github.com/geraldss/go/src@v0.0.0-20210511222824-ac7d0ebfc235/math/big/rat.go (about) 1 // Copyright 2010 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // This file implements multi-precision rational numbers. 6 7 package big 8 9 import ( 10 "fmt" 11 "math" 12 ) 13 14 // A Rat represents a quotient a/b of arbitrary precision. 15 // The zero value for a Rat represents the value 0. 16 // 17 // Operations always take pointer arguments (*Rat) rather 18 // than Rat values, and each unique Rat value requires 19 // its own unique *Rat pointer. To "copy" a Rat value, 20 // an existing (or newly allocated) Rat must be set to 21 // a new value using the Rat.Set method; shallow copies 22 // of Rats are not supported and may lead to errors. 23 type Rat struct { 24 // To make zero values for Rat work w/o initialization, 25 // a zero value of b (len(b) == 0) acts like b == 1. At 26 // the earliest opportunity (when an assignment to the Rat 27 // is made), such uninitialized denominators are set to 1. 28 // a.neg determines the sign of the Rat, b.neg is ignored. 29 a, b Int 30 } 31 32 // NewRat creates a new Rat with numerator a and denominator b. 33 func NewRat(a, b int64) *Rat { 34 return new(Rat).SetFrac64(a, b) 35 } 36 37 // SetFloat64 sets z to exactly f and returns z. 38 // If f is not finite, SetFloat returns nil. 39 func (z *Rat) SetFloat64(f float64) *Rat { 40 const expMask = 1<<11 - 1 41 bits := math.Float64bits(f) 42 mantissa := bits & (1<<52 - 1) 43 exp := int((bits >> 52) & expMask) 44 switch exp { 45 case expMask: // non-finite 46 return nil 47 case 0: // denormal 48 exp -= 1022 49 default: // normal 50 mantissa |= 1 << 52 51 exp -= 1023 52 } 53 54 shift := 52 - exp 55 56 // Optimization (?): partially pre-normalise. 57 for mantissa&1 == 0 && shift > 0 { 58 mantissa >>= 1 59 shift-- 60 } 61 62 z.a.SetUint64(mantissa) 63 z.a.neg = f < 0 64 z.b.Set(intOne) 65 if shift > 0 { 66 z.b.Lsh(&z.b, uint(shift)) 67 } else { 68 z.a.Lsh(&z.a, uint(-shift)) 69 } 70 return z.norm() 71 } 72 73 // quotToFloat32 returns the non-negative float32 value 74 // nearest to the quotient a/b, using round-to-even in 75 // halfway cases. It does not mutate its arguments. 76 // Preconditions: b is non-zero; a and b have no common factors. 77 func quotToFloat32(a, b nat) (f float32, exact bool) { 78 const ( 79 // float size in bits 80 Fsize = 32 81 82 // mantissa 83 Msize = 23 84 Msize1 = Msize + 1 // incl. implicit 1 85 Msize2 = Msize1 + 1 86 87 // exponent 88 Esize = Fsize - Msize1 89 Ebias = 1<<(Esize-1) - 1 90 Emin = 1 - Ebias 91 Emax = Ebias 92 ) 93 94 // TODO(adonovan): specialize common degenerate cases: 1.0, integers. 95 alen := a.bitLen() 96 if alen == 0 { 97 return 0, true 98 } 99 blen := b.bitLen() 100 if blen == 0 { 101 panic("division by zero") 102 } 103 104 // 1. Left-shift A or B such that quotient A/B is in [1<<Msize1, 1<<(Msize2+1) 105 // (Msize2 bits if A < B when they are left-aligned, Msize2+1 bits if A >= B). 106 // This is 2 or 3 more than the float32 mantissa field width of Msize: 107 // - the optional extra bit is shifted away in step 3 below. 