github.com/geraldss/go/src@v0.0.0-20210511222824-ac7d0ebfc235/image/jpeg/reader.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package jpeg implements a JPEG image decoder and encoder. 6 // 7 // JPEG is defined in ITU-T T.81: https://www.w3.org/Graphics/JPEG/itu-t81.pdf. 8 package jpeg 9 10 import ( 11 "image" 12 "image/color" 13 "image/internal/imageutil" 14 "io" 15 ) 16 17 // TODO(nigeltao): fix up the doc comment style so that sentences start with 18 // the name of the type or function that they annotate. 19 20 // A FormatError reports that the input is not a valid JPEG. 21 type FormatError string 22 23 func (e FormatError) Error() string { return "invalid JPEG format: " + string(e) } 24 25 // An UnsupportedError reports that the input uses a valid but unimplemented JPEG feature. 26 type UnsupportedError string 27 28 func (e UnsupportedError) Error() string { return "unsupported JPEG feature: " + string(e) } 29 30 var errUnsupportedSubsamplingRatio = UnsupportedError("luma/chroma subsampling ratio") 31 32 // Component specification, specified in section B.2.2. 33 type component struct { 34 h int // Horizontal sampling factor. 35 v int // Vertical sampling factor. 36 c uint8 // Component identifier. 37 tq uint8 // Quantization table destination selector. 38 } 39 40 const ( 41 dcTable = 0 42 acTable = 1 43 maxTc = 1 44 maxTh = 3 45 maxTq = 3 46 47 maxComponents = 4 48 ) 49 50 const ( 51 sof0Marker = 0xc0 // Start Of Frame (Baseline Sequential). 52 sof1Marker = 0xc1 // Start Of Frame (Extended Sequential). 53 sof2Marker = 0xc2 // Start Of Frame (Progressive). 54 dhtMarker = 0xc4 // Define Huffman Table. 55 rst0Marker = 0xd0 // ReSTart (0). 56 rst7Marker = 0xd7 // ReSTart (7). 57 soiMarker = 0xd8 // Start Of Image. 58 eoiMarker = 0xd9 // End Of Image. 59 sosMarker = 0xda // Start Of Scan. 60 dqtMarker = 0xdb // Define Quantization Table. 61 driMarker = 0xdd // Define Restart Interval. 62 comMarker = 0xfe // COMment. 63 // "APPlication specific" markers aren't part of the JPEG spec per se, 64 // but in practice, their use is described at 65 // https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html 66 app0Marker = 0xe0 67 app14Marker = 0xee 68 app15Marker = 0xef 69 ) 70 71 // See https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe 72 const ( 73 adobeTransformUnknown = 0 74 adobeTransformYCbCr = 1 75 adobeTransformYCbCrK = 2 76 ) 77 78 // unzig maps from the zig-zag ordering to the natural ordering. For example, 79 // unzig[3] is the column and row of the fourth element in zig-zag order. The 80 // value is 16, which means first column (16%8 == 0) and third row (16/8 == 2). 81 var unzig = [blockSize]int{ 82 0, 1, 8, 16, 9, 2, 3, 10, 83 17, 24, 32, 25, 18, 11, 4, 5, 84 12, 19, 26, 33, 40, 48, 41, 34, 85 27, 20, 13, 6, 7, 14, 21, 28, 86 35, 42, 49, 56, 57, 50, 43, 36, 87 29, 22, 15, 23, 30, 37, 44, 51, 88 58, 59, 52, 45, 38, 31, 39, 46, 89 53, 60, 61, 54, 47, 55, 62, 63, 90 } 91 92 // Deprecated: Reader is not used by the image/jpeg package and should 93 // not be used by others. It is kept for compatibility. 94 type Reader interface { 95 io.ByteReader 96 io.Reader 97 } 98 99 // bits holds the unprocessed bits that have been taken from the byte-stream. 100 // The n least significant bits of a form the unread bits, to be read in MSB to 101 // LSB order. 102 type bits struct { 103 a uint32 // accumulator. 104 m uint32 // mask. m==1<<(n-1) when n>0, with m==0 when n==0. 