github.com/geraldss/go/src@v0.0.0-20210511222824-ac7d0ebfc235/runtime/pprof/proto.go (about) 1 // Copyright 2016 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package pprof 6 7 import ( 8 "bytes" 9 "compress/gzip" 10 "fmt" 11 "io" 12 "os" 13 "runtime" 14 "strconv" 15 "time" 16 "unsafe" 17 ) 18 19 // lostProfileEvent is the function to which lost profiling 20 // events are attributed. 21 // (The name shows up in the pprof graphs.) 22 func lostProfileEvent() { lostProfileEvent() } 23 24 // funcPC returns the PC for the func value f. 25 func funcPC(f interface{}) uintptr { 26 return *(*[2]*uintptr)(unsafe.Pointer(&f))[1] 27 } 28 29 // A profileBuilder writes a profile incrementally from a 30 // stream of profile samples delivered by the runtime. 31 type profileBuilder struct { 32 start time.Time 33 end time.Time 34 havePeriod bool 35 period int64 36 m profMap 37 38 // encoding state 39 w io.Writer 40 zw *gzip.Writer 41 pb protobuf 42 strings []string 43 stringMap map[string]int 44 locs map[uintptr]locInfo // list of locInfo starting with the given PC. 45 funcs map[string]int // Package path-qualified function name to Function.ID 46 mem []memMap 47 deck pcDeck 48 } 49 50 type memMap struct { 51 // initialized as reading mapping 52 start uintptr 53 end uintptr 54 offset uint64 55 file, buildID string 56 57 funcs symbolizeFlag 58 fake bool // map entry was faked; /proc/self/maps wasn't available 59 } 60 61 // symbolizeFlag keeps track of symbolization result. 62 // 0 : no symbol lookup was performed 63 // 1<<0 (lookupTried) : symbol lookup was performed 64 // 1<<1 (lookupFailed): symbol lookup was performed but failed 65 type symbolizeFlag uint8 66 67 const ( 68 lookupTried symbolizeFlag = 1 << iota 69 lookupFailed symbolizeFlag = 1 << iota 70 ) 71 72 const ( 73 // message Profile 74 tagProfile_SampleType = 1 // repeated ValueType 75 tagProfile_Sample = 2 // repeated Sample 76 tagProfile_Mapping = 3 // repeated Mapping 77 tagProfile_Location = 4 // repeated Location 78 tagProfile_Function = 5 // repeated Function 79 tagProfile_StringTable = 6 // repeated string 80 tagProfile_DropFrames = 7 // int64 (string table index) 81 tagProfile_KeepFrames = 8 // int64 (string table index) 82 tagProfile_TimeNanos = 9 // int64 83 tagProfile_DurationNanos = 10 // int64 84 tagProfile_PeriodType = 11 // ValueType (really optional string???) 85 tagProfile_Period = 12 // int64 86 tagProfile_Comment = 13 // repeated int64 87 tagProfile_DefaultSampleType = 14 // int64 88 89 // message ValueType 90 tagValueType_Type = 1 // int64 (string table index) 91 tagValueType_Unit = 2 // int64 (string table index) 92 93 // message Sample 94 tagSample_Location = 1 // repeated uint64 95 tagSample_Value = 2 // repeated int64 96 tagSample_Label = 3 // repeated Label 97 98 // message Label 99 tagLabel_Key = 1 // int64 (string table index) 100 tagLabel_Str = 2 // int64 (string table index) 101 tagLabel_Num = 3 // int64 102 103 // message Mapping 104 tagMapping_ID = 1 // uint64 105 tagMapping_Start = 2 // uint64 106 tagMapping_Limit = 3 // uint64 107 tagMapping_Offset = 4 // uint64 108 tagMapping_Filename = 5 // int64 (string table index) 109 tagMapping_BuildID = 6 // int64 (string table index) 110 tagMapping_HasFunctions = 7 // bool 111 tagMapping_HasFilenames = 8 // bool 112 tagMapping_HasLineNumbers = 9 // bool 113 tagMapping_HasInlineFrames = 10 // bool 114 115 // message Location 116 tagLocation_ID = 1 // uint64 117 