github.com/geraldss/go/src@v0.0.0-20210511222824-ac7d0ebfc235/encoding/gob/decode.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  //go:generate go run decgen.go -output dec_helpers.go
     6  
     7  package gob
     8  
     9  import (
    10  	"errors"
    11  	"io"
    12  	"math"
    13  	"math/bits"
    14  	"reflect"
    15  
    16  	"github.com/geraldss/go/src/encoding"
    17  )
    18  
    19  var (
    20  	errBadUint = errors.New("gob: encoded unsigned integer out of range")
    21  	errBadType = errors.New("gob: unknown type id or corrupted data")
    22  	errRange   = errors.New("gob: bad data: field numbers out of bounds")
    23  )
    24  
    25  type decHelper func(state *decoderState, v reflect.Value, length int, ovfl error) bool
    26  
    27  // decoderState is the execution state of an instance of the decoder. A new state
    28  // is created for nested objects.
    29  type decoderState struct {
    30  	dec *Decoder
    31  	// The buffer is stored with an extra indirection because it may be replaced
    32  	// if we load a type during decode (when reading an interface value).
    33  	b        *decBuffer
    34  	fieldnum int           // the last field number read.
    35  	next     *decoderState // for free list
    36  }
    37  
    38  // decBuffer is an extremely simple, fast implementation of a read-only byte buffer.
    39  // It is initialized by calling Size and then copying the data into the slice returned by Bytes().
    40  type decBuffer struct {
    41  	data   []byte
    42  	offset int // Read offset.
    43  }
    44  
    45  func (d *decBuffer) Read(p []byte) (int, error) {
    46  	n := copy(p, d.data[d.offset:])
    47  	if n == 0 && len(p) != 0 {
    48  		return 0, io.EOF
    49  	}
    50  	d.offset += n
    51  	return n, nil
    52  }
    53  
    54  func (d *decBuffer) Drop(n int) {
    55  	if n > d.Len() {
    56  		panic("drop")
    57  	}
    58  	d.offset += n
    59  }
    60  
    61  // Size grows the buffer to exactly n bytes, so d.Bytes() will
    62  // return a slice of length n. Existing data is first discarded.
    63  func (d *decBuffer) Size(n int) {
    64  	d.Reset()
    65  	if cap(d.data) < n {
    66  		d.data = make([]byte, n)
    67  	} else {
    68  		d.data = d.data[0:n]
    69  	}
    70  }
    71  
    72  func (d *decBuffer) ReadByte() (byte, error) {
    73  	if d.offset >= len(d.data) {
    74  		return 0, io.EOF
    75  	}
    76  	c := d.data[d.offset]
    77  	d.offset++
    78  	return c, nil
    79  }
    80  
    81  func (d *decBuffer) Len() int {
    82  	return len(d.data) - d.offset
    83  }
    84  
    85  func (d *decBuffer) Bytes() []byte {
    86  	return d.data[d.offset:]
    87  }
    88  
    89  func (d *decBuffer) Reset() {
    90  	d.data = d.data[0:0]
    91  	d.offset = 0
    92  }
    93  
    94  // We pass the bytes.Buffer separately for easier testing of the infrastructure
    95  // without requiring a full Decoder.
    96  func (dec *Decoder) newDecoderState(buf *decBuffer) *decoderState {
    97  	d := dec.freeList
    98  	if d == nil {
    99  		d = new(decoderState)
   100  		d.dec = dec
   101  	} else {
   102  		dec.freeList = d.next
   103  	}
   104  	d.b = buf
   105  	return d
   106  }
   107  
   108  func (dec *Decoder) freeDecoderState(d *decoderState) {
   109  	d.next = dec.freeList
   110  	dec.freeList = d
   111  }
   112  
   113  func overflow(name string) error {
   114  	return errors.New(`value for "` + name + `" out of range`)
   115  }
   116  
   117  // decodeUintReader reads an encoded unsigned integer from an io.Reader.
   118  // Used only by the Decoder to read the message length.
   119  func decodeUintReader(r io.Reader, buf []byte) (x uint64, width int, err error) {
   120  	width = 1
   121  	n, err := io.ReadFull(r, buf[0:width])
   122  	if n == 0 {
   123  		return
   124  	}
   125  	b := buf[0]
   126  	if b <= 0x7f {
   127  		return uint64(b), width, nil
   128  	}
   129  	n = -int(int8(b))
   130  	if n > uint64Size {
   131  		err = errBadUint
   132  		return
   133  	}
   134  	width, err = io.ReadFull(r, buf[0:n])
   135  	if err != nil {
   136  		if err == io.EOF {
   137  			err = io.ErrUnexpectedEOF
   138  		}
   139  		return
   140  	}
   141  	// Could check that the high byte is zero but it's not worth it.
   142  	for _, b := range buf[0:width] {
   143  		x = x<<8 | uint64(b)
   144  	}
   145  	width++ // +1 for length byte
   146  	return
   147  }
   148  
   149  // decodeUint reads an encoded unsigned integer from state.r.
   150  // Does not check for overflow.
   151  func (state *decoderState) decodeUint() (x uint64) {
   152  	b, err := state.b.ReadByte()
   153  	if err != nil {
   154  		error_(err)
   155  	}
   156  	if b <= 0x7f {
   157  		return uint64(b)
   158  	}
   159  	n := -int(int8(b))
   160  	if n > uint64Size {
   161  		error_(errBadUint)
   162  	}
   163  	buf := state.b.Bytes()
   164  	if len(buf) < n {
   165  		errorf("invalid uint data length %d: exceeds input size %d", n, len(buf))
   166  	}
   167  	// Don't need to check error; it's safe to loop regardless.
   168  	// Could check that the high byte is zero but it's not worth it.
   169  	for _, b := range buf[0:n] {
   170  		x = x<<8 | uint64(b)
   171  	}
   172  	state.b.Drop(n)
   173  	return x
   174  }
   175  
   176  // decodeInt reads an encoded signed integer from state.r.
   177  // Does not check for overflow.
   178  func (state *decoderState) decodeInt() int64 {
   179  	x := state.decodeUint()
   180  	if x&1 != 0 {
   181  		return ^int64(x >> 1)
   182  	}
   183  	return int64(x >> 1)
   184  }
   185  
   186  // getLength decodes the next uint and makes sure it is a possible
   187  // size for a data item that follows, which means it must fit in a
   188  // non-negative int and fit in the buffer.
   189  func (state *decoderState) getLength() (int, bool) {
   190  	n := int(state.decodeUint())
   191  	if n < 0 || state.b.Len() < n || tooBig <= n {
   192  		return 0, false
   193  	}
   194  	return n, true
   195  }
   196  
   197  // decOp is the signature of a decoding operator for a given type.
   198  type decOp func(i *decInstr, state *decoderState, v reflect.Value)
   199  
   200  // The 'instructions' of the decoding machine
   201  type decInstr struct {
   202  	op    decOp
   203  	field int   // field number of the wire type
   204  	index []int // field access indices for destination type
   205  	ovfl  error // error message for overflow/underflow (for arrays, of the elements)
   206  }
   207  
   208  // ignoreUint discards a uint value with no destination.
