github.com/geraldss/go/src@v0.0.0-20210511222824-ac7d0ebfc235/net/http/server.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // HTTP server. See RFC 7230 through 7235. 6 7 package http 8 9 import ( 10 "bufio" 11 "bytes" 12 "context" 13 "crypto/tls" 14 "errors" 15 "fmt" 16 "io" 17 "log" 18 "math/rand" 19 "net" 20 "net/textproto" 21 "net/url" 22 urlpkg "net/url" 23 "os" 24 "path" 25 "runtime" 26 "sort" 27 "strconv" 28 "strings" 29 "sync" 30 "sync/atomic" 31 "time" 32 33 "golang.org/x/net/http/httpguts" 34 ) 35 36 // Errors used by the HTTP server. 37 var ( 38 // ErrBodyNotAllowed is returned by ResponseWriter.Write calls 39 // when the HTTP method or response code does not permit a 40 // body. 41 ErrBodyNotAllowed = errors.New("http: request method or response status code does not allow body") 42 43 // ErrHijacked is returned by ResponseWriter.Write calls when 44 // the underlying connection has been hijacked using the 45 // Hijacker interface. A zero-byte write on a hijacked 46 // connection will return ErrHijacked without any other side 47 // effects. 48 ErrHijacked = errors.New("http: connection has been hijacked") 49 50 // ErrContentLength is returned by ResponseWriter.Write calls 51 // when a Handler set a Content-Length response header with a 52 // declared size and then attempted to write more bytes than 53 // declared. 54 ErrContentLength = errors.New("http: wrote more than the declared Content-Length") 55 56 // Deprecated: ErrWriteAfterFlush is no longer returned by 57 // anything in the net/http package. Callers should not 58 // compare errors against this variable. 59 ErrWriteAfterFlush = errors.New("unused") 60 ) 61 62 // A Handler responds to an HTTP request. 63 // 64 // ServeHTTP should write reply headers and data to the ResponseWriter 65 // and then return. Returning signals that the request is finished; it 66 // is not valid to use the ResponseWriter or read from the 67 // Request.Body after or concurrently with the completion of the 68 // ServeHTTP call. 69 // 70 // Depending on the HTTP client software, HTTP protocol version, and 71 // any intermediaries between the client and the Go server, it may not 72 // be possible to read from the Request.Body after writing to the 73 // ResponseWriter. Cautious handlers should read the Request.Body 74 // first, and then reply. 75 // 76 // Except for reading the body, handlers should not modify the 77 // provided Request. 78 // 79 // If ServeHTTP panics, the server (the caller of ServeHTTP) assumes 80 // that the effect of the panic was isolated to the active request. 81 // It recovers the panic, logs a stack trace to the server error log, 82 // and either closes the network connection or sends an HTTP/2 83 // RST_STREAM, depending on the HTTP protocol. To abort a handler so 84 // the client sees an interrupted response but the server doesn't log 85 // an error, panic with the value ErrAbortHandler. 86 type Handler interface { 87 ServeHTTP(ResponseWriter, *Request) 88 } 89 90 // A ResponseWriter interface is used by an HTTP handler to 91 // construct an HTTP response. 92 // 93 // A ResponseWriter may not be used after the Handler.ServeHTTP method 94 // has returned. 95 type ResponseWriter interface { 96 // Header returns the header map that will be sent by 97 // WriteHeader. The Header map also is the mechanism with which 98 // Handlers can set HTTP trailers. 99 // 100 // Changing the header map after a call to WriteHeader (or 101 // Write) has no effect unless the modified headers are 102 // trailers. 103 // 104 // There are two ways to set Trailers. The preferred way is to 105 // predeclare in the headers which trailers you will later 106 // send by setting the "Trailer" header to the names of the 107 // trailer keys which will come later. In this case, those 108 // keys of the Header map are treated as if they were 109 // trailers. See the example. The second way, for trailer 110 // keys not known to the Handler until after the first Write, 111 // is to prefix the Header map keys with the TrailerPrefix 112 // constant value. See TrailerPrefix. 113 // 114 // To suppress automatic response headers (such as "Date"), set 115 // their value to nil. 116 Header() Header 117 118 // Write writes the data to the connection as part of an HTTP reply. 119 // 120 // If WriteHeader has not yet been called, Write calls 121 // WriteHeader(http.StatusOK) before writing the data. If the Header 122 // does not contain a Content-Type line, Write adds a Content-Type set 123 // to the result of passing the initial 512 bytes of written data to 124 // DetectContentType. Additionally, if the total size of all written 125 // data is under a few KB and there are no Flush calls, the 126 // Content-Length header is added automatically. 127 // 128 // Depending on the HTTP protocol version and the client, calling 129 // Write or WriteHeader may prevent future reads on the 130 // Request.Body. For HTTP/1.x requests, handlers should read any 131 // needed request body data before writing the response. Once the 132 // headers have been flushed (due to either an explicit Flusher.Flush 133 // call or writing enough data to trigger a flush), the request body 134 // may be unavailable. For HTTP/2 requests, the Go HTTP server permits 135 // handlers to continue to read the request body while concurrently 136 // writing the response. However, such behavior may not be supported 137 // by all HTTP/2 clients. Handlers should read before writing if 138 // possible to maximize compatibility. 139 Write([]byte) (int, error) 140 141 // WriteHeader sends an HTTP response header with the provided 142 // status code. 143 // 144 // If WriteHeader is not called explicitly, the first call to Write 145 // will trigger an implicit WriteHeader(http.StatusOK). 146 // Thus explicit calls to WriteHeader are mainly used to 147 // send error codes. 148 // 149 // The provided code must be a valid HTTP 1xx-5xx status code. 150 // Only one header may be written. Go does not currently 151 // support sending user-defined 1xx informational headers, 152 // with the exception of 100-continue response header that the 153 // Server sends automatically when the Request.Body is read. 154 WriteHeader(statusCode int) 155 } 156 157 // The Flusher interface is implemented by ResponseWriters that allow 158 // an HTTP handler to flush buffered data to the client. 159 // 160 // The default HTTP/1.x and HTTP/2 ResponseWriter implementations 161 // support Flusher, but ResponseWriter wrappers may not. Handlers 162 // should always test for this ability at runtime. 163 // 164 // Note that even for ResponseWriters that support Flush, 165 // if the client is connected through an HTTP proxy, 166 // the buffered data may not reach the client until the response 167 // completes. 168 type Flusher interface { 169 // Flush sends any buffered data to the client. 170 Flush() 171 } 172 173 // The Hijacker interface is implemented by ResponseWriters that allow 174 // an HTTP handler to take over the connection. 175 // 176 // The default ResponseWriter for HTTP/1.x connections supports 177 // Hijacker, but HTTP/2 connections intentionally do not. 178 // ResponseWriter wrappers may also not support Hijacker. Handlers 179 // should always test for this ability at runtime. 180 type Hijacker interface { 181 // Hijack lets the caller take over the connection. 182 // After a call to Hijack the HTTP server library 183 // will not do anything else with the connection. 184 // 185 // It becomes the caller's responsibility to manage 186 // and close the connection. 187 // 188 // The returned net.Conn may have read or write deadlines 189 // already set, depending on the configuration of the 190 // Server. It is the caller's responsibility to set 191 // or clear those deadlines as needed. 192 // 193 // The returned bufio.Reader may contain unprocessed buffered 194 // data from the client. 195 // 196 // After a call to Hijack, the original Request.Body must not 197 // be used. The original Request's Context remains valid and 198 // is not canceled until the Request's ServeHTTP method 199 // returns. 200 Hijack() (net.Conn, *bufio.ReadWriter, error) 201 } 202 203 // The CloseNotifier interface is implemented by ResponseWriters which 204 // allow detecting when the underlying connection has gone away. 205 // 206 // This mechanism can be used to cancel long operations on the server 207 // if the client has disconnected before the response is ready. 208 // 209 // Deprecated: the CloseNotifier interface predates Go's context package. 210 // New code should use Request.Context instead. 211 type CloseNotifier interface { 212 // CloseNotify returns a channel that receives at most a 213 // single value (true) when the client connection has gone 214 // away. 215 // 216 // CloseNotify may wait to notify until Request.Body has been 217 // fully read. 218 // 219 // After the Handler has returned, there is no guarantee 220 // that the channel receives a value. 221 // 222 // If the protocol is HTTP/1.1 and CloseNotify is called while 223 // processing an idempotent request (such a GET) while 224 // HTTP/1.1 pipelining is in use, the arrival of a subsequent 225 // pipelined request may cause a value to be sent on the 226 // returned channel. In practice HTTP/1.1 pipelining is not 227 // enabled in browsers and not seen often in the wild. If this 228 // is a problem, use HTTP/2 or only use CloseNotify on methods 229 // such as POST. 230 CloseNotify() <-chan bool 231 } 232 233 var ( 234 // ServerContextKey is a context key. It can be used in HTTP 235 // handlers with Context.Value to access the server that 236 // started the handler. The associated value will be of 237 // type *Server. 238 ServerContextKey = &contextKey{"http-server"} 239 240 // LocalAddrContextKey is a context key. It can be used in 241 // HTTP handlers with Context.Value to access the local 242 // address the connection arrived on. 243 // The associated value will be of type net.Addr. 244 LocalAddrContextKey = &contextKey{"local-addr"} 245 ) 246 247 // A conn represents the server side of an HTTP connection. 248 type conn struct { 249 // server is the server on which the connection arrived. 250 // Immutable; never nil. 251 server *Server 252 253 // cancelCtx cancels the connection-level context. 254 cancelCtx context.CancelFunc 255 256 // rwc is the underlying network connection. 257 // This is never wrapped by other types and is the value given out 258 // to CloseNotifier callers. It is usually of type *net.TCPConn or 259 // *tls.Conn. 260 rwc net.Conn 261 262 // remoteAddr is rwc.RemoteAddr().String(). It is not populated synchronously 263 // inside the Listener's Accept goroutine, as some implementations block. 264 // It is populated immediately inside the (*conn).serve goroutine. 265 // This is the value of a Handler's (*Request).RemoteAddr. 266 remoteAddr string 267 268 // tlsState is the TLS connection state when using TLS. 269 // nil means not TLS. 270 tlsState *tls.ConnectionState 271 272 // werr is set to the first write error to rwc. 273 // It is set via checkConnErrorWriter{w}, where bufw writes. 274 werr error 275 276 // r is bufr's read source. It's a wrapper around rwc that provides 277 // io.LimitedReader-style limiting (while reading request headers) 278 // and functionality to support CloseNotifier. See *connReader docs. 279 r *connReader 280 281 // bufr reads from r. 282 bufr *bufio.Reader 283 284 // bufw writes to checkConnErrorWriter{c}, which populates werr on error. 285 bufw *bufio.Writer 286 287 // lastMethod is the method of the most recent request 288 // on this connection, if any. 289 lastMethod string 290 291 curReq atomic.Value // of *response (which has a Request in it) 292 293 curState struct{ atomic uint64 } // packed (unixtime<<8|uint8(ConnState)) 294 295 // mu guards hijackedv 296 mu sync.Mutex 297 298 // hijackedv is whether this connection has been hijacked 299 // by a Handler with the Hijacker interface. 300 // It is guarded by mu. 301 hijackedv bool 302 } 303 304 func (c *conn) hijacked() bool { 305 c.mu.Lock() 306 defer c.mu.Unlock() 307 return c.hijackedv 308 } 309 310 // c.mu must be held. 311 func (c *conn) hijackLocked() (rwc net.Conn, buf *bufio.ReadWriter, err error) { 312 if c.hijackedv { 313 return nil, nil, ErrHijacked 314 } 315 c.r.abortPendingRead() 316 317 c.hijackedv = true 318 rwc = c.rwc 319 rwc.SetDeadline(time.Time{}) 320 321 buf = bufio.NewReadWriter(c.bufr, bufio.NewWriter(rwc)) 322 if c.r.hasByte { 323 if _, err := c.bufr.Peek(c.bufr.Buffered() + 1); err != nil { 324 return nil, nil, fmt.Errorf("unexpected Peek failure reading buffered byte: %v", err) 325 } 326 } 327 c.setState(rwc, StateHijacked, runHooks) 328 return 329 } 330 331 // This should be >= 512 bytes for DetectContentType, 332 // but otherwise it's somewhat arbitrary. 333 const bufferBeforeChunkingSize = 2048 334 335 // chunkWriter writes to a response's conn buffer, and is the writer 336 // wrapped by the response.bufw buffered writer. 337 // 338 // chunkWriter also is responsible for finalizing the Header, including 339 // conditionally setting the Content-Type and setting a Content-Length 340 // in cases where the handler's final output is smaller than the buffer 341 // size. It also conditionally adds chunk headers, when in chunking mode. 342 // 343 // See the comment above (*response).Write for the entire write flow. 344 type chunkWriter struct { 345 res *response 346 347 // header is either nil or a deep clone of res.handlerHeader 348 // at the time of res.writeHeader, if res.writeHeader is 349 // called and extra buffering is being done to calculate 350 // Content-Type and/or Content-Length. 351 header Header 352 353 // wroteHeader tells whether the header's been written to "the 354 // wire" (or rather: w.conn.buf). this is unlike 355 // (*response).wroteHeader, which tells only whether it was 356 // logically written. 357 wroteHeader bool 358 359 // set by the writeHeader method: 360 chunking bool // using chunked transfer encoding for reply body 361 } 362 363 var ( 364 crlf = []byte("\r\n") 365 colonSpace = []byte(": ") 366 ) 367 368 func (cw *chunkWriter) Write(p []byte) (n int, err error) { 369 if !cw.wroteHeader { 370 cw.writeHeader(p) 371 } 372 if cw.res.req.Method == "HEAD" { 373 // Eat writes. 374 return len(p), nil 375 } 376 if cw.chunking { 377 _, err = fmt.Fprintf(cw.res.conn.bufw, "%x\r\n", len(p)) 378 if err != nil { 379 cw.res.conn.rwc.Close() 380 return 381 } 382 } 383 n, err = cw.res.conn.bufw.Write(p) 384 if cw.chunking && err == nil { 385 _, err = cw.res.conn.bufw.Write(crlf) 386 } 387 if err != nil { 388 cw.res.conn.rwc.Close() 389 } 390 return 391 } 392 393 func (cw *chunkWriter) flush() { 394 if !cw.wroteHeader { 395 cw.writeHeader(nil) 396 } 397 cw.res.conn.bufw.Flush() 398 } 399 400 func (cw *chunkWriter) close() { 401 if !cw.wroteHeader { 402 cw.writeHeader(nil) 403 } 404 if cw.chunking { 405 bw := cw.res.conn.bufw // conn's bufio writer 406 // zero chunk to mark EOF 407 bw.WriteString("0\r\n") 408 if trailers := cw.res.finalTrailers(); trailers != nil { 409 trailers.Write(bw) // the writer handles noting errors 410 } 411 // final blank line after the trailers (whether 412 // present or not) 413 bw.WriteString("\r\n") 414 } 415 } 416 417 // A response represents the server side of an HTTP response. 