105 n int32 // the number of unread bits in a. 106 } 107 108 type decoder struct { 109 r io.Reader 110 bits bits 111 // bytes is a byte buffer, similar to a bufio.Reader, except that it 112 // has to be able to unread more than 1 byte, due to byte stuffing. 113 // Byte stuffing is specified in section F.1.2.3. 114 bytes struct { 115 // buf[i:j] are the buffered bytes read from the underlying 116 // io.Reader that haven't yet been passed further on. 117 buf [4096]byte 118 i, j int 119 // nUnreadable is the number of bytes to back up i after 120 // overshooting. It can be 0, 1 or 2. 121 nUnreadable int 122 } 123 width, height int 124 125 img1 *image.Gray 126 img3 *image.YCbCr 127 blackPix []byte 128 blackStride int 129 130 ri int // Restart Interval. 131 nComp int 132 133 // As per section 4.5, there are four modes of operation (selected by the 134 // SOF? markers): sequential DCT, progressive DCT, lossless and 135 // hierarchical, although this implementation does not support the latter 136 // two non-DCT modes. Sequential DCT is further split into baseline and 137 // extended, as per section 4.11. 138 baseline bool 139 progressive bool 140 141 jfif bool 142 adobeTransformValid bool 143 adobeTransform uint8 144 eobRun uint16 // End-of-Band run, specified in section G.1.2.2. 145 146 comp [maxComponents]component 147 progCoeffs [maxComponents][]block // Saved state between progressive-mode scans. 148 huff [maxTc + 1][maxTh + 1]huffman 149 quant [maxTq + 1]block // Quantization tables, in zig-zag order. 150 tmp [2 * blockSize]byte 151 } 152 153 // fill fills up the d.bytes.buf buffer from the underlying io.Reader. It 154 // should only be called when there are no unread bytes in d.bytes. 155 func (d *decoder) fill() error { 156 if d.bytes.i != d.bytes.j { 157 panic("jpeg: fill called when unread bytes exist") 158 } 159 // Move the last 2 bytes to the start of the buffer, in case we need 160 // to call unreadByteStuffedByte. 161 if d.bytes.j > 2 { 162 d.bytes.buf[0] = d.bytes.buf[d.bytes.j-2] 163 d.bytes.buf[1] = d.bytes.buf[d.bytes.j-1] 164 d.bytes.i, d.bytes.j = 2, 2 165 } 166 // Fill in the rest of the buffer. 167 n, err := d.r.Read(d.bytes.buf[d.bytes.j:]) 168 d.bytes.j += n 169 if n > 0 { 170 err = nil 171 } 172 return err 173 } 174 175 // unreadByteStuffedByte undoes the most recent readByteStuffedByte call, 176 // giving a byte of data back from d.bits to d.bytes. The Huffman look-up table 177 // requires at least 8 bits for look-up, which means that Huffman decoding can 178 // sometimes overshoot and read one or two too many bytes. Two-byte overshoot 179 // can happen when expecting to read a 0xff 0x00 byte-stuffed byte. 180 func (d *decoder) unreadByteStuffedByte() { 181 d.bytes.i -= d.bytes.nUnreadable 182 d.bytes.nUnreadable = 0 183 if d.bits.n >= 8 { 184 d.bits.a >>= 8 185 d.bits.n -= 8 186 d.bits.m >>= 8 187 } 188 } 189 190 // readByte returns the next byte, whether buffered or not buffered. It does 191 // not care about byte stuffing. 192 func (d *decoder) readByte() (x byte, err error) { 193 for d.bytes.i == d.bytes.j { 194 if err = d.fill(); err != nil { 195 return 0, err 196 } 197 } 198 x = d.bytes.buf[d.bytes.i] 199 d.bytes.i++ 200 d.bytes.nUnreadable = 0 201 return x, nil 202 } 203 204 // errMissingFF00 means that readByteStuffedByte encountered an 0xff byte (a 205 // marker byte) that wasn't the expected byte-stuffed sequence 0xff, 0x00. 206 var errMissingFF00 = FormatError("missing 0xff00 sequence") 207 208 // readByteStuffedByte is like readByte but is for byte-stuffed Huffman data. 209 func (d *decoder) readByteStuffedByte() (x byte, err error) { 210 // Take the fast path if d.bytes.buf contains at least two bytes. 