github.com/geraldss/go/src@v0.0.0-20210511222824-ac7d0ebfc235/runtime/traceback.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package runtime
     6  
     7  import (
     8  	"internal/bytealg"
     9  	"runtime/internal/atomic"
    10  	"runtime/internal/sys"
    11  	"unsafe"
    12  )
    13  
    14  // The code in this file implements stack trace walking for all architectures.
    15  // The most important fact about a given architecture is whether it uses a link register.
    16  // On systems with link registers, the prologue for a non-leaf function stores the
    17  // incoming value of LR at the bottom of the newly allocated stack frame.
    18  // On systems without link registers, the architecture pushes a return PC during
    19  // the call instruction, so the return PC ends up above the stack frame.
    20  // In this file, the return PC is always called LR, no matter how it was found.
    21  //
    22  // To date, the opposite of a link register architecture is an x86 architecture.
    23  // This code may need to change if some other kind of non-link-register
    24  // architecture comes along.
    25  //
    26  // The other important fact is the size of a pointer: on 32-bit systems the LR
    27  // takes up only 4 bytes on the stack, while on 64-bit systems it takes up 8 bytes.
    28  // Typically this is ptrSize.
    29  //
    30  // As an exception, amd64p32 had ptrSize == 4 but the CALL instruction still
    31  // stored an 8-byte return PC onto the stack. To accommodate this, we used regSize
    32  // as the size of the architecture-pushed return PC.
    33  //
    34  // usesLR is defined below in terms of minFrameSize, which is defined in
    35  // arch_$GOARCH.go. ptrSize and regSize are defined in stubs.go.
    36  
    37  const usesLR = sys.MinFrameSize > 0
    38  
    39  // Traceback over the deferred function calls.
    40  // Report them like calls that have been invoked but not started executing yet.
    41  func tracebackdefers(gp *g, callback func(*stkframe, unsafe.Pointer) bool, v unsafe.Pointer) {
    42  	var frame stkframe
    43  	for d := gp._defer; d != nil; d = d.link {
    44  		fn := d.fn
    45  		if fn == nil {
    46  			// Defer of nil function. Args don't matter.
    47  			frame.pc = 0
    48  			frame.fn = funcInfo{}
    49  			frame.argp = 0
    50  			frame.arglen = 0
    51  			frame.argmap = nil
    52  		} else {
    53  			frame.pc = fn.fn
    54  			f := findfunc(frame.pc)
    55  			if !f.valid() {
    56  				print("runtime: unknown pc in defer ", hex(frame.pc), "\n")
    57  				throw("unknown pc")
    58  			}
    59  			frame.fn = f
    60  			frame.argp = uintptr(deferArgs(d))
    61  			var ok bool
    62  			frame.arglen, frame.argmap, ok = getArgInfoFast(f, true)
    63  			if !ok {
    64  				frame.arglen, frame.argmap = getArgInfo(&frame, f, true, fn)
    65  			}
    66  		}
    67  		frame.continpc = frame.pc
    68  		if !callback((*stkframe)(noescape(unsafe.Pointer(&frame))), v) {
    69  			return
    70  		}
    71  	}
    72  }
    73  
    74  const sizeofSkipFunction = 256
    75  
    76  // Generic traceback. Handles runtime stack prints (pcbuf == nil),
    77  // the runtime.Callers function (pcbuf != nil), as well as the garbage
    78  // collector (callback != nil).  A little clunky to merge these, but avoids
    79  // duplicating the code and all its subtlety.
    80  //
    81  // The skip argument is only valid with pcbuf != nil and counts the number
    82  // of logical frames to skip rather than physical frames (with inlining, a
    83  // PC in pcbuf can represent multiple calls). If a PC is partially skipped
    84  // and max > 1, pcbuf[1] will be runtime.skipPleaseUseCallersFrames+N where
    85  // N indicates the number of logical frames to skip in pcbuf[0].