tagLocation_MappingID = 2 // uint64 118 tagLocation_Address = 3 // uint64 119 tagLocation_Line = 4 // repeated Line 120 121 // message Line 122 tagLine_FunctionID = 1 // uint64 123 tagLine_Line = 2 // int64 124 125 // message Function 126 tagFunction_ID = 1 // uint64 127 tagFunction_Name = 2 // int64 (string table index) 128 tagFunction_SystemName = 3 // int64 (string table index) 129 tagFunction_Filename = 4 // int64 (string table index) 130 tagFunction_StartLine = 5 // int64 131 ) 132 133 // stringIndex adds s to the string table if not already present 134 // and returns the index of s in the string table. 135 func (b *profileBuilder) stringIndex(s string) int64 { 136 id, ok := b.stringMap[s] 137 if !ok { 138 id = len(b.strings) 139 b.strings = append(b.strings, s) 140 b.stringMap[s] = id 141 } 142 return int64(id) 143 } 144 145 func (b *profileBuilder) flush() { 146 const dataFlush = 4096 147 if b.pb.nest == 0 && len(b.pb.data) > dataFlush { 148 b.zw.Write(b.pb.data) 149 b.pb.data = b.pb.data[:0] 150 } 151 } 152 153 // pbValueType encodes a ValueType message to b.pb. 154 func (b *profileBuilder) pbValueType(tag int, typ, unit string) { 155 start := b.pb.startMessage() 156 b.pb.int64(tagValueType_Type, b.stringIndex(typ)) 157 b.pb.int64(tagValueType_Unit, b.stringIndex(unit)) 158 b.pb.endMessage(tag, start) 159 } 160 161 // pbSample encodes a Sample message to b.pb. 162 func (b *profileBuilder) pbSample(values []int64, locs []uint64, labels func()) { 163 start := b.pb.startMessage() 164 b.pb.int64s(tagSample_Value, values) 165 b.pb.uint64s(tagSample_Location, locs) 166 if labels != nil { 167 labels() 168 } 169 b.pb.endMessage(tagProfile_Sample, start) 170 b.flush() 171 } 172 173 // pbLabel encodes a Label message to b.pb. 174 func (b *profileBuilder) pbLabel(tag int, key, str string, num int64) { 175 start := b.pb.startMessage() 176 b.pb.int64Opt(tagLabel_Key, b.stringIndex(key)) 177 b.pb.int64Opt(tagLabel_Str, b.stringIndex(str)) 178 b.pb.int64Opt(tagLabel_Num, num) 179 b.pb.endMessage(tag, start) 180 } 181 182 // pbLine encodes a Line message to b.pb. 183 func (b *profileBuilder) pbLine(tag int, funcID uint64, line int64) { 184 start := b.pb.startMessage() 185 b.pb.uint64Opt(tagLine_FunctionID, funcID) 186 b.pb.int64Opt(tagLine_Line, line) 187 b.pb.endMessage(tag, start) 188 } 189 190 // pbMapping encodes a Mapping message to b.pb. 191 func (b *profileBuilder) pbMapping(tag int, id, base, limit, offset uint64, file, buildID string, hasFuncs bool) { 192 start := b.pb.startMessage() 193 b.pb.uint64Opt(tagMapping_ID, id) 194 b.pb.uint64Opt(tagMapping_Start, base) 195 b.pb.uint64Opt(tagMapping_Limit, limit) 196 b.pb.uint64Opt(tagMapping_Offset, offset) 197 b.pb.int64Opt(tagMapping_Filename, b.stringIndex(file)) 198 b.pb.int64Opt(tagMapping_BuildID, b.stringIndex(buildID)) 199 // TODO: we set HasFunctions if all symbols from samples were symbolized (hasFuncs). 200 // Decide what to do about HasInlineFrames and HasLineNumbers. 201 // Also, another approach to handle the mapping entry with 202 // incomplete symbolization results is to dupliace the mapping 203 // entry (but with different Has* fields values) and use 204 // different entries for symbolized locations and unsymbolized locations. 205 if hasFuncs { 206 b.pb.bool(tagMapping_HasFunctions, true) 207 } 208 b.pb.endMessage(tag, start) 209 } 210 211 func allFrames(addr uintptr) ([]runtime.Frame, symbolizeFlag) { 212 // Expand this one address using CallersFrames so we can cache 213 // each expansion. In general, CallersFrames takes a whole 214 // stack, but in this case we know there will be no skips in 215 // the stack and we have return PCs anyway. 