716 i += wid 717 } 718 return b 719 } 720 721 // isSeparator reports whether the rune could mark a word boundary. 722 // TODO: update when package unicode captures more of the properties. 723 func isSeparator(r rune) bool { 724 // ASCII alphanumerics and underscore are not separators 725 if r <= 0x7F { 726 switch { 727 case '0' <= r && r <= '9': 728 return false 729 case 'a' <= r && r <= 'z': 730 return false 731 case 'A' <= r && r <= 'Z': 732 return false 733 case r == '_': 734 return false 735 } 736 return true 737 } 738 // Letters and digits are not separators 739 if unicode.IsLetter(r) || unicode.IsDigit(r) { 740 return false 741 } 742 // Otherwise, all we can do for now is treat spaces as separators. 743 return unicode.IsSpace(r) 744 } 745 746 // Title treats s as UTF-8-encoded bytes and returns a copy with all Unicode letters that begin 747 // words mapped to their title case. 748 // 749 // BUG(rsc): The rule Title uses for word boundaries does not handle Unicode punctuation properly. 750 func Title(s []byte) []byte { 751 // Use a closure here to remember state. 752 // Hackish but effective. Depends on Map scanning in order and calling 753 // the closure once per rune. 754 prev := ' ' 755 return Map( 756 func(r rune) rune { 757 if isSeparator(prev) { 758 prev = r 759 return unicode.ToTitle(r) 760 } 761 prev = r 762 return r 763 }, 764 s) 765 } 766 767 // TrimLeftFunc treats s as UTF-8-encoded bytes and returns a subslice of s by slicing off 768 // all leading UTF-8-encoded code points c that satisfy f(c). 769 func TrimLeftFunc(s []byte, f func(r rune) bool) []byte { 770 i := indexFunc(s, f, false) 771 if i == -1 { 772 return nil 773 } 774 return s[i:] 775 } 776 777 // TrimRightFunc returns a subslice of s by slicing off all trailing 778 // UTF-8-encoded code points c that satisfy f(c). 779 func TrimRightFunc(s []byte, f func(r rune) bool) []byte { 780 i := lastIndexFunc(s, f, false) 781 if i >= 0 && s[i] >= utf8.RuneSelf { 782 _, wid := utf8.DecodeRune(s[i:]) 783 i += wid 784 } else { 785 i++ 786 } 787 return s[0:i] 788 } 789 790 // TrimFunc returns a subslice of s by slicing off all leading and trailing 791 // UTF-8-encoded code points c that satisfy f(c). 792 func TrimFunc(s []byte, f func(r rune) bool) []byte { 793 return TrimRightFunc(TrimLeftFunc(s, f), f) 794 } 795 796 // TrimPrefix returns s without the provided leading prefix string. 797 // If s doesn't start with prefix, s is returned unchanged. 798 func TrimPrefix(s, prefix []byte) []byte { 799 if HasPrefix(s, prefix) { 800 return s[len(prefix):] 801 } 802 return s 803 } 804 805 // TrimSuffix returns s without the provided trailing suffix string. 806 // If s doesn't end with suffix, s is returned unchanged. 807 func TrimSuffix(s, suffix []byte) []byte { 808 if HasSuffix(s, suffix) { 809 return s[:len(s)-len(suffix)] 810 } 811 return s 812 } 813 814 // IndexFunc interprets s as a sequence of UTF-8-encoded code points. 815 // It returns the byte index in s of the first Unicode 816 // code point satisfying f(c), or -1 if none do. 817 func IndexFunc(s []byte, f func(r rune) bool) int { 818 return indexFunc(s, f, true) 819 } 820 821 // LastIndexFunc interprets s as a sequence of UTF-8-encoded code points. 