211 if d.bytes.i+2 <= d.bytes.j { 212 x = d.bytes.buf[d.bytes.i] 213 d.bytes.i++ 214 d.bytes.nUnreadable = 1 215 if x != 0xff { 216 return x, err 217 } 218 if d.bytes.buf[d.bytes.i] != 0x00 { 219 return 0, errMissingFF00 220 } 221 d.bytes.i++ 222 d.bytes.nUnreadable = 2 223 return 0xff, nil 224 } 225 226 d.bytes.nUnreadable = 0 227 228 x, err = d.readByte() 229 if err != nil { 230 return 0, err 231 } 232 d.bytes.nUnreadable = 1 233 if x != 0xff { 234 return x, nil 235 } 236 237 x, err = d.readByte() 238 if err != nil { 239 return 0, err 240 } 241 d.bytes.nUnreadable = 2 242 if x != 0x00 { 243 return 0, errMissingFF00 244 } 245 return 0xff, nil 246 } 247 248 // readFull reads exactly len(p) bytes into p. It does not care about byte 249 // stuffing. 250 func (d *decoder) readFull(p []byte) error { 251 // Unread the overshot bytes, if any. 252 if d.bytes.nUnreadable != 0 { 253 if d.bits.n >= 8 { 254 d.unreadByteStuffedByte() 255 } 256 d.bytes.nUnreadable = 0 257 } 258 259 for { 260 n := copy(p, d.bytes.buf[d.bytes.i:d.bytes.j]) 261 p = p[n:] 262 d.bytes.i += n 263 if len(p) == 0 { 264 break 265 } 266 if err := d.fill(); err != nil { 267 if err == io.EOF { 268 err = io.ErrUnexpectedEOF 269 } 270 return err 271 } 272 } 273 return nil 274 } 275 276 // ignore ignores the next n bytes. 277 func (d *decoder) ignore(n int) error { 278 // Unread the overshot bytes, if any. 279 if d.bytes.nUnreadable != 0 { 280 if d.bits.n >= 8 { 281 d.unreadByteStuffedByte() 282 } 283 d.bytes.nUnreadable = 0 284 } 285 286 for { 287 m := d.bytes.j - d.bytes.i 288 if m > n { 289 m = n 290 } 291 d.bytes.i += m 292 n -= m 293 if n == 0 { 294 break 295 } 296 if err := d.fill(); err != nil { 297 if err == io.EOF { 298 err = io.ErrUnexpectedEOF 299 } 300 return err 301 } 302 } 303 return nil 304 } 305 306 // Specified in section B.2.2. 307 func (d *decoder) processSOF(n int) error { 308 if d.nComp != 0 { 309 return FormatError("multiple SOF markers") 310 } 311 switch n { 312 case 6 + 3*1: // Grayscale image. 313 d.nComp = 1 314 case 6 + 3*3: // YCbCr or RGB image. 315 d.nComp = 3 316 case 6 + 3*4: // YCbCrK or CMYK image. 317 d.nComp = 4 318 default: 319 return UnsupportedError("number of components") 320 } 321 if err := d.readFull(d.tmp[:n]); err != nil { 322 return err 323 } 324 // We only support 8-bit precision. 325 if d.tmp[0] != 8 { 326 return UnsupportedError("precision") 327 } 328 d.height = int(d.tmp[1])<<8 + int(d.tmp[2]) 329 d.width = int(d.tmp[3])<<8 + int(d.tmp[4]) 330 if int(d.tmp[5]) != d.nComp { 331 return FormatError("SOF has wrong length") 332 } 333 334 for i := 0; i < d.nComp; i++ { 335 d.comp[i].c = d.tmp[6+3*i] 336 // Section B.2.2 states that "the value of C_i shall be different from 337 // the values of C_1 through C_(i-1)". 338 for j := 0; j < i; j++ { 339 if d.comp[i].c == d.comp[j].c { 340 return FormatError("repeated component identifier") 341 } 342 } 343 344 d.comp[i].tq = d.tmp[8+3*i] 345 if d.comp[i].tq > maxTq { 346 return FormatError("bad Tq value") 347 } 348 349 hv := d.tmp[7+3*i] 350 h, v := int(hv>>4), int(hv&0x0f) 351 if h < 1 || 4 < h || v < 1 || 4 < v { 352 return FormatError("luma/chroma subsampling ratio") 353 } 354 if h == 3 || v == 3 { 355 return errUnsupportedSubsamplingRatio 356 } 357 switch d.nComp { 358 case 1: 359 // If a JPEG image has only one component, section A.2 says "this data 360 // is non-interleaved by definition" and section A.2.2 says "[in this 361 // case...] the order of data