418 type response struct { 419 conn *conn 420 req *Request // request for this response 421 reqBody io.ReadCloser 422 cancelCtx context.CancelFunc // when ServeHTTP exits 423 wroteHeader bool // reply header has been (logically) written 424 wroteContinue bool // 100 Continue response was written 425 wants10KeepAlive bool // HTTP/1.0 w/ Connection "keep-alive" 426 wantsClose bool // HTTP request has Connection "close" 427 428 // canWriteContinue is a boolean value accessed as an atomic int32 429 // that says whether or not a 100 Continue header can be written 430 // to the connection. 431 // writeContinueMu must be held while writing the header. 432 // These two fields together synchronize the body reader 433 // (the expectContinueReader, which wants to write 100 Continue) 434 // against the main writer. 435 canWriteContinue atomicBool 436 writeContinueMu sync.Mutex 437 438 w *bufio.Writer // buffers output in chunks to chunkWriter 439 cw chunkWriter 440 441 // handlerHeader is the Header that Handlers get access to, 442 // which may be retained and mutated even after WriteHeader. 443 // handlerHeader is copied into cw.header at WriteHeader 444 // time, and privately mutated thereafter. 445 handlerHeader Header 446 calledHeader bool // handler accessed handlerHeader via Header 447 448 written int64 // number of bytes written in body 449 contentLength int64 // explicitly-declared Content-Length; or -1 450 status int // status code passed to WriteHeader 451 452 // close connection after this reply. set on request and 453 // updated after response from handler if there's a 454 // "Connection: keep-alive" response header and a 455 // Content-Length. 456 closeAfterReply bool 457 458 // requestBodyLimitHit is set by requestTooLarge when 459 // maxBytesReader hits its max size. It is checked in 460 // WriteHeader, to make sure we don't consume the 461 // remaining request body to try to advance to the next HTTP 462 // request. Instead, when this is set, we stop reading 463 // subsequent requests on this connection and stop reading 464 // input from it. 465 requestBodyLimitHit bool 466 467 // trailers are the headers to be sent after the handler 468 // finishes writing the body. This field is initialized from 469 // the Trailer response header when the response header is 470 // written. 471 trailers []string 472 473 handlerDone atomicBool // set true when the handler exits 474 475 // Buffers for Date, Content-Length, and status code 476 dateBuf [len(TimeFormat)]byte 477 clenBuf [10]byte 478 statusBuf [3]byte 479 480 // closeNotifyCh is the channel returned by CloseNotify. 481 // TODO(bradfitz): this is currently (for Go 1.8) always 482 // non-nil. Make this lazily-created again as it used to be? 483 closeNotifyCh chan bool 484 didCloseNotify int32 // atomic (only 0->1 winner should send) 485 } 486 487 // TrailerPrefix is a magic prefix for ResponseWriter.Header map keys 488 // that, if present, signals that the map entry is actually for 489 // the response trailers, and not the response headers. The prefix 490 // is stripped after the ServeHTTP call finishes and the values are 491 // sent in the trailers. 492 // 493 // This mechanism is intended only for trailers that are not known 494 // prior to the headers being written. If the set of trailers is fixed 495 // or known before the header is written, the normal Go trailers mechanism 496 // is preferred: 497 // https://golang.org/pkg/net/http/#ResponseWriter 498 // https://golang.org/pkg/net/http/#example_ResponseWriter_trailers 499 const TrailerPrefix = "Trailer:" 500 501 // finalTrailers is called after the Handler exits and returns a non-nil 502 // value if the Handler set any trailers. 503 func (w *response) finalTrailers() Header { 504 var t Header 505 for k, vv := range w.handlerHeader { 506 if strings.HasPrefix(k, TrailerPrefix) { 507 if t == nil { 508 t = make(Header) 509 } 510 t[strings.TrimPrefix(k, TrailerPrefix)] = vv 511 } 512 } 513 for _, k := range w.trailers { 514 if t == nil { 515 t = make(Header) 516 } 517 for _, v := range w.handlerHeader[k] { 518 t.Add(k, v) 519 } 520 } 521 return t 522 } 523 524 type atomicBool int32 525 526 func (b *atomicBool) isSet() bool { return atomic.LoadInt32((*int32)(b)) != 0 } 527 func (b *atomicBool) setTrue() { atomic.StoreInt32((*int32)(b), 1) } 528 func (b *atomicBool) setFalse() { atomic.StoreInt32((*int32)(b), 0) } 529 530 // declareTrailer is called for each Trailer header when the 531 // response header is written. It notes that a header will need to be 532 // written in the trailers at the end of the response. 533 func (w *response) declareTrailer(k string) { 534 k = CanonicalHeaderKey(k) 535 if !httpguts.ValidTrailerHeader(k) { 536 // Forbidden by RFC 7230, section 4.1.2 537 return 538 } 539 w.trailers = append(w.trailers, k) 540 } 541 542 // requestTooLarge is called by maxBytesReader when too much input has 543 // been read from the client. 544 func (w *response) requestTooLarge() { 545 w.closeAfterReply = true 546 w.requestBodyLimitHit = true 547 if !w.wroteHeader { 548 w.Header().Set("Connection", "close") 549 } 550 } 551 552 // needsSniff reports whether a Content-Type still needs to be sniffed. 553 func (w *response) needsSniff() bool { 554 _, haveType := w.handlerHeader["Content-Type"] 555 return !w.cw.wroteHeader && !haveType && w.written < sniffLen 556 } 557 558 // writerOnly hides an io.Writer value's optional ReadFrom method 559 // from io.Copy. 560 type writerOnly struct { 561 io.Writer 562 } 563 564 // ReadFrom is here to optimize copying from an *os.File regular file 565 // to a *net.TCPConn with sendfile, or from a supported src type such 566 // as a *net.TCPConn on Linux with splice. 567 func (w *response) ReadFrom(src io.Reader) (n int64, err error) { 568 bufp := copyBufPool.Get().(*[]byte) 569 buf := *bufp 570 defer copyBufPool.Put(bufp) 571 572 // Our underlying w.conn.rwc is usually a *TCPConn (with its 573 // own ReadFrom method). If not, just fall back to the normal 574 // copy method. 575 rf, ok := w.conn.rwc.(io.ReaderFrom) 576 if !ok { 577 return io.CopyBuffer(writerOnly{w}, src, buf) 578 } 579 580 // sendfile path: 581 582 // Do not start actually writing response until src is readable. 583 // If body length is <= sniffLen, sendfile/splice path will do 584 // little anyway. This small read also satisfies sniffing the 585 // body in case Content-Type is missing. 586 nr, er := src.Read(buf[:sniffLen]) 587 atEOF := errors.Is(er, io.EOF) 588 n += int64(nr) 589 590 if nr > 0 { 591 // Write the small amount read normally. 592 nw, ew := w.Write(buf[:nr]) 593 if ew != nil { 594 err = ew 595 } else if nr != nw { 596 err = io.ErrShortWrite 597 } 598 } 599 if err == nil && er != nil && !atEOF { 600 err = er 601 } 602 603 // Do not send StatusOK in the error case where nothing has been written. 604 if err == nil && !w.wroteHeader { 605 w.WriteHeader(StatusOK) // nr == 0, no error (or EOF) 606 } 607 608 if err != nil || atEOF { 609 return n, err 610 } 611 612 w.w.Flush() // get rid of any previous writes 613 w.cw.flush() // make sure Header is written; flush data to rwc 614 615 // Now that cw has been flushed, its chunking field is guaranteed initialized. 616 if !w.cw.chunking && w.bodyAllowed() { 617 n0, err := rf.ReadFrom(src) 618 n += n0 619 w.written += n0 620 return n, err 621 } 622 623 n0, err := io.Copy(writerOnly{w}, src) 624 n += n0 625 return n, err 626 } 627 628 // debugServerConnections controls whether all server connections are wrapped 629 // with a verbose logging wrapper. 630 const debugServerConnections = false 631 632 // Create new connection from rwc. 633 func (srv *Server) newConn(rwc net.Conn) *conn { 634 c := &conn{ 635 server: srv, 636 rwc: rwc, 637 } 638 if debugServerConnections { 639 c.rwc = newLoggingConn("server", c.rwc) 640 } 641 return c 642 } 643 644 type readResult struct { 645 _ incomparable 646 n int 647 err error 648 b byte // byte read, if n == 1 649 } 650 651 // connReader is the io.Reader wrapper used by *conn. It combines a 652 // selectively-activated io.LimitedReader (to bound request header 653 // read sizes) with support for selectively keeping an io.Reader.Read 654 // call blocked in a background goroutine to wait for activity and 655 // trigger a CloseNotifier channel. 656 type connReader struct { 657 conn *conn 658 659 mu sync.Mutex // guards following 660 hasByte bool 661 byteBuf [1]byte 662 cond *sync.Cond 663 inRead bool 664 aborted bool // set true before conn.rwc deadline is set to past 665 remain int64 // bytes remaining 666 } 667 668 func (cr *connReader) lock() { 669 cr.mu.Lock() 670 if cr.cond == nil { 671 cr.cond = sync.NewCond(&cr.mu) 672 } 673 } 674 675 func (cr *connReader) unlock() { cr.mu.Unlock() } 676 677 func (cr *connReader) startBackgroundRead() { 678 cr.lock() 679 defer cr.unlock() 680 if cr.inRead { 681 panic("invalid concurrent Body.Read call") 682 } 683 if cr.hasByte { 684 return 685 } 686 cr.inRead = true 687 cr.conn.rwc.SetReadDeadline(time.Time{}) 688 go cr.backgroundRead() 689 } 690 691 func (cr *connReader) backgroundRead() { 692 n, err := cr.conn.rwc.Read(cr.byteBuf[:]) 693 cr.lock() 694 if n == 1 { 695 cr.hasByte = true 696 // We were past the end of the previous request's body already 697 // (since we wouldn't be in a background read otherwise), so 698 // this is a pipelined HTTP request. Prior to Go 1.11 we used to 699 // send on the CloseNotify channel and cancel the context here, 700 // but the behavior was documented as only "may", and we only 701 // did that because that's how CloseNotify accidentally behaved 702 // in very early Go releases prior to context support. Once we 703 // added context support, people used a Handler's 704 // Request.Context() and passed it along. Having that context 705 // cancel on pipelined HTTP requests caused problems. 706 // Fortunately, almost nothing uses HTTP/1.x pipelining. 707 // Unfortunately, apt-get does, or sometimes does. 708 // New Go 1.11 behavior: don't fire CloseNotify or cancel 709 // contexts on pipelined requests. Shouldn't affect people, but 710 // fixes cases like Issue 23921. This does mean that a client 711 // closing their TCP connection after sending a pipelined 712 // request won't cancel the context, but we'll catch that on any 713 // write failure (in checkConnErrorWriter.Write). 714 // If the server never writes, yes, there are still contrived 715 // server & client behaviors where this fails to ever cancel the 716 // context, but that's kinda why HTTP/1.x pipelining died 717 // anyway. 718 } 719 if ne, ok := err.(net.Error); ok && cr.aborted && ne.Timeout() { 720 // Ignore this error. It's the expected error from 721 // another goroutine calling abortPendingRead. 722 } else if err != nil { 723 cr.handleReadError(err) 724 } 725 cr.aborted = false 726 cr.inRead = false 727 cr.unlock() 728 cr.cond.Broadcast() 729 } 730 731 func (cr *connReader) abortPendingRead() { 732 cr.lock() 733 defer cr.unlock() 734 if !cr.inRead { 735 return 736 } 737 cr.aborted = true 738 cr.conn.rwc.SetReadDeadline(aLongTimeAgo) 739 for cr.inRead { 740 cr.cond.Wait() 741 } 742 cr.conn.rwc.SetReadDeadline(time.Time{}) 743 } 744 745 func (cr *connReader) setReadLimit(remain int64) { cr.remain = remain } 746 func (cr *connReader) setInfiniteReadLimit() { cr.remain = maxInt64 } 747 func (cr *connReader) hitReadLimit() bool { return cr.remain <= 0 } 748 749 // handleReadError is called whenever a Read from the client returns a 750 // non-nil error. 751 // 752 // The provided non-nil err is almost always io.EOF or a "use of 753 // closed network connection". In any case, the error is not 754 // particularly interesting, except perhaps for debugging during 755 // development. Any error means the connection is dead and we should 756 // down its context. 757 // 758 // It may be called from multiple goroutines. 759 func (cr *connReader) handleReadError(_ error) { 760 cr.conn.cancelCtx() 761 cr.closeNotify() 762 } 763 764 // may be called from multiple goroutines. 765 func (cr *connReader) closeNotify() { 766 res, _ := cr.conn.curReq.Load().(*response) 767 if res != nil && atomic.CompareAndSwapInt32(&res.didCloseNotify, 0, 1) { 768 res.closeNotifyCh <- true 769 } 770 } 771 772 func (cr *connReader) Read(p []byte) (n int, err error) { 773 cr.lock() 774 if cr.inRead { 775 cr.unlock() 776 if cr.conn.hijacked() { 777 panic("invalid Body.Read call. After hijacked, the original Request must not be used") 778 } 779 panic("invalid concurrent Body.Read call") 780 } 781 if cr.hitReadLimit() { 782 cr.unlock() 783 return 0, io.EOF 784 } 785 if len(p) == 0 { 786 cr.unlock() 787 return 0, nil 788 } 789 if int64(len(p)) > cr.remain { 790 p = p[:cr.remain] 791 } 792 if cr.hasByte { 793 p[0] = cr.byteBuf[0] 794 cr.hasByte = false 795 cr.unlock() 796 return 1, nil 797 } 798 cr.inRead = true 799 cr.unlock() 800 n, err = cr.conn.rwc.Read(p) 801 802 cr.lock() 803 cr.inRead = false 804 if err != nil { 805 cr.handleReadError(err) 806 } 807 cr.remain -= int64(n) 808 cr.unlock() 809 810 cr.cond.Broadcast() 811 return n, err 812 } 813 814 var ( 815 bufioReaderPool sync.Pool 816 bufioWriter2kPool sync.Pool 817 bufioWriter4kPool sync.Pool 818 ) 819 820 var copyBufPool = sync.Pool{ 821 New: func() interface{} { 822 b := make([]byte, 32*1024) 823 return &b 824 }, 825 } 826 827 func bufioWriterPool(size int) *sync.Pool { 828 switch size { 829 case 2 << 10: 830 return &bufioWriter2kPool 831 case 4 << 10: 832 return &bufioWriter4kPool 833 } 834 return nil 835 } 836 837 func newBufioReader(r io.Reader) *bufio.Reader { 838 if v := bufioReaderPool.Get(); v != nil { 839 br := v.(*bufio.Reader) 840 br.Reset(r) 841 return br 842 } 843 // Note: if this reader size is ever changed, update 844 // TestHandlerBodyClose's assumptions. 845 return bufio.NewReader(r) 846 } 847 848 func putBufioReader(br *bufio.Reader) { 849 br.Reset(nil) 850 bufioReaderPool.Put(br) 851 } 852 853 func newBufioWriterSize(w io.Writer, size int) *bufio.Writer { 854 pool := bufioWriterPool(size) 855 if pool != nil { 856 if v := pool.Get(); v != nil { 857 bw := v.(*bufio.Writer) 858 bw.Reset(w) 859 return bw 860 } 861 } 862 return bufio.NewWriterSize(w, size) 863 } 864 865 func putBufioWriter(bw *bufio.Writer) { 866 bw.Reset(nil) 867 if pool := bufioWriterPool(bw.Available()); pool != nil { 868 pool.Put(bw) 869 } 870 } 871 872 // DefaultMaxHeaderBytes is the maximum permitted size of the headers 873 // in an HTTP request. 874 // This can be overridden by setting Server.MaxHeaderBytes. 