822 // It returns the byte index in s of the last Unicode 823 // code point satisfying f(c), or -1 if none do. 824 func LastIndexFunc(s []byte, f func(r rune) bool) int { 825 return lastIndexFunc(s, f, true) 826 } 827 828 // indexFunc is the same as IndexFunc except that if 829 // truth==false, the sense of the predicate function is 830 // inverted. 831 func indexFunc(s []byte, f func(r rune) bool, truth bool) int { 832 start := 0 833 for start < len(s) { 834 wid := 1 835 r := rune(s[start]) 836 if r >= utf8.RuneSelf { 837 r, wid = utf8.DecodeRune(s[start:]) 838 } 839 if f(r) == truth { 840 return start 841 } 842 start += wid 843 } 844 return -1 845 } 846 847 // lastIndexFunc is the same as LastIndexFunc except that if 848 // truth==false, the sense of the predicate function is 849 // inverted. 850 func lastIndexFunc(s []byte, f func(r rune) bool, truth bool) int { 851 for i := len(s); i > 0; { 852 r, size := rune(s[i-1]), 1 853 if r >= utf8.RuneSelf { 854 r, size = utf8.DecodeLastRune(s[0:i]) 855 } 856 i -= size 857 if f(r) == truth { 858 return i 859 } 860 } 861 return -1 862 } 863 864 // asciiSet is a 32-byte value, where each bit represents the presence of a 865 // given ASCII character in the set. The 128-bits of the lower 16 bytes, 866 // starting with the least-significant bit of the lowest word to the 867 // most-significant bit of the highest word, map to the full range of all 868 // 128 ASCII characters. The 128-bits of the upper 16 bytes will be zeroed, 869 // ensuring that any non-ASCII character will be reported as not in the set. 870 type asciiSet [8]uint32 871 872 // makeASCIISet creates a set of ASCII characters and reports whether all 873 // characters in chars are ASCII. 874 func makeASCIISet(chars string) (as asciiSet, ok bool) { 875 for i := 0; i < len(chars); i++ { 876 c := chars[i] 877 if c >= utf8.RuneSelf { 878 return as, false 879 } 880 as[c>>5] |= 1 << uint(c&31) 881 } 882 return as, true 883 } 884 885 // contains reports whether c is inside the set. 886 func (as *asciiSet) contains(c byte) bool { 887 return (as[c>>5] & (1 << uint(c&31))) != 0 888 } 889 890 func makeCutsetFunc(cutset string) func(r rune) bool { 891 if len(cutset) == 1 && cutset[0] < utf8.RuneSelf { 892 return func(r rune) bool { 893 return r == rune(cutset[0]) 894 } 895 } 896 if as, isASCII := makeASCIISet(cutset); isASCII { 897 return func(r rune) bool { 898 return r < utf8.RuneSelf && as.contains(byte(r)) 899 } 900 } 901 return func(r rune) bool { 902 for _, c := range cutset { 903 if c == r { 904 return true 905 } 906 } 907 return false 908 } 909 } 910 911 // Trim returns a subslice of s by slicing off all leading and 912 // trailing UTF-8-encoded code points contained in cutset. 913 func Trim(s []byte, cutset string) []byte { 914 return TrimFunc(s, makeCutsetFunc(cutset)) 915 } 916 917 // TrimLeft returns a subslice of s by slicing off all leading 918 // UTF-8-encoded code points contained in cutset. 919 func TrimLeft(s []byte, cutset string) []byte { 920 return TrimLeftFunc(s, makeCutsetFunc(cutset)) 921 } 922 923 // TrimRight returns a subslice of s by slicing off all trailing 924 // UTF-8-encoded code points that are contained in cutset. 925 func TrimRight(s []byte, cutset string) []byte { 926 return TrimRightFunc(s, makeCutsetFunc(cutset)) 927 } 928 929 // TrimSpace returns a subslice of s by slicing off all leading and 930 // trailing white space, as defined by Unicode. 