github.com/geraldss/go/src@v0.0.0-20210511222824-ac7d0ebfc235/debug/dwarf/type.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // DWARF type information structures. 6 // The format is heavily biased toward C, but for simplicity 7 // the String methods use a pseudo-Go syntax. 8 9 package dwarf 10 11 import "strconv" 12 13 // A Type conventionally represents a pointer to any of the 14 // specific Type structures (CharType, StructType, etc.). 15 type Type interface { 16 Common() *CommonType 17 String() string 18 Size() int64 19 } 20 21 // A CommonType holds fields common to multiple types. 22 // If a field is not known or not applicable for a given type, 23 // the zero value is used. 24 type CommonType struct { 25 ByteSize int64 // size of value of this type, in bytes 26 Name string // name that can be used to refer to type 27 } 28 29 func (c *CommonType) Common() *CommonType { return c } 30 31 func (c *CommonType) Size() int64 { return c.ByteSize } 32 33 // Basic types 34 35 // A BasicType holds fields common to all basic types. 36 type BasicType struct { 37 CommonType 38 BitSize int64 39 BitOffset int64 40 } 41 42 func (b *BasicType) Basic() *BasicType { return b } 43 44 func (t *BasicType) String() string { 45 if t.Name != "" { 46 return t.Name 47 } 48 return "?" 49 } 50 51 // A CharType represents a signed character type. 52 type CharType struct { 53 BasicType 54 } 55 56 // A UcharType represents an unsigned character type. 57 type UcharType struct { 58 BasicType 59 } 60 61 // An IntType represents a signed integer type. 62 type IntType struct { 63 BasicType 64 } 65 66 // A UintType represents an unsigned integer type. 67 type UintType struct { 68 BasicType 69 } 70 71 // A FloatType represents a floating point type. 72 type FloatType struct { 73 BasicType 74 } 75 76 // A ComplexType represents a complex floating point type. 77 type ComplexType struct { 78 BasicType 79 } 80 81 // A BoolType represents a boolean type. 82 type BoolType struct { 83 BasicType 84 } 85 86 // An AddrType represents a machine address type. 87 type AddrType struct { 88 BasicType 89 } 90 91 // An UnspecifiedType represents an implicit, unknown, ambiguous or nonexistent type. 92 type UnspecifiedType struct { 93 BasicType 94 } 95 96 // qualifiers 97 98 // A QualType represents a type that has the C/C++ "const", "restrict", or "volatile" qualifier. 99 type QualType struct { 100 CommonType 101 Qual string 102 Type Type 103 } 104 105 func (t *QualType) String() string { return t.Qual + " " + t.Type.String() } 106 107 func (t *QualType) Size() int64 { return t.Type.Size() } 108 109 // An ArrayType represents a fixed size array type. 110 type ArrayType struct { 111 CommonType 112 Type Type 113 StrideBitSize int64 // if > 0, number of bits to hold each element 114 Count int64 // if == -1, an incomplete array, like char x[]. 115 } 116 117 func (t *ArrayType) String() string { 118 return "[" + strconv.FormatInt(t.Count, 10) + "]" + t.Type.String() 119 } 120 121 func (t *ArrayType) Size() int64 { 122 if t.Count == -1 { 123 return 0 124 } 125 return t.Count * t.Type.Size() 126 } 127 128 // A VoidType represents the C void type. 129 type VoidType struct { 130 CommonType 131 } 132 133 func (t *VoidType) String() string { return "void" } 134 135 // A PtrType represents a pointer type. 136 type PtrType struct { 137 CommonType 138 Type Type 139 } 140 141 func (t *PtrType) String() string { return "*" + t.Type.String() } 142 143 // A StructType represents a struct, union, or C++ class type. 144 type StructType struct { 145 CommonType 146 StructName string 147 Kind string // "struct", "union", or "class". 