   209  func ignoreUint(i *decInstr, state *decoderState, v reflect.Value) {
   210  	state.decodeUint()
   211  }
   212  
   213  // ignoreTwoUints discards a uint value with no destination. It's used to skip
   214  // complex values.
   215  func ignoreTwoUints(i *decInstr, state *decoderState, v reflect.Value) {
   216  	state.decodeUint()
   217  	state.decodeUint()
   218  }
   219  
   220  // Since the encoder writes no zeros, if we arrive at a decoder we have
   221  // a value to extract and store. The field number has already been read
   222  // (it's how we knew to call this decoder).
   223  // Each decoder is responsible for handling any indirections associated
   224  // with the data structure. If any pointer so reached is nil, allocation must
   225  // be done.
   226  
   227  // decAlloc takes a value and returns a settable value that can
   228  // be assigned to. If the value is a pointer, decAlloc guarantees it points to storage.
   229  // The callers to the individual decoders are expected to have used decAlloc.
   230  // The individual decoders don't need to it.
   231  func decAlloc(v reflect.Value) reflect.Value {
   232  	for v.Kind() == reflect.Ptr {
   233  		if v.IsNil() {
   234  			v.Set(reflect.New(v.Type().Elem()))
   235  		}
   236  		v = v.Elem()
   237  	}
   238  	return v
   239  }
   240  
   241  // decBool decodes a uint and stores it as a boolean in value.
   242  func decBool(i *decInstr, state *decoderState, value reflect.Value) {
   243  	value.SetBool(state.decodeUint() != 0)
   244  }
   245  
   246  // decInt8 decodes an integer and stores it as an int8 in value.
   247  func decInt8(i *decInstr, state *decoderState, value reflect.Value) {
   248  	v := state.decodeInt()
   249  	if v < math.MinInt8 || math.MaxInt8 < v {
   250  		error_(i.ovfl)
   251  	}
   252  	value.SetInt(v)
   253  }
   254  
   255  // decUint8 decodes an unsigned integer and stores it as a uint8 in value.
   256  func decUint8(i *decInstr, state *decoderState, value reflect.Value) {
   257  	v := state.decodeUint()
   258  	if math.MaxUint8 < v {
   259  		error_(i.ovfl)
   260  	}
   261  	value.SetUint(v)
   262  }
   263  
   264  // decInt16 decodes an integer and stores it as an int16 in value.
   265  func decInt16(i *decInstr, state *decoderState, value reflect.Value) {
   266  	v := state.decodeInt()
   267  	if v < math.MinInt16 || math.MaxInt16 < v {
   268  		error_(i.ovfl)
   269  	}
   270  	value.SetInt(v)
   271  }
   272  
   273  // decUint16 decodes an unsigned integer and stores it as a uint16 in value.
   274  func decUint16(i *decInstr, state *decoderState, value reflect.Value) {
   275  	v := state.decodeUint()
   276  	if math.MaxUint16 < v {
   277  		error_(i.ovfl)
   278  	}
   279  	value.SetUint(v)
   280  }
   281  
   282  // decInt32 decodes an integer and stores it as an int32 in value.
   283  func decInt32(i *decInstr, state *decoderState, value reflect.Value) {
   284  	v := state.decodeInt()
   285  	if v < math.MinInt32 || math.MaxInt32 < v {
   286  		error_(i.ovfl)
   287  	}
   288  	value.SetInt(v)
   289  }
   290  
   291  // decUint32 decodes an unsigned integer and stores it as a uint32 in value.
   292  func decUint32(i *decInstr, state *decoderState, value reflect.Value) {
   293  	v := state.decodeUint()
   294  	if math.MaxUint32 < v {
   295  		error_(i.ovfl)
   296  	}
   297  	value.SetUint(v)
   298  }
   299  
   300  // decInt64 decodes an integer and stores it as an int64 in value.
   301  func decInt64(i *decInstr, state *decoderState, value reflect.Value) {
   302  	v := state.decodeInt()
   303  	value.SetInt(v)
   304  }
   305  
   306  // decUint64 decodes an unsigned integer and stores it as a uint64 in value.
   307  func decUint64(i *decInstr, state *decoderState, value reflect.Value) {
   308  	v := state.decodeUint()
   309  	value.SetUint(v)
   310  }
   311  
   312  // Floating-point numbers are transmitted as uint64s holding the bits
   313  // of the underlying representation. They are sent byte-reversed, with
   314  // the exponent end coming out first, so integer floating point numbers
   315  // (for example) transmit more compactly. This routine does the
   316  // unswizzling.
   317  func float64FromBits(u uint64) float64 {
   318  	v := bits.ReverseBytes64(u)
   319  	return math.Float64frombits(v)
   320  }
   321  
   322  // float32FromBits decodes an unsigned integer, treats it as a 32-bit floating-point
   323  // number, and returns it. It's a helper function for float32 and complex64.
   324  // It returns a float64 because that's what reflection needs, but its return
   325  // value is known to be accurately representable in a float32.
   326  func float32FromBits(u uint64, ovfl error) float64 {
   327  	v := float64FromBits(u)
   328  	av := v
   329  	if av < 0 {
   330  		av = -av
   331  	}
   332  	// +Inf is OK in both 32- and 64-bit floats. Underflow is always OK.
   333  	if math.MaxFloat32 < av && av <= math.MaxFloat64 {
   334  		error_(ovfl)
   335  	}
   336  	return v
   337  }
   338  
   339  // decFloat32 decodes an unsigned integer, treats it as a 32-bit floating-point
   340  // number, and stores it in value.
   341  func decFloat32(i *decInstr, state *decoderState, value reflect.Value) {
   342  	value.SetFloat(float32FromBits(state.decodeUint(), i.ovfl))
   343  }
   344  
   345  // decFloat64 decodes an unsigned integer, treats it as a 64-bit floating-point
   346  // number, and stores it in value.
   347  func decFloat64(i *decInstr, state *decoderState, value reflect.Value) {
   348  	value.SetFloat(float64FromBits(state.decodeUint()))
   349  }
   350  
   351  // decComplex64 decodes a pair of unsigned integers, treats them as a
   352  // pair of floating point numbers, and stores them as a complex64 in value.
   353  // The real part comes first.
   354  func decComplex64(i *decInstr, state *decoderState, value reflect.Value) {
   355  	real := float32FromBits(state.decodeUint(), i.ovfl)
   356  	imag := float32FromBits(state.decodeUint(), i.ovfl)
   357  	value.SetComplex(complex(real, imag))
   358  }
   359  
   360  // decComplex128 decodes a pair of unsigned integers, treats them as a
   361  // pair of floating point numbers, and stores them as a complex128 in value.
   362  // The real part comes first.