units within a scan shall be left-to-right 362 // and top-to-bottom... regardless of the values of H_1 and V_1". Section 363 // 4.8.2 also says "[for non-interleaved data], the MCU is defined to be 364 // one data unit". Similarly, section A.1.1 explains that it is the ratio 365 // of H_i to max_j(H_j) that matters, and similarly for V. For grayscale 366 // images, H_1 is the maximum H_j for all components j, so that ratio is 367 // always 1. The component's (h, v) is effectively always (1, 1): even if 368 // the nominal (h, v) is (2, 1), a 20x5 image is encoded in three 8x8 369 // MCUs, not two 16x8 MCUs. 370 h, v = 1, 1 371 372 case 3: 373 // For YCbCr images, we only support 4:4:4, 4:4:0, 4:2:2, 4:2:0, 374 // 4:1:1 or 4:1:0 chroma subsampling ratios. This implies that the 375 // (h, v) values for the Y component are either (1, 1), (1, 2), 376 // (2, 1), (2, 2), (4, 1) or (4, 2), and the Y component's values 377 // must be a multiple of the Cb and Cr component's values. We also 378 // assume that the two chroma components have the same subsampling 379 // ratio. 380 switch i { 381 case 0: // Y. 382 // We have already verified, above, that h and v are both 383 // either 1, 2 or 4, so invalid (h, v) combinations are those 384 // with v == 4. 385 if v == 4 { 386 return errUnsupportedSubsamplingRatio 387 } 388 case 1: // Cb. 389 if d.comp[0].h%h != 0 || d.comp[0].v%v != 0 { 390 return errUnsupportedSubsamplingRatio 391 } 392 case 2: // Cr. 393 if d.comp[1].h != h || d.comp[1].v != v { 394 return errUnsupportedSubsamplingRatio 395 } 396 } 397 398 case 4: 399 // For 4-component images (either CMYK or YCbCrK), we only support two 400 // hv vectors: [0x11 0x11 0x11 0x11] and [0x22 0x11 0x11 0x22]. 401 // Theoretically, 4-component JPEG images could mix and match hv values 402 // but in practice, those two combinations are the only ones in use, 403 // and it simplifies the applyBlack code below if we can assume that: 404 // - for CMYK, the C and K channels have full samples, and if the M 405 // and Y channels subsample, they subsample both horizontally and 406 // vertically. 407 // - for YCbCrK, the Y and K channels have full samples. 408 switch i { 409 case 0: 410 if hv != 0x11 && hv != 0x22 { 411 return errUnsupportedSubsamplingRatio 412 } 413 case 1, 2: 414 if hv != 0x11 { 415 return errUnsupportedSubsamplingRatio 416 } 417 case 3: 418 if d.comp[0].h != h || d.comp[0].v != v { 419 return errUnsupportedSubsamplingRatio 420 } 421 } 422 } 423 424 d.comp[i].h = h 425 d.comp[i].v = v 426 } 427 return nil 428 } 429 430 // Specified in section B.2.4.1. 431 func (d *decoder) processDQT(n int) error { 432 loop: 433 for n > 0 { 434 n-- 435 x, err := d.readByte() 436 if err != nil { 437 return err 438 } 439 tq := x & 0x0f 440 if tq > maxTq { 441 return FormatError("bad Tq value") 442 } 443 switch x >> 4 { 444 default: 445 return FormatError("bad Pq value") 446 case 0: 447 if n < blockSize { 448 break loop 449 } 450 n -= blockSize 451 if err := d.readFull(d.tmp[:blockSize]); err != nil { 452 return err 453 } 454 for i := range d.quant[tq] { 455 d.quant[tq][i] = int32(d.tmp[i]) 456 } 457 case 1: 458 if n < 2*blockSize { 459 break loop 460 } 461 n -= 2 * blockSize 462 if err := d.readFull(d.tmp[:2*blockSize]); err != nil { 463 return err 464 } 465 for i := range d.quant[tq] { 466 d.quant[tq][i] = int32(d.tmp[2*i])<<8 | int32(d.tmp[2*i+1]) 467 } 468 } 469 } 470 if n != 0 { 471 return FormatError("DQT has wrong length") 472 } 473 return nil 474 } 475 476 // Specified in section B.2.4.4. 