github.com/geraldss/go/src@v0.0.0-20210511222824-ac7d0ebfc235/image/draw/draw.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package draw provides image composition functions.
     6  //
     7  // See "The Go image/draw package" for an introduction to this package:
     8  // https://golang.org/doc/articles/image_draw.html
     9  package draw
    10  
    11  import (
    12  	"image"
    13  	"image/color"
    14  	"image/internal/imageutil"
    15  )
    16  
    17  // m is the maximum color value returned by image.Color.RGBA.
    18  const m = 1<<16 - 1
    19  
    20  // Image is an image.Image with a Set method to change a single pixel.
    21  type Image interface {
    22  	image.Image
    23  	Set(x, y int, c color.Color)
    24  }
    25  
    26  // Quantizer produces a palette for an image.
    27  type Quantizer interface {
    28  	// Quantize appends up to cap(p) - len(p) colors to p and returns the
    29  	// updated palette suitable for converting m to a paletted image.
    30  	Quantize(p color.Palette, m image.Image) color.Palette
    31  }
    32  
    33  // Op is a Porter-Duff compositing operator.
    34  type Op int
    35  
    36  const (
    37  	// Over specifies ``(src in mask) over dst''.
    38  	Over Op = iota
    39  	// Src specifies ``src in mask''.
    40  	Src
    41  )
    42  
    43  // Draw implements the Drawer interface by calling the Draw function with this
    44  // Op.
    45  func (op Op) Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point) {
    46  	DrawMask(dst, r, src, sp, nil, image.Point{}, op)
    47  }
    48  
    49  // Drawer contains the Draw method.
    50  type Drawer interface {
    51  	// Draw aligns r.Min in dst with sp in src and then replaces the
    52  	// rectangle r in dst with the result of drawing src on dst.
    53  	Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point)
    54  }
    55  
    56  // FloydSteinberg is a Drawer that is the Src Op with Floyd-Steinberg error
    57  // diffusion.
    58  var FloydSteinberg Drawer = floydSteinberg{}
    59  
    60  type floydSteinberg struct{}
    61  
    62  func (floydSteinberg) Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point) {
    63  	clip(dst, &r, src, &sp, nil, nil)
    64  	if r.Empty() {
    65  		return
    66  	}
    67  	drawPaletted(dst, r, src, sp, true)
    68  }
    69  
    70  // clip clips r against each image's bounds (after translating into the
    71  // destination image's coordinate space) and shifts the points sp and mp by
    72  // the same amount as the change in r.Min.
    73  func clip(dst Image, r *image.Rectangle, src image.Image, sp *image.Point, mask image.Image, mp *image.Point) {
    74  	orig := r.Min
    75  	*r = r.Intersect(dst.Bounds())
    76  	*r = r.Intersect(src.Bounds().Add(orig.Sub(*sp)))
    77  	if mask != nil {
    78  		*r = r.Intersect(mask.Bounds().Add(orig.Sub(*mp)))
    79  	}
    80  	dx := r.Min.X - orig.X
    81  	dy := r.Min.Y - orig.Y
    82  	if dx == 0 && dy == 0 {
    83  		return
    84  	}
    85  	sp.X += dx
    86  	sp.Y += dy
    87  	if mp != nil {
    88  		mp.X += dx
    89  		mp.Y += dy
    90  	}
    91  }
    92  
    93  func processBackward(dst image.Image, r image.Rectangle, src image.Image, sp image.Point) bool {
    94  	return dst == src &&
    95  		r.Overlaps(r.Add(sp.Sub(r.Min))) &&
    96  		(sp.Y < r.Min.Y || (sp.Y == r.Min.Y && sp.X < r.Min.X))
    97  }
    98  
    99  // Draw calls DrawMask with a nil mask.
   100  func Draw(dst Image, r image.Rectangle, src image.Image, sp image.Point, op Op) {
   101  	DrawMask(dst, r, src, sp, nil, image.Point{}, op)
   102  }
   103  
   104  // DrawMask aligns r.Min in dst with sp in src and mp in mask and then replaces the rectangle r
   105  // in dst with the result of a Porter-Duff composition. A nil mask is treated as opaque.
   106  func DrawMask(dst Image, r image.Rectangle, src image.Image, sp image.Point, mask image.Image, mp image.Point, op Op) {
   107  	clip(dst, &r, src, &sp, mask, &mp)
   108  	if r.Empty() {
   109  		return
   110  	}
   111  
   112  	// Fast paths for special cases. If none of them apply, then we fall back to a general but slow implementation.