   363  func decComplex128(i *decInstr, state *decoderState, value reflect.Value) {
   364  	real := float64FromBits(state.decodeUint())
   365  	imag := float64FromBits(state.decodeUint())
   366  	value.SetComplex(complex(real, imag))
   367  }
   368  
   369  // decUint8Slice decodes a byte slice and stores in value a slice header
   370  // describing the data.
   371  // uint8 slices are encoded as an unsigned count followed by the raw bytes.
   372  func decUint8Slice(i *decInstr, state *decoderState, value reflect.Value) {
   373  	n, ok := state.getLength()
   374  	if !ok {
   375  		errorf("bad %s slice length: %d", value.Type(), n)
   376  	}
   377  	if value.Cap() < n {
   378  		value.Set(reflect.MakeSlice(value.Type(), n, n))
   379  	} else {
   380  		value.Set(value.Slice(0, n))
   381  	}
   382  	if _, err := state.b.Read(value.Bytes()); err != nil {
   383  		errorf("error decoding []byte: %s", err)
   384  	}
   385  }
   386  
   387  // decString decodes byte array and stores in value a string header
   388  // describing the data.
   389  // Strings are encoded as an unsigned count followed by the raw bytes.
   390  func decString(i *decInstr, state *decoderState, value reflect.Value) {
   391  	n, ok := state.getLength()
   392  	if !ok {
   393  		errorf("bad %s slice length: %d", value.Type(), n)
   394  	}
   395  	// Read the data.
   396  	data := state.b.Bytes()
   397  	if len(data) < n {
   398  		errorf("invalid string length %d: exceeds input size %d", n, len(data))
   399  	}
   400  	s := string(data[:n])
   401  	state.b.Drop(n)
   402  	value.SetString(s)
   403  }
   404  
   405  // ignoreUint8Array skips over the data for a byte slice value with no destination.
   406  func ignoreUint8Array(i *decInstr, state *decoderState, value reflect.Value) {
   407  	n, ok := state.getLength()
   408  	if !ok {
   409  		errorf("slice length too large")
   410  	}
   411  	bn := state.b.Len()
   412  	if bn < n {
   413  		errorf("invalid slice length %d: exceeds input size %d", n, bn)
   414  	}
   415  	state.b.Drop(n)
   416  }
   417  
   418  // Execution engine
   419  
   420  // The encoder engine is an array of instructions indexed by field number of the incoming
   421  // decoder. It is executed with random access according to field number.
   422  type decEngine struct {
   423  	instr    []decInstr
   424  	numInstr int // the number of active instructions
   425  }
   426  
   427  // decodeSingle decodes a top-level value that is not a struct and stores it in value.
   428  // Such values are preceded by a zero, making them have the memory layout of a
   429  // struct field (although with an illegal field number).
   430  func (dec *Decoder) decodeSingle(engine *decEngine, value reflect.Value) {
   431  	state := dec.newDecoderState(&dec.buf)
   432  	defer dec.freeDecoderState(state)
   433  	state.fieldnum = singletonField
   434  	if state.decodeUint() != 0 {
   435  		errorf("decode: corrupted data: non-zero delta for singleton")
   436  	}
   437  	instr := &engine.instr[singletonField]
   438  	instr.op(instr, state, value)
   439  }
   440  
   441  // decodeStruct decodes a top-level struct and stores it in value.
   442  // Indir is for the value, not the type. At the time of the call it may
   443  // differ from ut.indir, which was computed when the engine was built.
   444  // This state cannot arise for decodeSingle, which is called directly
   445  // from the user's value, not from the innards of an engine.
   446  func (dec *Decoder) decodeStruct(engine *decEngine, value reflect.Value) {
   447  	state := dec.newDecoderState(&dec.buf)
   448  	defer dec.freeDecoderState(state)
   449  	state.fieldnum = -1
   450  	for state.b.Len() > 0 {
   451  		delta := int(state.decodeUint())
   452  		if delta < 0 {
   453  			errorf("decode: corrupted data: negative delta")
   454  		}
   455  		if delta == 0 { // struct terminator is zero delta fieldnum
   456  			break
   457  		}
   458  		fieldnum := state.fieldnum + delta
   459  		if fieldnum >= len(engine.instr) {
   460  			error_(errRange)
   461  			break
   462  		}
   463  		instr := &engine.instr[fieldnum]
   464  		var field reflect.Value
   465  		if instr.index != nil {
   466  			// Otherwise the field is unknown to us and instr.op is an ignore op.
   467  			field = value.FieldByIndex(instr.index)
   468  			if field.Kind() == reflect.Ptr {
   469  				field = decAlloc(field)
   470  			}
   471  		}
   472  		instr.op(instr, state, field)
   473  		state.fieldnum = fieldnum
   474  	}
   475  }
   476  
   477  var noValue reflect.Value
   478  
   479  // ignoreStruct discards the data for a struct with no destination.
   480  func (dec *Decoder) ignoreStruct(engine *decEngine) {
   481  	state := dec.newDecoderState(&dec.buf)
   482  	defer dec.freeDecoderState(state)
   483  	state.fieldnum = -1
   484  	for state.b.Len() > 0 {
   485  		delta := int(state.decodeUint())
   486  		if delta < 0 {
   487  			errorf("ignore decode: corrupted data: negative delta")
   488  		}
   489  		if delta == 0 { // struct terminator is zero delta fieldnum
   490  			break
   491  		}
   492  		fieldnum := state.fieldnum + delta
   493  		if fieldnum >= len(engine.instr) {
   494  			error_(errRange)
   495  		}
   496  		instr := &engine.instr[fieldnum]
   497  		instr.op(instr, state, noValue)
   498  		state.fieldnum = fieldnum
   499  	}
   500  }
   501  
   502  // ignoreSingle discards the data for a top-level non-struct value with no
   503  // destination. It's used when calling Decode with a nil value.
   504  func (dec *Decoder) ignoreSingle(engine *decEngine) {
   505  	state := dec.newDecoderState(&dec.buf)
   506  	defer dec.freeDecoderState(state)
   507  	state.fieldnum = singletonField
   508  	delta := int(state.decodeUint())
   509  	if delta != 0 {
   510  		errorf("decode: corrupted data: non-zero delta for singleton")
   511  	}
   512  	instr := &engine.instr[singletonField]
   513  	instr.op(instr, state, noValue)
   514  }
   515  
   516  // decodeArrayHelper does the work for decoding arrays and slices.
   517  func (dec *Decoder) decodeArrayHelper(state *decoderState, value reflect.Value, elemOp decOp, length int, ovfl error, helper decHelper) {
   518  	if helper != nil && helper(state, value, length, ovfl) {
   519  		return
   520  	}
   521  	instr := &decInstr{elemOp, 0, nil, ovfl}
   522  	isPtr := value.Type().Elem().Kind() == reflect.Ptr
   523  	for i := 0; i < length; i++ {
   524  		if state.b.Len() == 0 {
   525  			errorf("decoding array or slice: length exceeds input size (%d elements)", length)
   526  		}
   527  		v := value.Index(i)
   528  		if isPtr {
   529  			v = decAlloc(v)
   530  		}
   531  		elemOp(instr, state, v)
   532  	}
   533  }
   534  
   535  // decodeArray decodes an array and stores it in value.