875 const DefaultMaxHeaderBytes = 1 << 20 // 1 MB 876 877 func (srv *Server) maxHeaderBytes() int { 878 if srv.MaxHeaderBytes > 0 { 879 return srv.MaxHeaderBytes 880 } 881 return DefaultMaxHeaderBytes 882 } 883 884 func (srv *Server) initialReadLimitSize() int64 { 885 return int64(srv.maxHeaderBytes()) + 4096 // bufio slop 886 } 887 888 // wrapper around io.ReadCloser which on first read, sends an 889 // HTTP/1.1 100 Continue header 890 type expectContinueReader struct { 891 resp *response 892 readCloser io.ReadCloser 893 closed atomicBool 894 sawEOF atomicBool 895 } 896 897 func (ecr *expectContinueReader) Read(p []byte) (n int, err error) { 898 if ecr.closed.isSet() { 899 return 0, ErrBodyReadAfterClose 900 } 901 w := ecr.resp 902 if !w.wroteContinue && w.canWriteContinue.isSet() && !w.conn.hijacked() { 903 w.wroteContinue = true 904 w.writeContinueMu.Lock() 905 if w.canWriteContinue.isSet() { 906 w.conn.bufw.WriteString("HTTP/1.1 100 Continue\r\n\r\n") 907 w.conn.bufw.Flush() 908 w.canWriteContinue.setFalse() 909 } 910 w.writeContinueMu.Unlock() 911 } 912 n, err = ecr.readCloser.Read(p) 913 if err == io.EOF { 914 ecr.sawEOF.setTrue() 915 } 916 return 917 } 918 919 func (ecr *expectContinueReader) Close() error { 920 ecr.closed.setTrue() 921 return ecr.readCloser.Close() 922 } 923 924 // TimeFormat is the time format to use when generating times in HTTP 925 // headers. It is like time.RFC1123 but hard-codes GMT as the time 926 // zone. The time being formatted must be in UTC for Format to 927 // generate the correct format. 928 // 929 // For parsing this time format, see ParseTime. 930 const TimeFormat = "Mon, 02 Jan 2006 15:04:05 GMT" 931 932 // appendTime is a non-allocating version of []byte(t.UTC().Format(TimeFormat)) 933 func appendTime(b []byte, t time.Time) []byte { 934 const days = "SunMonTueWedThuFriSat" 935 const months = "JanFebMarAprMayJunJulAugSepOctNovDec" 936 937 t = t.UTC() 938 yy, mm, dd := t.Date() 939 hh, mn, ss := t.Clock() 940 day := days[3*t.Weekday():] 941 mon := months[3*(mm-1):] 942 943 return append(b, 944 day[0], day[1], day[2], ',', ' ', 945 byte('0'+dd/10), byte('0'+dd%10), ' ', 946 mon[0], mon[1], mon[2], ' ', 947 byte('0'+yy/1000), byte('0'+(yy/100)%10), byte('0'+(yy/10)%10), byte('0'+yy%10), ' ', 948 byte('0'+hh/10), byte('0'+hh%10), ':', 949 byte('0'+mn/10), byte('0'+mn%10), ':', 950 byte('0'+ss/10), byte('0'+ss%10), ' ', 951 'G', 'M', 'T') 952 } 953 954 var errTooLarge = errors.New("http: request too large") 955 956 // Read next request from connection. 957 func (c *conn) readRequest(ctx context.Context) (w *response, err error) { 958 if c.hijacked() { 959 return nil, ErrHijacked 960 } 961 962 var ( 963 wholeReqDeadline time.Time // or zero if none 964 hdrDeadline time.Time // or zero if none 965 ) 966 t0 := time.Now() 967 if d := c.server.readHeaderTimeout(); d != 0 { 968 hdrDeadline = t0.Add(d) 969 } 970 if d := c.server.ReadTimeout; d != 0 { 971 wholeReqDeadline = t0.Add(d) 972 } 973 c.rwc.SetReadDeadline(hdrDeadline) 974 if d := c.server.WriteTimeout; d != 0 { 975 defer func() { 976 c.rwc.SetWriteDeadline(time.Now().Add(d)) 977 }() 978 } 979 980 c.r.setReadLimit(c.server.initialReadLimitSize()) 981 if c.lastMethod == "POST" { 982 // RFC 7230 section 3 tolerance for old buggy clients. 983 peek, _ := c.bufr.Peek(4) // ReadRequest will get err below 984 c.bufr.Discard(numLeadingCRorLF(peek)) 985 } 986 req, err := readRequest(c.bufr, keepHostHeader) 987 if err != nil { 988 if c.r.hitReadLimit() { 989 return nil, errTooLarge 990 } 991 return nil, err 992 } 993 994 if !http1ServerSupportsRequest(req) { 995 return nil, statusError{StatusHTTPVersionNotSupported, "unsupported protocol version"} 996 } 997 998 c.lastMethod = req.Method 999 c.r.setInfiniteReadLimit() 1000 1001 hosts, haveHost := req.Header["Host"] 1002 isH2Upgrade := req.isH2Upgrade() 1003 if req.ProtoAtLeast(1, 1) && (!haveHost || len(hosts) == 0) && !isH2Upgrade && req.Method != "CONNECT" { 1004 return nil, badRequestError("missing required Host header") 1005 } 1006 if len(hosts) > 1 { 1007 return nil, badRequestError("too many Host headers") 1008 } 1009 if len(hosts) == 1 && !httpguts.ValidHostHeader(hosts[0]) { 1010 return nil, badRequestError("malformed Host header") 1011 } 1012 for k, vv := range req.Header { 1013 if !httpguts.ValidHeaderFieldName(k) { 1014 return nil, badRequestError("invalid header name") 1015 } 1016 for _, v := range vv { 1017 if !httpguts.ValidHeaderFieldValue(v) { 1018 return nil, badRequestError("invalid header value") 1019 } 1020 } 1021 } 1022 delete(req.Header, "Host") 1023 1024 ctx, cancelCtx := context.WithCancel(ctx) 1025 req.ctx = ctx 1026 req.RemoteAddr = c.remoteAddr 1027 req.TLS = c.tlsState 1028 if body, ok := req.Body.(*body); ok { 1029 body.doEarlyClose = true 1030 } 1031 1032 // Adjust the read deadline if necessary. 1033 if !hdrDeadline.Equal(wholeReqDeadline) { 1034 c.rwc.SetReadDeadline(wholeReqDeadline) 1035 } 1036 1037 w = &response{ 1038 conn: c, 1039 cancelCtx: cancelCtx, 1040 req: req, 1041 reqBody: req.Body, 1042 handlerHeader: make(Header), 1043 contentLength: -1, 1044 closeNotifyCh: make(chan bool, 1), 1045 1046 // We populate these ahead of time so we're not 1047 // reading from req.Header after their Handler starts 1048 // and maybe mutates it (Issue 14940) 1049 wants10KeepAlive: req.wantsHttp10KeepAlive(), 1050 wantsClose: req.wantsClose(), 1051 } 1052 if isH2Upgrade { 1053 w.closeAfterReply = true 1054 } 1055 w.cw.res = w 1056 w.w = newBufioWriterSize(&w.cw, bufferBeforeChunkingSize) 1057 return w, nil 1058 } 1059 1060 // http1ServerSupportsRequest reports whether Go's HTTP/1.x server 1061 // supports the given request. 1062 func http1ServerSupportsRequest(req *Request) bool { 1063 if req.ProtoMajor == 1 { 1064 return true 1065 } 1066 // Accept "PRI * HTTP/2.0" upgrade requests, so Handlers can 1067 // wire up their own HTTP/2 upgrades. 1068 if req.ProtoMajor == 2 && req.ProtoMinor == 0 && 1069 req.Method == "PRI" && req.RequestURI == "*" { 1070 return true 1071 } 1072 // Reject HTTP/0.x, and all other HTTP/2+ requests (which 1073 // aren't encoded in ASCII anyway). 1074 return false 1075 } 1076 1077 func (w *response) Header() Header { 1078 if w.cw.header == nil && w.wroteHeader && !w.cw.wroteHeader { 1079 // Accessing the header between logically writing it 1080 // and physically writing it means we need to allocate 1081 // a clone to snapshot the logically written state. 1082 w.cw.header = w.handlerHeader.Clone() 1083 } 1084 w.calledHeader = true 1085 return w.handlerHeader 1086 } 1087 1088 // maxPostHandlerReadBytes is the max number of Request.Body bytes not 1089 // consumed by a handler that the server will read from the client 1090 // in order to keep a connection alive. If there are more bytes than 1091 // this then the server to be paranoid instead sends a "Connection: 1092 // close" response. 1093 // 1094 // This number is approximately what a typical machine's TCP buffer 1095 // size is anyway. (if we have the bytes on the machine, we might as 1096 // well read them) 1097 const maxPostHandlerReadBytes = 256 << 10 1098 1099 func checkWriteHeaderCode(code int) { 1100 // Issue 22880: require valid WriteHeader status codes. 1101 // For now we only enforce that it's three digits. 1102 // In the future we might block things over 599 (600 and above aren't defined 1103 // at https://httpwg.org/specs/rfc7231.html#status.codes) 1104 // and we might block under 200 (once we have more mature 1xx support). 1105 // But for now any three digits. 1106 // 1107 // We used to send "HTTP/1.1 000 0" on the wire in responses but there's 1108 // no equivalent bogus thing we can realistically send in HTTP/2, 1109 // so we'll consistently panic instead and help people find their bugs 1110 // early. (We can't return an error from WriteHeader even if we wanted to.) 1111 if code < 100 || code > 999 { 1112 panic(fmt.Sprintf("invalid WriteHeader code %v", code)) 1113 } 1114 } 1115 1116 // relevantCaller searches the call stack for the first function outside of net/http. 1117 // The purpose of this function is to provide more helpful error messages. 1118 func relevantCaller() runtime.Frame { 1119 pc := make([]uintptr, 16) 1120 n := runtime.Callers(1, pc) 1121 frames := runtime.CallersFrames(pc[:n]) 1122 var frame runtime.Frame 1123 for { 1124 frame, more := frames.Next() 1125 if !strings.HasPrefix(frame.Function, "net/http.") { 1126 return frame 1127 } 1128 if !more { 1129 break 1130 } 1131 } 1132 return frame 1133 } 1134 1135 func (w *response) WriteHeader(code int) { 1136 if w.conn.hijacked() { 1137 caller := relevantCaller() 1138 w.conn.server.logf("http: response.WriteHeader on hijacked connection from %s (%s:%d)", caller.Function, path.Base(caller.File), caller.Line) 1139 return 1140 } 1141 if w.wroteHeader { 1142 caller := relevantCaller() 1143 w.conn.server.logf("http: superfluous response.WriteHeader call from %s (%s:%d)", caller.Function, path.Base(caller.File), caller.Line) 1144 return 1145 } 1146 checkWriteHeaderCode(code) 1147 w.wroteHeader = true 1148 w.status = code 1149 1150 if w.calledHeader && w.cw.header == nil { 1151 w.cw.header = w.handlerHeader.Clone() 1152 } 1153 1154 if cl := w.handlerHeader.get("Content-Length"); cl != "" { 1155 v, err := strconv.ParseInt(cl, 10, 64) 1156 if err == nil && v >= 0 { 1157 w.contentLength = v 1158 } else { 1159 w.conn.server.logf("http: invalid Content-Length of %q", cl) 1160 w.handlerHeader.Del("Content-Length") 1161 } 1162 } 1163 } 1164 1165 // extraHeader is the set of headers sometimes added by chunkWriter.writeHeader. 1166 // This type is used to avoid extra allocations from cloning and/or populating 1167 // the response Header map and all its 1-element slices. 1168 type extraHeader struct { 1169 contentType string 1170 connection string 1171 transferEncoding string 1172 date []byte // written if not nil 1173 contentLength []byte // written if not nil 1174 } 1175 1176 // Sorted the same as extraHeader.Write's loop. 1177 var extraHeaderKeys = [][]byte{ 1178 []byte("Content-Type"), 1179 []byte("Connection"), 1180 []byte("Transfer-Encoding"), 1181 } 1182 1183 var ( 1184 headerContentLength = []byte("Content-Length: ") 1185 headerDate = []byte("Date: ") 1186 ) 1187 1188 // Write writes the headers described in h to w. 1189 // 1190 // This method has a value receiver, despite the somewhat large size 1191 // of h, because it prevents an allocation. The escape analysis isn't 1192 // smart enough to realize this function doesn't mutate h. 1193 func (h extraHeader) Write(w *bufio.Writer) { 1194 if h.date != nil { 1195 w.Write(headerDate) 1196 w.Write(h.date) 1197 w.Write(crlf) 1198 } 1199 if h.contentLength != nil { 1200 w.Write(headerContentLength) 1201 w.Write(h.contentLength) 1202 w.Write(crlf) 1203 } 1204 for i, v := range []string{h.contentType, h.connection, h.transferEncoding} { 1205 if v != "" { 1206 w.Write(extraHeaderKeys[i]) 1207 w.Write(colonSpace) 1208 w.WriteString(v) 1209 w.Write(crlf) 1210 } 1211 } 1212 } 1213 1214 // writeHeader finalizes the header sent to the client and writes it 1215 // to cw.res.conn.bufw. 1216 // 1217 // p is not written by writeHeader, but is the first chunk of the body 1218 // that will be written. It is sniffed for a Content-Type if none is 1219 // set explicitly. It's also used to set the Content-Length, if the 1220 // total body size was small and the handler has already finished 1221 // running. 1222 func (cw *chunkWriter) writeHeader(p []byte) { 1223 if cw.wroteHeader { 1224 return 1225 } 1226 cw.wroteHeader = true 1227 1228 w := cw.res 1229 keepAlivesEnabled := w.conn.server.doKeepAlives() 1230 isHEAD := w.req.Method == "HEAD" 1231 1232 // header is written out to w.conn.buf below. Depending on the 1233 // state of the handler, we either own the map or not. If we 1234 // don't own it, the exclude map is created lazily for 1235 // WriteSubset to remove headers. The setHeader struct holds 1236 // headers we need to add. 1237 header := cw.header 1238 owned := header != nil 1239 if !owned { 1240 header = w.handlerHeader 1241 } 1242 var excludeHeader map[string]bool 1243 delHeader := func(key string) { 1244 if owned { 1245 header.Del(key) 1246 return 1247 } 1248 if _, ok := header[key]; !ok { 1249 return 1250 } 1251 if excludeHeader == nil { 1252 excludeHeader = make(map[string]bool) 1253 } 1254 excludeHeader[key] = true 1255 } 1256 var setHeader extraHeader 1257 1258 // Don't write out the fake "Trailer:foo" keys. See TrailerPrefix. 1259 trailers := false 1260 for k := range cw.header { 1261 if strings.HasPrefix(k, TrailerPrefix) { 1262 if excludeHeader == nil { 1263 excludeHeader = make(map[string]bool) 1264 } 1265 excludeHeader[k] = true 1266 trailers = true 1267 } 1268 } 1269 for _, v := range cw.header["Trailer"] { 1270 trailers = true 1271 foreachHeaderElement(v, cw.res.declareTrailer) 1272 } 1273 1274 te := header.get("Transfer-Encoding") 1275 hasTE := te != "" 1276 1277 // If the handler is done but never sent a Content-Length 1278 // response header and this is our first (and last) write, set 1279 // it, even to zero. This helps HTTP/1.0 clients keep their 1280 // "keep-alive" connections alive. 1281 // Exceptions: 304/204/1xx responses never get Content-Length, and if 1282 // it was a HEAD request, we don't know the difference between 1283 // 0 actual bytes and 0 bytes because the handler noticed it 1284 // was a HEAD request and chose not to write anything. So for 1285 // HEAD, the handler should either write the Content-Length or 1286 // write non-zero bytes. If it's actually 0 bytes and the 1287 // handler never looked at the Request.Method, we just don't 1288 // send a Content-Length header. 1289 // Further, we don't send an automatic Content-Length if they 1290 // set a Transfer-Encoding, because they're generally incompatible. 1291 if w.handlerDone.isSet() && !trailers && !hasTE && bodyAllowedForStatus(w.status) && header.get("Content-Length") == "" && (!isHEAD || len(p) > 0) { 1292 w.contentLength = int64(len(p)) 1293 setHeader.contentLength = strconv.AppendInt(cw.res.clenBuf[:0], int64(len(p)), 10) 1294 } 1295 1296 // If this was an HTTP/1.0 request with keep-alive and we sent a 1297 // Content-Length back, we can make this a keep-alive response ... 1298 if w.wants10KeepAlive && keepAlivesEnabled { 1299 sentLength := header.get("Content-Length") != "" 1300 if sentLength && header.get("Connection") == "keep-alive" { 1301 w.closeAfterReply = false 1302 } 1303 } 1304 1305 // Check for an explicit (and valid) Content-Length header. 1306 hasCL := w.contentLength != -1 1307 1308 if w.wants10KeepAlive && (isHEAD || hasCL || !bodyAllowedForStatus(w.status)) { 1309 _, connectionHeaderSet := header["Connection"] 1310 if !connectionHeaderSet { 1311 setHeader.connection = "keep-alive" 1312 } 1313 } else if !w.req.ProtoAtLeast(1, 1) || w.wantsClose { 1314 w.closeAfterReply = true 1315 } 1316 1317 if header.get("Connection") == "close" || !keepAlivesEnabled { 1318 w.closeAfterReply = true 1319 } 1320 1321 // If the client wanted a 100-continue but we never sent it to 1322 // them (or, more strictly: we never finished reading their 1323 // request body), don't reuse this connection because it's now 1324 // in an unknown state: we might be sending this response at 1325 // the same time the client is now sending its request body 1326 // after a timeout. (Some HTTP clients send Expect: 1327 // 100-continue but knowing that some servers don't support 1328 // it, the clients set a timer and send the body later anyway) 1329 // If we haven't seen EOF, we can't skip over the unread body 1330 // because we don't know if the next bytes on the wire will be 1331 // the body-following-the-timer or the subsequent request. 1332 // See Issue 11549. 1333 if ecr, ok := w.req.Body.(*expectContinueReader); ok && !ecr.sawEOF.isSet() { 1334 w.closeAfterReply = true 1335 } 1336 1337 // Per RFC 2616, we should consume the request body before 1338 // replying, if the handler hasn't already done so. But we 1339 // don't want to do an unbounded amount of reading here for 1340 // DoS reasons, so we only try up to a threshold. 