   113  	switch dst0 := dst.(type) {
   114  	case *image.RGBA:
   115  		if op == Over {
   116  			if mask == nil {
   117  				switch src0 := src.(type) {
   118  				case *image.Uniform:
   119  					sr, sg, sb, sa := src0.RGBA()
   120  					if sa == 0xffff {
   121  						drawFillSrc(dst0, r, sr, sg, sb, sa)
   122  					} else {
   123  						drawFillOver(dst0, r, sr, sg, sb, sa)
   124  					}
   125  					return
   126  				case *image.RGBA:
   127  					drawCopyOver(dst0, r, src0, sp)
   128  					return
   129  				case *image.NRGBA:
   130  					drawNRGBAOver(dst0, r, src0, sp)
   131  					return
   132  				case *image.YCbCr:
   133  					// An image.YCbCr is always fully opaque, and so if the
   134  					// mask is nil (i.e. fully opaque) then the op is
   135  					// effectively always Src. Similarly for image.Gray and
   136  					// image.CMYK.
   137  					if imageutil.DrawYCbCr(dst0, r, src0, sp) {
   138  						return
   139  					}
   140  				case *image.Gray:
   141  					drawGray(dst0, r, src0, sp)
   142  					return
   143  				case *image.CMYK:
   144  					drawCMYK(dst0, r, src0, sp)
   145  					return
   146  				}
   147  			} else if mask0, ok := mask.(*image.Alpha); ok {
   148  				switch src0 := src.(type) {
   149  				case *image.Uniform:
   150  					drawGlyphOver(dst0, r, src0, mask0, mp)
   151  					return
   152  				}
   153  			}
   154  		} else {
   155  			if mask == nil {
   156  				switch src0 := src.(type) {
   157  				case *image.Uniform:
   158  					sr, sg, sb, sa := src0.RGBA()
   159  					drawFillSrc(dst0, r, sr, sg, sb, sa)
   160  					return
   161  				case *image.RGBA:
   162  					drawCopySrc(dst0, r, src0, sp)
   163  					return
   164  				case *image.NRGBA:
   165  					drawNRGBASrc(dst0, r, src0, sp)
   166  					return
   167  				case *image.YCbCr:
   168  					if imageutil.DrawYCbCr(dst0, r, src0, sp) {
   169  						return
   170  					}
   171  				case *image.Gray:
   172  					drawGray(dst0, r, src0, sp)
   173  					return
   174  				case *image.CMYK:
   175  					drawCMYK(dst0, r, src0, sp)
   176  					return
   177  				}
   178  			}
   179  		}
   180  		drawRGBA(dst0, r, src, sp, mask, mp, op)
   181  		return
   182  	case *image.Paletted:
   183  		if op == Src && mask == nil {
   184  			if src0, ok := src.(*image.Uniform); ok {
   185  				colorIndex := uint8(dst0.Palette.Index(src0.C))
   186  				i0 := dst0.PixOffset(r.Min.X, r.Min.Y)
   187  				i1 := i0 + r.Dx()
   188  				for i := i0; i < i1; i++ {
   189  					dst0.Pix[i] = colorIndex
   190  				}
   191  				firstRow := dst0.Pix[i0:i1]
   192  				for y := r.Min.Y + 1; y < r.Max.Y; y++ {
   193  					i0 += dst0.Stride
   194  					i1 += dst0.Stride
   195  					copy(dst0.Pix[i0:i1], firstRow)
   196  				}
   197  				return
   198  			} else if !processBackward(dst, r, src, sp) {
   199  				drawPaletted(dst0, r, src, sp, false)
   200  				return
   201  			}
   202  		}
   203  	}
   204  
   205  	x0, x1, dx := r.Min.X, r.Max.X, 1
   206  	y0, y1, dy := r.Min.Y, r.Max.Y, 1
   207  	if processBackward(dst, r, src, sp) {
   208  		x0, x1, dx = x1-1, x0-1, -1
   209  		y0, y1, dy = y1-1, y0-1, -1
   210  	}
   211  
   212  	var out color.RGBA64
   213  	sy := sp.Y + y0 - r.Min.Y
   214  	my := mp.Y + y0 - r.Min.Y
   215  	for y := y0; y != y1; y, sy, my = y+dy, sy+dy, my+dy {
   216  		sx := sp.X + x0 - r.Min.X
   217  		mx := mp.X + x0 - r.Min.X
   218  		for x := x0; x != x1; x, sx, mx = x+dx, sx+dx, mx+dx {
   219  			ma := uint32(m)
   220  			if mask != nil {
   221  				_, _, _, ma = mask.At(mx, my).RGBA()
   222  			}
   223  			switch {
   224  			case ma == 0:
   225  				if op == Over {
   226  					// No-op.