148 Field []*StructField 149 Incomplete bool // if true, struct, union, class is declared but not defined 150 } 151 152 // A StructField represents a field in a struct, union, or C++ class type. 153 type StructField struct { 154 Name string 155 Type Type 156 ByteOffset int64 157 ByteSize int64 // usually zero; use Type.Size() for normal fields 158 BitOffset int64 // within the ByteSize bytes at ByteOffset 159 BitSize int64 // zero if not a bit field 160 } 161 162 func (t *StructType) String() string { 163 if t.StructName != "" { 164 return t.Kind + " " + t.StructName 165 } 166 return t.Defn() 167 } 168 169 func (t *StructType) Defn() string { 170 s := t.Kind 171 if t.StructName != "" { 172 s += " " + t.StructName 173 } 174 if t.Incomplete { 175 s += " /*incomplete*/" 176 return s 177 } 178 s += " {" 179 for i, f := range t.Field { 180 if i > 0 { 181 s += "; " 182 } 183 s += f.Name + " " + f.Type.String() 184 s += "@" + strconv.FormatInt(f.ByteOffset, 10) 185 if f.BitSize > 0 { 186 s += " : " + strconv.FormatInt(f.BitSize, 10) 187 s += "@" + strconv.FormatInt(f.BitOffset, 10) 188 } 189 } 190 s += "}" 191 return s 192 } 193 194 // An EnumType represents an enumerated type. 195 // The only indication of its native integer type is its ByteSize 196 // (inside CommonType). 197 type EnumType struct { 198 CommonType 199 EnumName string 200 Val []*EnumValue 201 } 202 203 // An EnumValue represents a single enumeration value. 204 type EnumValue struct { 205 Name string 206 Val int64 207 } 208 209 func (t *EnumType) String() string { 210 s := "enum" 211 if t.EnumName != "" { 212 s += " " + t.EnumName 213 } 214 s += " {" 215 for i, v := range t.Val { 216 if i > 0 { 217 s += "; " 218 } 219 s += v.Name + "=" + strconv.FormatInt(v.Val, 10) 220 } 221 s += "}" 222 return s 223 } 224 225 // A FuncType represents a function type. 226 type FuncType struct { 227 CommonType 228 ReturnType Type 229 ParamType []Type 230 } 231 232 func (t *FuncType) String() string { 233 s := "func(" 234 for i, t := range t.ParamType { 235 if i > 0 { 236 s += ", " 237 } 238 s += t.String() 239 } 240 s += ")" 241 if t.ReturnType != nil { 242 s += " " + t.ReturnType.String() 243 } 244 return s 245 } 246 247 // A DotDotDotType represents the variadic ... function parameter. 248 type DotDotDotType struct { 249 CommonType 250 } 251 252 func (t *DotDotDotType) String() string { return "..." } 253 254 // A TypedefType represents a named type. 255 type TypedefType struct { 256 CommonType 257 Type Type 258 } 259 260 func (t *TypedefType) String() string { return t.Name } 261 262 func (t *TypedefType) Size() int64 { return t.Type.Size() } 263 264 // An UnsupportedType is a placeholder returned in situations where we 265 // encounter a type that isn't supported. 266 type UnsupportedType struct { 267 CommonType 268 Tag Tag 269 } 270 271 func (t *UnsupportedType) String() string { 272 if t.Name != "" { 273 return t.Name 274 } 275 return t.Name + "(unsupported type " + t.Tag.String() + ")" 276 } 277 278 // typeReader is used to read from either the info section or the 279 // types section. 280 type typeReader interface { 281 Seek(Offset) 282 Next() (*Entry, error) 283 clone() typeReader 284 offset() Offset 285 // AddressSize returns the size in bytes of addresses in the current 286 // compilation unit. 287 AddressSize() int 288 } 289 290 // Type reads the type at off in the DWARF ``info'' section. 291 func (d *Data) Type(off Offset) (Type, error) { 292 return d.readType("info", d.Reader(), off, d.typeCache, nil) 293 } 294 295 // readType reads a type from r at off of name. It adds types to the 296 // type cache, appends new typedef types to typedefs, and computes the 297 // sizes of types. Callers should pass nil for typedefs; this is used 298 // for internal recursion. 299 func (d *Data) readType(name string, r typeReader, off Offset, typeCache map[Offset]Type, typedefs *[]*TypedefType) (Type, error) { 300 if t, ok := typeCache[off]; ok { 301 return t, nil 302 } 303 r.Seek(off) 304 e, err := r.Next() 305 if err != nil { 306 return nil, err 307 } 308 addressSize := r.AddressSize() 309 if e == nil || e.Offset != off { 310 return nil, DecodeError{name, off, "no type at offset"} 311 } 312 313 // If this is the root of the recursion, prepare to resolve 314 // typedef sizes once the recursion is done. This must be done 315 // after the type graph is constructed because it may need to 316 // resolve cycles in a different order than readType 317 // encounters them. 318 if typedefs == nil { 319 var typedefList []*TypedefType 320 defer func() { 321 for _, t := range typedefList { 322 t.Common().ByteSize = t.Type.Size() 323 } 324 }() 325 typedefs = &typedefList 326 } 327 328 // Parse type from Entry. 