1341 // TODO(bradfitz): where does RFC 2616 say that? See Issue 15527 1342 // about HTTP/1.x Handlers concurrently reading and writing, like 1343 // HTTP/2 handlers can do. Maybe this code should be relaxed? 1344 if w.req.ContentLength != 0 && !w.closeAfterReply { 1345 var discard, tooBig bool 1346 1347 switch bdy := w.req.Body.(type) { 1348 case *expectContinueReader: 1349 if bdy.resp.wroteContinue { 1350 discard = true 1351 } 1352 case *body: 1353 bdy.mu.Lock() 1354 switch { 1355 case bdy.closed: 1356 if !bdy.sawEOF { 1357 // Body was closed in handler with non-EOF error. 1358 w.closeAfterReply = true 1359 } 1360 case bdy.unreadDataSizeLocked() >= maxPostHandlerReadBytes: 1361 tooBig = true 1362 default: 1363 discard = true 1364 } 1365 bdy.mu.Unlock() 1366 default: 1367 discard = true 1368 } 1369 1370 if discard { 1371 _, err := io.CopyN(io.Discard, w.reqBody, maxPostHandlerReadBytes+1) 1372 switch err { 1373 case nil: 1374 // There must be even more data left over. 1375 tooBig = true 1376 case ErrBodyReadAfterClose: 1377 // Body was already consumed and closed. 1378 case io.EOF: 1379 // The remaining body was just consumed, close it. 1380 err = w.reqBody.Close() 1381 if err != nil { 1382 w.closeAfterReply = true 1383 } 1384 default: 1385 // Some other kind of error occurred, like a read timeout, or 1386 // corrupt chunked encoding. In any case, whatever remains 1387 // on the wire must not be parsed as another HTTP request. 1388 w.closeAfterReply = true 1389 } 1390 } 1391 1392 if tooBig { 1393 w.requestTooLarge() 1394 delHeader("Connection") 1395 setHeader.connection = "close" 1396 } 1397 } 1398 1399 code := w.status 1400 if bodyAllowedForStatus(code) { 1401 // If no content type, apply sniffing algorithm to body. 1402 _, haveType := header["Content-Type"] 1403 1404 // If the Content-Encoding was set and is non-blank, 1405 // we shouldn't sniff the body. See Issue 31753. 1406 ce := header.Get("Content-Encoding") 1407 hasCE := len(ce) > 0 1408 if !hasCE && !haveType && !hasTE && len(p) > 0 { 1409 setHeader.contentType = DetectContentType(p) 1410 } 1411 } else { 1412 for _, k := range suppressedHeaders(code) { 1413 delHeader(k) 1414 } 1415 } 1416 1417 if !header.has("Date") { 1418 setHeader.date = appendTime(cw.res.dateBuf[:0], time.Now()) 1419 } 1420 1421 if hasCL && hasTE && te != "identity" { 1422 // TODO: return an error if WriteHeader gets a return parameter 1423 // For now just ignore the Content-Length. 1424 w.conn.server.logf("http: WriteHeader called with both Transfer-Encoding of %q and a Content-Length of %d", 1425 te, w.contentLength) 1426 delHeader("Content-Length") 1427 hasCL = false 1428 } 1429 1430 if w.req.Method == "HEAD" || !bodyAllowedForStatus(code) { 1431 // do nothing 1432 } else if code == StatusNoContent { 1433 delHeader("Transfer-Encoding") 1434 } else if hasCL { 1435 delHeader("Transfer-Encoding") 1436 } else if w.req.ProtoAtLeast(1, 1) { 1437 // HTTP/1.1 or greater: Transfer-Encoding has been set to identity, and no 1438 // content-length has been provided. The connection must be closed after the 1439 // reply is written, and no chunking is to be done. This is the setup 1440 // recommended in the Server-Sent Events candidate recommendation 11, 1441 // section 8. 1442 if hasTE && te == "identity" { 1443 cw.chunking = false 1444 w.closeAfterReply = true 1445 } else { 1446 // HTTP/1.1 or greater: use chunked transfer encoding 1447 // to avoid closing the connection at EOF. 1448 cw.chunking = true 1449 setHeader.transferEncoding = "chunked" 1450 if hasTE && te == "chunked" { 1451 // We will send the chunked Transfer-Encoding header later. 1452 delHeader("Transfer-Encoding") 1453 } 1454 } 1455 } else { 1456 // HTTP version < 1.1: cannot do chunked transfer 1457 // encoding and we don't know the Content-Length so 1458 // signal EOF by closing connection. 1459 w.closeAfterReply = true 1460 delHeader("Transfer-Encoding") // in case already set 1461 } 1462 1463 // Cannot use Content-Length with non-identity Transfer-Encoding. 1464 if cw.chunking { 1465 delHeader("Content-Length") 1466 } 1467 if !w.req.ProtoAtLeast(1, 0) { 1468 return 1469 } 1470 1471 // Only override the Connection header if it is not a successful 1472 // protocol switch response and if KeepAlives are not enabled. 1473 // See https://golang.org/issue/36381. 1474 delConnectionHeader := w.closeAfterReply && 1475 (!keepAlivesEnabled || !hasToken(cw.header.get("Connection"), "close")) && 1476 !isProtocolSwitchResponse(w.status, header) 1477 if delConnectionHeader { 1478 delHeader("Connection") 1479 if w.req.ProtoAtLeast(1, 1) { 1480 setHeader.connection = "close" 1481 } 1482 } 1483 1484 writeStatusLine(w.conn.bufw, w.req.ProtoAtLeast(1, 1), code, w.statusBuf[:]) 1485 cw.header.WriteSubset(w.conn.bufw, excludeHeader) 1486 setHeader.Write(w.conn.bufw) 1487 w.conn.bufw.Write(crlf) 1488 } 1489 1490 // foreachHeaderElement splits v according to the "#rule" construction 1491 // in RFC 7230 section 7 and calls fn for each non-empty element. 1492 func foreachHeaderElement(v string, fn func(string)) { 1493 v = textproto.TrimString(v) 1494 if v == "" { 1495 return 1496 } 1497 if !strings.Contains(v, ",") { 1498 fn(v) 1499 return 1500 } 1501 for _, f := range strings.Split(v, ",") { 1502 if f = textproto.TrimString(f); f != "" { 1503 fn(f) 1504 } 1505 } 1506 } 1507 1508 // writeStatusLine writes an HTTP/1.x Status-Line (RFC 7230 Section 3.1.2) 1509 // to bw. is11 is whether the HTTP request is HTTP/1.1. false means HTTP/1.0. 1510 // code is the response status code. 1511 // scratch is an optional scratch buffer. If it has at least capacity 3, it's used. 1512 func writeStatusLine(bw *bufio.Writer, is11 bool, code int, scratch []byte) { 1513 if is11 { 1514 bw.WriteString("HTTP/1.1 ") 1515 } else { 1516 bw.WriteString("HTTP/1.0 ") 1517 } 1518 if text, ok := statusText[code]; ok { 1519 bw.Write(strconv.AppendInt(scratch[:0], int64(code), 10)) 1520 bw.WriteByte(' ') 1521 bw.WriteString(text) 1522 bw.WriteString("\r\n") 1523 } else { 1524 // don't worry about performance 1525 fmt.Fprintf(bw, "%03d status code %d\r\n", code, code) 1526 } 1527 } 1528 1529 // bodyAllowed reports whether a Write is allowed for this response type. 1530 // It's illegal to call this before the header has been flushed. 1531 func (w *response) bodyAllowed() bool { 1532 if !w.wroteHeader { 1533 panic("") 1534 } 1535 return bodyAllowedForStatus(w.status) 1536 } 1537 1538 // The Life Of A Write is like this: 1539 // 1540 // Handler starts. No header has been sent. The handler can either 1541 // write a header, or just start writing. Writing before sending a header 1542 // sends an implicitly empty 200 OK header. 1543 // 1544 // If the handler didn't declare a Content-Length up front, we either 1545 // go into chunking mode or, if the handler finishes running before 1546 // the chunking buffer size, we compute a Content-Length and send that 1547 // in the header instead. 1548 // 1549 // Likewise, if the handler didn't set a Content-Type, we sniff that 1550 // from the initial chunk of output. 1551 // 1552 // The Writers are wired together like: 1553 // 1554 // 1. *response (the ResponseWriter) -> 1555 // 2. (*response).w, a *bufio.Writer of bufferBeforeChunkingSize bytes 1556 // 3. chunkWriter.Writer (whose writeHeader finalizes Content-Length/Type) 1557 // and which writes the chunk headers, if needed. 1558 // 4. conn.buf, a bufio.Writer of default (4kB) bytes, writing to -> 1559 // 5. checkConnErrorWriter{c}, which notes any non-nil error on Write 1560 // and populates c.werr with it if so. but otherwise writes to: 1561 // 6. the rwc, the net.Conn. 1562 // 1563 // TODO(bradfitz): short-circuit some of the buffering when the 1564 // initial header contains both a Content-Type and Content-Length. 1565 // Also short-circuit in (1) when the header's been sent and not in 1566 // chunking mode, writing directly to (4) instead, if (2) has no 1567 // buffered data. More generally, we could short-circuit from (1) to 1568 // (3) even in chunking mode if the write size from (1) is over some 1569 // threshold and nothing is in (2). The answer might be mostly making 1570 // bufferBeforeChunkingSize smaller and having bufio's fast-paths deal 1571 // with this instead. 1572 func (w *response) Write(data []byte) (n int, err error) { 1573 return w.write(len(data), data, "") 1574 } 1575 1576 func (w *response) WriteString(data string) (n int, err error) { 1577 return w.write(len(data), nil, data) 1578 } 1579 1580 // either dataB or dataS is non-zero. 1581 func (w *response) write(lenData int, dataB []byte, dataS string) (n int, err error) { 1582 if w.conn.hijacked() { 1583 if lenData > 0 { 1584 caller := relevantCaller() 1585 w.conn.server.logf("http: response.Write on hijacked connection from %s (%s:%d)", caller.Function, path.Base(caller.File), caller.Line) 1586 } 1587 return 0, ErrHijacked 1588 } 1589 1590 if w.canWriteContinue.isSet() { 1591 // Body reader wants to write 100 Continue but hasn't yet. 1592 // Tell it not to. The store must be done while holding the lock 1593 // because the lock makes sure that there is not an active write 1594 // this very moment. 1595 w.writeContinueMu.Lock() 1596 w.canWriteContinue.setFalse() 1597 w.writeContinueMu.Unlock() 1598 } 1599 1600 if !w.wroteHeader { 1601 w.WriteHeader(StatusOK) 1602 } 1603 if lenData == 0 { 1604 return 0, nil 1605 } 1606 if !w.bodyAllowed() { 1607 return 0, ErrBodyNotAllowed 1608 } 1609 1610 w.written += int64(lenData) // ignoring errors, for errorKludge 1611 if w.contentLength != -1 && w.written > w.contentLength { 1612 return 0, ErrContentLength 1613 } 1614 if dataB != nil { 1615 return w.w.Write(dataB) 1616 } else { 1617 return w.w.WriteString(dataS) 1618 } 1619 } 1620 1621 func (w *response) finishRequest() { 1622 w.handlerDone.setTrue() 1623 1624 if !w.wroteHeader { 1625 w.WriteHeader(StatusOK) 1626 } 1627 1628 w.w.Flush() 1629 putBufioWriter(w.w) 1630 w.cw.close() 1631 w.conn.bufw.Flush() 1632 1633 w.conn.r.abortPendingRead() 1634 1635 // Close the body (regardless of w.closeAfterReply) so we can 1636 // re-use its bufio.Reader later safely. 1637 w.reqBody.Close() 1638 1639 if w.req.MultipartForm != nil { 1640 w.req.MultipartForm.RemoveAll() 1641 } 1642 } 1643 1644 // shouldReuseConnection reports whether the underlying TCP connection can be reused. 1645 // It must only be called after the handler is done executing. 1646 func (w *response) shouldReuseConnection() bool { 1647 if w.closeAfterReply { 1648 // The request or something set while executing the 1649 // handler indicated we shouldn't reuse this 1650 // connection. 1651 return false 1652 } 1653 1654 if w.req.Method != "HEAD" && w.contentLength != -1 && w.bodyAllowed() && w.contentLength != w.written { 1655 // Did not write enough. Avoid getting out of sync. 1656 return false 1657 } 1658 1659 // There was some error writing to the underlying connection 1660 // during the request, so don't re-use this conn. 1661 if w.conn.werr != nil { 1662 return false 1663 } 1664 1665 if w.closedRequestBodyEarly() { 1666 return false 1667 } 1668 1669 return true 1670 } 1671 1672 func (w *response) closedRequestBodyEarly() bool { 1673 body, ok := w.req.Body.(*body) 1674 return ok && body.didEarlyClose() 1675 } 1676 1677 func (w *response) Flush() { 1678 if !w.wroteHeader { 1679 w.WriteHeader(StatusOK) 1680 } 1681 w.w.Flush() 1682 w.cw.flush() 1683 } 1684 1685 func (c *conn) finalFlush() { 1686 if c.bufr != nil { 1687 // Steal the bufio.Reader (~4KB worth of memory) and its associated 1688 // reader for a future connection. 1689 putBufioReader(c.bufr) 1690 c.bufr = nil 1691 } 1692 1693 if c.bufw != nil { 1694 c.bufw.Flush() 1695 // Steal the bufio.Writer (~4KB worth of memory) and its associated 1696 // writer for a future connection. 1697 putBufioWriter(c.bufw) 1698 c.bufw = nil 1699 } 1700 } 1701 1702 // Close the connection. 1703 func (c *conn) close() { 1704 c.finalFlush() 1705 c.rwc.Close() 1706 } 1707 1708 // rstAvoidanceDelay is the amount of time we sleep after closing the 1709 // write side of a TCP connection before closing the entire socket. 1710 // By sleeping, we increase the chances that the client sees our FIN 1711 // and processes its final data before they process the subsequent RST 1712 // from closing a connection with known unread data. 1713 // This RST seems to occur mostly on BSD systems. (And Windows?) 1714 // This timeout is somewhat arbitrary (~latency around the planet). 1715 const rstAvoidanceDelay = 500 * time.Millisecond 1716 1717 type closeWriter interface { 1718 CloseWrite() error 1719 } 1720 1721 var _ closeWriter = (*net.TCPConn)(nil) 1722 1723 // closeWrite flushes any outstanding data and sends a FIN packet (if 1724 // client is connected via TCP), signalling that we're done. We then 1725 // pause for a bit, hoping the client processes it before any 1726 // subsequent RST. 1727 // 1728 // See https://golang.org/issue/3595 1729 func (c *conn) closeWriteAndWait() { 1730 c.finalFlush() 1731 if tcp, ok := c.rwc.(closeWriter); ok { 1732 tcp.CloseWrite() 1733 } 1734 time.Sleep(rstAvoidanceDelay) 1735 } 1736 1737 // validNextProto reports whether the proto is a valid ALPN protocol name. 1738 // Everything is valid except the empty string and built-in protocol types, 1739 // so that those can't be overridden with alternate implementations. 1740 func validNextProto(proto string) bool { 1741 switch proto { 1742 case "", "http/1.1", "http/1.0": 1743 return false 1744 } 1745 return true 1746 } 1747 1748 const ( 1749 runHooks = true 1750 skipHooks = false 1751 ) 1752 1753 func (c *conn) setState(nc net.Conn, state ConnState, runHook bool) { 1754 srv := c.server 1755 switch state { 1756 case StateNew: 1757 srv.trackConn(c, true) 1758 case StateHijacked, StateClosed: 1759 srv.trackConn(c, false) 1760 } 1761 if state > 0xff || state < 0 { 1762 panic("internal error") 1763 } 1764 packedState := uint64(time.Now().Unix()<<8) | uint64(state) 1765 atomic.StoreUint64(&c.curState.atomic, packedState) 1766 if !runHook { 1767 return 1768 } 1769 if hook := srv.ConnState; hook != nil { 1770 hook(nc, state) 1771 } 1772 } 1773 1774 func (c *conn) getState() (state ConnState, unixSec int64) { 1775 packedState := atomic.LoadUint64(&c.curState.atomic) 1776 return ConnState(packedState & 0xff), int64(packedState >> 8) 1777 } 1778 1779 // badRequestError is a literal string (used by in the server in HTML, 1780 // unescaped) to tell the user why their request was bad. It should 1781 // be plain text without user info or other embedded errors. 1782 func badRequestError(e string) error { return statusError{StatusBadRequest, e} } 1783 1784 // statusError is an error used to respond to a request with an HTTP status. 1785 // The text should be plain text without user info or other embedded errors. 1786 type statusError struct { 1787 code int 1788 text string 1789 } 1790 1791 func (e statusError) Error() string { return StatusText(e.code) + ": " + e.text } 1792 1793 // ErrAbortHandler is a sentinel panic value to abort a handler. 