   536  // The length is an unsigned integer preceding the elements. Even though the length is redundant
   537  // (it's part of the type), it's a useful check and is included in the encoding.
   538  func (dec *Decoder) decodeArray(state *decoderState, value reflect.Value, elemOp decOp, length int, ovfl error, helper decHelper) {
   539  	if n := state.decodeUint(); n != uint64(length) {
   540  		errorf("length mismatch in decodeArray")
   541  	}
   542  	dec.decodeArrayHelper(state, value, elemOp, length, ovfl, helper)
   543  }
   544  
   545  // decodeIntoValue is a helper for map decoding.
   546  func decodeIntoValue(state *decoderState, op decOp, isPtr bool, value reflect.Value, instr *decInstr) reflect.Value {
   547  	v := value
   548  	if isPtr {
   549  		v = decAlloc(value)
   550  	}
   551  
   552  	op(instr, state, v)
   553  	return value
   554  }
   555  
   556  // decodeMap decodes a map and stores it in value.
   557  // Maps are encoded as a length followed by key:value pairs.
   558  // Because the internals of maps are not visible to us, we must
   559  // use reflection rather than pointer magic.
   560  func (dec *Decoder) decodeMap(mtyp reflect.Type, state *decoderState, value reflect.Value, keyOp, elemOp decOp, ovfl error) {
   561  	n := int(state.decodeUint())
   562  	if value.IsNil() {
   563  		value.Set(reflect.MakeMapWithSize(mtyp, n))
   564  	}
   565  	keyIsPtr := mtyp.Key().Kind() == reflect.Ptr
   566  	elemIsPtr := mtyp.Elem().Kind() == reflect.Ptr
   567  	keyInstr := &decInstr{keyOp, 0, nil, ovfl}
   568  	elemInstr := &decInstr{elemOp, 0, nil, ovfl}
   569  	keyP := reflect.New(mtyp.Key())
   570  	keyZ := reflect.Zero(mtyp.Key())
   571  	elemP := reflect.New(mtyp.Elem())
   572  	elemZ := reflect.Zero(mtyp.Elem())
   573  
   574  	// geraldss/go: Hash object names to conserve memory
   575  	hash := mtyp.Key().Kind() == reflect.String
   576  
   577  	for i := 0; i < n; i++ {
   578  		key := decodeIntoValue(state, keyOp, keyIsPtr, keyP.Elem(), keyInstr)
   579  		elem := decodeIntoValue(state, elemOp, elemIsPtr, elemP.Elem(), elemInstr)
   580  
   581  		// geraldss/go: Hash object names to conserve memory
   582  		if hash {
   583  			if str, ok := key.Interface().(string); ok {
   584  				str = encoding.NAME_HASH.Hash(str)
   585  				key.SetString(str)
   586  			}
   587  		}
   588  
   589  		value.SetMapIndex(key, elem)
   590  		keyP.Elem().Set(keyZ)
   591  		elemP.Elem().Set(elemZ)
   592  	}
   593  }
   594  
   595  // ignoreArrayHelper does the work for discarding arrays and slices.
   596  func (dec *Decoder) ignoreArrayHelper(state *decoderState, elemOp decOp, length int) {
   597  	instr := &decInstr{elemOp, 0, nil, errors.New("no error")}
   598  	for i := 0; i < length; i++ {
   599  		if state.b.Len() == 0 {
   600  			errorf("decoding array or slice: length exceeds input size (%d elements)", length)
   601  		}
   602  		elemOp(instr, state, noValue)
   603  	}
   604  }
   605  
   606  // ignoreArray discards the data for an array value with no destination.
   607  func (dec *Decoder) ignoreArray(state *decoderState, elemOp decOp, length int) {
   608  	if n := state.decodeUint(); n != uint64(length) {
   609  		errorf("length mismatch in ignoreArray")
   610  	}
   611  	dec.ignoreArrayHelper(state, elemOp, length)
   612  }
   613  
   614  // ignoreMap discards the data for a map value with no destination.
   615  func (dec *Decoder) ignoreMap(state *decoderState, keyOp, elemOp decOp) {
   616  	n := int(state.decodeUint())
   617  	keyInstr := &decInstr{keyOp, 0, nil, errors.New("no error")}
   618  	elemInstr := &decInstr{elemOp, 0, nil, errors.New("no error")}
   619  	for i := 0; i < n; i++ {
   620  		keyOp(keyInstr, state, noValue)
   621  		elemOp(elemInstr, state, noValue)
   622  	}
   623  }
   624  
   625  // decodeSlice decodes a slice and stores it in value.
   626  // Slices are encoded as an unsigned length followed by the elements.
   627  func (dec *Decoder) decodeSlice(state *decoderState, value reflect.Value, elemOp decOp, ovfl error, helper decHelper) {
   628  	u := state.decodeUint()
   629  	typ := value.Type()
   630  	size := uint64(typ.Elem().Size())
   631  	nBytes := u * size
   632  	n := int(u)
   633  	// Take care with overflow in this calculation.
   634  	if n < 0 || uint64(n) != u || nBytes > tooBig || (size > 0 && nBytes/size != u) {
   635  		// We don't check n against buffer length here because if it's a slice
   636  		// of interfaces, there will be buffer reloads.
   637  		errorf("%s slice too big: %d elements of %d bytes", typ.Elem(), u, size)
   638  	}
   639  	if value.Cap() < n {
   640  		value.Set(reflect.MakeSlice(typ, n, n))
   641  	} else {
   642  		value.Set(value.Slice(0, n))
   643  	}
   644  	dec.decodeArrayHelper(state, value, elemOp, n, ovfl, helper)
   645  }
   646  
   647  // ignoreSlice skips over the data for a slice value with no destination.
   648  func (dec *Decoder) ignoreSlice(state *decoderState, elemOp decOp) {
   649  	dec.ignoreArrayHelper(state, elemOp, int(state.decodeUint()))
   650  }
   651  
   652  // decodeInterface decodes an interface value and stores it in value.
   653  // Interfaces are encoded as the name of a concrete type followed by a value.
   654  // If the name is empty, the value is nil and no value is sent.
   655  func (dec *Decoder) decodeInterface(ityp reflect.Type, state *decoderState, value reflect.Value) {
   656  	// Read the name of the concrete type.
   657  	nr := state.decodeUint()
   658  	if nr > 1<<31 { // zero is permissible for anonymous types
   659  		errorf("invalid type name length %d", nr)
   660  	}
   661  	if nr > uint64(state.b.Len()) {
   662  		errorf("invalid type name length %d: exceeds input size", nr)
   663  	}
   664  	n := int(nr)
   665  	name := state.b.Bytes()[:n]
   666  	state.b.Drop(n)
   667  	// Allocate the destination interface value.