216 frames := runtime.CallersFrames([]uintptr{addr}) 217 frame, more := frames.Next() 218 if frame.Function == "runtime.goexit" { 219 // Short-circuit if we see runtime.goexit so the loop 220 // below doesn't allocate a useless empty location. 221 return nil, 0 222 } 223 224 symbolizeResult := lookupTried 225 if frame.PC == 0 || frame.Function == "" || frame.File == "" || frame.Line == 0 { 226 symbolizeResult |= lookupFailed 227 } 228 229 if frame.PC == 0 { 230 // If we failed to resolve the frame, at least make up 231 // a reasonable call PC. This mostly happens in tests. 232 frame.PC = addr - 1 233 } 234 ret := []runtime.Frame{frame} 235 for frame.Function != "runtime.goexit" && more == true { 236 frame, more = frames.Next() 237 ret = append(ret, frame) 238 } 239 return ret, symbolizeResult 240 } 241 242 type locInfo struct { 243 // location id assigned by the profileBuilder 244 id uint64 245 246 // sequence of PCs, including the fake PCs returned by the traceback 247 // to represent inlined functions 248 // https://github.com/golang/go/blob/d6f2f833c93a41ec1c68e49804b8387a06b131c5/src/runtime/traceback.go#L347-L368 249 pcs []uintptr 250 } 251 252 // newProfileBuilder returns a new profileBuilder. 253 // CPU profiling data obtained from the runtime can be added 254 // by calling b.addCPUData, and then the eventual profile 255 // can be obtained by calling b.finish. 256 func newProfileBuilder(w io.Writer) *profileBuilder { 257 zw, _ := gzip.NewWriterLevel(w, gzip.BestSpeed) 258 b := &profileBuilder{ 259 w: w, 260 zw: zw, 261 start: time.Now(), 262 strings: []string{""}, 263 stringMap: map[string]int{"": 0}, 264 locs: map[uintptr]locInfo{}, 265 funcs: map[string]int{}, 266 } 267 b.readMapping() 268 return b 269 } 270 271 // addCPUData adds the CPU profiling data to the profile. 272 // The data must be a whole number of records, 273 // as delivered by the runtime. 274 func (b *profileBuilder) addCPUData(data []uint64, tags []unsafe.Pointer) error { 275 if !b.havePeriod { 276 // first record is period 277 if len(data) < 3 { 278 return fmt.Errorf("truncated profile") 279 } 280 if data[0] != 3 || data[2] == 0 { 281 return fmt.Errorf("malformed profile") 282 } 283 // data[2] is sampling rate in Hz. Convert to sampling 284 // period in nanoseconds. 285 b.period = 1e9 / int64(data[2]) 286 b.havePeriod = true 287 data = data[3:] 288 } 289 290 // Parse CPU samples from the profile. 291 // Each sample is 3+n uint64s: 292 // data[0] = 3+n 293 // data[1] = time stamp (ignored) 294 // data[2] = count 295 // data[3:3+n] = stack 296 // If the count is 0 and the stack has length 1, 297 // that's an overflow record inserted by the runtime 298 // to indicate that stack[0] samples were lost. 299 // Otherwise the count is usually 1, 300 // but in a few special cases like lost non-Go samples 301 // there can be larger counts. 302 // Because many samples with the same stack arrive, 303 // we want to deduplicate immediately, which we do 304 // using the b.m profMap. 