    86  func gentraceback(pc0, sp0, lr0 uintptr, gp *g, skip int, pcbuf *uintptr, max int, callback func(*stkframe, unsafe.Pointer) bool, v unsafe.Pointer, flags uint) int {
    87  	if skip > 0 && callback != nil {
    88  		throw("gentraceback callback cannot be used with non-zero skip")
    89  	}
    90  
    91  	// Don't call this "g"; it's too easy get "g" and "gp" confused.
    92  	if ourg := getg(); ourg == gp && ourg == ourg.m.curg {
    93  		// The starting sp has been passed in as a uintptr, and the caller may
    94  		// have other uintptr-typed stack references as well.
    95  		// If during one of the calls that got us here or during one of the
    96  		// callbacks below the stack must be grown, all these uintptr references
    97  		// to the stack will not be updated, and gentraceback will continue
    98  		// to inspect the old stack memory, which may no longer be valid.
    99  		// Even if all the variables were updated correctly, it is not clear that
   100  		// we want to expose a traceback that begins on one stack and ends
   101  		// on another stack. That could confuse callers quite a bit.
   102  		// Instead, we require that gentraceback and any other function that
   103  		// accepts an sp for the current goroutine (typically obtained by
   104  		// calling getcallersp) must not run on that goroutine's stack but
   105  		// instead on the g0 stack.
   106  		throw("gentraceback cannot trace user goroutine on its own stack")
   107  	}
   108  	level, _, _ := gotraceback()
   109  
   110  	var ctxt *funcval // Context pointer for unstarted goroutines. See issue #25897.
   111  
   112  	if pc0 == ^uintptr(0) && sp0 == ^uintptr(0) { // Signal to fetch saved values from gp.
   113  		if gp.syscallsp != 0 {
   114  			pc0 = gp.syscallpc
   115  			sp0 = gp.syscallsp
   116  			if usesLR {
   117  				lr0 = 0
   118  			}
   119  		} else {
   120  			pc0 = gp.sched.pc
   121  			sp0 = gp.sched.sp
   122  			if usesLR {
   123  				lr0 = gp.sched.lr
   124  			}
   125  			ctxt = (*funcval)(gp.sched.ctxt)
   126  		}
   127  	}
   128  
   129  	nprint := 0
   130  	var frame stkframe
   131  	frame.pc = pc0
   132  	frame.sp = sp0
   133  	if usesLR {
   134  		frame.lr = lr0
   135  	}
   136  	waspanic := false
   137  	cgoCtxt := gp.cgoCtxt
   138  	printing := pcbuf == nil && callback == nil
   139  
   140  	// If the PC is zero, it's likely a nil function call.
   141  	// Start in the caller's frame.
   142  	if frame.pc == 0 {
   143  		if usesLR {
   144  			frame.pc = *(*uintptr)(unsafe.Pointer(frame.sp))
   145  			frame.lr = 0
   146  		} else {
   147  			frame.pc = uintptr(*(*sys.Uintreg)(unsafe.Pointer(frame.sp)))
   148  			frame.sp += sys.RegSize
   149  		}
   150  	}
   151  
   152  	f := findfunc(frame.pc)
   153  	if !f.valid() {
   154  		if callback != nil || printing {
   155  			print("runtime: unknown pc ", hex(frame.pc), "\n")
   156  			tracebackHexdump(gp.stack, &frame, 0)
   157  		}
   158  		if callback != nil {
   159  			throw("unknown pc")
   160  		}
   161  		return 0
   162  	}
   163  	frame.fn = f
   164  
   165  	var cache pcvalueCache
   166  
   167  	lastFuncID := funcID_normal
   168  	n := 0
   169  	for n < max {
   170  		// Typically:
   171  		//	pc is the PC of the running function.
   172  		//	sp is the stack pointer at that program counter.
   173  		//	fp is the frame pointer (caller's stack pointer) at that program counter, or nil if unknown.
   174  		//	stk is the stack containing sp.
   175  		//	The caller's program counter is lr, unless lr is zero, in which case it is *(uintptr*)sp.