   227  				} else {
   228  					dst.Set(x, y, color.Transparent)
   229  				}
   230  			case ma == m && op == Src:
   231  				dst.Set(x, y, src.At(sx, sy))
   232  			default:
   233  				sr, sg, sb, sa := src.At(sx, sy).RGBA()
   234  				if op == Over {
   235  					dr, dg, db, da := dst.At(x, y).RGBA()
   236  					a := m - (sa * ma / m)
   237  					out.R = uint16((dr*a + sr*ma) / m)
   238  					out.G = uint16((dg*a + sg*ma) / m)
   239  					out.B = uint16((db*a + sb*ma) / m)
   240  					out.A = uint16((da*a + sa*ma) / m)
   241  				} else {
   242  					out.R = uint16(sr * ma / m)
   243  					out.G = uint16(sg * ma / m)
   244  					out.B = uint16(sb * ma / m)
   245  					out.A = uint16(sa * ma / m)
   246  				}
   247  				// The third argument is &out instead of out (and out is
   248  				// declared outside of the inner loop) to avoid the implicit
   249  				// conversion to color.Color here allocating memory in the
   250  				// inner loop if sizeof(color.RGBA64) > sizeof(uintptr).
   251  				dst.Set(x, y, &out)
   252  			}
   253  		}
   254  	}
   255  }
   256  
   257  func drawFillOver(dst *image.RGBA, r image.Rectangle, sr, sg, sb, sa uint32) {
   258  	// The 0x101 is here for the same reason as in drawRGBA.
   259  	a := (m - sa) * 0x101
   260  	i0 := dst.PixOffset(r.Min.X, r.Min.Y)
   261  	i1 := i0 + r.Dx()*4
   262  	for y := r.Min.Y; y != r.Max.Y; y++ {
   263  		for i := i0; i < i1; i += 4 {
   264  			dr := &dst.Pix[i+0]
   265  			dg := &dst.Pix[i+1]
   266  			db := &dst.Pix[i+2]
   267  			da := &dst.Pix[i+3]
   268  
   269  			*dr = uint8((uint32(*dr)*a/m + sr) >> 8)
   270  			*dg = uint8((uint32(*dg)*a/m + sg) >> 8)
   271  			*db = uint8((uint32(*db)*a/m + sb) >> 8)
   272  			*da = uint8((uint32(*da)*a/m + sa) >> 8)
   273  		}
   274  		i0 += dst.Stride
   275  		i1 += dst.Stride
   276  	}
   277  }
   278  
   279  func drawFillSrc(dst *image.RGBA, r image.Rectangle, sr, sg, sb, sa uint32) {
   280  	sr8 := uint8(sr >> 8)
   281  	sg8 := uint8(sg >> 8)
   282  	sb8 := uint8(sb >> 8)
   283  	sa8 := uint8(sa >> 8)
   284  	// The built-in copy function is faster than a straightforward for loop to fill the destination with
   285  	// the color, but copy requires a slice source. We therefore use a for loop to fill the first row, and
   286  	// then use the first row as the slice source for the remaining rows.