329 // Must always set typeCache[off] before calling 330 // d.readType recursively, to handle circular types correctly. 331 var typ Type 332 333 nextDepth := 0 334 335 // Get next child; set err if error happens. 336 next := func() *Entry { 337 if !e.Children { 338 return nil 339 } 340 // Only return direct children. 341 // Skip over composite entries that happen to be nested 342 // inside this one. Most DWARF generators wouldn't generate 343 // such a thing, but clang does. 344 // See golang.org/issue/6472. 345 for { 346 kid, err1 := r.Next() 347 if err1 != nil { 348 err = err1 349 return nil 350 } 351 if kid == nil { 352 err = DecodeError{name, r.offset(), "unexpected end of DWARF entries"} 353 return nil 354 } 355 if kid.Tag == 0 { 356 if nextDepth > 0 { 357 nextDepth-- 358 continue 359 } 360 return nil 361 } 362 if kid.Children { 363 nextDepth++ 364 } 365 if nextDepth > 0 { 366 continue 367 } 368 return kid 369 } 370 } 371 372 // Get Type referred to by Entry's AttrType field. 373 // Set err if error happens. Not having a type is an error. 374 typeOf := func(e *Entry) Type { 375 tval := e.Val(AttrType) 376 var t Type 377 switch toff := tval.(type) { 378 case Offset: 379 if t, err = d.readType(name, r.clone(), toff, typeCache, typedefs); err != nil { 380 return nil 381 } 382 case uint64: 383 if t, err = d.sigToType(toff); err != nil { 384 return nil 385 } 386 default: 387 // It appears that no Type means "void". 388 return new(VoidType) 389 } 390 return t 391 } 392 393 switch e.Tag { 394 case TagArrayType: 395 // Multi-dimensional array. (DWARF v2 §5.4) 396 // Attributes: 397 // AttrType:subtype [required] 398 // AttrStrideSize: size in bits of each element of the array 399 // AttrByteSize: size of entire array 400 // Children: 401 // TagSubrangeType or TagEnumerationType giving one dimension. 402 // dimensions are in left to right order. 403 t := new(ArrayType) 404 typ = t 405 typeCache[off] = t 406 if t.Type = typeOf(e); err != nil { 407 goto Error 408 } 409 t.StrideBitSize, _ = e.Val(AttrStrideSize).(int64) 410 411 // Accumulate dimensions, 412 var dims []int64 413 for kid := next(); kid != nil; kid = next() { 414 // TODO(rsc): Can also be TagEnumerationType 415 // but haven't seen that in the wild yet. 416 switch kid.Tag { 417 case TagSubrangeType: 418 count, ok := kid.Val(AttrCount).(int64) 419 if !ok { 420 // Old binaries may have an upper bound instead. 421 count, ok = kid.Val(AttrUpperBound).(int64) 422 if ok { 423 count++ // Length is one more than upper bound. 424 } else if len(dims) == 0 { 425 count = -1 // As in x[]. 426 } 427 } 428 dims = append(dims, count) 429 case TagEnumerationType: 430 err = DecodeError{name, kid.Offset, "cannot handle enumeration type as array bound"} 431 goto Error 432 } 433 } 434 if len(dims) == 0 { 435 // LLVM generates this for x[]. 436 dims = []int64{-1} 437 } 438 439 t.Count = dims[0] 440 for i := len(dims) - 1; i >= 1; i-- { 441 t.Type = &ArrayType{Type: t.Type, Count: dims[i]} 442 } 443 444 case TagBaseType: 445 // Basic type. (DWARF v2 §5.1) 446 // Attributes: 447 // AttrName: name of base type in programming language of the compilation unit [required] 448 // AttrEncoding: encoding value for type (encFloat etc) [required] 449 // AttrByteSize: size of type in bytes [required] 450 // AttrBitOffset: for sub-byte types, size in bits 451 // AttrBitSize: for sub-byte types, bit offset of high order bit in the AttrByteSize bytes 452 name, _ := e.Val(AttrName).(string) 453 enc, ok := e.Val(AttrEncoding).