108 // - the high-order 1 is omitted in "normal" representation; 109 // - the low-order 1 will be used during rounding then discarded. 110 exp := alen - blen 111 var a2, b2 nat 112 a2 = a2.set(a) 113 b2 = b2.set(b) 114 if shift := Msize2 - exp; shift > 0 { 115 a2 = a2.shl(a2, uint(shift)) 116 } else if shift < 0 { 117 b2 = b2.shl(b2, uint(-shift)) 118 } 119 120 // 2. Compute quotient and remainder (q, r). NB: due to the 121 // extra shift, the low-order bit of q is logically the 122 // high-order bit of r. 123 var q nat 124 q, r := q.div(a2, a2, b2) // (recycle a2) 125 mantissa := low32(q) 126 haveRem := len(r) > 0 // mantissa&1 && !haveRem => remainder is exactly half 127 128 // 3. If quotient didn't fit in Msize2 bits, redo division by b2<<1 129 // (in effect---we accomplish this incrementally). 130 if mantissa>>Msize2 == 1 { 131 if mantissa&1 == 1 { 132 haveRem = true 133 } 134 mantissa >>= 1 135 exp++ 136 } 137 if mantissa>>Msize1 != 1 { 138 panic(fmt.Sprintf("expected exactly %d bits of result", Msize2)) 139 } 140 141 // 4. Rounding. 142 if Emin-Msize <= exp && exp <= Emin { 143 // Denormal case; lose 'shift' bits of precision. 144 shift := uint(Emin - (exp - 1)) // [1..Esize1) 145 lostbits := mantissa & (1<<shift - 1) 146 haveRem = haveRem || lostbits != 0 147 mantissa >>= shift 148 exp = 2 - Ebias // == exp + shift 149 } 150 // Round q using round-half-to-even. 151 exact = !haveRem 152 if mantissa&1 != 0 { 153 exact = false 154 if haveRem || mantissa&2 != 0 { 155 if mantissa++; mantissa >= 1<<Msize2 { 156 // Complete rollover 11...1 => 100...0, so shift is safe 157 mantissa >>= 1 158 exp++ 159 } 160 } 161 } 162 mantissa >>= 1 // discard rounding bit. Mantissa now scaled by 1<<Msize1. 163 164 f = float32(math.Ldexp(float64(mantissa), exp-Msize1)) 165 if math.IsInf(float64(f), 0) { 166 exact = false 167 } 168 return 169 } 170 171 // quotToFloat64 returns the non-negative float64 value 172 // nearest to the quotient a/b, using round-to-even in 173 // halfway cases. It does not mutate its arguments. 174 // Preconditions: b is non-zero; a and b have no common factors. 175 func quotToFloat64(a, b nat) (f float64, exact bool) { 176 const ( 177 // float size in bits 178 Fsize = 64 179 180 // mantissa 181 Msize = 52 182 Msize1 = Msize + 1 // incl. implicit 1 183 Msize2 = Msize1 + 1 184 185 // exponent 186 Esize = Fsize - Msize1 187 Ebias = 1<<(Esize-1) - 1 188 Emin = 1 - Ebias 189 Emax = Ebias 190 ) 191 192 // TODO(adonovan): specialize common degenerate cases: 1.0, integers. 193 alen := a.bitLen() 194 if alen == 0 { 195 return 0, true 196 } 197 blen := b.bitLen() 198 if blen == 0 { 199 panic("division by zero") 200 } 201 202 // 1. Left-shift A or B such that quotient A/B is in [1<<Msize1, 1<<(Msize2+1) 203 // (Msize2 bits if A < B when they are left-aligned, Msize2+1 bits if A >= B). 204 // This is 2 or 3 more than the float64 mantissa field width of Msize: 205 // - the optional extra bit is shifted away in step 3 below. 