   668  	if len(name) == 0 {
   669  		// Copy the nil interface value to the target.
   670  		value.Set(reflect.Zero(value.Type()))
   671  		return
   672  	}
   673  	if len(name) > 1024 {
   674  		errorf("name too long (%d bytes): %.20q...", len(name), name)
   675  	}
   676  	// The concrete type must be registered.
   677  	typi, ok := nameToConcreteType.Load(string(name))
   678  	if !ok {
   679  		errorf("name not registered for interface: %q", name)
   680  	}
   681  	typ := typi.(reflect.Type)
   682  
   683  	// Read the type id of the concrete value.
   684  	concreteId := dec.decodeTypeSequence(true)
   685  	if concreteId < 0 {
   686  		error_(dec.err)
   687  	}
   688  	// Byte count of value is next; we don't care what it is (it's there
   689  	// in case we want to ignore the value by skipping it completely).
   690  	state.decodeUint()
   691  	// Read the concrete value.
   692  	v := allocValue(typ)
   693  	dec.decodeValue(concreteId, v)
   694  	if dec.err != nil {
   695  		error_(dec.err)
   696  	}
   697  	// Assign the concrete value to the interface.
   698  	// Tread carefully; it might not satisfy the interface.
   699  	if !typ.AssignableTo(ityp) {
   700  		errorf("%s is not assignable to type %s", typ, ityp)
   701  	}
   702  	// Copy the interface value to the target.
   703  	value.Set(v)
   704  }
   705  
   706  // ignoreInterface discards the data for an interface value with no destination.
   707  func (dec *Decoder) ignoreInterface(state *decoderState) {
   708  	// Read the name of the concrete type.
   709  	n, ok := state.getLength()
   710  	if !ok {
   711  		errorf("bad interface encoding: name too large for buffer")
   712  	}
   713  	bn := state.b.Len()
   714  	if bn < n {
   715  		errorf("invalid interface value length %d: exceeds input size %d", n, bn)
   716  	}
   717  	state.b.Drop(n)
   718  	id := dec.decodeTypeSequence(true)
   719  	if id < 0 {
   720  		error_(dec.err)
   721  	}
   722  	// At this point, the decoder buffer contains a delimited value. Just toss it.
   723  	n, ok = state.getLength()
   724  	if !ok {
   725  		errorf("bad interface encoding: data length too large for buffer")
   726  	}
   727  	state.b.Drop(n)
   728  }
   729  
   730  // decodeGobDecoder decodes something implementing the GobDecoder interface.
   731  // The data is encoded as a byte slice.
   732  func (dec *Decoder) decodeGobDecoder(ut *userTypeInfo, state *decoderState, value reflect.Value) {
   733  	// Read the bytes for the value.
   734  	n, ok := state.getLength()
   735  	if !ok {
   736  		errorf("GobDecoder: length too large for buffer")
   737  	}
   738  	b := state.b.Bytes()
   739  	if len(b) < n {
   740  		errorf("GobDecoder: invalid data length %d: exceeds input size %d", n, len(b))
   741  	}
   742  	b = b[:n]
   743  	state.b.Drop(n)
   744  	var err error
   745  	// We know it's one of these.
   746  	switch ut.externalDec {
   747  	case xGob:
   748  		err = value.Interface().(GobDecoder).GobDecode(b)
   749  	case xBinary:
   750  		err = value.Interface().(encoding.BinaryUnmarshaler).UnmarshalBinary(b)
   751  	case xText:
   752  		err = value.Interface().(encoding.TextUnmarshaler).UnmarshalText(b)
   753  	}
   754  	if err != nil {
   755  		error_(err)
   756  	}
   757  }
   758  
   759  // ignoreGobDecoder discards the data for a GobDecoder value with no destination.
   760  func (dec *Decoder) ignoreGobDecoder(state *decoderState) {
   761  	// Read the bytes for the value.
   762  	n, ok := state.getLength()
   763  	if !ok {
   764  		errorf("GobDecoder: length too large for buffer")
   765  	}
   766  	bn := state.b.Len()
   767  	if bn < n {
   768  		errorf("GobDecoder: invalid data length %d: exceeds input size %d", n, bn)
   769  	}
   770  	state.b.Drop(n)
   771  }
   772  
   773  // Index by Go types.
   774  var decOpTable = [...]decOp{
   775  	reflect.Bool:       decBool,
   776  	reflect.Int8:       decInt8,
   777  	reflect.Int16:      decInt16,
   778  	reflect.Int32:      decInt32,
   779  	reflect.Int64:      decInt64,
   780  	reflect.Uint8:      decUint8,
   781  	reflect.Uint16:     decUint16,
   782  	reflect.Uint32:     decUint32,
   783  	reflect.Uint64:     decUint64,
   784  	reflect.Float32:    decFloat32,
   785  	reflect.Float64:    decFloat64,
   786  	reflect.Complex64:  decComplex64,
   787  	reflect.Complex128: decComplex128,
   788  	reflect.String:     decString,
   789  }
   790  
   791  // Indexed by gob types.  tComplex will be added during type.init().
   792  var decIgnoreOpMap = map[typeId]decOp{
   793  	tBool:    ignoreUint,
   794  	tInt:     ignoreUint,
   795  	tUint:    ignoreUint,
   796  	tFloat:   ignoreUint,
   797  	tBytes:   ignoreUint8Array,
   798  	tString:  ignoreUint8Array,
   799  	tComplex: ignoreTwoUints,
   800  }
   801  
   802  // decOpFor returns the decoding op for the base type under rt and
   803  // the indirection count to reach it.
   804  func (dec *Decoder) decOpFor(wireId typeId, rt reflect.Type, name string, inProgress map[reflect.Type]*decOp) *decOp {
   805  	ut := userType(rt)
   806  	// If the type implements GobEncoder, we handle it without further processing.
   807  	if ut.externalDec != 0 {
   808  		return dec.gobDecodeOpFor(ut)
   809  	}
   810  
   811  	// If this type is already in progress, it's a recursive type (e.g. map[string]*T).
   812  	// Return the pointer to the op we're already building.