   176  		f = frame.fn
   177  		if f.pcsp == 0 {
   178  			// No frame information, must be external function, like race support.
   179  			// See golang.org/issue/13568.
   180  			break
   181  		}
   182  
   183  		// Found an actual function.
   184  		// Derive frame pointer and link register.
   185  		if frame.fp == 0 {
   186  			// Jump over system stack transitions. If we're on g0 and there's a user
   187  			// goroutine, try to jump. Otherwise this is a regular call.
   188  			if flags&_TraceJumpStack != 0 && gp == gp.m.g0 && gp.m.curg != nil {
   189  				switch f.funcID {
   190  				case funcID_morestack:
   191  					// morestack does not return normally -- newstack()
   192  					// gogo's to curg.sched. Match that.
   193  					// This keeps morestack() from showing up in the backtrace,
   194  					// but that makes some sense since it'll never be returned
   195  					// to.
   196  					frame.pc = gp.m.curg.sched.pc
   197  					frame.fn = findfunc(frame.pc)
   198  					f = frame.fn
   199  					frame.sp = gp.m.curg.sched.sp
   200  					cgoCtxt = gp.m.curg.cgoCtxt
   201  				case funcID_systemstack:
   202  					// systemstack returns normally, so just follow the
   203  					// stack transition.
   204  					frame.sp = gp.m.curg.sched.sp
   205  					cgoCtxt = gp.m.curg.cgoCtxt
   206  				}
   207  			}
   208  			frame.fp = frame.sp + uintptr(funcspdelta(f, frame.pc, &cache))
   209  			if !usesLR {
   210  				// On x86, call instruction pushes return PC before entering new function.
   211  				frame.fp += sys.RegSize
   212  			}
   213  		}
   214  		var flr funcInfo
   215  		if topofstack(f, gp.m != nil && gp == gp.m.g0) {
   216  			frame.lr = 0
   217  			flr = funcInfo{}
   218  		} else if usesLR && f.funcID == funcID_jmpdefer {
   219  			// jmpdefer modifies SP/LR/PC non-atomically.
   220  			// If a profiling interrupt arrives during jmpdefer,
   221  			// the stack unwind may see a mismatched register set
   222  			// and get confused. Stop if we see PC within jmpdefer
   223  			// to avoid that confusion.
   224  			// See golang.org/issue/8153.
   225  			if callback != nil {
   226  				throw("traceback_arm: found jmpdefer when tracing with callback")
   227  			}
   228  			frame.lr = 0
   229  		} else {
   230  			var lrPtr uintptr
   231  			if usesLR {
   232  				if n == 0 && frame.sp < frame.fp || frame.lr == 0 {
   233  					lrPtr = frame.sp
   234  					frame.lr = *(*uintptr)(unsafe.Pointer(lrPtr))
   235  				}
   236  			} else {
   237  				if frame.lr == 0 {
   238  					lrPtr = frame.fp - sys.RegSize
   239  					frame.lr = uintptr(*(*sys.Uintreg)(unsafe.Pointer(lrPtr)))
   240  				}
   241  			}
   242  			flr = findfunc(frame.lr)
   243  			if !flr.valid() {
   244  				// This happens if you get a profiling interrupt at just the wrong time.
   245  				// In that context it is okay to stop early.
   246  				// But if callback is set, we're doing a garbage collection and must
   247  				// get everything, so crash loudly.
   248  				doPrint := printing
   249  				if doPrint && gp.m.incgo && f.funcID == funcID_sigpanic {
   250  					// We can inject sigpanic
   251  					// calls directly into C code,
   252  					// in which case we'll see a C
   253  					// return PC. Don't complain.
   254  					doPrint = false
   255  				}
   256  				if callback != nil || doPrint {
   257  					print("runtime: unexpected return pc for ", funcname(f), " called from ", hex(frame.lr), "\n")
   258  					tracebackHexdump(gp.stack, &frame, lrPtr)
   259  				}
   260  				if callback != nil {
   261  					throw("unknown caller pc")
   262  				}
   263  			}
   264  		}
   265  
   266  		frame.varp = frame.fp
   267  		if !usesLR {
   268  			// On x86, call instruction pushes return PC before entering new function.