   287  	i0 := dst.PixOffset(r.Min.X, r.Min.Y)
   288  	i1 := i0 + r.Dx()*4
   289  	for i := i0; i < i1; i += 4 {
   290  		dst.Pix[i+0] = sr8
   291  		dst.Pix[i+1] = sg8
   292  		dst.Pix[i+2] = sb8
   293  		dst.Pix[i+3] = sa8
   294  	}
   295  	firstRow := dst.Pix[i0:i1]
   296  	for y := r.Min.Y + 1; y < r.Max.Y; y++ {
   297  		i0 += dst.Stride
   298  		i1 += dst.Stride
   299  		copy(dst.Pix[i0:i1], firstRow)
   300  	}
   301  }
   302  
   303  func drawCopyOver(dst *image.RGBA, r image.Rectangle, src *image.RGBA, sp image.Point) {
   304  	dx, dy := r.Dx(), r.Dy()
   305  	d0 := dst.PixOffset(r.Min.X, r.Min.Y)
   306  	s0 := src.PixOffset(sp.X, sp.Y)
   307  	var (
   308  		ddelta, sdelta int
   309  		i0, i1, idelta int
   310  	)
   311  	if r.Min.Y < sp.Y || r.Min.Y == sp.Y && r.Min.X <= sp.X {
   312  		ddelta = dst.Stride
   313  		sdelta = src.Stride
   314  		i0, i1, idelta = 0, dx*4, +4
   315  	} else {
   316  		// If the source start point is higher than the destination start point, or equal height but to the left,
   317  		// then we compose the rows in right-to-left, bottom-up order instead of left-to-right, top-down.
   318  		d0 += (dy - 1) * dst.Stride
   319  		s0 += (dy - 1) * src.Stride
   320  		ddelta = -dst.Stride
   321  		sdelta = -src.Stride
   322  		i0, i1, idelta = (dx-1)*4, -4, -4
   323  	}
   324  	for ; dy > 0; dy-- {
   325  		dpix := dst.Pix[d0:]
   326  		spix := src.Pix[s0:]
   327  		for i := i0; i != i1; i += idelta {
   328  			s := spix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
   329  			sr := uint32(s[0]) * 0x101
   330  			sg := uint32(s[1]) * 0x101
   331  			sb := uint32(s[2]) * 0x101
   332  			sa := uint32(s[3]) * 0x101
   333  
   334  			// The 0x101 is here for the same reason as in drawRGBA.
   335  			a := (m - sa) * 0x101
   336  
   337  			d := dpix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
   338  			d[0] = uint8((uint32(d[0])*a/m + sr) >> 8)
   339  			d[1] = uint8((uint32(d[1])*a/m + sg) >> 8)
   340  			d[2] = uint8((uint32(d[2])*a/m + sb) >> 8)
   341  			d[3] = uint8((uint32(d[3])*a/m + sa) >> 8)
   342  		}
   343  		d0 += ddelta
   344  		s0 += sdelta
   345  	}
   346  }
   347  
   348  func drawCopySrc(dst *image.RGBA, r image.Rectangle, src *image.RGBA, sp image.Point) {
   349  	n, dy := 4*r.Dx(), r.Dy()
   350  	d0 := dst.PixOffset(r.Min.X, r.Min.Y)
   351  	s0 := src.PixOffset(sp.X, sp.Y)
   352  	var ddelta, sdelta int
   353  	if r.Min.Y <= sp.Y {
   354  		ddelta = dst.Stride
   355  		sdelta = src.Stride
   356  	} else {
   357  		// If the source start point is higher than the destination start
   358  		// point, then we compose the rows in bottom-up order instead of
   359  		// top-down. Unlike the drawCopyOver function, we don't have to check
   360  		// the x coordinates because the built-in copy function can handle
   361  		// overlapping slices.
   362  		d0 += (dy - 1) * dst.Stride
   363  		s0 += (dy - 1) * src.Stride
   364  		ddelta = -dst.Stride
   365  		sdelta = -src.Stride
   366  	}
   367  	for ; dy > 0; dy-- {
   368  		copy(dst.Pix[d0:d0+n], src.Pix[s0:s0+n])
   369  		d0 += ddelta
   370  		s0 += sdelta
   371  	}
   372  }
   373  
   374  func drawNRGBAOver(dst *image.RGBA, r image.Rectangle, src *image.NRGBA, sp image.Point) {
   375  	i0 := (r.Min.X - dst.Rect.Min.X) * 4
   376  	i1 := (r.Max.X - dst.Rect.Min.X) * 4
   377  	si0 := (sp.X - src.Rect.Min.X) * 4
   378  	yMax := r.Max.Y - dst.Rect.Min.Y
   379  
   380  	y := r.Min.Y - dst.Rect.Min.Y
   381  	sy := sp.Y - src.Rect.Min.Y
   382  	for ; y != yMax; y, sy = y+1, sy+1 {
   383  		dpix := dst.Pix[y*dst.Stride:]
   384  		spix := src.Pix[sy*src.Stride:]
   385  
   386  		for i, si := i0, si0; i < i1; i, si = i+4, si+4 {
   387  			// Convert from non-premultiplied color to pre-multiplied color.