305 for len(data) > 0 { 306 if len(data) < 3 || data[0] > uint64(len(data)) { 307 return fmt.Errorf("truncated profile") 308 } 309 if data[0] < 3 || tags != nil && len(tags) < 1 { 310 return fmt.Errorf("malformed profile") 311 } 312 count := data[2] 313 stk := data[3:data[0]] 314 data = data[data[0]:] 315 var tag unsafe.Pointer 316 if tags != nil { 317 tag = tags[0] 318 tags = tags[1:] 319 } 320 321 if count == 0 && len(stk) == 1 { 322 // overflow record 323 count = uint64(stk[0]) 324 stk = []uint64{ 325 // gentraceback guarantees that PCs in the 326 // stack can be unconditionally decremented and 327 // still be valid, so we must do the same. 328 uint64(funcPC(lostProfileEvent) + 1), 329 } 330 } 331 b.m.lookup(stk, tag).count += int64(count) 332 } 333 return nil 334 } 335 336 // build completes and returns the constructed profile. 337 func (b *profileBuilder) build() { 338 b.end = time.Now() 339 340 b.pb.int64Opt(tagProfile_TimeNanos, b.start.UnixNano()) 341 if b.havePeriod { // must be CPU profile 342 b.pbValueType(tagProfile_SampleType, "samples", "count") 343 b.pbValueType(tagProfile_SampleType, "cpu", "nanoseconds") 344 b.pb.int64Opt(tagProfile_DurationNanos, b.end.Sub(b.start).Nanoseconds()) 345 b.pbValueType(tagProfile_PeriodType, "cpu", "nanoseconds") 346 b.pb.int64Opt(tagProfile_Period, b.period) 347 } 348 349 values := []int64{0, 0} 350 var locs []uint64 351 352 for e := b.m.all; e != nil; e = e.nextAll { 353 values[0] = e.count 354 values[1] = e.count * b.period 355 356 var labels func() 357 if e.tag != nil { 358 labels = func() { 359 for k, v := range *(*labelMap)(e.tag) { 360 b.pbLabel(tagSample_Label, k, v, 0) 361 } 362 } 363 } 364 365 locs = b.appendLocsForStack(locs[:0], e.stk) 366 367 b.pbSample(values, locs, labels) 368 } 369 370 for i, m := range b.mem { 371 hasFunctions := m.funcs == lookupTried // lookupTried but not lookupFailed 372 b.pbMapping(tagProfile_Mapping, uint64(i+1), uint64(m.start), uint64(m.end), m.offset, m.file, m.buildID, hasFunctions) 373 } 374 375 // TODO: Anything for tagProfile_DropFrames? 376 // TODO: Anything for tagProfile_KeepFrames? 377 378 b.pb.strings(tagProfile_StringTable, b.strings) 379 b.zw.Write(b.pb.data) 380 b.zw.Close() 381 } 382 383 // appendLocsForStack appends the location IDs for the given stack trace to the given 384 // location ID slice, locs. The addresses in the stack are return PCs or 1 + the PC of 385 // an inline marker as the runtime traceback function returns. 386 // 387 // It may emit to b.pb, so there must be no message encoding in progress. 388 func (b *profileBuilder) appendLocsForStack(locs []uint64, stk []uintptr) (newLocs []uint64) { 389 b.deck.reset() 390 391 // The last frame might be truncated. Recover lost inline frames. 392 stk = runtime_expandFinalInlineFrame(stk) 393 394 for len(stk) > 0 { 395 addr := stk[0] 396 if l, ok := b.locs[addr]; ok { 397 // first record the location if there is any pending accumulated info. 398 if id := b.emitLocation(); id > 0 { 399 locs = append(locs, id) 400 } 401 402 // then, record the cached location. 403 locs = append(locs, l.id) 404 405 // Skip the matching pcs. 406 // 407 // Even if stk was truncated due to the stack depth 408 // limit, expandFinalInlineFrame above has already 409 // fixed the truncation, ensuring it is long enough. 410 stk = stk[len(l.pcs):] 411 continue 412 } 413 414 frames, symbolizeResult := allFrames(addr) 415 if len(frames) == 0 { // runtime.goexit. 