   269  			frame.varp -= sys.RegSize
   270  		}
   271  
   272  		// For architectures with frame pointers, if there's
   273  		// a frame, then there's a saved frame pointer here.
   274  		if frame.varp > frame.sp && (GOARCH == "amd64" || GOARCH == "arm64") {
   275  			frame.varp -= sys.RegSize
   276  		}
   277  
   278  		// Derive size of arguments.
   279  		// Most functions have a fixed-size argument block,
   280  		// so we can use metadata about the function f.
   281  		// Not all, though: there are some variadic functions
   282  		// in package runtime and reflect, and for those we use call-specific
   283  		// metadata recorded by f's caller.
   284  		if callback != nil || printing {
   285  			frame.argp = frame.fp + sys.MinFrameSize
   286  			var ok bool
   287  			frame.arglen, frame.argmap, ok = getArgInfoFast(f, callback != nil)
   288  			if !ok {
   289  				frame.arglen, frame.argmap = getArgInfo(&frame, f, callback != nil, ctxt)
   290  			}
   291  		}
   292  		ctxt = nil // ctxt is only needed to get arg maps for the topmost frame
   293  
   294  		// Determine frame's 'continuation PC', where it can continue.
   295  		// Normally this is the return address on the stack, but if sigpanic
   296  		// is immediately below this function on the stack, then the frame
   297  		// stopped executing due to a trap, and frame.pc is probably not
   298  		// a safe point for looking up liveness information. In this panicking case,
   299  		// the function either doesn't return at all (if it has no defers or if the
   300  		// defers do not recover) or it returns from one of the calls to
   301  		// deferproc a second time (if the corresponding deferred func recovers).
   302  		// In the latter case, use a deferreturn call site as the continuation pc.
   303  		frame.continpc = frame.pc
   304  		if waspanic {
   305  			if frame.fn.deferreturn != 0 {
   306  				frame.continpc = frame.fn.entry + uintptr(frame.fn.deferreturn) + 1
   307  				// Note: this may perhaps keep return variables alive longer than
   308  				// strictly necessary, as we are using "function has a defer statement"
   309  				// as a proxy for "function actually deferred something". It seems
   310  				// to be a minor drawback. (We used to actually look through the
   311  				// gp._defer for a defer corresponding to this function, but that
   312  				// is hard to do with defer records on the stack during a stack copy.)
   313  				// Note: the +1 is to offset the -1 that
   314  				// stack.go:getStackMap does to back up a return
   315  				// address make sure the pc is in the CALL instruction.
   316  			} else {
   317  				frame.continpc = 0
   318  			}
   319  		}
   320  
   321  		if callback != nil {
   322  			if !callback((*stkframe)(noescape(unsafe.Pointer(&frame))), v) {
   323  				return n
   324  			}
   325  		}
   326  
   327  		if pcbuf != nil {
   328  			pc := frame.pc
   329  			// backup to CALL instruction to read inlining info (same logic as below)
   330  			tracepc := pc
   331  			// Normally, pc is a return address. In that case, we want to look up
   332  			// file/line information using pc-1, because that is the pc of the
   333  			// call instruction (more precisely, the last byte of the call instruction).
   334  			// Callers expect the pc buffer to contain return addresses and do the
   335  			// same -1 themselves, so we keep pc unchanged.
   336  			// When the pc is from a signal (e.g. profiler or segv) then we want
   337  			// to look up file/line information using pc, and we store pc+1 in the
   338  			// pc buffer so callers can unconditionally subtract 1 before looking up.
   339  			// See issue 34123.
   340  			// The pc can be at function entry when the frame is initialized without
   341  			// actually running code, like runtime.mstart.
   342  			if (n == 0 && flags&_TraceTrap != 0) || waspanic || pc == f.entry {
   343  				pc++
   344  			} else {
   345  				tracepc--
   346  			}
   347  
   348  			// If there is inlining info, record the inner frames.