   813  	if opPtr := inProgress[rt]; opPtr != nil {
   814  		return opPtr
   815  	}
   816  	typ := ut.base
   817  	var op decOp
   818  	k := typ.Kind()
   819  	if int(k) < len(decOpTable) {
   820  		op = decOpTable[k]
   821  	}
   822  	if op == nil {
   823  		inProgress[rt] = &op
   824  		// Special cases
   825  		switch t := typ; t.Kind() {
   826  		case reflect.Array:
   827  			name = "element of " + name
   828  			elemId := dec.wireType[wireId].ArrayT.Elem
   829  			elemOp := dec.decOpFor(elemId, t.Elem(), name, inProgress)
   830  			ovfl := overflow(name)
   831  			helper := decArrayHelper[t.Elem().Kind()]
   832  			op = func(i *decInstr, state *decoderState, value reflect.Value) {
   833  				state.dec.decodeArray(state, value, *elemOp, t.Len(), ovfl, helper)
   834  			}
   835  
   836  		case reflect.Map:
   837  			keyId := dec.wireType[wireId].MapT.Key
   838  			elemId := dec.wireType[wireId].MapT.Elem
   839  			keyOp := dec.decOpFor(keyId, t.Key(), "key of "+name, inProgress)
   840  			elemOp := dec.decOpFor(elemId, t.Elem(), "element of "+name, inProgress)
   841  			ovfl := overflow(name)
   842  			op = func(i *decInstr, state *decoderState, value reflect.Value) {
   843  				state.dec.decodeMap(t, state, value, *keyOp, *elemOp, ovfl)
   844  			}
   845  
   846  		case reflect.Slice:
   847  			name = "element of " + name
   848  			if t.Elem().Kind() == reflect.Uint8 {
   849  				op = decUint8Slice
   850  				break
   851  			}
   852  			var elemId typeId
   853  			if tt, ok := builtinIdToType[wireId]; ok {
   854  				elemId = tt.(*sliceType).Elem
   855  			} else {
   856  				elemId = dec.wireType[wireId].SliceT.Elem
   857  			}
   858  			elemOp := dec.decOpFor(elemId, t.Elem(), name, inProgress)
   859  			ovfl := overflow(name)
   860  			helper := decSliceHelper[t.Elem().Kind()]
   861  			op = func(i *decInstr, state *decoderState, value reflect.Value) {
   862  				state.dec.decodeSlice(state, value, *elemOp, ovfl, helper)
   863  			}
   864  
   865  		case reflect.Struct:
   866  			// Generate a closure that calls out to the engine for the nested type.
   867  			ut := userType(typ)
   868  			enginePtr, err := dec.getDecEnginePtr(wireId, ut)
   869  			if err != nil {
   870  				error_(err)
   871  			}
   872  			op = func(i *decInstr, state *decoderState, value reflect.Value) {
   873  				// indirect through enginePtr to delay evaluation for recursive structs.
   874  				dec.decodeStruct(*enginePtr, value)
   875  			}
   876  		case reflect.Interface:
   877  			op = func(i *decInstr, state *decoderState, value reflect.Value) {
   878  				state.dec.decodeInterface(t, state, value)
   879  			}
   880  		}
   881  	}
   882  	if op == nil {
   883  		errorf("decode can't handle type %s", rt)
   884  	}
   885  	return &op
   886  }
   887  
   888  // decIgnoreOpFor returns the decoding op for a field that has no destination.
   889  func (dec *Decoder) decIgnoreOpFor(wireId typeId, inProgress map[typeId]*decOp) *decOp {
   890  	// If this type is already in progress, it's a recursive type (e.g. map[string]*T).
   891  	// Return the pointer to the op we're already building.
   892  	if opPtr := inProgress[wireId]; opPtr != nil {
   893  		return opPtr
   894  	}
   895  	op, ok := decIgnoreOpMap[wireId]
   896  	if !ok {
   897  		inProgress[wireId] = &op
   898  		if wireId == tInterface {
   899  			// Special case because it's a method: the ignored item might
   900  			// define types and we need to record their state in the decoder.
   901  			op = func(i *decInstr, state *decoderState, value reflect.Value) {
   902  				state.dec.ignoreInterface(state)
   903  			}
   904  			return &op
   905  		}
   906  		// Special cases
   907  		wire := dec.wireType[wireId]
   908  		switch {
   909  		case wire == nil:
   910  			errorf("bad data: undefined type %s", wireId.string())
   911  		case wire.ArrayT != nil:
   912  			elemId := wire.ArrayT.Elem
   913  			elemOp := dec.decIgnoreOpFor(elemId, inProgress)
   914  			op = func(i *decInstr, state *decoderState, value reflect.Value) {
   915  				state.dec.ignoreArray(state, *elemOp, wire.ArrayT.Len)
   916  			}
   917  
   918  		case wire.MapT != nil:
   919  			keyId := dec.wireType[wireId].MapT.Key
   920  			elemId := dec.wireType[wireId].MapT.Elem
   921  			keyOp := dec.decIgnoreOpFor(keyId, inProgress)
   922  			elemOp := dec.decIgnoreOpFor(elemId, inProgress)
   923  			op = func(i *decInstr, state *decoderState, value reflect.Value) {
   924  				state.dec.ignoreMap(state, *keyOp, *elemOp)
   925  			}
   926  
   927  		case wire.SliceT != nil:
   928  			elemId := wire.SliceT.Elem
   929  			elemOp := dec.decIgnoreOpFor(elemId, inProgress)
   930  			op = func(i *decInstr, state *decoderState, value reflect.Value) {
   931  				state.dec.ignoreSlice(state, *elemOp)
   932  			}
   933  
   934  		case wire.StructT != nil:
   935  			// Generate a closure that calls out to the engine for the nested type.
   936  			enginePtr, err := dec.getIgnoreEnginePtr(wireId)
   937  			if err != nil {
   938  				error_(err)
   939  			}
   940  			op = func(i *decInstr, state *decoderState, value reflect.Value) {
   941  				// indirect through enginePtr to delay evaluation for recursive structs
   942  				state.dec.ignoreStruct(*enginePtr)
   943  			}
   944  
   945  		case wire.GobEncoderT != nil, wire.BinaryMarshalerT != nil, wire.TextMarshalerT != nil:
   946  			op = func(i *decInstr, state *decoderState, value reflect.Value) {
   947  				state.dec.ignoreGobDecoder(state)
   948  			}
   949  		}
   950  	}
   951  	if op == nil {
   952  		errorf("bad data: ignore can't handle type %s", wireId.string())
   953  	}
   954  	return &op
   955  }
   956  
   957  // gobDecodeOpFor returns the op for a type that is known to implement
   958  // GobDecoder.
   959  func (dec *Decoder) gobDecodeOpFor(ut *userTypeInfo) *decOp {
   960  	rcvrType := ut.user
   961  	if ut.decIndir == -1 {
   962  		rcvrType = reflect.PtrTo(rcvrType)
   963  	} else if ut.decIndir > 0 {
   964  		for i := int8(0); i < ut.decIndir; i++ {
   965  			rcvrType = rcvrType.Elem()
   966  		}
   967  	}
   968  	var op decOp
   969  	op = func(i *decInstr, state *decoderState, value reflect.Value) {
   970  		// We now have the base type. We need its address if the receiver is a pointer.
   971  		if value.Kind() != reflect.Ptr && rcvrType.Kind() == reflect.Ptr {
   972  			value = value.Addr()
   973  		}
   974  		state.dec.decodeGobDecoder(ut, state, value)
   975  	}
   976  	return &op
   977  }
   978  
   979  // compatibleType asks: Are these two gob Types compatible?
   980  // Answers the question for basic types, arrays, maps and slices, plus
   981  // GobEncoder/Decoder pairs.
   982  // Structs are considered ok; fields will be checked later.