931 func TrimSpace(s []byte) []byte { 932 // Fast path for ASCII: look for the first ASCII non-space byte 933 start := 0 934 for ; start < len(s); start++ { 935 c := s[start] 936 if c >= utf8.RuneSelf { 937 // If we run into a non-ASCII byte, fall back to the 938 // slower unicode-aware method on the remaining bytes 939 return TrimFunc(s[start:], unicode.IsSpace) 940 } 941 if asciiSpace[c] == 0 { 942 break 943 } 944 } 945 946 // Now look for the first ASCII non-space byte from the end 947 stop := len(s) 948 for ; stop > start; stop-- { 949 c := s[stop-1] 950 if c >= utf8.RuneSelf { 951 return TrimFunc(s[start:stop], unicode.IsSpace) 952 } 953 if asciiSpace[c] == 0 { 954 break 955 } 956 } 957 958 // At this point s[start:stop] starts and ends with an ASCII 959 // non-space bytes, so we're done. Non-ASCII cases have already 960 // been handled above. 961 if start == stop { 962 // Special case to preserve previous TrimLeftFunc behavior, 963 // returning nil instead of empty slice if all spaces. 964 return nil 965 } 966 return s[start:stop] 967 } 968 969 // Runes interprets s as a sequence of UTF-8-encoded code points. 970 // It returns a slice of runes (Unicode code points) equivalent to s. 971 func Runes(s []byte) []rune { 972 t := make([]rune, utf8.RuneCount(s)) 973 i := 0 974 for len(s) > 0 { 975 r, l := utf8.DecodeRune(s) 976 t[i] = r 977 i++ 978 s = s[l:] 979 } 980 return t 981 } 982 983 // Replace returns a copy of the slice s with the first n 984 // non-overlapping instances of old replaced by new. 985 // If old is empty, it matches at the beginning of the slice 986 // and after each UTF-8 sequence, yielding up to k+1 replacements 987 // for a k-rune slice. 988 // If n < 0, there is no limit on the number of replacements. 989 func Replace(s, old, new []byte, n int) []byte { 990 m := 0 991 if n != 0 { 992 // Compute number of replacements. 993 m = Count(s, old) 994 } 995 if m == 0 { 996 // Just return a copy. 997 return append([]byte(nil), s...) 998 } 999 if n < 0 || m < n { 1000 n = m 1001 } 1002 1003 // Apply replacements to buffer. 1004 t := make([]byte, len(s)+n*(len(new)-len(old))) 1005 w := 0 1006 start := 0 1007 for i := 0; i < n; i++ { 1008 j := start 1009 if len(old) == 0 { 1010 if i > 0 { 1011 _, wid := utf8.DecodeRune(s[start:]) 1012 j += wid 1013 } 1014 } else { 1015 j += Index(s[start:], old) 1016 } 1017 w += copy(t[w:], s[start:j]) 1018 w += copy(t[w:], new) 1019 start = j + len(old) 1020 } 1021 w += copy(t[w:], s[start:]) 1022 return t[0:w] 1023 } 1024 1025 // ReplaceAll returns a copy of the slice s with all 1026 // non-overlapping instances of old replaced by new. 1027 // If old is empty, it matches at the beginning of the slice 1028 // and after each UTF-8 sequence, yielding up to k+1 replacements 1029 // for a k-rune slice. 1030 func ReplaceAll(s, old, new []byte) []byte { 1031 return Replace(s, old, new, -1) 1032 } 1033 1034 // EqualFold reports whether s and t, interpreted as UTF-8 strings, 1035 // are equal under Unicode case-folding, which is a more general 1036 // form of case-insensitivity. 