   349  			if inldata := funcdata(f, _FUNCDATA_InlTree); inldata != nil {
   350  				inltree := (*[1 << 20]inlinedCall)(inldata)
   351  				for {
   352  					ix := pcdatavalue(f, _PCDATA_InlTreeIndex, tracepc, &cache)
   353  					if ix < 0 {
   354  						break
   355  					}
   356  					if inltree[ix].funcID == funcID_wrapper && elideWrapperCalling(lastFuncID) {
   357  						// ignore wrappers
   358  					} else if skip > 0 {
   359  						skip--
   360  					} else if n < max {
   361  						(*[1 << 20]uintptr)(unsafe.Pointer(pcbuf))[n] = pc
   362  						n++
   363  					}
   364  					lastFuncID = inltree[ix].funcID
   365  					// Back up to an instruction in the "caller".
   366  					tracepc = frame.fn.entry + uintptr(inltree[ix].parentPc)
   367  					pc = tracepc + 1
   368  				}
   369  			}
   370  			// Record the main frame.
   371  			if f.funcID == funcID_wrapper && elideWrapperCalling(lastFuncID) {
   372  				// Ignore wrapper functions (except when they trigger panics).
   373  			} else if skip > 0 {
   374  				skip--
   375  			} else if n < max {
   376  				(*[1 << 20]uintptr)(unsafe.Pointer(pcbuf))[n] = pc
   377  				n++
   378  			}
   379  			lastFuncID = f.funcID
   380  			n-- // offset n++ below
   381  		}
   382  
   383  		if printing {
   384  			// assume skip=0 for printing.
   385  			//
   386  			// Never elide wrappers if we haven't printed
   387  			// any frames. And don't elide wrappers that
   388  			// called panic rather than the wrapped
   389  			// function. Otherwise, leave them out.
   390  
   391  			// backup to CALL instruction to read inlining info (same logic as below)
   392  			tracepc := frame.pc
   393  			if (n > 0 || flags&_TraceTrap == 0) && frame.pc > f.entry && !waspanic {
   394  				tracepc--
   395  			}
   396  			// If there is inlining info, print the inner frames.
   397  			if inldata := funcdata(f, _FUNCDATA_InlTree); inldata != nil {
   398  				inltree := (*[1 << 20]inlinedCall)(inldata)
   399  				var inlFunc _func
   400  				inlFuncInfo := funcInfo{&inlFunc, f.datap}
   401  				for {
   402  					ix := pcdatavalue(f, _PCDATA_InlTreeIndex, tracepc, nil)
   403  					if ix < 0 {
   404  						break
   405  					}
   406  
   407  					// Create a fake _func for the
   408  					// inlined function.
   409  					inlFunc.nameoff = inltree[ix].func_
   410  					inlFunc.funcID = inltree[ix].funcID
   411  
   412  					if (flags&_TraceRuntimeFrames) != 0 || showframe(inlFuncInfo, gp, nprint == 0, inlFuncInfo.funcID, lastFuncID) {
   413  						name := funcname(inlFuncInfo)
   414  						file, line := funcline(f, tracepc)
   415  						print(name, "(...)\n")
   416  						print("\t", file, ":", line, "\n")
   417  						nprint++
   418  					}
   419  					lastFuncID = inltree[ix].funcID
   420  					// Back up to an instruction in the "caller".
   421  					tracepc = frame.fn.entry + uintptr(inltree[ix].parentPc)
   422  				}
   423  			}
   424  			if (flags&_TraceRuntimeFrames) != 0 || showframe(f, gp, nprint == 0, f.funcID, lastFuncID) {
   425  				// Print during crash.
   426  				//	main(0x1, 0x2, 0x3)
   427  				//		/home/rsc/go/src/runtime/x.go:23 +0xf
   428  				//
   429  				name := funcname(f)
   430  				file, line := funcline(f, tracepc)
   431  				if name == "runtime.gopanic" {
   432  					name = "panic"
   433  				}
   434  				print(name, "(")
   435  				argp := (*[100]uintptr)(unsafe.Pointer(frame.argp))
   436  				for i := uintptr(0); i < frame.arglen/sys.PtrSize; i++ {
   437  					if i >= 10 {
   438  						print(", ...")