206 // - the high-order 1 is omitted in "normal" representation; 207 // - the low-order 1 will be used during rounding then discarded. 208 exp := alen - blen 209 var a2, b2 nat 210 a2 = a2.set(a) 211 b2 = b2.set(b) 212 if shift := Msize2 - exp; shift > 0 { 213 a2 = a2.shl(a2, uint(shift)) 214 } else if shift < 0 { 215 b2 = b2.shl(b2, uint(-shift)) 216 } 217 218 // 2. Compute quotient and remainder (q, r). NB: due to the 219 // extra shift, the low-order bit of q is logically the 220 // high-order bit of r. 221 var q nat 222 q, r := q.div(a2, a2, b2) // (recycle a2) 223 mantissa := low64(q) 224 haveRem := len(r) > 0 // mantissa&1 && !haveRem => remainder is exactly half 225 226 // 3. If quotient didn't fit in Msize2 bits, redo division by b2<<1 227 // (in effect---we accomplish this incrementally). 228 if mantissa>>Msize2 == 1 { 229 if mantissa&1 == 1 { 230 haveRem = true 231 } 232 mantissa >>= 1 233 exp++ 234 } 235 if mantissa>>Msize1 != 1 { 236 panic(fmt.Sprintf("expected exactly %d bits of result", Msize2)) 237 } 238 239 // 4. Rounding. 240 if Emin-Msize <= exp && exp <= Emin { 241 // Denormal case; lose 'shift' bits of precision. 242 shift := uint(Emin - (exp - 1)) // [1..Esize1) 243 lostbits := mantissa & (1<<shift - 1) 244 haveRem = haveRem || lostbits != 0 245 mantissa >>= shift 246 exp = 2 - Ebias // == exp + shift 247 } 248 // Round q using round-half-to-even. 249 exact = !haveRem 250 if mantissa&1 != 0 { 251 exact = false 252 if haveRem || mantissa&2 != 0 { 253 if mantissa++; mantissa >= 1<<Msize2 { 254 // Complete rollover 11...1 => 100...0, so shift is safe 255 mantissa >>= 1 256 exp++ 257 } 258 } 259 } 260 mantissa >>= 1 // discard rounding bit. Mantissa now scaled by 1<<Msize1. 261 262 f = math.Ldexp(float64(mantissa), exp-Msize1) 263 if math.IsInf(f, 0) { 264 exact = false 265 } 266 return 267 } 268 269 // Float32 returns the nearest float32 value for x and a bool indicating 270 // whether f represents x exactly. If the magnitude of x is too large to 271 // be represented by a float32, f is an infinity and exact is false. 272 // The sign of f always matches the sign of x, even if f == 0. 273 func (x *Rat) Float32() (f float32, exact bool) { 274 b := x.b.abs 275 if len(b) == 0 { 276 b = natOne 277 } 278 f, exact = quotToFloat32(x.a.abs, b) 279 if x.a.neg { 280 f = -f 281 } 282 return 283 } 284 285 // Float64 returns the nearest float64 value for x and a bool indicating 286 // whether f represents x exactly. If the magnitude of x is too large to 287 // be represented by a float64, f is an infinity and exact is false. 288 // The sign of f always matches the sign of x, even if f == 0. 289 func (x *Rat) Float64() (f float64, exact bool) { 290 b := x.b.abs 291 if len(b) == 0 { 292 b = natOne 293 } 294 f, exact = quotToFloat64(x.a.abs, b) 295 if x.a.neg { 296 f = -f 297 } 298 return 299 } 300 301 // SetFrac sets z to a/b and returns z. 302 // If b == 0, SetFrac panics. 