1794 // While any panic from ServeHTTP aborts the response to the client, 1795 // panicking with ErrAbortHandler also suppresses logging of a stack 1796 // trace to the server's error log. 1797 var ErrAbortHandler = errors.New("net/http: abort Handler") 1798 1799 // isCommonNetReadError reports whether err is a common error 1800 // encountered during reading a request off the network when the 1801 // client has gone away or had its read fail somehow. This is used to 1802 // determine which logs are interesting enough to log about. 1803 func isCommonNetReadError(err error) bool { 1804 if err == io.EOF { 1805 return true 1806 } 1807 if neterr, ok := err.(net.Error); ok && neterr.Timeout() { 1808 return true 1809 } 1810 if oe, ok := err.(*net.OpError); ok && oe.Op == "read" { 1811 return true 1812 } 1813 return false 1814 } 1815 1816 // Serve a new connection. 1817 func (c *conn) serve(ctx context.Context) { 1818 c.remoteAddr = c.rwc.RemoteAddr().String() 1819 ctx = context.WithValue(ctx, LocalAddrContextKey, c.rwc.LocalAddr()) 1820 defer func() { 1821 if err := recover(); err != nil && err != ErrAbortHandler { 1822 const size = 64 << 10 1823 buf := make([]byte, size) 1824 buf = buf[:runtime.Stack(buf, false)] 1825 c.server.logf("http: panic serving %v: %v\n%s", c.remoteAddr, err, buf) 1826 } 1827 if !c.hijacked() { 1828 c.close() 1829 c.setState(c.rwc, StateClosed, runHooks) 1830 } 1831 }() 1832 1833 if tlsConn, ok := c.rwc.(*tls.Conn); ok { 1834 if d := c.server.ReadTimeout; d != 0 { 1835 c.rwc.SetReadDeadline(time.Now().Add(d)) 1836 } 1837 if d := c.server.WriteTimeout; d != 0 { 1838 c.rwc.SetWriteDeadline(time.Now().Add(d)) 1839 } 1840 if err := tlsConn.Handshake(); err != nil { 1841 // If the handshake failed due to the client not speaking 1842 // TLS, assume they're speaking plaintext HTTP and write a 1843 // 400 response on the TLS conn's underlying net.Conn. 1844 if re, ok := err.(tls.RecordHeaderError); ok && re.Conn != nil && tlsRecordHeaderLooksLikeHTTP(re.RecordHeader) { 1845 io.WriteString(re.Conn, "HTTP/1.0 400 Bad Request\r\n\r\nClient sent an HTTP request to an HTTPS server.\n") 1846 re.Conn.Close() 1847 return 1848 } 1849 c.server.logf("http: TLS handshake error from %s: %v", c.rwc.RemoteAddr(), err) 1850 return 1851 } 1852 c.tlsState = new(tls.ConnectionState) 1853 *c.tlsState = tlsConn.ConnectionState() 1854 if proto := c.tlsState.NegotiatedProtocol; validNextProto(proto) { 1855 if fn := c.server.TLSNextProto[proto]; fn != nil { 1856 h := initALPNRequest{ctx, tlsConn, serverHandler{c.server}} 1857 // Mark freshly created HTTP/2 as active and prevent any server state hooks 1858 // from being run on these connections. This prevents closeIdleConns from 1859 // closing such connections. See issue https://golang.org/issue/39776. 1860 c.setState(c.rwc, StateActive, skipHooks) 1861 fn(c.server, tlsConn, h) 1862 } 1863 return 1864 } 1865 } 1866 1867 // HTTP/1.x from here on. 1868 1869 ctx, cancelCtx := context.WithCancel(ctx) 1870 c.cancelCtx = cancelCtx 1871 defer cancelCtx() 1872 1873 c.r = &connReader{conn: c} 1874 c.bufr = newBufioReader(c.r) 1875 c.bufw = newBufioWriterSize(checkConnErrorWriter{c}, 4<<10) 1876 1877 for { 1878 w, err := c.readRequest(ctx) 1879 if c.r.remain != c.server.initialReadLimitSize() { 1880 // If we read any bytes off the wire, we're active. 1881 c.setState(c.rwc, StateActive, runHooks) 1882 } 1883 if err != nil { 1884 const errorHeaders = "\r\nContent-Type: text/plain; charset=utf-8\r\nConnection: close\r\n\r\n" 1885 1886 switch { 1887 case err == errTooLarge: 1888 // Their HTTP client may or may not be 1889 // able to read this if we're 1890 // responding to them and hanging up 1891 // while they're still writing their 1892 // request. Undefined behavior. 1893 const publicErr = "431 Request Header Fields Too Large" 1894 fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr) 1895 c.closeWriteAndWait() 1896 return 1897 1898 case isUnsupportedTEError(err): 1899 // Respond as per RFC 7230 Section 3.3.1 which says, 1900 // A server that receives a request message with a 1901 // transfer coding it does not understand SHOULD 1902 // respond with 501 (Unimplemented). 1903 code := StatusNotImplemented 1904 1905 // We purposefully aren't echoing back the transfer-encoding's value, 1906 // so as to mitigate the risk of cross side scripting by an attacker. 1907 fmt.Fprintf(c.rwc, "HTTP/1.1 %d %s%sUnsupported transfer encoding", code, StatusText(code), errorHeaders) 1908 return 1909 1910 case isCommonNetReadError(err): 1911 return // don't reply 1912 1913 default: 1914 if v, ok := err.(statusError); ok { 1915 fmt.Fprintf(c.rwc, "HTTP/1.1 %d %s: %s%s%d %s: %s", v.code, StatusText(v.code), v.text, errorHeaders, v.code, StatusText(v.code), v.text) 1916 return 1917 } 1918 publicErr := "400 Bad Request" 1919 fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr) 1920 return 1921 } 1922 } 1923 1924 // Expect 100 Continue support 1925 req := w.req 1926 if req.expectsContinue() { 1927 if req.ProtoAtLeast(1, 1) && req.ContentLength != 0 { 1928 // Wrap the Body reader with one that replies on the connection 1929 req.Body = &expectContinueReader{readCloser: req.Body, resp: w} 1930 w.canWriteContinue.setTrue() 1931 } 1932 } else if req.Header.get("Expect") != "" { 1933 w.sendExpectationFailed() 1934 return 1935 } 1936 1937 c.curReq.Store(w) 1938 1939 if requestBodyRemains(req.Body) { 1940 registerOnHitEOF(req.Body, w.conn.r.startBackgroundRead) 1941 } else { 1942 w.conn.r.startBackgroundRead() 1943 } 1944 1945 // HTTP cannot have multiple simultaneous active requests.[*] 1946 // Until the server replies to this request, it can't read another, 1947 // so we might as well run the handler in this goroutine. 1948 // [*] Not strictly true: HTTP pipelining. We could let them all process 1949 // in parallel even if their responses need to be serialized. 1950 // But we're not going to implement HTTP pipelining because it 1951 // was never deployed in the wild and the answer is HTTP/2. 1952 serverHandler{c.server}.ServeHTTP(w, w.req) 1953 w.cancelCtx() 1954 if c.hijacked() { 1955 return 1956 } 1957 w.finishRequest() 1958 if !w.shouldReuseConnection() { 1959 if w.requestBodyLimitHit || w.closedRequestBodyEarly() { 1960 c.closeWriteAndWait() 1961 } 1962 return 1963 } 1964 c.setState(c.rwc, StateIdle, runHooks) 1965 c.curReq.Store((*response)(nil)) 1966 1967 if !w.conn.server.doKeepAlives() { 1968 // We're in shutdown mode. We might've replied 1969 // to the user without "Connection: close" and 1970 // they might think they can send another 1971 // request, but such is life with HTTP/1.1. 1972 return 1973 } 1974 1975 if d := c.server.idleTimeout(); d != 0 { 1976 c.rwc.SetReadDeadline(time.Now().Add(d)) 1977 if _, err := c.bufr.Peek(4); err != nil { 1978 return 1979 } 1980 } 1981 c.rwc.SetReadDeadline(time.Time{}) 1982 } 1983 } 1984 1985 func (w *response) sendExpectationFailed() { 1986 // TODO(bradfitz): let ServeHTTP handlers handle 1987 // requests with non-standard expectation[s]? Seems 1988 // theoretical at best, and doesn't fit into the 1989 // current ServeHTTP model anyway. We'd need to 1990 // make the ResponseWriter an optional 1991 // "ExpectReplier" interface or something. 1992 // 1993 // For now we'll just obey RFC 7231 5.1.1 which says 1994 // "A server that receives an Expect field-value other 1995 // than 100-continue MAY respond with a 417 (Expectation 1996 // Failed) status code to indicate that the unexpected 1997 // expectation cannot be met." 1998 w.Header().Set("Connection", "close") 1999 w.WriteHeader(StatusExpectationFailed) 2000 w.finishRequest() 2001 } 2002 2003 // Hijack implements the Hijacker.Hijack method. Our response is both a ResponseWriter 2004 // and a Hijacker. 2005 func (w *response) Hijack() (rwc net.Conn, buf *bufio.ReadWriter, err error) { 2006 if w.handlerDone.isSet() { 2007 panic("net/http: Hijack called after ServeHTTP finished") 2008 } 2009 if w.wroteHeader { 2010 w.cw.flush() 2011 } 2012 2013 c := w.conn 2014 c.mu.Lock() 2015 defer c.mu.Unlock() 2016 2017 // Release the bufioWriter that writes to the chunk writer, it is not 2018 // used after a connection has been hijacked. 2019 rwc, buf, err = c.hijackLocked() 2020 if err == nil { 2021 putBufioWriter(w.w) 2022 w.w = nil 2023 } 2024 return rwc, buf, err 2025 } 2026 2027 func (w *response) CloseNotify() <-chan bool { 2028 if w.handlerDone.isSet() { 2029 panic("net/http: CloseNotify called after ServeHTTP finished") 2030 } 2031 return w.closeNotifyCh 2032 } 2033 2034 func registerOnHitEOF(rc io.ReadCloser, fn func()) { 2035 switch v := rc.(type) { 2036 case *expectContinueReader: 2037 registerOnHitEOF(v.readCloser, fn) 2038 case *body: 2039 v.registerOnHitEOF(fn) 2040 default: 2041 panic("unexpected type " + fmt.Sprintf("%T", rc)) 2042 } 2043 } 2044 2045 // requestBodyRemains reports whether future calls to Read 2046 // on rc might yield more data. 2047 func requestBodyRemains(rc io.ReadCloser) bool { 2048 if rc == NoBody { 2049 return false 2050 } 2051 switch v := rc.(type) { 2052 case *expectContinueReader: 2053 return requestBodyRemains(v.readCloser) 2054 case *body: 2055 return v.bodyRemains() 2056 default: 2057 panic("unexpected type " + fmt.Sprintf("%T", rc)) 2058 } 2059 } 2060 2061 // The HandlerFunc type is an adapter to allow the use of 2062 // ordinary functions as HTTP handlers. If f is a function 2063 // with the appropriate signature, HandlerFunc(f) is a 2064 // Handler that calls f. 2065 type HandlerFunc func(ResponseWriter, *Request) 2066 2067 // ServeHTTP calls f(w, r). 2068 func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) { 2069 f(w, r) 2070 } 2071 2072 // Helper handlers 2073 2074 // Error replies to the request with the specified error message and HTTP code. 2075 // It does not otherwise end the request; the caller should ensure no further 2076 // writes are done to w. 2077 // The error message should be plain text. 2078 func Error(w ResponseWriter, error string, code int) { 2079 w.Header().Set("Content-Type", "text/plain; charset=utf-8") 2080 w.Header().Set("X-Content-Type-Options", "nosniff") 2081 w.WriteHeader(code) 2082 fmt.Fprintln(w, error) 2083 } 2084 2085 // NotFound replies to the request with an HTTP 404 not found error. 2086 func NotFound(w ResponseWriter, r *Request) { Error(w, "404 page not found", StatusNotFound) } 2087 2088 // NotFoundHandler returns a simple request handler 2089 // that replies to each request with a ``404 page not found'' reply. 2090 func NotFoundHandler() Handler { return HandlerFunc(NotFound) } 2091 2092 // StripPrefix returns a handler that serves HTTP requests by removing the 2093 // given prefix from the request URL's Path (and RawPath if set) and invoking 2094 // the handler h. StripPrefix handles a request for a path that doesn't begin 2095 // with prefix by replying with an HTTP 404 not found error. The prefix must 2096 // match exactly: if the prefix in the request contains escaped characters 2097 // the reply is also an HTTP 404 not found error. 2098 func StripPrefix(prefix string, h Handler) Handler { 2099 if prefix == "" { 2100 return h 2101 } 2102 return HandlerFunc(func(w ResponseWriter, r *Request) { 2103 p := strings.TrimPrefix(r.URL.Path, prefix) 2104 rp := strings.TrimPrefix(r.URL.RawPath, prefix) 2105 if len(p) < len(r.URL.Path) && (r.URL.RawPath == "" || len(rp) < len(r.URL.RawPath)) { 2106 r2 := new(Request) 2107 *r2 = *r 2108 r2.URL = new(url.URL) 2109 *r2.URL = *r.URL 2110 r2.URL.Path = p 2111 r2.URL.RawPath = rp 2112 h.ServeHTTP(w, r2) 2113 } else { 2114 NotFound(w, r) 2115 } 2116 }) 2117 } 2118 2119 // Redirect replies to the request with a redirect to url, 2120 // which may be a path relative to the request path. 2121 // 2122 // The provided code should be in the 3xx range and is usually 2123 // StatusMovedPermanently, StatusFound or StatusSeeOther. 2124 // 2125 // If the Content-Type header has not been set, Redirect sets it 2126 // to "text/html; charset=utf-8" and writes a small HTML body. 2127 // Setting the Content-Type header to any value, including nil, 2128 // disables that behavior. 2129 func Redirect(w ResponseWriter, r *Request, url string, code int) { 2130 if u, err := urlpkg.Parse(url); err == nil { 2131 // If url was relative, make its path absolute by 2132 // combining with request path. 2133 // The client would probably do this for us, 2134 // but doing it ourselves is more reliable. 2135 // See RFC 7231, section 7.1.2 2136 if u.Scheme == "" && u.Host == "" { 2137 oldpath := r.URL.Path 2138 if oldpath == "" { // should not happen, but avoid a crash if it does 2139 oldpath = "/" 2140 } 2141 2142 // no leading http://server 2143 if url == "" || url[0] != '/' { 2144 // make relative path absolute 2145 olddir, _ := path.Split(oldpath) 2146 url = olddir + url 2147 } 2148 2149 var query string 2150 if i := strings.Index(url, "?"); i != -1 { 2151 url, query = url[:i], url[i:] 2152 } 2153 2154 // clean up but preserve trailing slash 2155 trailing := strings.HasSuffix(url, "/") 2156 url = path.Clean(url) 2157 if trailing && !strings.HasSuffix(url, "/") { 2158 url += "/" 2159 } 2160 url += query 2161 } 2162 } 2163 2164 h := w.Header() 2165 2166 // RFC 7231 notes that a short HTML body is usually included in 2167 // the response because older user agents may not understand 301/307. 2168 // Do it only if the request didn't already have a Content-Type header. 2169 _, hadCT := h["Content-Type"] 2170 2171 h.Set("Location", hexEscapeNonASCII(url)) 2172 if !hadCT && (r.Method == "GET" || r.Method == "HEAD") { 2173 h.Set("Content-Type", "text/html; charset=utf-8") 2174 } 2175 w.WriteHeader(code) 2176 2177 // Shouldn't send the body for POST or HEAD; that leaves GET. 2178 if !hadCT && r.Method == "GET" { 2179 body := "<a href=\"" + htmlEscape(url) + "\">" + statusText[code] + "</a>.\n" 2180 fmt.Fprintln(w, body) 2181 } 2182 } 2183 2184 var htmlReplacer = strings.NewReplacer( 2185 "&", "&", 2186 "<", "<", 2187 ">", ">", 2188 // """ is shorter than """. 2189 `"`, """, 2190 // "'" is shorter than "'" and apos was not in HTML until HTML5. 2191 "'", "'", 2192 ) 2193 2194 func htmlEscape(s string) string { 2195 return htmlReplacer.Replace(s) 2196 } 2197 2198 // Redirect to a fixed URL 2199 type redirectHandler struct { 2200 url string 2201 code int 2202 } 2203 2204 func (rh *redirectHandler) ServeHTTP(w ResponseWriter, r *Request) { 2205 Redirect(w, r, rh.url, rh.code) 2206 } 2207 2208 // RedirectHandler returns a request handler that redirects 2209 // each request it receives to the given url using the given 2210 // status code. 2211 // 2212 // The provided code should be in the 3xx range and is usually 2213 // StatusMovedPermanently, StatusFound or StatusSeeOther. 2214 func RedirectHandler(url string, code int) Handler { 2215 return &redirectHandler{url, code} 2216 } 2217 2218 // ServeMux is an HTTP request multiplexer. 2219 // It matches the URL of each incoming request against a list of registered 2220 // patterns and calls the handler for the pattern that 2221 // most closely matches the URL. 2222 // 2223 // Patterns name fixed, rooted paths, like "/favicon.ico", 2224 // or rooted subtrees, like "/images/" (note the trailing slash). 2225 // Longer patterns take precedence over shorter ones, so that 2226 // if there are handlers registered for both "/images/" 2227 // and "/images/thumbnails/", the latter handler will be 2228 // called for paths beginning "/images/thumbnails/" and the 2229 // former will receive requests for any other paths in the 2230 // "/images/" subtree. 