   439  						break
   440  					}
   441  					if i != 0 {
   442  						print(", ")
   443  					}
   444  					print(hex(argp[i]))
   445  				}
   446  				print(")\n")
   447  				print("\t", file, ":", line)
   448  				if frame.pc > f.entry {
   449  					print(" +", hex(frame.pc-f.entry))
   450  				}
   451  				if gp.m != nil && gp.m.throwing > 0 && gp == gp.m.curg || level >= 2 {
   452  					print(" fp=", hex(frame.fp), " sp=", hex(frame.sp), " pc=", hex(frame.pc))
   453  				}
   454  				print("\n")
   455  				nprint++
   456  			}
   457  			lastFuncID = f.funcID
   458  		}
   459  		n++
   460  
   461  		if f.funcID == funcID_cgocallback && len(cgoCtxt) > 0 {
   462  			ctxt := cgoCtxt[len(cgoCtxt)-1]
   463  			cgoCtxt = cgoCtxt[:len(cgoCtxt)-1]
   464  
   465  			// skip only applies to Go frames.
   466  			// callback != nil only used when we only care
   467  			// about Go frames.
   468  			if skip == 0 && callback == nil {
   469  				n = tracebackCgoContext(pcbuf, printing, ctxt, n, max)
   470  			}
   471  		}
   472  
   473  		waspanic = f.funcID == funcID_sigpanic
   474  		injectedCall := waspanic || f.funcID == funcID_asyncPreempt
   475  
   476  		// Do not unwind past the bottom of the stack.
   477  		if !flr.valid() {
   478  			break
   479  		}
   480  
   481  		// Unwind to next frame.
   482  		frame.fn = flr
   483  		frame.pc = frame.lr
   484  		frame.lr = 0
   485  		frame.sp = frame.fp
   486  		frame.fp = 0
   487  		frame.argmap = nil
   488  
   489  		// On link register architectures, sighandler saves the LR on stack
   490  		// before faking a call.
   491  		if usesLR && injectedCall {
   492  			x := *(*uintptr)(unsafe.Pointer(frame.sp))
   493  			frame.sp += sys.MinFrameSize
   494  			if GOARCH == "arm64" {
   495  				// arm64 needs 16-byte aligned SP, always
   496  				frame.sp += sys.PtrSize
   497  			}
   498  			f = findfunc(frame.pc)
   499  			frame.fn = f
   500  			if !f.valid() {
   501  				frame.pc = x
   502  			} else if funcspdelta(f, frame.pc, &cache) == 0 {
   503  				frame.lr = x
   504  			}
   505  		}
   506  	}
   507  
   508  	if printing {
   509  		n = nprint
   510  	}
   511  
   512  	// Note that panic != nil is okay here: there can be leftover panics,
   513  	// because the defers on the panic stack do not nest in frame order as
   514  	// they do on the defer stack. If you have:
   515  	//
   516  	//	frame 1 defers d1
   517  	//	frame 2 defers d2
   518  	//	frame 3 defers d3
   519  	//	frame 4 panics
   520  	//	frame 4's panic starts running defers
   521  	//	frame 5, running d3, defers d4
   522  	//	frame 5 panics
   523  	//	frame 5's panic starts running defers
   524  	//	frame 6, running d4, garbage collects
   525  	//	frame 6, running d2, garbage collects
   526  	//
   527  	// During the execution of d4, the panic stack is d4 -> d3, which
   528  	// is nested properly, and we'll treat frame 3 as resumable, because we
   529  	// can find d3. (And in fact frame 3 is resumable. If d4 recovers
   530  	// and frame 5 continues running, d3, d3 can recover and we'll
   531  	// resume execution in (returning from) frame 3.)