303 func (z *Rat) SetFrac(a, b *Int) *Rat { 304 z.a.neg = a.neg != b.neg 305 babs := b.abs 306 if len(babs) == 0 { 307 panic("division by zero") 308 } 309 if &z.a == b || alias(z.a.abs, babs) { 310 babs = nat(nil).set(babs) // make a copy 311 } 312 z.a.abs = z.a.abs.set(a.abs) 313 z.b.abs = z.b.abs.set(babs) 314 return z.norm() 315 } 316 317 // SetFrac64 sets z to a/b and returns z. 318 // If b == 0, SetFrac64 panics. 319 func (z *Rat) SetFrac64(a, b int64) *Rat { 320 if b == 0 { 321 panic("division by zero") 322 } 323 z.a.SetInt64(a) 324 if b < 0 { 325 b = -b 326 z.a.neg = !z.a.neg 327 } 328 z.b.abs = z.b.abs.setUint64(uint64(b)) 329 return z.norm() 330 } 331 332 // SetInt sets z to x (by making a copy of x) and returns z. 333 func (z *Rat) SetInt(x *Int) *Rat { 334 z.a.Set(x) 335 z.b.abs = z.b.abs.setWord(1) 336 return z 337 } 338 339 // SetInt64 sets z to x and returns z. 340 func (z *Rat) SetInt64(x int64) *Rat { 341 z.a.SetInt64(x) 342 z.b.abs = z.b.abs.setWord(1) 343 return z 344 } 345 346 // SetUint64 sets z to x and returns z. 347 func (z *Rat) SetUint64(x uint64) *Rat { 348 z.a.SetUint64(x) 349 z.b.abs = z.b.abs.setWord(1) 350 return z 351 } 352 353 // Set sets z to x (by making a copy of x) and returns z. 354 func (z *Rat) Set(x *Rat) *Rat { 355 if z != x { 356 z.a.Set(&x.a) 357 z.b.Set(&x.b) 358 } 359 if len(z.b.abs) == 0 { 360 z.b.abs = z.b.abs.setWord(1) 361 } 362 return z 363 } 364 365 // Abs sets z to |x| (the absolute value of x) and returns z. 366 func (z *Rat) Abs(x *Rat) *Rat { 367 z.Set(x) 368 z.a.neg = false 369 return z 370 } 371 372 // Neg sets z to -x and returns z. 373 func (z *Rat) Neg(x *Rat) *Rat { 374 z.Set(x) 375 z.a.neg = len(z.a.abs) > 0 && !z.a.neg // 0 has no sign 376 return z 377 } 378 379 // Inv sets z to 1/x and returns z. 380 // If x == 0, Inv panics. 381 func (z *Rat) Inv(x *Rat) *Rat { 382 if len(x.a.abs) == 0 { 383 panic("division by zero") 384 } 385 z.Set(x) 386 z.a.abs, z.b.abs = z.b.abs, z.a.abs 387 return z 388 } 389 390 // Sign returns: 391 // 392 // -1 if x < 0 393 // 0 if x == 0 394 // +1 if x > 0 395 // 396 func (x *Rat) Sign() int { 397 return x.a.Sign() 398 } 399 400 // IsInt reports whether the denominator of x is 1. 401 func (x *Rat) IsInt() bool { 402 return len(x.b.abs) == 0 || x.b.abs.cmp(natOne) == 0 403 } 404 405 // Num returns the numerator of x; it may be <= 0. 406 // The result is a reference to x's numerator; it 407 // may change if a new value is assigned to x, and vice versa. 408 // The sign of the numerator corresponds to the sign of x. 409 func (x *Rat) Num() *Int { 410 return &x.a 411 } 412 413 // Denom returns the denominator of x; it is always > 0. 414 // The result is a reference to x's denominator, unless 415 // x is an uninitialized (zero value) Rat, in which case 416 // the result is a new Int of value 1. (To initialize x, 417 // any operation that sets x will do, including x.Set(x).) 418 // If the result is a reference to x's denominator it 419 // may change if a new value is assigned to x, and vice versa. 420 func (x *Rat) Denom() *Int { 421 x.b.neg = false // the result is always >= 0 422 if len(x.b.abs) == 0 { 423 // Note: If this proves problematic, we could 424 // panic instead and require the Rat to 425 // be explicitly initialized. 