477 func (d *decoder) processDRI(n int) error { 478 if n != 2 { 479 return FormatError("DRI has wrong length") 480 } 481 if err := d.readFull(d.tmp[:2]); err != nil { 482 return err 483 } 484 d.ri = int(d.tmp[0])<<8 + int(d.tmp[1]) 485 return nil 486 } 487 488 func (d *decoder) processApp0Marker(n int) error { 489 if n < 5 { 490 return d.ignore(n) 491 } 492 if err := d.readFull(d.tmp[:5]); err != nil { 493 return err 494 } 495 n -= 5 496 497 d.jfif = d.tmp[0] == 'J' && d.tmp[1] == 'F' && d.tmp[2] == 'I' && d.tmp[3] == 'F' && d.tmp[4] == '\x00' 498 499 if n > 0 { 500 return d.ignore(n) 501 } 502 return nil 503 } 504 505 func (d *decoder) processApp14Marker(n int) error { 506 if n < 12 { 507 return d.ignore(n) 508 } 509 if err := d.readFull(d.tmp[:12]); err != nil { 510 return err 511 } 512 n -= 12 513 514 if d.tmp[0] == 'A' && d.tmp[1] == 'd' && d.tmp[2] == 'o' && d.tmp[3] == 'b' && d.tmp[4] == 'e' { 515 d.adobeTransformValid = true 516 d.adobeTransform = d.tmp[11] 517 } 518 519 if n > 0 { 520 return d.ignore(n) 521 } 522 return nil 523 } 524 525 // decode reads a JPEG image from r and returns it as an image.Image. 526 func (d *decoder) decode(r io.Reader, configOnly bool) (image.Image, error) { 527 d.r = r 528 529 // Check for the Start Of Image marker. 530 if err := d.readFull(d.tmp[:2]); err != nil { 531 return nil, err 532 } 533 if d.tmp[0] != 0xff || d.tmp[1] != soiMarker { 534 return nil, FormatError("missing SOI marker") 535 } 536 537 // Process the remaining segments until the End Of Image marker. 538 for { 539 err := d.readFull(d.tmp[:2]) 540 if err != nil { 541 return nil, err 542 } 543 for d.tmp[0] != 0xff { 544 // Strictly speaking, this is a format error. However, libjpeg is 545 // liberal in what it accepts. As of version 9, next_marker in 546 // jdmarker.c treats this as a warning (JWRN_EXTRANEOUS_DATA) and 547 // continues to decode the stream. Even before next_marker sees 548 // extraneous data, jpeg_fill_bit_buffer in jdhuff.c reads as many 549 // bytes as it can, possibly past the end of a scan's data. It 550 // effectively puts back any markers that it overscanned (e.g. an 551 // "\xff\xd9" EOI marker), but it does not put back non-marker data, 552 // and thus it can silently ignore a small number of extraneous 553 // non-marker bytes before next_marker has a chance to see them (and 554 // print a warning). 555 // 556 // We are therefore also liberal in what we accept. Extraneous data 557 // is silently ignored. 558 // 559 // This is similar to, but not exactly the same as, the restart 560 // mechanism within a scan (the RST[0-7] markers). 561 // 562 // Note that extraneous 0xff bytes in e.g. SOS data are escaped as 563 // "\xff\x00", and so are detected a little further down below. 564 d.tmp[0] = d.tmp[1] 565 d.tmp[1], err = d.readByte() 566 if err != nil { 567 return nil, err 568 } 569 } 570 marker := d.tmp[1] 571 if marker == 0 { 572 // Treat "\xff\x00" as extraneous data. 573 continue 574 } 575 for marker == 0xff { 576 // Section B.1.1.2 says, "Any marker may optionally be preceded by any 577 // number of fill bytes, which are bytes assigned code X'FF'". 578 marker, err = d.readByte() 579 if err != nil { 580 return nil, err 581 } 582 } 583 if marker == eoiMarker { // End Of Image. 