416 if id := b.emitLocation(); id > 0 { 417 locs = append(locs, id) 418 } 419 stk = stk[1:] 420 continue 421 } 422 423 if added := b.deck.tryAdd(addr, frames, symbolizeResult); added { 424 stk = stk[1:] 425 continue 426 } 427 // add failed because this addr is not inlined with the 428 // existing PCs in the deck. Flush the deck and retry handling 429 // this pc. 430 if id := b.emitLocation(); id > 0 { 431 locs = append(locs, id) 432 } 433 434 // check cache again - previous emitLocation added a new entry 435 if l, ok := b.locs[addr]; ok { 436 locs = append(locs, l.id) 437 stk = stk[len(l.pcs):] // skip the matching pcs. 438 } else { 439 b.deck.tryAdd(addr, frames, symbolizeResult) // must succeed. 440 stk = stk[1:] 441 } 442 } 443 if id := b.emitLocation(); id > 0 { // emit remaining location. 444 locs = append(locs, id) 445 } 446 return locs 447 } 448 449 // pcDeck is a helper to detect a sequence of inlined functions from 450 // a stack trace returned by the runtime. 451 // 452 // The stack traces returned by runtime's trackback functions are fully 453 // expanded (at least for Go functions) and include the fake pcs representing 454 // inlined functions. The profile proto expects the inlined functions to be 455 // encoded in one Location message. 456 // https://github.com/google/pprof/blob/5e965273ee43930341d897407202dd5e10e952cb/proto/profile.proto#L177-L184 457 // 458 // Runtime does not directly expose whether a frame is for an inlined function 459 // and looking up debug info is not ideal, so we use a heuristic to filter 460 // the fake pcs and restore the inlined and entry functions. Inlined functions 461 // have the following properties: 462 // Frame's Func is nil (note: also true for non-Go functions), and 463 // Frame's Entry matches its entry function frame's Entry (note: could also be true for recursive calls and non-Go functions), and 464 // Frame's Name does not match its entry function frame's name (note: inlined functions cannot be directly recursive). 465 // 466 // As reading and processing the pcs in a stack trace one by one (from leaf to the root), 467 // we use pcDeck to temporarily hold the observed pcs and their expanded frames 468 // until we observe the entry function frame. 469 type pcDeck struct { 470 pcs []uintptr 471 frames []runtime.Frame 472 symbolizeResult symbolizeFlag 473 } 474 475 func (d *pcDeck) reset() { 476 d.pcs = d.pcs[:0] 477 d.frames = d.frames[:0] 478 d.symbolizeResult = 0 479 } 480 481 // tryAdd tries to add the pc and Frames expanded from it (most likely one, 482 // since the stack trace is already fully expanded) and the symbolizeResult 483 // to the deck. If it fails the caller needs to flush the deck and retry. 484 func (d *pcDeck) tryAdd(pc uintptr, frames []runtime.Frame, symbolizeResult symbolizeFlag) (success bool) { 485 if existing := len(d.pcs); existing > 0 { 486 // 'd.frames' are all expanded from one 'pc' and represent all 487 // inlined functions so we check only the last one. 488 newFrame := frames[0] 489 last := d.frames[existing-1] 490 if last.Func != nil { // the last frame can't be inlined. Flush. 491 return false 492 } 493 if last.Entry == 0 || newFrame.Entry == 0 { // Possibly not a Go function. Don't try to merge. 494 return false 495 } 496 497 if last.Entry != newFrame.Entry { // newFrame is for a different function. 498 return false 499 } 500 if last.Function == newFrame.Function { // maybe recursion. 501 return false 502 } 503 } 504 d.pcs = append(d.pcs, pc) 505 d.frames = append(d.frames, frames...) 506 d.symbolizeResult |= symbolizeResult 507 return true 508 } 509 510 // emitLocation emits the new location and function information recorded in the deck 511 // and returns the location ID encoded in the profile protobuf. 