   388  			s := spix[si : si+4 : si+4] // Small cap improves performance, see https://golang.org/issue/27857
   389  			sa := uint32(s[3]) * 0x101
   390  			sr := uint32(s[0]) * sa / 0xff
   391  			sg := uint32(s[1]) * sa / 0xff
   392  			sb := uint32(s[2]) * sa / 0xff
   393  
   394  			d := dpix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
   395  			dr := uint32(d[0])
   396  			dg := uint32(d[1])
   397  			db := uint32(d[2])
   398  			da := uint32(d[3])
   399  
   400  			// The 0x101 is here for the same reason as in drawRGBA.
   401  			a := (m - sa) * 0x101
   402  
   403  			d[0] = uint8((dr*a/m + sr) >> 8)
   404  			d[1] = uint8((dg*a/m + sg) >> 8)
   405  			d[2] = uint8((db*a/m + sb) >> 8)
   406  			d[3] = uint8((da*a/m + sa) >> 8)
   407  		}
   408  	}
   409  }
   410  
   411  func drawNRGBASrc(dst *image.RGBA, r image.Rectangle, src *image.NRGBA, sp image.Point) {
   412  	i0 := (r.Min.X - dst.Rect.Min.X) * 4
   413  	i1 := (r.Max.X - dst.Rect.Min.X) * 4
   414  	si0 := (sp.X - src.Rect.Min.X) * 4
   415  	yMax := r.Max.Y - dst.Rect.Min.Y
   416  
   417  	y := r.Min.Y - dst.Rect.Min.Y
   418  	sy := sp.Y - src.Rect.Min.Y
   419  	for ; y != yMax; y, sy = y+1, sy+1 {
   420  		dpix := dst.Pix[y*dst.Stride:]
   421  		spix := src.Pix[sy*src.Stride:]
   422  
   423  		for i, si := i0, si0; i < i1; i, si = i+4, si+4 {
   424  			// Convert from non-premultiplied color to pre-multiplied color.
   425  			s := spix[si : si+4 : si+4] // Small cap improves performance, see https://golang.org/issue/27857
   426  			sa := uint32(s[3]) * 0x101
   427  			sr := uint32(s[0]) * sa / 0xff
   428  			sg := uint32(s[1]) * sa / 0xff
   429  			sb := uint32(s[2]) * sa / 0xff
   430  
   431  			d := dpix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
   432  			d[0] = uint8(sr >> 8)
   433  			d[1] = uint8(sg >> 8)
   434  			d[2] = uint8(sb >> 8)
   435  			d[3] = uint8(sa >> 8)
   436  		}
   437  	}
   438  }
   439  
   440  func drawGray(dst *image.RGBA, r image.Rectangle, src *image.Gray, sp image.Point) {
   441  	i0 := (r.Min.X - dst.Rect.Min.X) * 4
   442  	i1 := (r.Max.X - dst.Rect.Min.X) * 4
   443  	si0 := (sp.X - src.Rect.Min.X) * 1
   444  	yMax := r.Max.Y - dst.Rect.Min.Y
   445  
   446  	y := r.Min.Y - dst.Rect.Min.Y
   447  	sy := sp.Y - src.Rect.Min.Y
   448  	for ; y != yMax; y, sy = y+1, sy+1 {
   449  		dpix := dst.Pix[y*dst.Stride:]
   450  		spix := src.Pix[sy*src.Stride:]
   451  
   452  		for i, si := i0, si0; i < i1; i, si = i+4, si+1 {
   453  			p := spix[si]
   454  			d := dpix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
   455  			d[0] = p
   456  			d[1] = p
   457  			d[2] = p
   458  			d[3] = 255
   459  		}
   460  	}
   461  }
   462  
   463  func drawCMYK(dst *image.RGBA, r image.Rectangle, src *image.CMYK, sp image.Point) {
   464  	i0 := (r.Min.X - dst.Rect.Min.X) * 4
   465  	i1 := (r.Max.X - dst.Rect.Min.X) * 4
   466  	si0 := (sp.X - src.Rect.Min.X) * 4
   467  	yMax := r.Max.Y - dst.Rect.Min.Y
   468  
   469  	y := r.Min.Y - dst.Rect.Min.Y
   470  	sy := sp.Y - src.Rect.Min.Y
   471  	for ; y != yMax; y, sy = y+1, sy+1 {