1037 func EqualFold(s, t []byte) bool { 1038 for len(s) != 0 && len(t) != 0 { 1039 // Extract first rune from each. 1040 var sr, tr rune 1041 if s[0] < utf8.RuneSelf { 1042 sr, s = rune(s[0]), s[1:] 1043 } else { 1044 r, size := utf8.DecodeRune(s) 1045 sr, s = r, s[size:] 1046 } 1047 if t[0] < utf8.RuneSelf { 1048 tr, t = rune(t[0]), t[1:] 1049 } else { 1050 r, size := utf8.DecodeRune(t) 1051 tr, t = r, t[size:] 1052 } 1053 1054 // If they match, keep going; if not, return false. 1055 1056 // Easy case. 1057 if tr == sr { 1058 continue 1059 } 1060 1061 // Make sr < tr to simplify what follows. 1062 if tr < sr { 1063 tr, sr = sr, tr 1064 } 1065 // Fast check for ASCII. 1066 if tr < utf8.RuneSelf { 1067 // ASCII only, sr/tr must be upper/lower case 1068 if 'A' <= sr && sr <= 'Z' && tr == sr+'a'-'A' { 1069 continue 1070 } 1071 return false 1072 } 1073 1074 // General case. SimpleFold(x) returns the next equivalent rune > x 1075 // or wraps around to smaller values. 1076 r := unicode.SimpleFold(sr) 1077 for r != sr && r < tr { 1078 r = unicode.SimpleFold(r) 1079 } 1080 if r == tr { 1081 continue 1082 } 1083 return false 1084 } 1085 1086 // One string is empty. Are both? 1087 return len(s) == len(t) 1088 } 1089 1090 // Index returns the index of the first instance of sep in s, or -1 if sep is not present in s. 1091 func Index(s, sep []byte) int { 1092 n := len(sep) 1093 switch { 1094 case n == 0: 1095 return 0 1096 case n == 1: 1097 return IndexByte(s, sep[0]) 1098 case n == len(s): 1099 if Equal(sep, s) { 1100 return 0 1101 } 1102 return -1 1103 case n > len(s): 1104 return -1 1105 case n <= bytealg.MaxLen: 1106 // Use brute force when s and sep both are small 1107 if len(s) <= bytealg.MaxBruteForce { 1108 return bytealg.Index(s, sep) 1109 } 1110 c0 := sep[0] 1111 c1 := sep[1] 1112 i := 0 1113 t := len(s) - n + 1 1114 fails := 0 1115 for i < t { 1116 if s[i] != c0 { 1117 // IndexByte is faster than bytealg.Index, so use it as long as 1118 // we're not getting lots of false positives. 1119 o := IndexByte(s[i+1:t], c0) 1120 if o < 0 { 1121 return -1 1122 } 1123 i += o + 1 1124 } 1125 if s[i+1] == c1 && Equal(s[i:i+n], sep) { 1126 return i 1127 } 1128 fails++ 1129 i++ 1130 // Switch to bytealg.Index when IndexByte produces too many false positives. 1131 if fails > bytealg.Cutover(i) { 1132 r := bytealg.Index(s[i:], sep) 1133 if r >= 0 { 1134 return r + i 1135 } 1136 return -1 1137 } 1138 } 1139 return -1 1140 } 1141 c0 := sep[0] 1142 c1 := sep[1] 1143 i := 0 1144 fails := 0 1145 t := len(s) - n + 1 1146 for i < t { 1147 if s[i] != c0 { 1148 o := IndexByte(s[i+1:t], c0) 1149 if o < 0 { 1150 break 1151 } 1152 i += o + 1 1153 } 1154 if s[i+1] == c1 && Equal(s[i:i+n], sep) { 1155 return i 1156 } 1157 i++ 1158 fails++ 1159 if fails >= 4+i>>4 && i < t { 1160 // Give up on IndexByte, it isn't skipping ahead 1161 // far enough to be better than Rabin-Karp. 1162 // Experiments (using IndexPeriodic) suggest 1163 // the cutover is about 16 byte skips. 1164 // TODO: if large prefixes of sep are matching 1165 // we should cutover at even larger average skips, 1166 // because Equal becomes that much more expensive. 1167 // This code does not take that effect into account. 1168 j := bytealg.IndexRabinKarpBytes(s[i:], sep) 1169 if j < 0 { 1170 return -1 1171 } 1172 return i + j 1173 } 1174 } 1175 return -1 1176 }