(int64) 454 if !ok { 455 err = DecodeError{name, e.Offset, "missing encoding attribute for " + name} 456 goto Error 457 } 458 switch enc { 459 default: 460 err = DecodeError{name, e.Offset, "unrecognized encoding attribute value"} 461 goto Error 462 463 case encAddress: 464 typ = new(AddrType) 465 case encBoolean: 466 typ = new(BoolType) 467 case encComplexFloat: 468 typ = new(ComplexType) 469 if name == "complex" { 470 // clang writes out 'complex' instead of 'complex float' or 'complex double'. 471 // clang also writes out a byte size that we can use to distinguish. 472 // See issue 8694. 473 switch byteSize, _ := e.Val(AttrByteSize).(int64); byteSize { 474 case 8: 475 name = "complex float" 476 case 16: 477 name = "complex double" 478 } 479 } 480 case encFloat: 481 typ = new(FloatType) 482 case encSigned: 483 typ = new(IntType) 484 case encUnsigned: 485 typ = new(UintType) 486 case encSignedChar: 487 typ = new(CharType) 488 case encUnsignedChar: 489 typ = new(UcharType) 490 } 491 typeCache[off] = typ 492 t := typ.(interface { 493 Basic() *BasicType 494 }).Basic() 495 t.Name = name 496 t.BitSize, _ = e.Val(AttrBitSize).(int64) 497 t.BitOffset, _ = e.Val(AttrBitOffset).(int64) 498 499 case TagClassType, TagStructType, TagUnionType: 500 // Structure, union, or class type. (DWARF v2 §5.5) 501 // Attributes: 502 // AttrName: name of struct, union, or class 503 // AttrByteSize: byte size [required] 504 // AttrDeclaration: if true, struct/union/class is incomplete 505 // Children: 506 // TagMember to describe one member. 507 // AttrName: name of member [required] 508 // AttrType: type of member [required] 509 // AttrByteSize: size in bytes 510 // AttrBitOffset: bit offset within bytes for bit fields 511 // AttrBitSize: bit size for bit fields 512 // AttrDataMemberLoc: location within struct [required for struct, class] 513 // There is much more to handle C++, all ignored for now. 514 t := new(StructType) 515 typ = t 516 typeCache[off] = t 517 switch e.Tag { 518 case TagClassType: 519 t.Kind = "class" 520 case TagStructType: 521 t.Kind = "struct" 522 case TagUnionType: 523 t.Kind = "union" 524 } 525 t.StructName, _ = e.Val(AttrName).(string) 526 t.Incomplete = e.Val(AttrDeclaration) != nil 527 t.Field = make([]*StructField, 0, 8) 528 var lastFieldType *Type 529 var lastFieldBitOffset int64 530 for kid := next(); kid != nil; kid = next() { 531 if kid.Tag != TagMember { 532 continue 533 } 534 f := new(StructField) 535 if f.Type = typeOf(kid); err != nil { 536 goto Error 537 } 538 switch loc := kid.Val(AttrDataMemberLoc).(type) { 539 case []byte: 540 // TODO: Should have original compilation 541 // unit here, not unknownFormat. 542 b := makeBuf(d, unknownFormat{}, "location", 0, loc) 543 if b.uint8() != opPlusUconst { 544 err = DecodeError{name, kid.Offset, "unexpected opcode"} 545 goto Error 546 } 547 f.ByteOffset = int64(b.uint()) 548 if b.err != nil { 549 err = b.err 550 goto Error 551 } 552 case int64: 553 f.ByteOffset = loc 554 } 555 556 haveBitOffset := false 557 f.Name, _ = kid.Val(AttrName).(string) 558 f.ByteSize, _ = kid.Val(AttrByteSize).(int64) 559 f.BitOffset, haveBitOffset = kid.Val(AttrBitOffset).(int64) 560 f.BitSize, _ = kid.Val(AttrBitSize).(int64) 561 t.Field = append(t.Field, f) 562 563 bito := f.BitOffset 564 if !haveBitOffset { 565 bito = f.ByteOffset * 8 566 } 567 if bito == lastFieldBitOffset && t.Kind != "union" { 568 // Last field was zero width. Fix array length. 569 // (DWARF writes out 0-length arrays as if they were 1-length arrays.) 570 zeroArray(lastFieldType) 571 } 572 lastFieldType = &f.Type 573 lastFieldBitOffset = bito 574 } 575 if t.Kind != "union" { 576 b, ok := e.Val(AttrByteSize).(int64) 577 if ok && b*8 == lastFieldBitOffset { 578 // Final field must be zero width. Fix array length. 