512 // It emits to b.pb, so there must be no message encoding in progress. 513 // It resets the deck. 514 func (b *profileBuilder) emitLocation() uint64 { 515 if len(b.deck.pcs) == 0 { 516 return 0 517 } 518 defer b.deck.reset() 519 520 addr := b.deck.pcs[0] 521 firstFrame := b.deck.frames[0] 522 523 // We can't write out functions while in the middle of the 524 // Location message, so record new functions we encounter and 525 // write them out after the Location. 526 type newFunc struct { 527 id uint64 528 name, file string 529 } 530 newFuncs := make([]newFunc, 0, 8) 531 532 id := uint64(len(b.locs)) + 1 533 b.locs[addr] = locInfo{id: id, pcs: append([]uintptr{}, b.deck.pcs...)} 534 535 start := b.pb.startMessage() 536 b.pb.uint64Opt(tagLocation_ID, id) 537 b.pb.uint64Opt(tagLocation_Address, uint64(firstFrame.PC)) 538 for _, frame := range b.deck.frames { 539 // Write out each line in frame expansion. 540 funcID := uint64(b.funcs[frame.Function]) 541 if funcID == 0 { 542 funcID = uint64(len(b.funcs)) + 1 543 b.funcs[frame.Function] = int(funcID) 544 newFuncs = append(newFuncs, newFunc{funcID, frame.Function, frame.File}) 545 } 546 b.pbLine(tagLocation_Line, funcID, int64(frame.Line)) 547 } 548 for i := range b.mem { 549 if b.mem[i].start <= addr && addr < b.mem[i].end || b.mem[i].fake { 550 b.pb.uint64Opt(tagLocation_MappingID, uint64(i+1)) 551 552 m := b.mem[i] 553 m.funcs |= b.deck.symbolizeResult 554 b.mem[i] = m 555 break 556 } 557 } 558 b.pb.endMessage(tagProfile_Location, start) 559 560 // Write out functions we found during frame expansion. 561 for _, fn := range newFuncs { 562 start := b.pb.startMessage() 563 b.pb.uint64Opt(tagFunction_ID, fn.id) 564 b.pb.int64Opt(tagFunction_Name, b.stringIndex(fn.name)) 565 b.pb.int64Opt(tagFunction_SystemName, b.stringIndex(fn.name)) 566 b.pb.int64Opt(tagFunction_Filename, b.stringIndex(fn.file)) 567 b.pb.endMessage(tagProfile_Function, start) 568 } 569 570 b.flush() 571 return id 572 } 573 574 // readMapping reads /proc/self/maps and writes mappings to b.pb. 575 // It saves the address ranges of the mappings in b.mem for use 576 // when emitting locations. 577 func (b *profileBuilder) readMapping() { 578 data, _ := os.ReadFile("/proc/self/maps") 579 parseProcSelfMaps(data, b.addMapping) 580 if len(b.mem) == 0 { // pprof expects a map entry, so fake one. 581 b.addMappingEntry(0, 0, 0, "", "", true) 582 // TODO(hyangah): make addMapping return *memMap or 583 // take a memMap struct, and get rid of addMappingEntry 584 // that takes a bunch of positional arguments. 585 } 586 } 587 588 func parseProcSelfMaps(data []byte, addMapping func(lo, hi, offset uint64, file, buildID string)) { 589 // $ cat /proc/self/maps 590 // 00400000-0040b000 r-xp 00000000 fc:01 787766 /bin/cat 591 // 0060a000-0060b000 r--p 0000a000 fc:01 787766 /bin/cat 592 // 0060b000-0060c000 rw-p 0000b000 fc:01 787766 /bin/cat 593 // 014ab000-014cc000 rw-p 00000000 00:00 0 [heap] 594 // 7f7d76af8000-7f7d7797c000 r--p 00000000 fc:01 1318064 /usr/lib/locale/locale-archive 595 // 7f7d7797c000-7f7d77b36000 r-xp 00000000 fc:01 1180226 /lib/x86_64-linux-gnu/libc-2.19.so 596 // 7f7d77b36000-7f7d77d36000 ---p 001ba000 fc:01 1180226 /lib/x86_64-linux-gnu/libc-2.19.so 597 // 7f7d77d36000-7f7d77d3a000 r--p 001ba000 fc:01 1180226 /lib/x86_64-linux-gnu/libc-2.19.so 598 // 7f7d77d3a000-7f7d77d3c000 rw-p 001be000 fc:01 1180226 /lib/x86_64-linux-gnu/libc-2.19.so 