584 break 585 } 586 if rst0Marker <= marker && marker <= rst7Marker { 587 // Figures B.2 and B.16 of the specification suggest that restart markers should 588 // only occur between Entropy Coded Segments and not after the final ECS. 589 // However, some encoders may generate incorrect JPEGs with a final restart 590 // marker. That restart marker will be seen here instead of inside the processSOS 591 // method, and is ignored as a harmless error. Restart markers have no extra data, 592 // so we check for this before we read the 16-bit length of the segment. 593 continue 594 } 595 596 // Read the 16-bit length of the segment. The value includes the 2 bytes for the 597 // length itself, so we subtract 2 to get the number of remaining bytes. 598 if err = d.readFull(d.tmp[:2]); err != nil { 599 return nil, err 600 } 601 n := int(d.tmp[0])<<8 + int(d.tmp[1]) - 2 602 if n < 0 { 603 return nil, FormatError("short segment length") 604 } 605 606 switch marker { 607 case sof0Marker, sof1Marker, sof2Marker: 608 d.baseline = marker == sof0Marker 609 d.progressive = marker == sof2Marker 610 err = d.processSOF(n) 611 if configOnly && d.jfif { 612 return nil, err 613 } 614 case dhtMarker: 615 if configOnly { 616 err = d.ignore(n) 617 } else { 618 err = d.processDHT(n) 619 } 620 case dqtMarker: 621 if configOnly { 622 err = d.ignore(n) 623 } else { 624 err = d.processDQT(n) 625 } 626 case sosMarker: 627 if configOnly { 628 return nil, nil 629 } 630 err = d.processSOS(n) 631 case driMarker: 632 if configOnly { 633 err = d.ignore(n) 634 } else { 635 err = d.processDRI(n) 636 } 637 case app0Marker: 638 err = d.processApp0Marker(n) 639 case app14Marker: 640 err = d.processApp14Marker(n) 641 default: 642 if app0Marker <= marker && marker <= app15Marker || marker == comMarker { 643 err = d.ignore(n) 644 } else if marker < 0xc0 { // See Table B.1 "Marker code assignments". 645 err = FormatError("unknown marker") 646 } else { 647 err = UnsupportedError("unknown marker") 648 } 649 } 650 if err != nil { 651 return nil, err 652 } 653 } 654 655 if d.progressive { 656 if err := d.reconstructProgressiveImage(); err != nil { 657 return nil, err 658 } 659 } 660 if d.img1 != nil { 661 return d.img1, nil 662 } 663 if d.img3 != nil { 664 if d.blackPix != nil { 665 return d.applyBlack() 666 } else if d.isRGB() { 667 return d.convertToRGB() 668 } 669 return d.img3, nil 670 } 671 return nil, FormatError("missing SOS marker") 672 } 673 674 // applyBlack combines d.img3 and d.blackPix into a CMYK image. The formula 675 // used depends on whether the JPEG image is stored as CMYK or YCbCrK, 676 // indicated by the APP14 (Adobe) metadata. 677 // 678 // Adobe CMYK JPEG images are inverted, where 255 means no ink instead of full 679 // ink, so we apply "v = 255 - v" at various points. Note that a double 680 // inversion is a no-op, so inversions might be implicit in the code below. 681 func (d *decoder) applyBlack() (image.Image, error) { 682 if !d.adobeTransformValid { 683 return nil, UnsupportedError("unknown color model: 4-component JPEG doesn't have Adobe APP14 metadata") 684 } 685 686 // If the 4-component JPEG image isn't explicitly marked as "Unknown (RGB 687 // or CMYK)" as per 688 // https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe 689 // we assume that it is YCbCrK. This matches libjpeg's jdapimin.c. 690 if d.adobeTransform != adobeTransformUnknown { 691 // Convert the YCbCr part of the YCbCrK to RGB, invert the RGB to get 692 // CMY, and patch in the original K. The RGB to CMY inversion cancels 693 // out the 'Adobe inversion' described in the applyBlack doc comment 694 // above, so in practice, only the fourth channel (black) is inverted. 