2231 // 2232 // Note that since a pattern ending in a slash names a rooted subtree, 2233 // the pattern "/" matches all paths not matched by other registered 2234 // patterns, not just the URL with Path == "/". 2235 // 2236 // If a subtree has been registered and a request is received naming the 2237 // subtree root without its trailing slash, ServeMux redirects that 2238 // request to the subtree root (adding the trailing slash). This behavior can 2239 // be overridden with a separate registration for the path without 2240 // the trailing slash. For example, registering "/images/" causes ServeMux 2241 // to redirect a request for "/images" to "/images/", unless "/images" has 2242 // been registered separately. 2243 // 2244 // Patterns may optionally begin with a host name, restricting matches to 2245 // URLs on that host only. Host-specific patterns take precedence over 2246 // general patterns, so that a handler might register for the two patterns 2247 // "/codesearch" and "codesearch.google.com/" without also taking over 2248 // requests for "http://www.google.com/". 2249 // 2250 // ServeMux also takes care of sanitizing the URL request path and the Host 2251 // header, stripping the port number and redirecting any request containing . or 2252 // .. elements or repeated slashes to an equivalent, cleaner URL. 2253 type ServeMux struct { 2254 mu sync.RWMutex 2255 m map[string]muxEntry 2256 es []muxEntry // slice of entries sorted from longest to shortest. 2257 hosts bool // whether any patterns contain hostnames 2258 } 2259 2260 type muxEntry struct { 2261 h Handler 2262 pattern string 2263 } 2264 2265 // NewServeMux allocates and returns a new ServeMux. 2266 func NewServeMux() *ServeMux { return new(ServeMux) } 2267 2268 // DefaultServeMux is the default ServeMux used by Serve. 2269 var DefaultServeMux = &defaultServeMux 2270 2271 var defaultServeMux ServeMux 2272 2273 // cleanPath returns the canonical path for p, eliminating . and .. elements. 2274 func cleanPath(p string) string { 2275 if p == "" { 2276 return "/" 2277 } 2278 if p[0] != '/' { 2279 p = "/" + p 2280 } 2281 np := path.Clean(p) 2282 // path.Clean removes trailing slash except for root; 2283 // put the trailing slash back if necessary. 2284 if p[len(p)-1] == '/' && np != "/" { 2285 // Fast path for common case of p being the string we want: 2286 if len(p) == len(np)+1 && strings.HasPrefix(p, np) { 2287 np = p 2288 } else { 2289 np += "/" 2290 } 2291 } 2292 return np 2293 } 2294 2295 // stripHostPort returns h without any trailing ":<port>". 2296 func stripHostPort(h string) string { 2297 // If no port on host, return unchanged 2298 if strings.IndexByte(h, ':') == -1 { 2299 return h 2300 } 2301 host, _, err := net.SplitHostPort(h) 2302 if err != nil { 2303 return h // on error, return unchanged 2304 } 2305 return host 2306 } 2307 2308 // Find a handler on a handler map given a path string. 2309 // Most-specific (longest) pattern wins. 2310 func (mux *ServeMux) match(path string) (h Handler, pattern string) { 2311 // Check for exact match first. 2312 v, ok := mux.m[path] 2313 if ok { 2314 return v.h, v.pattern 2315 } 2316 2317 // Check for longest valid match. mux.es contains all patterns 2318 // that end in / sorted from longest to shortest. 2319 for _, e := range mux.es { 2320 if strings.HasPrefix(path, e.pattern) { 2321 return e.h, e.pattern 2322 } 2323 } 2324 return nil, "" 2325 } 2326 2327 // redirectToPathSlash determines if the given path needs appending "/" to it. 2328 // This occurs when a handler for path + "/" was already registered, but 2329 // not for path itself. If the path needs appending to, it creates a new 2330 // URL, setting the path to u.Path + "/" and returning true to indicate so. 2331 func (mux *ServeMux) redirectToPathSlash(host, path string, u *url.URL) (*url.URL, bool) { 2332 mux.mu.RLock() 2333 shouldRedirect := mux.shouldRedirectRLocked(host, path) 2334 mux.mu.RUnlock() 2335 if !shouldRedirect { 2336 return u, false 2337 } 2338 path = path + "/" 2339 u = &url.URL{Path: path, RawQuery: u.RawQuery} 2340 return u, true 2341 } 2342 2343 // shouldRedirectRLocked reports whether the given path and host should be redirected to 2344 // path+"/". This should happen if a handler is registered for path+"/" but 2345 // not path -- see comments at ServeMux. 2346 func (mux *ServeMux) shouldRedirectRLocked(host, path string) bool { 2347 p := []string{path, host + path} 2348 2349 for _, c := range p { 2350 if _, exist := mux.m[c]; exist { 2351 return false 2352 } 2353 } 2354 2355 n := len(path) 2356 if n == 0 { 2357 return false 2358 } 2359 for _, c := range p { 2360 if _, exist := mux.m[c+"/"]; exist { 2361 return path[n-1] != '/' 2362 } 2363 } 2364 2365 return false 2366 } 2367 2368 // Handler returns the handler to use for the given request, 2369 // consulting r.Method, r.Host, and r.URL.Path. It always returns 2370 // a non-nil handler. If the path is not in its canonical form, the 2371 // handler will be an internally-generated handler that redirects 2372 // to the canonical path. If the host contains a port, it is ignored 2373 // when matching handlers. 2374 // 2375 // The path and host are used unchanged for CONNECT requests. 2376 // 2377 // Handler also returns the registered pattern that matches the 2378 // request or, in the case of internally-generated redirects, 2379 // the pattern that will match after following the redirect. 2380 // 2381 // If there is no registered handler that applies to the request, 2382 // Handler returns a ``page not found'' handler and an empty pattern. 2383 func (mux *ServeMux) Handler(r *Request) (h Handler, pattern string) { 2384 2385 // CONNECT requests are not canonicalized. 2386 if r.Method == "CONNECT" { 2387 // If r.URL.Path is /tree and its handler is not registered, 2388 // the /tree -> /tree/ redirect applies to CONNECT requests 2389 // but the path canonicalization does not. 2390 if u, ok := mux.redirectToPathSlash(r.URL.Host, r.URL.Path, r.URL); ok { 2391 return RedirectHandler(u.String(), StatusMovedPermanently), u.Path 2392 } 2393 2394 return mux.handler(r.Host, r.URL.Path) 2395 } 2396 2397 // All other requests have any port stripped and path cleaned 2398 // before passing to mux.handler. 2399 host := stripHostPort(r.Host) 2400 path := cleanPath(r.URL.Path) 2401 2402 // If the given path is /tree and its handler is not registered, 2403 // redirect for /tree/. 2404 if u, ok := mux.redirectToPathSlash(host, path, r.URL); ok { 2405 return RedirectHandler(u.String(), StatusMovedPermanently), u.Path 2406 } 2407 2408 if path != r.URL.Path { 2409 _, pattern = mux.handler(host, path) 2410 url := *r.URL 2411 url.Path = path 2412 return RedirectHandler(url.String(), StatusMovedPermanently), pattern 2413 } 2414 2415 return mux.handler(host, r.URL.Path) 2416 } 2417 2418 // handler is the main implementation of Handler. 2419 // The path is known to be in canonical form, except for CONNECT methods. 2420 func (mux *ServeMux) handler(host, path string) (h Handler, pattern string) { 2421 mux.mu.RLock() 2422 defer mux.mu.RUnlock() 2423 2424 // Host-specific pattern takes precedence over generic ones 2425 if mux.hosts { 2426 h, pattern = mux.match(host + path) 2427 } 2428 if h == nil { 2429 h, pattern = mux.match(path) 2430 } 2431 if h == nil { 2432 h, pattern = NotFoundHandler(), "" 2433 } 2434 return 2435 } 2436 2437 // ServeHTTP dispatches the request to the handler whose 2438 // pattern most closely matches the request URL. 2439 func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) { 2440 if r.RequestURI == "*" { 2441 if r.ProtoAtLeast(1, 1) { 2442 w.Header().Set("Connection", "close") 2443 } 2444 w.WriteHeader(StatusBadRequest) 2445 return 2446 } 2447 h, _ := mux.Handler(r) 2448 h.ServeHTTP(w, r) 2449 } 2450 2451 // Handle registers the handler for the given pattern. 2452 // If a handler already exists for pattern, Handle panics. 2453 func (mux *ServeMux) Handle(pattern string, handler Handler) { 2454 mux.mu.Lock() 2455 defer mux.mu.Unlock() 2456 2457 if pattern == "" { 2458 panic("http: invalid pattern") 2459 } 2460 if handler == nil { 2461 panic("http: nil handler") 2462 } 2463 if _, exist := mux.m[pattern]; exist { 2464 panic("http: multiple registrations for " + pattern) 2465 } 2466 2467 if mux.m == nil { 2468 mux.m = make(map[string]muxEntry) 2469 } 2470 e := muxEntry{h: handler, pattern: pattern} 2471 mux.m[pattern] = e 2472 if pattern[len(pattern)-1] == '/' { 2473 mux.es = appendSorted(mux.es, e) 2474 } 2475 2476 if pattern[0] != '/' { 2477 mux.hosts = true 2478 } 2479 } 2480 2481 func appendSorted(es []muxEntry, e muxEntry) []muxEntry { 2482 n := len(es) 2483 i := sort.Search(n, func(i int) bool { 2484 return len(es[i].pattern) < len(e.pattern) 2485 }) 2486 if i == n { 2487 return append(es, e) 2488 } 2489 // we now know that i points at where we want to insert 2490 es = append(es, muxEntry{}) // try to grow the slice in place, any entry works. 2491 copy(es[i+1:], es[i:]) // Move shorter entries down 2492 es[i] = e 2493 return es 2494 } 2495 2496 // HandleFunc registers the handler function for the given pattern. 2497 func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request)) { 2498 if handler == nil { 2499 panic("http: nil handler") 2500 } 2501 mux.Handle(pattern, HandlerFunc(handler)) 2502 } 2503 2504 // Handle registers the handler for the given pattern 2505 // in the DefaultServeMux. 2506 // The documentation for ServeMux explains how patterns are matched. 2507 func Handle(pattern string, handler Handler) { DefaultServeMux.Handle(pattern, handler) } 2508 2509 // HandleFunc registers the handler function for the given pattern 2510 // in the DefaultServeMux. 2511 // The documentation for ServeMux explains how patterns are matched. 2512 func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) { 2513 DefaultServeMux.HandleFunc(pattern, handler) 2514 } 2515 2516 // Serve accepts incoming HTTP connections on the listener l, 2517 // creating a new service goroutine for each. The service goroutines 2518 // read requests and then call handler to reply to them. 2519 // 2520 // The handler is typically nil, in which case the DefaultServeMux is used. 2521 // 2522 // HTTP/2 support is only enabled if the Listener returns *tls.Conn 2523 // connections and they were configured with "h2" in the TLS 2524 // Config.NextProtos. 2525 // 2526 // Serve always returns a non-nil error. 2527 func Serve(l net.Listener, handler Handler) error { 2528 srv := &Server{Handler: handler} 2529 return srv.Serve(l) 2530 } 2531 2532 // ServeTLS accepts incoming HTTPS connections on the listener l, 2533 // creating a new service goroutine for each. The service goroutines 2534 // read requests and then call handler to reply to them. 2535 // 2536 // The handler is typically nil, in which case the DefaultServeMux is used. 2537 // 2538 // Additionally, files containing a certificate and matching private key 2539 // for the server must be provided. If the certificate is signed by a 2540 // certificate authority, the certFile should be the concatenation 2541 // of the server's certificate, any intermediates, and the CA's certificate. 2542 // 2543 // ServeTLS always returns a non-nil error. 2544 func ServeTLS(l net.Listener, handler Handler, certFile, keyFile string) error { 2545 srv := &Server{Handler: handler} 2546 return srv.ServeTLS(l, certFile, keyFile) 2547 } 2548 2549 // A Server defines parameters for running an HTTP server. 2550 // The zero value for Server is a valid configuration. 2551 type Server struct { 2552 // Addr optionally specifies the TCP address for the server to listen on, 2553 // in the form "host:port". If empty, ":http" (port 80) is used. 2554 // The service names are defined in RFC 6335 and assigned by IANA. 2555 // See net.Dial for details of the address format. 2556 Addr string 2557 2558 Handler Handler // handler to invoke, http.DefaultServeMux if nil 2559 2560 // TLSConfig optionally provides a TLS configuration for use 2561 // by ServeTLS and ListenAndServeTLS. Note that this value is 2562 // cloned by ServeTLS and ListenAndServeTLS, so it's not 2563 // possible to modify the configuration with methods like 2564 // tls.Config.SetSessionTicketKeys. To use 2565 // SetSessionTicketKeys, use Server.Serve with a TLS Listener 2566 // instead. 2567 TLSConfig *tls.Config 2568 2569 // ReadTimeout is the maximum duration for reading the entire 2570 // request, including the body. 2571 // 2572 // Because ReadTimeout does not let Handlers make per-request 2573 // decisions on each request body's acceptable deadline or 2574 // upload rate, most users will prefer to use 2575 // ReadHeaderTimeout. It is valid to use them both. 2576 ReadTimeout time.Duration 2577 2578 // ReadHeaderTimeout is the amount of time allowed to read 2579 // request headers. The connection's read deadline is reset 2580 // after reading the headers and the Handler can decide what 2581 // is considered too slow for the body. If ReadHeaderTimeout 2582 // is zero, the value of ReadTimeout is used. If both are 2583 // zero, there is no timeout. 2584 ReadHeaderTimeout time.Duration 2585 2586 // WriteTimeout is the maximum duration before timing out 2587 // writes of the response. It is reset whenever a new 2588 // request's header is read. Like ReadTimeout, it does not 2589 // let Handlers make decisions on a per-request basis. 2590 WriteTimeout time.Duration 2591 2592 // IdleTimeout is the maximum amount of time to wait for the 2593 // next request when keep-alives are enabled. If IdleTimeout 2594 // is zero, the value of ReadTimeout is used. If both are 2595 // zero, there is no timeout. 2596 IdleTimeout time.Duration 2597 2598 // MaxHeaderBytes controls the maximum number of bytes the 2599 // server will read parsing the request header's keys and 2600 // values, including the request line. It does not limit the 2601 // size of the request body. 2602 // If zero, DefaultMaxHeaderBytes is used. 2603 MaxHeaderBytes int 2604 2605 // TLSNextProto optionally specifies a function to take over 2606 // ownership of the provided TLS connection when an ALPN 2607 // protocol upgrade has occurred. The map key is the protocol 2608 // name negotiated. The Handler argument should be used to 2609 // handle HTTP requests and will initialize the Request's TLS 2610 // and RemoteAddr if not already set. The connection is 2611 // automatically closed when the function returns. 2612 // If TLSNextProto is not nil, HTTP/2 support is not enabled 2613 // automatically. 2614 TLSNextProto map[string]func(*Server, *tls.Conn, Handler) 2615 2616 // ConnState specifies an optional callback function that is 2617 // called when a client connection changes state. See the 2618 // ConnState type and associated constants for details. 2619 ConnState func(net.Conn, ConnState) 2620 2621 // ErrorLog specifies an optional logger for errors accepting 2622 // connections, unexpected behavior from handlers, and 2623 // underlying FileSystem errors. 2624 // If nil, logging is done via the log package's standard logger. 2625 ErrorLog *log.Logger 2626 2627 // BaseContext optionally specifies a function that returns 2628 // the base context for incoming requests on this server. 