   472  		dpix := dst.Pix[y*dst.Stride:]
   473  		spix := src.Pix[sy*src.Stride:]
   474  
   475  		for i, si := i0, si0; i < i1; i, si = i+4, si+4 {
   476  			s := spix[si : si+4 : si+4] // Small cap improves performance, see https://golang.org/issue/27857
   477  			d := dpix[i : i+4 : i+4]
   478  			d[0], d[1], d[2] = color.CMYKToRGB(s[0], s[1], s[2], s[3])
   479  			d[3] = 255
   480  		}
   481  	}
   482  }
   483  
   484  func drawGlyphOver(dst *image.RGBA, r image.Rectangle, src *image.Uniform, mask *image.Alpha, mp image.Point) {
   485  	i0 := dst.PixOffset(r.Min.X, r.Min.Y)
   486  	i1 := i0 + r.Dx()*4
   487  	mi0 := mask.PixOffset(mp.X, mp.Y)
   488  	sr, sg, sb, sa := src.RGBA()
   489  	for y, my := r.Min.Y, mp.Y; y != r.Max.Y; y, my = y+1, my+1 {
   490  		for i, mi := i0, mi0; i < i1; i, mi = i+4, mi+1 {
   491  			ma := uint32(mask.Pix[mi])
   492  			if ma == 0 {
   493  				continue
   494  			}
   495  			ma |= ma << 8
   496  
   497  			// The 0x101 is here for the same reason as in drawRGBA.
   498  			a := (m - (sa * ma / m)) * 0x101
   499  
   500  			d := dst.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
   501  			d[0] = uint8((uint32(d[0])*a + sr*ma) / m >> 8)
   502  			d[1] = uint8((uint32(d[1])*a + sg*ma) / m >> 8)
   503  			d[2] = uint8((uint32(d[2])*a + sb*ma) / m >> 8)
   504  			d[3] = uint8((uint32(d[3])*a + sa*ma) / m >> 8)
   505  		}
   506  		i0 += dst.Stride
   507  		i1 += dst.Stride
   508  		mi0 += mask.Stride
   509  	}
   510  }
   511  
   512  func drawRGBA(dst *image.RGBA, r image.Rectangle, src image.Image, sp image.Point, mask image.Image, mp image.Point, op Op) {
   513  	x0, x1, dx := r.Min.X, r.Max.X, 1
   514  	y0, y1, dy := r.Min.Y, r.Max.Y, 1
   515  	if image.Image(dst) == src && r.Overlaps(r.Add(sp.Sub(r.Min))) {
   516  		if sp.Y < r.Min.Y || sp.Y == r.Min.Y && sp.X < r.Min.X {
   517  			x0, x1, dx = x1-1, x0-1, -1
   518  			y0, y1, dy = y1-1, y0-1, -1
   519  		}
   520  	}
   521  
   522  	sy := sp.Y + y0 - r.Min.Y
   523  	my := mp.Y + y0 - r.Min.Y
   524  	sx0 := sp.X + x0 - r.Min.X
   525  	mx0 := mp.X + x0 - r.Min.X
   526  	sx1 := sx0 + (x1 - x0)
   527  	i0 := dst.PixOffset(x0, y0)
   528  	di := dx * 4
   529  	for y := y0; y != y1; y, sy, my = y+dy, sy+dy, my+dy {
   530  		for i, sx, mx := i0, sx0, mx0; sx != sx1; i, sx, mx = i+di, sx+dx, mx+dx {
   531  			ma := uint32(m)
   532  			if mask != nil {
   533  				_, _, _, ma = mask.At(mx, my).RGBA()
   534  			}
   535  			sr, sg, sb, sa := src.At(sx, sy).RGBA()
   536  			d := dst.Pix[i : i+4 : i+4] // Small cap improves performance, see https://golang.org/issue/27857
   537  			if op == Over {
   538  				dr := uint32(d[0])
   539  				dg := uint32(d[1])
   540  				db := uint32(d[2])
   541  				da := uint32(d[3])
   542  
   543  				// dr, dg, db and da are all 8-bit color at the moment, ranging in [0,255].
   544  				// We work in 16-bit color, and so would normally do:
   545  				// dr |= dr << 8
   546  				// and similarly for dg, db and da, but instead we multiply a
   547  				// (which is a 16-bit color, ranging in [0,65535]) by 0x101.