695 bounds := d.img3.Bounds() 696 img := image.NewRGBA(bounds) 697 imageutil.DrawYCbCr(img, bounds, d.img3, bounds.Min) 698 for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 { 699 for i, x := iBase+3, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 { 700 img.Pix[i] = 255 - d.blackPix[(y-bounds.Min.Y)*d.blackStride+(x-bounds.Min.X)] 701 } 702 } 703 return &image.CMYK{ 704 Pix: img.Pix, 705 Stride: img.Stride, 706 Rect: img.Rect, 707 }, nil 708 } 709 710 // The first three channels (cyan, magenta, yellow) of the CMYK 711 // were decoded into d.img3, but each channel was decoded into a separate 712 // []byte slice, and some channels may be subsampled. We interleave the 713 // separate channels into an image.CMYK's single []byte slice containing 4 714 // contiguous bytes per pixel. 715 bounds := d.img3.Bounds() 716 img := image.NewCMYK(bounds) 717 718 translations := [4]struct { 719 src []byte 720 stride int 721 }{ 722 {d.img3.Y, d.img3.YStride}, 723 {d.img3.Cb, d.img3.CStride}, 724 {d.img3.Cr, d.img3.CStride}, 725 {d.blackPix, d.blackStride}, 726 } 727 for t, translation := range translations { 728 subsample := d.comp[t].h != d.comp[0].h || d.comp[t].v != d.comp[0].v 729 for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 { 730 sy := y - bounds.Min.Y 731 if subsample { 732 sy /= 2 733 } 734 for i, x := iBase+t, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 { 735 sx := x - bounds.Min.X 736 if subsample { 737 sx /= 2 738 } 739 img.Pix[i] = 255 - translation.src[sy*translation.stride+sx] 740 } 741 } 742 } 743 return img, nil 744 } 745 746 func (d *decoder) isRGB() bool { 747 if d.jfif { 748 return false 749 } 750 if d.adobeTransformValid && d.adobeTransform == adobeTransformUnknown { 751 // https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe 752 // says that 0 means Unknown (and in practice RGB) and 1 means YCbCr. 753 return true 754 } 755 return d.comp[0].c == 'R' && d.comp[1].c == 'G' && d.comp[2].c == 'B' 756 } 757 758 func (d *decoder) convertToRGB() (image.Image, error) { 759 cScale := d.comp[0].h / d.comp[1].h 760 bounds := d.img3.Bounds() 761 img := image.NewRGBA(bounds) 762 for y := bounds.Min.Y; y < bounds.Max.Y; y++ { 763 po := img.PixOffset(bounds.Min.X, y) 764 yo := d.img3.YOffset(bounds.Min.X, y) 765 co := d.img3.COffset(bounds.Min.X, y) 766 for i, iMax := 0, bounds.Max.X-bounds.Min.X; i < iMax; i++ { 767 img.Pix[po+4*i+0] = d.img3.Y[yo+i] 768 img.Pix[po+4*i+1] = d.img3.Cb[co+i/cScale] 769 img.Pix[po+4*i+2] = d.img3.Cr[co+i/cScale] 770 img.Pix[po+4*i+3] = 255 771 } 772 } 773 return img, nil 774 } 775 776 // Decode reads a JPEG image from r and returns it as an image.Image. 777 func Decode(r io.Reader) (image.Image, error) { 778 var d decoder 779 return d.decode(r, false) 780 } 781 782 // DecodeConfig returns the color model and dimensions of a JPEG image without 783 // decoding the entire image. 784 func DecodeConfig(r io.Reader) (image.Config, error) { 785 var d decoder 786 if _, err := d.decode(r, true); err != nil { 787 return image.Config{}, err 788 } 789 switch d.nComp { 790 case 1: 791 return image.Config{ 792 ColorModel: color.GrayModel, 793 Width: d.width, 794 Height: d.height, 795 }, nil 796 case 3: 797 cm := color.YCbCrModel 798 if d.isRGB() { 799 cm = color.RGBAModel 800 } 801 return image.Config{ 802 ColorModel: cm, 803 Width: d.width, 804 Height: d.height, 805 }, nil 806 case 4: 807 return image.Config{ 808 ColorModel: color.CMYKModel, 809 Width: d.width, 810 Height: d.height, 811 }, nil 812 } 813 return image.Config{}, FormatError("missing SOF marker") 814 } 815 816 func init() { 817 image.RegisterFormat("jpeg", "\xff\xd8", Decode, DecodeConfig) 818 }