   983  func (dec *Decoder) compatibleType(fr reflect.Type, fw typeId, inProgress map[reflect.Type]typeId) bool {
   984  	if rhs, ok := inProgress[fr]; ok {
   985  		return rhs == fw
   986  	}
   987  	inProgress[fr] = fw
   988  	ut := userType(fr)
   989  	wire, ok := dec.wireType[fw]
   990  	// If wire was encoded with an encoding method, fr must have that method.
   991  	// And if not, it must not.
   992  	// At most one of the booleans in ut is set.
   993  	// We could possibly relax this constraint in the future in order to
   994  	// choose the decoding method using the data in the wireType.
   995  	// The parentheses look odd but are correct.
   996  	if (ut.externalDec == xGob) != (ok && wire.GobEncoderT != nil) ||
   997  		(ut.externalDec == xBinary) != (ok && wire.BinaryMarshalerT != nil) ||
   998  		(ut.externalDec == xText) != (ok && wire.TextMarshalerT != nil) {
   999  		return false
  1000  	}
  1001  	if ut.externalDec != 0 { // This test trumps all others.
  1002  		return true
  1003  	}
  1004  	switch t := ut.base; t.Kind() {
  1005  	default:
  1006  		// chan, etc: cannot handle.
  1007  		return false
  1008  	case reflect.Bool:
  1009  		return fw == tBool
  1010  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
  1011  		return fw == tInt
  1012  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
  1013  		return fw == tUint
  1014  	case reflect.Float32, reflect.Float64:
  1015  		return fw == tFloat
  1016  	case reflect.Complex64, reflect.Complex128:
  1017  		return fw == tComplex
  1018  	case reflect.String:
  1019  		return fw == tString
  1020  	case reflect.Interface:
  1021  		return fw == tInterface
  1022  	case reflect.Array:
  1023  		if !ok || wire.ArrayT == nil {
  1024  			return false
  1025  		}
  1026  		array := wire.ArrayT
  1027  		return t.Len() == array.Len && dec.compatibleType(t.Elem(), array.Elem, inProgress)
  1028  	case reflect.Map:
  1029  		if !ok || wire.MapT == nil {
  1030  			return false
  1031  		}
  1032  		MapType := wire.MapT
  1033  		return dec.compatibleType(t.Key(), MapType.Key, inProgress) && dec.compatibleType(t.Elem(), MapType.Elem, inProgress)
  1034  	case reflect.Slice:
  1035  		// Is it an array of bytes?
  1036  		if t.Elem().Kind() == reflect.Uint8 {
  1037  			return fw == tBytes
  1038  		}
  1039  		// Extract and compare element types.
  1040  		var sw *sliceType
  1041  		if tt, ok := builtinIdToType[fw]; ok {
  1042  			sw, _ = tt.(*sliceType)
  1043  		} else if wire != nil {
  1044  			sw = wire.SliceT
  1045  		}
  1046  		elem := userType(t.Elem()).base
  1047  		return sw != nil && dec.compatibleType(elem, sw.Elem, inProgress)
  1048  	case reflect.Struct:
  1049  		return true
  1050  	}
  1051  }
  1052  
  1053  // typeString returns a human-readable description of the type identified by remoteId.
  1054  func (dec *Decoder) typeString(remoteId typeId) string {
  1055  	typeLock.Lock()
  1056  	defer typeLock.Unlock()
  1057  	if t := idToType[remoteId]; t != nil {
  1058  		// globally known type.
  1059  		return t.string()
  1060  	}
  1061  	return dec.wireType[remoteId].string()
  1062  }
  1063  
  1064  // compileSingle compiles the decoder engine for a non-struct top-level value, including
  1065  // GobDecoders.
  1066  func (dec *Decoder) compileSingle(remoteId typeId, ut *userTypeInfo) (engine *decEngine, err error) {
  1067  	rt := ut.user
  1068  	engine = new(decEngine)
  1069  	engine.instr = make([]decInstr, 1) // one item
  1070  	name := rt.String()                // best we can do
  1071  	if !dec.compatibleType(rt, remoteId, make(map[reflect.Type]typeId)) {
  1072  		remoteType := dec.typeString(remoteId)
  1073  		// Common confusing case: local interface type, remote concrete type.
  1074  		if ut.base.Kind() == reflect.Interface && remoteId != tInterface {
  1075  			return nil, errors.New("gob: local interface type " + name + " can only be decoded from remote interface type; received concrete type " + remoteType)
  1076  		}
  1077  		return nil, errors.New("gob: decoding into local type " + name + ", received remote type " + remoteType)
  1078  	}
  1079  	op := dec.decOpFor(remoteId, rt, name, make(map[reflect.Type]*decOp))
  1080  	ovfl := errors.New(`value for "` + name + `" out of range`)
  1081  	engine.instr[singletonField] = decInstr{*op, singletonField, nil, ovfl}
  1082  	engine.numInstr = 1
  1083  	return
  1084  }
  1085  
  1086  // compileIgnoreSingle compiles the decoder engine for a non-struct top-level value that will be discarded.
  1087  func (dec *Decoder) compileIgnoreSingle(remoteId typeId) *decEngine {
  1088  	engine := new(decEngine)
  1089  	engine.instr = make([]decInstr, 1) // one item
  1090  	op := dec.decIgnoreOpFor(remoteId, make(map[typeId]*decOp))
  1091  	ovfl := overflow(dec.typeString(remoteId))
  1092  	engine.instr[0] = decInstr{*op, 0, nil, ovfl}
  1093  	engine.numInstr = 1
  1094  	return engine
  1095  }
  1096  
  1097  // compileDec compiles the decoder engine for a value. If the value is not a struct,
  1098  // it calls out to compileSingle.
  1099  func (dec *Decoder) compileDec(remoteId typeId, ut *userTypeInfo) (engine *decEngine, err error) {
  1100  	defer catchError(&err)
  1101  	rt := ut.base
  1102  	srt := rt
  1103  	if srt.Kind() != reflect.Struct || ut.externalDec != 0 {
  1104  		return dec.compileSingle(remoteId, ut)
  1105  	}
  1106  	var wireStruct *structType
  1107  	// Builtin types can come from global pool; the rest must be defined by the decoder.
  1108  	// Also we know we're decoding a struct now, so the client must have sent one.
  1109  	if t, ok := builtinIdToType[remoteId]; ok {
  1110  		wireStruct, _ = t.(*structType)
  1111  	} else {
  1112  		wire := dec.wireType[remoteId]
  1113  		if wire == nil {
  1114  			error_(errBadType)
  1115  		}
  1116  		wireStruct = wire.StructT
  1117  	}
  1118  	if wireStruct == nil {
  1119  		errorf("type mismatch in decoder: want struct type %s; got non-struct", rt)
  1120  	}
  1121  	engine = new(decEngine)
  1122  	engine.instr = make([]decInstr, len(wireStruct.Field))
  1123  	seen := make(map[reflect.Type]*decOp)
  1124  	// Loop over the fields of the wire type.