   548  				// This yields the same result, but is fewer arithmetic operations.
   549  				a := (m - (sa * ma / m)) * 0x101
   550  
   551  				d[0] = uint8((dr*a + sr*ma) / m >> 8)
   552  				d[1] = uint8((dg*a + sg*ma) / m >> 8)
   553  				d[2] = uint8((db*a + sb*ma) / m >> 8)
   554  				d[3] = uint8((da*a + sa*ma) / m >> 8)
   555  
   556  			} else {
   557  				d[0] = uint8(sr * ma / m >> 8)
   558  				d[1] = uint8(sg * ma / m >> 8)
   559  				d[2] = uint8(sb * ma / m >> 8)
   560  				d[3] = uint8(sa * ma / m >> 8)
   561  			}
   562  		}
   563  		i0 += dy * dst.Stride
   564  	}
   565  }
   566  
   567  // clamp clamps i to the interval [0, 0xffff].
   568  func clamp(i int32) int32 {
   569  	if i < 0 {
   570  		return 0
   571  	}
   572  	if i > 0xffff {
   573  		return 0xffff
   574  	}
   575  	return i
   576  }
   577  
   578  // sqDiff returns the squared-difference of x and y, shifted by 2 so that
   579  // adding four of those won't overflow a uint32.
   580  //
   581  // x and y are both assumed to be in the range [0, 0xffff].
   582  func sqDiff(x, y int32) uint32 {
   583  	// This is an optimized code relying on the overflow/wrap around
   584  	// properties of unsigned integers operations guaranteed by the language
   585  	// spec. See sqDiff from the image/color package for more details.
   586  	d := uint32(x - y)
   587  	return (d * d) >> 2
   588  }
   589  
   590  func drawPaletted(dst Image, r image.Rectangle, src image.Image, sp image.Point, floydSteinberg bool) {
   591  	// TODO(nigeltao): handle the case where the dst and src overlap.
   592  	// Does it even make sense to try and do Floyd-Steinberg whilst
   593  	// walking the image backward (right-to-left bottom-to-top)?
   594  
   595  	// If dst is an *image.Paletted, we have a fast path for dst.Set and
   596  	// dst.At. The dst.Set equivalent is a batch version of the algorithm
   597  	// used by color.Palette's Index method in image/color/color.go, plus
   598  	// optional Floyd-Steinberg error diffusion.
   599  	palette, pix, stride := [][4]int32(nil), []byte(nil), 0
   600  	if p, ok := dst.(*image.Paletted); ok {
   601  		palette = make([][4]int32, len(p.Palette))
   602  		for i, col := range p.Palette {
   603  			r, g, b, a := col.RGBA()
   604  			palette[i][0] = int32(r)
   605  			palette[i][1] = int32(g)
   606  			palette[i][2] = int32(b)
   607  			palette[i][3] = int32(a)
   608  		}
   609  		pix, stride = p.Pix[p.PixOffset(r.Min.X, r.Min.Y):], p.Stride
   610  	}
   611  
   612  	// quantErrorCurr and quantErrorNext are the Floyd-Steinberg quantization
   613  	// errors that have been propagated to the pixels in the current and next
   614  	// rows. The +2 simplifies calculation near the edges.
   615  	var quantErrorCurr, quantErrorNext [][4]int32
   616  	if floydSteinberg {
   617  		quantErrorCurr = make([][4]int32, r.Dx()+2)
   618  		quantErrorNext = make([][4]int32, r.Dx()+2)
   619  	}
   620  	pxRGBA := func(x, y int) (r, g, b, a uint32) { return src.At(x, y).RGBA() }
   621  	// Fast paths for special cases to avoid excessive use of the color.Color
   622  	// interface which escapes to the heap but need to be discovered for
   623  	// each pixel on r. See also https://golang.org/issues/15759.
   624  	switch src0 := src.(type) {
   625  	case *image.RGBA:
   626  		pxRGBA = func(x, y int) (r, g, b, a uint32) { return src0.RGBAAt(x, y).RGBA() }
   627  	case *image.NRGBA:
   628  		pxRGBA = func(x, y int) (r, g, b, a uint32) { return src0.NRGBAAt(x, y).RGBA() }
   629  	case *image.YCbCr:
   630  		pxRGBA = func(x, y int) (r, g, b, a uint32) { return src0.YCbCrAt(x, y).RGBA() }
   631  	}
   632  
   633  	// Loop over each source pixel.