2629 // The provided Listener is the specific Listener that's 2630 // about to start accepting requests. 2631 // If BaseContext is nil, the default is context.Background(). 2632 // If non-nil, it must return a non-nil context. 2633 BaseContext func(net.Listener) context.Context 2634 2635 // ConnContext optionally specifies a function that modifies 2636 // the context used for a new connection c. The provided ctx 2637 // is derived from the base context and has a ServerContextKey 2638 // value. 2639 ConnContext func(ctx context.Context, c net.Conn) context.Context 2640 2641 inShutdown atomicBool // true when when server is in shutdown 2642 2643 disableKeepAlives int32 // accessed atomically. 2644 nextProtoOnce sync.Once // guards setupHTTP2_* init 2645 nextProtoErr error // result of http2.ConfigureServer if used 2646 2647 mu sync.Mutex 2648 listeners map[*net.Listener]struct{} 2649 activeConn map[*conn]struct{} 2650 doneChan chan struct{} 2651 onShutdown []func() 2652 } 2653 2654 func (s *Server) getDoneChan() <-chan struct{} { 2655 s.mu.Lock() 2656 defer s.mu.Unlock() 2657 return s.getDoneChanLocked() 2658 } 2659 2660 func (s *Server) getDoneChanLocked() chan struct{} { 2661 if s.doneChan == nil { 2662 s.doneChan = make(chan struct{}) 2663 } 2664 return s.doneChan 2665 } 2666 2667 func (s *Server) closeDoneChanLocked() { 2668 ch := s.getDoneChanLocked() 2669 select { 2670 case <-ch: 2671 // Already closed. Don't close again. 2672 default: 2673 // Safe to close here. We're the only closer, guarded 2674 // by s.mu. 2675 close(ch) 2676 } 2677 } 2678 2679 // Close immediately closes all active net.Listeners and any 2680 // connections in state StateNew, StateActive, or StateIdle. For a 2681 // graceful shutdown, use Shutdown. 2682 // 2683 // Close does not attempt to close (and does not even know about) 2684 // any hijacked connections, such as WebSockets. 2685 // 2686 // Close returns any error returned from closing the Server's 2687 // underlying Listener(s). 2688 func (srv *Server) Close() error { 2689 srv.inShutdown.setTrue() 2690 srv.mu.Lock() 2691 defer srv.mu.Unlock() 2692 srv.closeDoneChanLocked() 2693 err := srv.closeListenersLocked() 2694 for c := range srv.activeConn { 2695 c.rwc.Close() 2696 delete(srv.activeConn, c) 2697 } 2698 return err 2699 } 2700 2701 // shutdownPollIntervalMax is the max polling interval when checking 2702 // quiescence during Server.Shutdown. Polling starts with a small 2703 // interval and backs off to the max. 2704 // Ideally we could find a solution that doesn't involve polling, 2705 // but which also doesn't have a high runtime cost (and doesn't 2706 // involve any contentious mutexes), but that is left as an 2707 // exercise for the reader. 2708 const shutdownPollIntervalMax = 500 * time.Millisecond 2709 2710 // Shutdown gracefully shuts down the server without interrupting any 2711 // active connections. Shutdown works by first closing all open 2712 // listeners, then closing all idle connections, and then waiting 2713 // indefinitely for connections to return to idle and then shut down. 2714 // If the provided context expires before the shutdown is complete, 2715 // Shutdown returns the context's error, otherwise it returns any 2716 // error returned from closing the Server's underlying Listener(s). 2717 // 2718 // When Shutdown is called, Serve, ListenAndServe, and 2719 // ListenAndServeTLS immediately return ErrServerClosed. Make sure the 2720 // program doesn't exit and waits instead for Shutdown to return. 2721 // 2722 // Shutdown does not attempt to close nor wait for hijacked 2723 // connections such as WebSockets. The caller of Shutdown should 2724 // separately notify such long-lived connections of shutdown and wait 2725 // for them to close, if desired. See RegisterOnShutdown for a way to 2726 // register shutdown notification functions. 2727 // 2728 // Once Shutdown has been called on a server, it may not be reused; 2729 // future calls to methods such as Serve will return ErrServerClosed. 2730 func (srv *Server) Shutdown(ctx context.Context) error { 2731 srv.inShutdown.setTrue() 2732 2733 srv.mu.Lock() 2734 lnerr := srv.closeListenersLocked() 2735 srv.closeDoneChanLocked() 2736 for _, f := range srv.onShutdown { 2737 go f() 2738 } 2739 srv.mu.Unlock() 2740 2741 pollIntervalBase := time.Millisecond 2742 nextPollInterval := func() time.Duration { 2743 // Add 10% jitter. 2744 interval := pollIntervalBase + time.Duration(rand.Intn(int(pollIntervalBase/10))) 2745 // Double and clamp for next time. 2746 pollIntervalBase *= 2 2747 if pollIntervalBase > shutdownPollIntervalMax { 2748 pollIntervalBase = shutdownPollIntervalMax 2749 } 2750 return interval 2751 } 2752 2753 timer := time.NewTimer(nextPollInterval()) 2754 defer timer.Stop() 2755 for { 2756 if srv.closeIdleConns() && srv.numListeners() == 0 { 2757 return lnerr 2758 } 2759 select { 2760 case <-ctx.Done(): 2761 return ctx.Err() 2762 case <-timer.C: 2763 timer.Reset(nextPollInterval()) 2764 } 2765 } 2766 } 2767 2768 // RegisterOnShutdown registers a function to call on Shutdown. 2769 // This can be used to gracefully shutdown connections that have 2770 // undergone ALPN protocol upgrade or that have been hijacked. 2771 // This function should start protocol-specific graceful shutdown, 2772 // but should not wait for shutdown to complete. 2773 func (srv *Server) RegisterOnShutdown(f func()) { 2774 srv.mu.Lock() 2775 srv.onShutdown = append(srv.onShutdown, f) 2776 srv.mu.Unlock() 2777 } 2778 2779 func (s *Server) numListeners() int { 2780 s.mu.Lock() 2781 defer s.mu.Unlock() 2782 return len(s.listeners) 2783 } 2784 2785 // closeIdleConns closes all idle connections and reports whether the 2786 // server is quiescent. 2787 func (s *Server) closeIdleConns() bool { 2788 s.mu.Lock() 2789 defer s.mu.Unlock() 2790 quiescent := true 2791 for c := range s.activeConn { 2792 st, unixSec := c.getState() 2793 // Issue 22682: treat StateNew connections as if 2794 // they're idle if we haven't read the first request's 2795 // header in over 5 seconds. 2796 if st == StateNew && unixSec < time.Now().Unix()-5 { 2797 st = StateIdle 2798 } 2799 if st != StateIdle || unixSec == 0 { 2800 // Assume unixSec == 0 means it's a very new 2801 // connection, without state set yet. 2802 quiescent = false 2803 continue 2804 } 2805 c.rwc.Close() 2806 delete(s.activeConn, c) 2807 } 2808 return quiescent 2809 } 2810 2811 func (s *Server) closeListenersLocked() error { 2812 var err error 2813 for ln := range s.listeners { 2814 if cerr := (*ln).Close(); cerr != nil && err == nil { 2815 err = cerr 2816 } 2817 } 2818 return err 2819 } 2820 2821 // A ConnState represents the state of a client connection to a server. 2822 // It's used by the optional Server.ConnState hook. 2823 type ConnState int 2824 2825 const ( 2826 // StateNew represents a new connection that is expected to 2827 // send a request immediately. Connections begin at this 2828 // state and then transition to either StateActive or 2829 // StateClosed. 2830 StateNew ConnState = iota 2831 2832 // StateActive represents a connection that has read 1 or more 2833 // bytes of a request. The Server.ConnState hook for 2834 // StateActive fires before the request has entered a handler 2835 // and doesn't fire again until the request has been 2836 // handled. After the request is handled, the state 2837 // transitions to StateClosed, StateHijacked, or StateIdle. 2838 // For HTTP/2, StateActive fires on the transition from zero 2839 // to one active request, and only transitions away once all 2840 // active requests are complete. That means that ConnState 2841 // cannot be used to do per-request work; ConnState only notes 2842 // the overall state of the connection. 2843 StateActive 2844 2845 // StateIdle represents a connection that has finished 2846 // handling a request and is in the keep-alive state, waiting 2847 // for a new request. Connections transition from StateIdle 2848 // to either StateActive or StateClosed. 2849 StateIdle 2850 2851 // StateHijacked represents a hijacked connection. 2852 // This is a terminal state. It does not transition to StateClosed. 2853 StateHijacked 2854 2855 // StateClosed represents a closed connection. 2856 // This is a terminal state. Hijacked connections do not 2857 // transition to StateClosed. 2858 StateClosed 2859 ) 2860 2861 var stateName = map[ConnState]string{ 2862 StateNew: "new", 2863 StateActive: "active", 2864 StateIdle: "idle", 2865 StateHijacked: "hijacked", 2866 StateClosed: "closed", 2867 } 2868 2869 func (c ConnState) String() string { 2870 return stateName[c] 2871 } 2872 2873 // serverHandler delegates to either the server's Handler or 2874 // DefaultServeMux and also handles "OPTIONS *" requests. 2875 type serverHandler struct { 2876 srv *Server 2877 } 2878 2879 func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) { 2880 handler := sh.srv.Handler 2881 if handler == nil { 2882 handler = DefaultServeMux 2883 } 2884 if req.RequestURI == "*" && req.Method == "OPTIONS" { 2885 handler = globalOptionsHandler{} 2886 } 2887 handler.ServeHTTP(rw, req) 2888 } 2889 2890 // ListenAndServe listens on the TCP network address srv.Addr and then 2891 // calls Serve to handle requests on incoming connections. 2892 // Accepted connections are configured to enable TCP keep-alives. 2893 // 2894 // If srv.Addr is blank, ":http" is used. 2895 // 2896 // ListenAndServe always returns a non-nil error. After Shutdown or Close, 2897 // the returned error is ErrServerClosed. 2898 func (srv *Server) ListenAndServe() error { 2899 if srv.shuttingDown() { 2900 return ErrServerClosed 2901 } 2902 addr := srv.Addr 2903 if addr == "" { 2904 addr = ":http" 2905 } 2906 ln, err := net.Listen("tcp", addr) 2907 if err != nil { 2908 return err 2909 } 2910 return srv.Serve(ln) 2911 } 2912 2913 var testHookServerServe func(*Server, net.Listener) // used if non-nil 2914 2915 // shouldDoServeHTTP2 reports whether Server.Serve should configure 2916 // automatic HTTP/2. (which sets up the srv.TLSNextProto map) 2917 func (srv *Server) shouldConfigureHTTP2ForServe() bool { 2918 if srv.TLSConfig == nil { 2919 // Compatibility with Go 1.6: 2920 // If there's no TLSConfig, it's possible that the user just 2921 // didn't set it on the http.Server, but did pass it to 2922 // tls.NewListener and passed that listener to Serve. 2923 // So we should configure HTTP/2 (to set up srv.TLSNextProto) 2924 // in case the listener returns an "h2" *tls.Conn. 2925 return true 2926 } 2927 // The user specified a TLSConfig on their http.Server. 2928 // In this, case, only configure HTTP/2 if their tls.Config 2929 // explicitly mentions "h2". Otherwise http2.ConfigureServer 2930 // would modify the tls.Config to add it, but they probably already 2931 // passed this tls.Config to tls.NewListener. And if they did, 2932 // it's too late anyway to fix it. It would only be potentially racy. 2933 // See Issue 15908. 2934 return strSliceContains(srv.TLSConfig.NextProtos, http2NextProtoTLS) 2935 } 2936 2937 // ErrServerClosed is returned by the Server's Serve, ServeTLS, ListenAndServe, 2938 // and ListenAndServeTLS methods after a call to Shutdown or Close. 2939 var ErrServerClosed = errors.New("http: Server closed") 2940 2941 // Serve accepts incoming connections on the Listener l, creating a 2942 // new service goroutine for each. The service goroutines read requests and 2943 // then call srv.Handler to reply to them. 2944 // 2945 // HTTP/2 support is only enabled if the Listener returns *tls.Conn 2946 // connections and they were configured with "h2" in the TLS 2947 // Config.NextProtos. 2948 // 2949 // Serve always returns a non-nil error and closes l. 2950 // After Shutdown or Close, the returned error is ErrServerClosed. 2951 func (srv *Server) Serve(l net.Listener) error { 2952 if fn := testHookServerServe; fn != nil { 2953 fn(srv, l) // call hook with unwrapped listener 2954 } 2955 2956 origListener := l 2957 l = &onceCloseListener{Listener: l} 2958 defer l.Close() 2959 2960 if err := srv.setupHTTP2_Serve(); err != nil { 2961 return err 2962 } 2963 2964 if !srv.trackListener(&l, true) { 2965 return ErrServerClosed 2966 } 2967 defer srv.trackListener(&l, false) 2968 2969 baseCtx := context.Background() 2970 if srv.BaseContext != nil { 2971 baseCtx = srv.BaseContext(origListener) 2972 if baseCtx == nil { 2973 panic("BaseContext returned a nil context") 2974 } 2975 } 2976 2977 var tempDelay time.Duration // how long to sleep on accept failure 2978 2979 ctx := context.WithValue(baseCtx, ServerContextKey, srv) 2980 for { 2981 rw, err := l.Accept() 2982 if err != nil { 2983 select { 2984 case <-srv.getDoneChan(): 2985 return ErrServerClosed 2986 default: 2987 } 2988 if ne, ok := err.(net.Error); ok && ne.Temporary() { 2989 if tempDelay == 0 { 2990 tempDelay = 5 * time.Millisecond 2991 } else { 2992 tempDelay *= 2 2993 } 2994 if max := 1 * time.Second; tempDelay > max { 2995 tempDelay = max 2996 } 2997 srv.logf("http: Accept error: %v; retrying in %v", err, tempDelay) 2998 time.Sleep(tempDelay) 2999 continue 3000 } 3001 return err 3002 } 3003 connCtx := ctx 3004 if cc := srv.ConnContext; cc != nil { 3005 connCtx = cc(connCtx, rw) 3006 if connCtx == nil { 3007 panic("ConnContext returned nil") 3008 } 3009 } 3010 tempDelay = 0 3011 c := srv.newConn(rw) 3012 c.setState(c.rwc, StateNew, runHooks) // before Serve can return 3013 c.serve(connCtx) 3014 } 3015 } 3016 3017 // ServeTLS accepts incoming connections on the Listener l, creating a 3018 // new service goroutine for each. The service goroutines perform TLS 3019 // setup and then read requests, calling srv.Handler to reply to them. 3020 // 3021 // Files containing a certificate and matching private key for the 3022 // server must be provided if neither the Server's 3023 // TLSConfig.Certificates nor TLSConfig.GetCertificate are populated. 3024 // If the certificate is signed by a certificate authority, the 3025 // certFile should be the concatenation of the server's certificate, 3026 // any intermediates, and the CA's certificate. 3027 // 3028 // ServeTLS always returns a non-nil error. After Shutdown or Close, the 3029 // returned error is ErrServerClosed. 3030 func (srv *Server) ServeTLS(l net.Listener, certFile, keyFile string) error { 3031 // Setup HTTP/2 before srv.Serve, to initialize srv.TLSConfig 3032 // before we clone it and create the TLS Listener. 3033 if err := srv.setupHTTP2_ServeTLS(); err != nil { 3034 return err 3035 } 3036 3037 config := cloneTLSConfig(srv.TLSConfig) 3038 if !strSliceContains(config.NextProtos, "http/1.1") { 3039 config.NextProtos = append(config.NextProtos, "http/1.1") 3040 } 3041 3042 configHasCert := len(config.Certificates) > 0 || config.GetCertificate != nil 3043 if !configHasCert || certFile != "" || keyFile != "" { 3044 var err error 3045 config.Certificates = make([]tls.Certificate, 1) 3046 config.Certificates[0], err = tls.LoadX509KeyPair(certFile, keyFile) 3047 if err != nil { 3048 return err 3049 } 3050 } 3051 3052 tlsListener := tls.NewListener(l, config) 3053 return srv.Serve(tlsListener) 3054 } 3055 3056 // trackListener adds or removes a net.Listener to the set of tracked 3057 // listeners. 