579 zeroArray(lastFieldType) 580 } 581 } 582 583 case TagConstType, TagVolatileType, TagRestrictType: 584 // Type modifier (DWARF v2 §5.2) 585 // Attributes: 586 // AttrType: subtype 587 t := new(QualType) 588 typ = t 589 typeCache[off] = t 590 if t.Type = typeOf(e); err != nil { 591 goto Error 592 } 593 switch e.Tag { 594 case TagConstType: 595 t.Qual = "const" 596 case TagRestrictType: 597 t.Qual = "restrict" 598 case TagVolatileType: 599 t.Qual = "volatile" 600 } 601 602 case TagEnumerationType: 603 // Enumeration type (DWARF v2 §5.6) 604 // Attributes: 605 // AttrName: enum name if any 606 // AttrByteSize: bytes required to represent largest value 607 // Children: 608 // TagEnumerator: 609 // AttrName: name of constant 610 // AttrConstValue: value of constant 611 t := new(EnumType) 612 typ = t 613 typeCache[off] = t 614 t.EnumName, _ = e.Val(AttrName).(string) 615 t.Val = make([]*EnumValue, 0, 8) 616 for kid := next(); kid != nil; kid = next() { 617 if kid.Tag == TagEnumerator { 618 f := new(EnumValue) 619 f.Name, _ = kid.Val(AttrName).(string) 620 f.Val, _ = kid.Val(AttrConstValue).(int64) 621 n := len(t.Val) 622 if n >= cap(t.Val) { 623 val := make([]*EnumValue, n, n*2) 624 copy(val, t.Val) 625 t.Val = val 626 } 627 t.Val = t.Val[0 : n+1] 628 t.Val[n] = f 629 } 630 } 631 632 case TagPointerType: 633 // Type modifier (DWARF v2 §5.2) 634 // Attributes: 635 // AttrType: subtype [not required! void* has no AttrType] 636 // AttrAddrClass: address class [ignored] 637 t := new(PtrType) 638 typ = t 639 typeCache[off] = t 640 if e.Val(AttrType) == nil { 641 t.Type = &VoidType{} 642 break 643 } 644 t.Type = typeOf(e) 645 646 case TagSubroutineType: 647 // Subroutine type. (DWARF v2 §5.7) 648 // Attributes: 649 // AttrType: type of return value if any 650 // AttrName: possible name of type [ignored] 651 // AttrPrototyped: whether used ANSI C prototype [ignored] 652 // Children: 653 // TagFormalParameter: typed parameter 654 // AttrType: type of parameter 655 // TagUnspecifiedParameter: final ... 656 t := new(FuncType) 657 typ = t 658 typeCache[off] = t 659 if t.ReturnType = typeOf(e); err != nil { 660 goto Error 661 } 662 t.ParamType = make([]Type, 0, 8) 663 for kid := next(); kid != nil; kid = next() { 664 var tkid Type 665 switch kid.Tag { 666 default: 667 continue 668 case TagFormalParameter: 669 if tkid = typeOf(kid); err != nil { 670 goto Error 671 } 672 case TagUnspecifiedParameters: 673 tkid = &DotDotDotType{} 674 } 675 t.ParamType = append(t.ParamType, tkid) 676 } 677 678 case TagTypedef: 679 // Typedef (DWARF v2 §5.3) 680 // Attributes: 681 // AttrName: name [required] 682 // AttrType: type definition [required] 683 t := new(TypedefType) 684 typ = t 685 typeCache[off] = t 686 t.Name, _ = e.Val(AttrName).(string) 687 t.Type = typeOf(e) 688 689 case TagUnspecifiedType: 690 // Unspecified type (DWARF v3 §5.2) 691 // Attributes: 692 // AttrName: name 693 t := new(UnspecifiedType) 694 typ = t 695 typeCache[off] = t 696 t.Name, _ = e.Val(AttrName).(string) 697 698 default: 699 // This is some other type DIE that we're currently not 700 // equipped to handle. Return an abstract "unsupported type" 701 // object in such cases. 702 t := new(UnsupportedType) 703 typ = t 704 typeCache[off] = t 705 t.Tag = e.Tag 706 t.Name, _ = e.Val(AttrName).(string) 707 } 708 709 if err != nil { 710 goto Error 711 } 712 713 { 714 b, ok := e.Val(AttrByteSize).(int64) 715 if !ok { 716 b = -1 717 switch t := typ.(type) { 718 case *TypedefType: 719 // Record that we need to resolve this 720 // type's size once the type graph is 721 // constructed. 722 *typedefs = append(*typedefs, t) 723 case *PtrType: 724 b = int64(addressSize) 725 } 726 } 727 typ.Common().ByteSize = b 728 } 729 return typ, nil 730 731 Error: 732 // If the parse fails, take the type out of the cache 733 // so that the next call with this offset doesn't hit 734 // the cache and return success. 735 delete(typeCache, off) 736 return nil, err 737 } 738 739 func zeroArray(t *Type) { 740 if t == nil { 741 return 742 } 743 at, ok := (*t).(*ArrayType) 744 if !ok || at.Type.Size() == 0 { 745 return 746 } 747 // Make a copy to avoid invalidating typeCache. 748 tt := *at 749 tt.Count = 0 750 *t = &tt 751 }