426 return &Int{abs: nat{1}} 427 } 428 return &x.b 429 } 430 431 func (z *Rat) norm() *Rat { 432 switch { 433 case len(z.a.abs) == 0: 434 // z == 0; normalize sign and denominator 435 z.a.neg = false 436 fallthrough 437 case len(z.b.abs) == 0: 438 // z is integer; normalize denominator 439 z.b.abs = z.b.abs.setWord(1) 440 default: 441 // z is fraction; normalize numerator and denominator 442 neg := z.a.neg 443 z.a.neg = false 444 z.b.neg = false 445 if f := NewInt(0).lehmerGCD(nil, nil, &z.a, &z.b); f.Cmp(intOne) != 0 { 446 z.a.abs, _ = z.a.abs.div(nil, z.a.abs, f.abs) 447 z.b.abs, _ = z.b.abs.div(nil, z.b.abs, f.abs) 448 } 449 z.a.neg = neg 450 } 451 return z 452 } 453 454 // mulDenom sets z to the denominator product x*y (by taking into 455 // account that 0 values for x or y must be interpreted as 1) and 456 // returns z. 457 func mulDenom(z, x, y nat) nat { 458 switch { 459 case len(x) == 0 && len(y) == 0: 460 return z.setWord(1) 461 case len(x) == 0: 462 return z.set(y) 463 case len(y) == 0: 464 return z.set(x) 465 } 466 return z.mul(x, y) 467 } 468 469 // scaleDenom sets z to the product x*f. 470 // If f == 0 (zero value of denominator), z is set to (a copy of) x. 471 func (z *Int) scaleDenom(x *Int, f nat) { 472 if len(f) == 0 { 473 z.Set(x) 474 return 475 } 476 z.abs = z.abs.mul(x.abs, f) 477 z.neg = x.neg 478 } 479 480 // Cmp compares x and y and returns: 481 // 482 // -1 if x < y 483 // 0 if x == y 484 // +1 if x > y 485 // 486 func (x *Rat) Cmp(y *Rat) int { 487 var a, b Int 488 a.scaleDenom(&x.a, y.b.abs) 489 b.scaleDenom(&y.a, x.b.abs) 490 return a.Cmp(&b) 491 } 492 493 // Add sets z to the sum x+y and returns z. 494 func (z *Rat) Add(x, y *Rat) *Rat { 495 var a1, a2 Int 496 a1.scaleDenom(&x.a, y.b.abs) 497 a2.scaleDenom(&y.a, x.b.abs) 498 z.a.Add(&a1, &a2) 499 z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs) 500 return z.norm() 501 } 502 503 // Sub sets z to the difference x-y and returns z. 504 func (z *Rat) Sub(x, y *Rat) *Rat { 505 var a1, a2 Int 506 a1.scaleDenom(&x.a, y.b.abs) 507 a2.scaleDenom(&y.a, x.b.abs) 508 z.a.Sub(&a1, &a2) 509 z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs) 510 return z.norm() 511 } 512 513 // Mul sets z to the product x*y and returns z. 514 func (z *Rat) Mul(x, y *Rat) *Rat { 515 if x == y { 516 // a squared Rat is positive and can't be reduced (no need to call norm()) 517 z.a.neg = false 518 z.a.abs = z.a.abs.sqr(x.a.abs) 519 if len(x.b.abs) == 0 { 520 z.b.abs = z.b.abs.setWord(1) 521 } else { 522 z.b.abs = z.b.abs.sqr(x.b.abs) 523 } 524 return z 525 } 526 z.a.Mul(&x.a, &y.a) 527 z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs) 528 return z.norm() 529 } 530 531 // Quo sets z to the quotient x/y and returns z. 532 // If y == 0, Quo panics. 533 func (z *Rat) Quo(x, y *Rat) *Rat { 534 if len(y.a.abs) == 0 { 535 panic("division by zero") 536 } 537 var a, b Int 538 a.scaleDenom(&x.a, y.b.abs) 539 b.scaleDenom(&y.a, x.b.abs) 540 z.a.abs = a.abs 541 z.b.abs = b.abs 542 z.a.neg = a.neg != b.neg 543 return z.norm() 544 }