3058 // 3059 // We store a pointer to interface in the map set, in case the 3060 // net.Listener is not comparable. This is safe because we only call 3061 // trackListener via Serve and can track+defer untrack the same 3062 // pointer to local variable there. We never need to compare a 3063 // Listener from another caller. 3064 // 3065 // It reports whether the server is still up (not Shutdown or Closed). 3066 func (s *Server) trackListener(ln *net.Listener, add bool) bool { 3067 s.mu.Lock() 3068 defer s.mu.Unlock() 3069 if s.listeners == nil { 3070 s.listeners = make(map[*net.Listener]struct{}) 3071 } 3072 if add { 3073 if s.shuttingDown() { 3074 return false 3075 } 3076 s.listeners[ln] = struct{}{} 3077 } else { 3078 delete(s.listeners, ln) 3079 } 3080 return true 3081 } 3082 3083 func (s *Server) trackConn(c *conn, add bool) { 3084 s.mu.Lock() 3085 defer s.mu.Unlock() 3086 if s.activeConn == nil { 3087 s.activeConn = make(map[*conn]struct{}) 3088 } 3089 if add { 3090 s.activeConn[c] = struct{}{} 3091 } else { 3092 delete(s.activeConn, c) 3093 } 3094 } 3095 3096 func (s *Server) idleTimeout() time.Duration { 3097 if s.IdleTimeout != 0 { 3098 return s.IdleTimeout 3099 } 3100 return s.ReadTimeout 3101 } 3102 3103 func (s *Server) readHeaderTimeout() time.Duration { 3104 if s.ReadHeaderTimeout != 0 { 3105 return s.ReadHeaderTimeout 3106 } 3107 return s.ReadTimeout 3108 } 3109 3110 func (s *Server) doKeepAlives() bool { 3111 return atomic.LoadInt32(&s.disableKeepAlives) == 0 && !s.shuttingDown() 3112 } 3113 3114 func (s *Server) shuttingDown() bool { 3115 return s.inShutdown.isSet() 3116 } 3117 3118 // SetKeepAlivesEnabled controls whether HTTP keep-alives are enabled. 3119 // By default, keep-alives are always enabled. Only very 3120 // resource-constrained environments or servers in the process of 3121 // shutting down should disable them. 3122 func (srv *Server) SetKeepAlivesEnabled(v bool) { 3123 if v { 3124 atomic.StoreInt32(&srv.disableKeepAlives, 0) 3125 return 3126 } 3127 atomic.StoreInt32(&srv.disableKeepAlives, 1) 3128 3129 // Close idle HTTP/1 conns: 3130 srv.closeIdleConns() 3131 3132 // TODO: Issue 26303: close HTTP/2 conns as soon as they become idle. 3133 } 3134 3135 func (s *Server) logf(format string, args ...interface{}) { 3136 if s.ErrorLog != nil { 3137 s.ErrorLog.Printf(format, args...) 3138 } else { 3139 log.Printf(format, args...) 3140 } 3141 } 3142 3143 // logf prints to the ErrorLog of the *Server associated with request r 3144 // via ServerContextKey. If there's no associated server, or if ErrorLog 3145 // is nil, logging is done via the log package's standard logger. 3146 func logf(r *Request, format string, args ...interface{}) { 3147 s, _ := r.Context().Value(ServerContextKey).(*Server) 3148 if s != nil && s.ErrorLog != nil { 3149 s.ErrorLog.Printf(format, args...) 3150 } else { 3151 log.Printf(format, args...) 3152 } 3153 } 3154 3155 // ListenAndServe listens on the TCP network address addr and then calls 3156 // Serve with handler to handle requests on incoming connections. 3157 // Accepted connections are configured to enable TCP keep-alives. 3158 // 3159 // The handler is typically nil, in which case the DefaultServeMux is used. 3160 // 3161 // ListenAndServe always returns a non-nil error. 3162 func ListenAndServe(addr string, handler Handler) error { 3163 server := &Server{Addr: addr, Handler: handler} 3164 return server.ListenAndServe() 3165 } 3166 3167 // ListenAndServeTLS acts identically to ListenAndServe, except that it 3168 // expects HTTPS connections. Additionally, files containing a certificate and 3169 // matching private key for the server must be provided. If the certificate 3170 // is signed by a certificate authority, the certFile should be the concatenation 3171 // of the server's certificate, any intermediates, and the CA's certificate. 3172 func ListenAndServeTLS(addr, certFile, keyFile string, handler Handler) error { 3173 server := &Server{Addr: addr, Handler: handler} 3174 return server.ListenAndServeTLS(certFile, keyFile) 3175 } 3176 3177 // ListenAndServeTLS listens on the TCP network address srv.Addr and 3178 // then calls ServeTLS to handle requests on incoming TLS connections. 3179 // Accepted connections are configured to enable TCP keep-alives. 3180 // 3181 // Filenames containing a certificate and matching private key for the 3182 // server must be provided if neither the Server's TLSConfig.Certificates 3183 // nor TLSConfig.GetCertificate are populated. If the certificate is 3184 // signed by a certificate authority, the certFile should be the 3185 // concatenation of the server's certificate, any intermediates, and 3186 // the CA's certificate. 3187 // 3188 // If srv.Addr is blank, ":https" is used. 3189 // 3190 // ListenAndServeTLS always returns a non-nil error. After Shutdown or 3191 // Close, the returned error is ErrServerClosed. 3192 func (srv *Server) ListenAndServeTLS(certFile, keyFile string) error { 3193 if srv.shuttingDown() { 3194 return ErrServerClosed 3195 } 3196 addr := srv.Addr 3197 if addr == "" { 3198 addr = ":https" 3199 } 3200 3201 ln, err := net.Listen("tcp", addr) 3202 if err != nil { 3203 return err 3204 } 3205 3206 defer ln.Close() 3207 3208 return srv.ServeTLS(ln, certFile, keyFile) 3209 } 3210 3211 // setupHTTP2_ServeTLS conditionally configures HTTP/2 on 3212 // srv and reports whether there was an error setting it up. If it is 3213 // not configured for policy reasons, nil is returned. 3214 func (srv *Server) setupHTTP2_ServeTLS() error { 3215 srv.nextProtoOnce.Do(srv.onceSetNextProtoDefaults) 3216 return srv.nextProtoErr 3217 } 3218 3219 // setupHTTP2_Serve is called from (*Server).Serve and conditionally 3220 // configures HTTP/2 on srv using a more conservative policy than 3221 // setupHTTP2_ServeTLS because Serve is called after tls.Listen, 3222 // and may be called concurrently. See shouldConfigureHTTP2ForServe. 3223 // 3224 // The tests named TestTransportAutomaticHTTP2* and 3225 // TestConcurrentServerServe in server_test.go demonstrate some 3226 // of the supported use cases and motivations. 3227 func (srv *Server) setupHTTP2_Serve() error { 3228 srv.nextProtoOnce.Do(srv.onceSetNextProtoDefaults_Serve) 3229 return srv.nextProtoErr 3230 } 3231 3232 func (srv *Server) onceSetNextProtoDefaults_Serve() { 3233 if srv.shouldConfigureHTTP2ForServe() { 3234 srv.onceSetNextProtoDefaults() 3235 } 3236 } 3237 3238 // onceSetNextProtoDefaults configures HTTP/2, if the user hasn't 3239 // configured otherwise. (by setting srv.TLSNextProto non-nil) 3240 // It must only be called via srv.nextProtoOnce (use srv.setupHTTP2_*). 3241 func (srv *Server) onceSetNextProtoDefaults() { 3242 if omitBundledHTTP2 || strings.Contains(os.Getenv("GODEBUG"), "http2server=0") { 3243 return 3244 } 3245 // Enable HTTP/2 by default if the user hasn't otherwise 3246 // configured their TLSNextProto map. 3247 if srv.TLSNextProto == nil { 3248 conf := &http2Server{ 3249 NewWriteScheduler: func() http2WriteScheduler { return http2NewPriorityWriteScheduler(nil) }, 3250 } 3251 srv.nextProtoErr = http2ConfigureServer(srv, conf) 3252 } 3253 } 3254 3255 // TimeoutHandler returns a Handler that runs h with the given time limit. 3256 // 3257 // The new Handler calls h.ServeHTTP to handle each request, but if a 3258 // call runs for longer than its time limit, the handler responds with 3259 // a 503 Service Unavailable error and the given message in its body. 3260 // (If msg is empty, a suitable default message will be sent.) 3261 // After such a timeout, writes by h to its ResponseWriter will return 3262 // ErrHandlerTimeout. 3263 // 3264 // TimeoutHandler supports the Pusher interface but does not support 3265 // the Hijacker or Flusher interfaces. 3266 func TimeoutHandler(h Handler, dt time.Duration, msg string) Handler { 3267 return &timeoutHandler{ 3268 handler: h, 3269 body: msg, 3270 dt: dt, 3271 } 3272 } 3273 3274 // ErrHandlerTimeout is returned on ResponseWriter Write calls 3275 // in handlers which have timed out. 3276 var ErrHandlerTimeout = errors.New("http: Handler timeout") 3277 3278 type timeoutHandler struct { 3279 handler Handler 3280 body string 3281 dt time.Duration 3282 3283 // When set, no context will be created and this context will 3284 // be used instead. 3285 testContext context.Context 3286 } 3287 3288 func (h *timeoutHandler) errorBody() string { 3289 if h.body != "" { 3290 return h.body 3291 } 3292 return "<html><head><title>Timeout</title></head><body><h1>Timeout</h1></body></html>" 3293 } 3294 3295 func (h *timeoutHandler) ServeHTTP(w ResponseWriter, r *Request) { 3296 ctx := h.testContext 3297 if ctx == nil { 3298 var cancelCtx context.CancelFunc 3299 ctx, cancelCtx = context.WithTimeout(r.Context(), h.dt) 3300 defer cancelCtx() 3301 } 3302 r = r.WithContext(ctx) 3303 done := make(chan struct{}) 3304 tw := &timeoutWriter{ 3305 w: w, 3306 h: make(Header), 3307 req: r, 3308 } 3309 panicChan := make(chan interface{}, 1) 3310 go func() { 3311 defer func() { 3312 if p := recover(); p != nil { 3313 panicChan <- p 3314 } 3315 }() 3316 h.handler.ServeHTTP(tw, r) 3317 close(done) 3318 }() 3319 select { 3320 case p := <-panicChan: 3321 panic(p) 3322 case <-done: 3323 tw.mu.Lock() 3324 defer tw.mu.Unlock() 3325 dst := w.Header() 3326 for k, vv := range tw.h { 3327 dst[k] = vv 3328 } 3329 if !tw.wroteHeader { 3330 tw.code = StatusOK 3331 } 3332 w.WriteHeader(tw.code) 3333 w.Write(tw.wbuf.Bytes()) 3334 case <-ctx.Done(): 3335 tw.mu.Lock() 3336 defer tw.mu.Unlock() 3337 w.WriteHeader(StatusServiceUnavailable) 3338 io.WriteString(w, h.errorBody()) 3339 tw.timedOut = true 3340 } 3341 } 3342 3343 type timeoutWriter struct { 3344 w ResponseWriter 3345 h Header 3346 wbuf bytes.Buffer 3347 req *Request 3348 3349 mu sync.Mutex 3350 timedOut bool 3351 wroteHeader bool 3352 code int 3353 } 3354 3355 var _ Pusher = (*timeoutWriter)(nil) 3356 3357 // Push implements the Pusher interface. 3358 func (tw *timeoutWriter) Push(target string, opts *PushOptions) error { 3359 if pusher, ok := tw.w.(Pusher); ok { 3360 return pusher.Push(target, opts) 3361 } 3362 return ErrNotSupported 3363 } 3364 3365 func (tw *timeoutWriter) Header() Header { return tw.h } 3366 3367 func (tw *timeoutWriter) Write(p []byte) (int, error) { 3368 tw.mu.Lock() 3369 defer tw.mu.Unlock() 3370 if tw.timedOut { 3371 return 0, ErrHandlerTimeout 3372 } 3373 if !tw.wroteHeader { 3374 tw.writeHeaderLocked(StatusOK) 3375 } 3376 return tw.wbuf.Write(p) 3377 } 3378 3379 func (tw *timeoutWriter) writeHeaderLocked(code int) { 3380 checkWriteHeaderCode(code) 3381 3382 switch { 3383 case tw.timedOut: 3384 return 3385 case tw.wroteHeader: 3386 if tw.req != nil { 3387 caller := relevantCaller() 3388 logf(tw.req, "http: superfluous response.WriteHeader call from %s (%s:%d)", caller.Function, path.Base(caller.File), caller.Line) 3389 } 3390 default: 3391 tw.wroteHeader = true 3392 tw.code = code 3393 } 3394 } 3395 3396 func (tw *timeoutWriter) WriteHeader(code int) { 3397 tw.mu.Lock() 3398 defer tw.mu.Unlock() 3399 tw.writeHeaderLocked(code) 3400 } 3401 3402 // onceCloseListener wraps a net.Listener, protecting it from 3403 // multiple Close calls. 3404 type onceCloseListener struct { 3405 net.Listener 3406 once sync.Once 3407 closeErr error 3408 } 3409 3410 func (oc *onceCloseListener) Close() error { 3411 oc.once.Do(oc.close) 3412 return oc.closeErr 3413 } 3414 3415 func (oc *onceCloseListener) close() { oc.closeErr = oc.Listener.Close() } 3416 3417 // globalOptionsHandler responds to "OPTIONS *" requests. 3418 type globalOptionsHandler struct{} 3419 3420 func (globalOptionsHandler) ServeHTTP(w ResponseWriter, r *Request) { 3421 w.Header().Set("Content-Length", "0") 3422 if r.ContentLength != 0 { 3423 // Read up to 4KB of OPTIONS body (as mentioned in the 3424 // spec as being reserved for future use), but anything 3425 // over that is considered a waste of server resources 3426 // (or an attack) and we abort and close the connection, 3427 // courtesy of MaxBytesReader's EOF behavior. 3428 mb := MaxBytesReader(w, r.Body, 4<<10) 3429 io.Copy(io.Discard, mb) 3430 } 3431 } 3432 3433 // initALPNRequest is an HTTP handler that initializes certain 3434 // uninitialized fields in its *Request. Such partially-initialized 3435 // Requests come from ALPN protocol handlers. 3436 type initALPNRequest struct { 3437 ctx context.Context 3438 c *tls.Conn 3439 h serverHandler 3440 } 3441 3442 // BaseContext is an exported but unadvertised http.Handler method 3443 // recognized by x/net/http2 to pass down a context; the TLSNextProto 3444 // API predates context support so we shoehorn through the only 3445 // interface we have available. 3446 func (h initALPNRequest) BaseContext() context.Context { return h.ctx } 3447 3448 func (h initALPNRequest) ServeHTTP(rw ResponseWriter, req *Request) { 3449 if req.TLS == nil { 3450 req.TLS = &tls.ConnectionState{} 3451 *req.TLS = h.c.ConnectionState() 3452 } 3453 if req.Body == nil { 3454 req.Body = NoBody 3455 } 3456 if req.RemoteAddr == "" { 3457 req.RemoteAddr = h.c.RemoteAddr().String() 3458 } 3459 h.h.ServeHTTP(rw, req) 3460 } 3461 3462 // loggingConn is used for debugging. 3463 type loggingConn struct { 3464 name string 3465 net.Conn 3466 } 3467 3468 var ( 3469 uniqNameMu sync.Mutex 3470 uniqNameNext = make(map[string]int) 3471 ) 3472 3473 func newLoggingConn(baseName string, c net.Conn) net.Conn { 3474 uniqNameMu.Lock() 3475 defer uniqNameMu.Unlock() 3476 uniqNameNext[baseName]++ 3477 return &loggingConn{ 3478 name: fmt.Sprintf("%s-%d", baseName, uniqNameNext[baseName]), 3479 Conn: c, 3480 } 3481 } 3482 3483 func (c *loggingConn) Write(p []byte) (n int, err error) { 3484 log.Printf("%s.Write(%d) = ....", c.name, len(p)) 3485 n, err = c.Conn.Write(p) 3486 log.Printf("%s.Write(%d) = %d, %v", c.name, len(p), n, err) 3487 return 3488 } 3489 3490 func (c *loggingConn) Read(p []byte) (n int, err error) { 3491 log.Printf("%s.Read(%d) = ....", c.name, len(p)) 3492 n, err = c.Conn.Read(p) 3493 log.Printf("%s.Read(%d) = %d, %v", c.name, len(p), n, err) 3494 return 3495 } 3496 3497 func (c *loggingConn) Close() (err error) { 3498 log.Printf("%s.Close() = ...", c.name) 3499 err = c.Conn.Close() 3500 log.Printf("%s.Close() = %v", c.name, err) 3501 return 3502 } 3503 3504 // checkConnErrorWriter writes to c.rwc and records any write errors to c.werr. 3505 // It only contains one field (and a pointer field at that), so it 3506 // fits in an interface value without an extra allocation. 3507 type checkConnErrorWriter struct { 3508 c *conn 3509 } 3510 3511 func (w checkConnErrorWriter) Write(p []byte) (n int, err error) { 3512 n, err = w.c.rwc.Write(p) 3513 if err != nil && w.c.werr == nil { 3514 w.c.werr = err 3515 w.c.cancelCtx() 3516 } 3517 return 3518 } 3519 3520 func numLeadingCRorLF(v []byte) (n int) { 3521 for _, b := range v { 3522 if b == '\r' || b == '\n' { 3523 n++ 3524 continue 3525 } 3526 break 3527 } 3528 return 3529 3530 } 3531 3532 func strSliceContains(ss []string, s string) bool { 3533 for _, v := range ss { 3534 if v == s { 3535 return true 3536 } 3537 } 3538 return false 3539 } 3540 3541 // tlsRecordHeaderLooksLikeHTTP reports whether a TLS record header 3542 // looks like it might've been a misdirected plaintext HTTP request. 3543 func tlsRecordHeaderLooksLikeHTTP(hdr [5]byte) bool { 3544 switch string(hdr[:]) { 3545 case "GET /", "HEAD ", "POST ", "PUT /", "OPTIO": 3546 return true 3547 } 3548 return false 3549 }