  1125  	for fieldnum := 0; fieldnum < len(wireStruct.Field); fieldnum++ {
  1126  		wireField := wireStruct.Field[fieldnum]
  1127  		if wireField.Name == "" {
  1128  			errorf("empty name for remote field of type %s", wireStruct.Name)
  1129  		}
  1130  		ovfl := overflow(wireField.Name)
  1131  		// Find the field of the local type with the same name.
  1132  		localField, present := srt.FieldByName(wireField.Name)
  1133  		// TODO(r): anonymous names
  1134  		if !present || !isExported(wireField.Name) {
  1135  			op := dec.decIgnoreOpFor(wireField.Id, make(map[typeId]*decOp))
  1136  			engine.instr[fieldnum] = decInstr{*op, fieldnum, nil, ovfl}
  1137  			continue
  1138  		}
  1139  		if !dec.compatibleType(localField.Type, wireField.Id, make(map[reflect.Type]typeId)) {
  1140  			errorf("wrong type (%s) for received field %s.%s", localField.Type, wireStruct.Name, wireField.Name)
  1141  		}
  1142  		op := dec.decOpFor(wireField.Id, localField.Type, localField.Name, seen)
  1143  		engine.instr[fieldnum] = decInstr{*op, fieldnum, localField.Index, ovfl}
  1144  		engine.numInstr++
  1145  	}
  1146  	return
  1147  }
  1148  
  1149  // getDecEnginePtr returns the engine for the specified type.
  1150  func (dec *Decoder) getDecEnginePtr(remoteId typeId, ut *userTypeInfo) (enginePtr **decEngine, err error) {
  1151  	rt := ut.user
  1152  	decoderMap, ok := dec.decoderCache[rt]
  1153  	if !ok {
  1154  		decoderMap = make(map[typeId]**decEngine)
  1155  		dec.decoderCache[rt] = decoderMap
  1156  	}
  1157  	if enginePtr, ok = decoderMap[remoteId]; !ok {
  1158  		// To handle recursive types, mark this engine as underway before compiling.
  1159  		enginePtr = new(*decEngine)
  1160  		decoderMap[remoteId] = enginePtr
  1161  		*enginePtr, err = dec.compileDec(remoteId, ut)
  1162  		if err != nil {
  1163  			delete(decoderMap, remoteId)
  1164  		}
  1165  	}
  1166  	return
  1167  }
  1168  
  1169  // emptyStruct is the type we compile into when ignoring a struct value.
  1170  type emptyStruct struct{}
  1171  
  1172  var emptyStructType = reflect.TypeOf(emptyStruct{})
  1173  
  1174  // getIgnoreEnginePtr returns the engine for the specified type when the value is to be discarded.
  1175  func (dec *Decoder) getIgnoreEnginePtr(wireId typeId) (enginePtr **decEngine, err error) {
  1176  	var ok bool
  1177  	if enginePtr, ok = dec.ignorerCache[wireId]; !ok {
  1178  		// To handle recursive types, mark this engine as underway before compiling.
  1179  		enginePtr = new(*decEngine)
  1180  		dec.ignorerCache[wireId] = enginePtr
  1181  		wire := dec.wireType[wireId]
  1182  		if wire != nil && wire.StructT != nil {
  1183  			*enginePtr, err = dec.compileDec(wireId, userType(emptyStructType))
  1184  		} else {
  1185  			*enginePtr = dec.compileIgnoreSingle(wireId)
  1186  		}
  1187  		if err != nil {
  1188  			delete(dec.ignorerCache, wireId)
  1189  		}
  1190  	}
  1191  	return
  1192  }
  1193  
  1194  // decodeValue decodes the data stream representing a value and stores it in value.
  1195  func (dec *Decoder) decodeValue(wireId typeId, value reflect.Value) {
  1196  	defer catchError(&dec.err)
  1197  	// If the value is nil, it means we should just ignore this item.
  1198  	if !value.IsValid() {
  1199  		dec.decodeIgnoredValue(wireId)
  1200  		return
  1201  	}
  1202  	// Dereference down to the underlying type.
  1203  	ut := userType(value.Type())
  1204  	base := ut.base
  1205  	var enginePtr **decEngine
  1206  	enginePtr, dec.err = dec.getDecEnginePtr(wireId, ut)
  1207  	if dec.err != nil {
  1208  		return
  1209  	}
  1210  	value = decAlloc(value)
  1211  	engine := *enginePtr
  1212  	if st := base; st.Kind() == reflect.Struct && ut.externalDec == 0 {
  1213  		wt := dec.wireType[wireId]
  1214  		if engine.numInstr == 0 && st.NumField() > 0 &&
  1215  			wt != nil && len(wt.StructT.Field) > 0 {
  1216  			name := base.Name()
  1217  			errorf("type mismatch: no fields matched compiling decoder for %s", name)
  1218  		}
  1219  		dec.decodeStruct(engine, value)
  1220  	} else {
  1221  		dec.decodeSingle(engine, value)
  1222  	}
  1223  }
  1224  
  1225  // decodeIgnoredValue decodes the data stream representing a value of the specified type and discards it.
  1226  func (dec *Decoder) decodeIgnoredValue(wireId typeId) {
  1227  	var enginePtr **decEngine
  1228  	enginePtr, dec.err = dec.getIgnoreEnginePtr(wireId)
  1229  	if dec.err != nil {
  1230  		return
  1231  	}
  1232  	wire := dec.wireType[wireId]
  1233  	if wire != nil && wire.StructT != nil {
  1234  		dec.ignoreStruct(*enginePtr)
  1235  	} else {
  1236  		dec.ignoreSingle(*enginePtr)
  1237  	}
  1238  }
  1239  
  1240  func init() {
  1241  	var iop, uop decOp
  1242  	switch reflect.TypeOf(int(0)).Bits() {
  1243  	case 32:
  1244  		iop = decInt32
  1245  		uop = decUint32
  1246  	case 64:
  1247  		iop = decInt64
  1248  		uop = decUint64
  1249  	default:
  1250  		panic("gob: unknown size of int/uint")
  1251  	}
  1252  	decOpTable[reflect.Int] = iop
  1253  	decOpTable[reflect.Uint] = uop
  1254  
  1255  	// Finally uintptr
  1256  	switch reflect.TypeOf(uintptr(0)).Bits() {
  1257  	case 32:
  1258  		uop = decUint32
  1259  	case 64:
  1260  		uop = decUint64
  1261  	default:
  1262  		panic("gob: unknown size of uintptr")
  1263  	}
  1264  	decOpTable[reflect.Uintptr] = uop
  1265  }
  1266  
  1267  // Gob depends on being able to take the address
  1268  // of zeroed Values it creates, so use this wrapper instead
  1269  // of the standard reflect.Zero.
  1270  // Each call allocates once.
  1271  func allocValue(t reflect.Type) reflect.Value {
  1272  	return reflect.New(t).Elem()
  1273  }