599 // 7f7d77d3c000-7f7d77d41000 rw-p 00000000 00:00 0 600 // 7f7d77d41000-7f7d77d64000 r-xp 00000000 fc:01 1180217 /lib/x86_64-linux-gnu/ld-2.19.so 601 // 7f7d77f3f000-7f7d77f42000 rw-p 00000000 00:00 0 602 // 7f7d77f61000-7f7d77f63000 rw-p 00000000 00:00 0 603 // 7f7d77f63000-7f7d77f64000 r--p 00022000 fc:01 1180217 /lib/x86_64-linux-gnu/ld-2.19.so 604 // 7f7d77f64000-7f7d77f65000 rw-p 00023000 fc:01 1180217 /lib/x86_64-linux-gnu/ld-2.19.so 605 // 7f7d77f65000-7f7d77f66000 rw-p 00000000 00:00 0 606 // 7ffc342a2000-7ffc342c3000 rw-p 00000000 00:00 0 [stack] 607 // 7ffc34343000-7ffc34345000 r-xp 00000000 00:00 0 [vdso] 608 // ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall] 609 610 var line []byte 611 // next removes and returns the next field in the line. 612 // It also removes from line any spaces following the field. 613 next := func() []byte { 614 j := bytes.IndexByte(line, ' ') 615 if j < 0 { 616 f := line 617 line = nil 618 return f 619 } 620 f := line[:j] 621 line = line[j+1:] 622 for len(line) > 0 && line[0] == ' ' { 623 line = line[1:] 624 } 625 return f 626 } 627 628 for len(data) > 0 { 629 i := bytes.IndexByte(data, '\n') 630 if i < 0 { 631 line, data = data, nil 632 } else { 633 line, data = data[:i], data[i+1:] 634 } 635 addr := next() 636 i = bytes.IndexByte(addr, '-') 637 if i < 0 { 638 continue 639 } 640 lo, err := strconv.ParseUint(string(addr[:i]), 16, 64) 641 if err != nil { 642 continue 643 } 644 hi, err := strconv.ParseUint(string(addr[i+1:]), 16, 64) 645 if err != nil { 646 continue 647 } 648 perm := next() 649 if len(perm) < 4 || perm[2] != 'x' { 650 // Only interested in executable mappings. 651 continue 652 } 653 offset, err := strconv.ParseUint(string(next()), 16, 64) 654 if err != nil { 655 continue 656 } 657 next() // dev 658 inode := next() // inode 659 if line == nil { 660 continue 661 } 662 file := string(line) 663 664 // Trim deleted file marker. 665 deletedStr := " (deleted)" 666 deletedLen := len(deletedStr) 667 if len(file) >= deletedLen && file[len(file)-deletedLen:] == deletedStr { 668 file = file[:len(file)-deletedLen] 669 } 670 671 if len(inode) == 1 && inode[0] == '0' && file == "" { 672 // Huge-page text mappings list the initial fragment of 673 // mapped but unpopulated memory as being inode 0. 674 // Don't report that part. 675 // But [vdso] and [vsyscall] are inode 0, so let non-empty file names through. 676 continue 677 } 678 679 // TODO: pprof's remapMappingIDs makes two adjustments: 680 // 1. If there is an /anon_hugepage mapping first and it is 681 // consecutive to a next mapping, drop the /anon_hugepage. 682 // 2. If start-offset = 0x400000, change start to 0x400000 and offset to 0. 683 // There's no indication why either of these is needed. 684 // Let's try not doing these and see what breaks. 685 // If we do need them, they would go here, before we 686 // enter the mappings into b.mem in the first place. 687 688 buildID, _ := elfBuildID(file) 689 addMapping(lo, hi, offset, file, buildID) 690 } 691 } 692 693 func (b *profileBuilder) addMapping(lo, hi, offset uint64, file, buildID string) { 694 b.addMappingEntry(lo, hi, offset, file, buildID, false) 695 } 696 697 func (b *profileBuilder) addMappingEntry(lo, hi, offset uint64, file, buildID string, fake bool) { 698 b.mem = append(b.mem, memMap{ 699 start: uintptr(lo), 700 end: uintptr(hi), 701 offset: offset, 702 file: file, 703 buildID: buildID, 704 fake: fake, 705 }) 706 }