   634  	out := color.RGBA64{A: 0xffff}
   635  	for y := 0; y != r.Dy(); y++ {
   636  		for x := 0; x != r.Dx(); x++ {
   637  			// er, eg and eb are the pixel's R,G,B values plus the
   638  			// optional Floyd-Steinberg error.
   639  			sr, sg, sb, sa := pxRGBA(sp.X+x, sp.Y+y)
   640  			er, eg, eb, ea := int32(sr), int32(sg), int32(sb), int32(sa)
   641  			if floydSteinberg {
   642  				er = clamp(er + quantErrorCurr[x+1][0]/16)
   643  				eg = clamp(eg + quantErrorCurr[x+1][1]/16)
   644  				eb = clamp(eb + quantErrorCurr[x+1][2]/16)
   645  				ea = clamp(ea + quantErrorCurr[x+1][3]/16)
   646  			}
   647  
   648  			if palette != nil {
   649  				// Find the closest palette color in Euclidean R,G,B,A space:
   650  				// the one that minimizes sum-squared-difference.
   651  				// TODO(nigeltao): consider smarter algorithms.
   652  				bestIndex, bestSum := 0, uint32(1<<32-1)
   653  				for index, p := range palette {
   654  					sum := sqDiff(er, p[0]) + sqDiff(eg, p[1]) + sqDiff(eb, p[2]) + sqDiff(ea, p[3])
   655  					if sum < bestSum {
   656  						bestIndex, bestSum = index, sum
   657  						if sum == 0 {
   658  							break
   659  						}
   660  					}
   661  				}
   662  				pix[y*stride+x] = byte(bestIndex)
   663  
   664  				if !floydSteinberg {
   665  					continue
   666  				}
   667  				er -= palette[bestIndex][0]
   668  				eg -= palette[bestIndex][1]
   669  				eb -= palette[bestIndex][2]
   670  				ea -= palette[bestIndex][3]
   671  
   672  			} else {
   673  				out.R = uint16(er)
   674  				out.G = uint16(eg)
   675  				out.B = uint16(eb)
   676  				out.A = uint16(ea)
   677  				// The third argument is &out instead of out (and out is
   678  				// declared outside of the inner loop) to avoid the implicit
   679  				// conversion to color.Color here allocating memory in the
   680  				// inner loop if sizeof(color.RGBA64) > sizeof(uintptr).
   681  				dst.Set(r.Min.X+x, r.Min.Y+y, &out)
   682  
   683  				if !floydSteinberg {
   684  					continue
   685  				}
   686  				sr, sg, sb, sa = dst.At(r.Min.X+x, r.Min.Y+y).RGBA()
   687  				er -= int32(sr)
   688  				eg -= int32(sg)
   689  				eb -= int32(sb)
   690  				ea -= int32(sa)
   691  			}
   692  
   693  			// Propagate the Floyd-Steinberg quantization error.
   694  			quantErrorNext[x+0][0] += er * 3
   695  			quantErrorNext[x+0][1] += eg * 3
   696  			quantErrorNext[x+0][2] += eb * 3
   697  			quantErrorNext[x+0][3] += ea * 3
   698  			quantErrorNext[x+1][0] += er * 5
   699  			quantErrorNext[x+1][1] += eg * 5
   700  			quantErrorNext[x+1][2] += eb * 5
   701  			quantErrorNext[x+1][3] += ea * 5
   702  			quantErrorNext[x+2][0] += er * 1
   703  			quantErrorNext[x+2][1] += eg * 1
   704  			quantErrorNext[x+2][2] += eb * 1
   705  			quantErrorNext[x+2][3] += ea * 1
   706  			quantErrorCurr[x+2][0] += er * 7
   707  			quantErrorCurr[x+2][1] += eg * 7
   708  			quantErrorCurr[x+2][2] += eb * 7
   709  			quantErrorCurr[x+2][3] += ea * 7
   710  		}
   711  
   712  		// Recycle the quantization error buffers.
   713  		if floydSteinberg {
   714  			quantErrorCurr, quantErrorNext = quantErrorNext, quantErrorCurr
   715  			for i := range quantErrorNext {
   716  				quantErrorNext[i] = [4]int32{}
   717  			}
   718  		}
   719  	}
   720  }