   532  	//
   533  	// During the execution of d2, however, the panic stack is d2 -> d3,
   534  	// which is inverted. The scan will match d2 to frame 2 but having
   535  	// d2 on the stack until then means it will not match d3 to frame 3.
   536  	// This is okay: if we're running d2, then all the defers after d2 have
   537  	// completed and their corresponding frames are dead. Not finding d3
   538  	// for frame 3 means we'll set frame 3's continpc == 0, which is correct
   539  	// (frame 3 is dead). At the end of the walk the panic stack can thus
   540  	// contain defers (d3 in this case) for dead frames. The inversion here
   541  	// always indicates a dead frame, and the effect of the inversion on the
   542  	// scan is to hide those dead frames, so the scan is still okay:
   543  	// what's left on the panic stack are exactly (and only) the dead frames.
   544  	//
   545  	// We require callback != nil here because only when callback != nil
   546  	// do we know that gentraceback is being called in a "must be correct"
   547  	// context as opposed to a "best effort" context. The tracebacks with
   548  	// callbacks only happen when everything is stopped nicely.
   549  	// At other times, such as when gathering a stack for a profiling signal
   550  	// or when printing a traceback during a crash, everything may not be
   551  	// stopped nicely, and the stack walk may not be able to complete.
   552  	if callback != nil && n < max && frame.sp != gp.stktopsp {
   553  		print("runtime: g", gp.goid, ": frame.sp=", hex(frame.sp), " top=", hex(gp.stktopsp), "\n")
   554  		print("\tstack=[", hex(gp.stack.lo), "-", hex(gp.stack.hi), "] n=", n, " max=", max, "\n")
   555  		throw("traceback did not unwind completely")
   556  	}
   557  
   558  	return n
   559  }
   560  
   561  // reflectMethodValue is a partial duplicate of reflect.makeFuncImpl
   562  // and reflect.methodValue.
   563  type reflectMethodValue struct {
   564  	fn     uintptr
   565  	stack  *bitvector // ptrmap for both args and results
   566  	argLen uintptr    // just args
   567  }
   568  
   569  // getArgInfoFast returns the argument frame information for a call to f.
   570  // It is short and inlineable. However, it does not handle all functions.
   571  // If ok reports false, you must call getArgInfo instead.
   572  // TODO(josharian): once we do mid-stack inlining,
   573  // call getArgInfo directly from getArgInfoFast and stop returning an ok bool.
   574  func getArgInfoFast(f funcInfo, needArgMap bool) (arglen uintptr, argmap *bitvector, ok bool) {
   575  	return uintptr(f.args), nil, !(needArgMap && f.args == _ArgsSizeUnknown)
   576  }
   577  
   578  // getArgInfo returns the argument frame information for a call to f
   579  // with call frame frame.
   580  //
   581  // This is used for both actual calls with active stack frames and for
   582  // deferred calls or goroutines that are not yet executing. If this is an actual
   583  // call, ctxt must be nil (getArgInfo will retrieve what it needs from
   584  // the active stack frame). If this is a deferred call or unstarted goroutine,
   585  // ctxt must be the function object that was deferred or go'd.
   586  func getArgInfo(frame *stkframe, f funcInfo, needArgMap bool, ctxt *funcval) (arglen uintptr, argmap *bitvector) {
   587  	arglen = uintptr(f.args)
   588  	if needArgMap && f.args == _ArgsSizeUnknown {
   589  		// Extract argument bitmaps for reflect stubs from the calls they made to reflect.
   590  		switch funcname(f) {
   591  		case "reflect.makeFuncStub", "reflect.methodValueCall":
   592  			// These take a *reflect.methodValue as their
   593  			// context register.
   594  			var mv *reflectMethodValue
   595  			var retValid bool
   596  			if ctxt != nil {
   597  				// This is not an actual call, but a
   598  				// deferred call or an unstarted goroutine.
   599  				// The function value is itself the *reflect.methodValue.
   600  				mv = (*reflectMethodValue)(unsafe.Pointer(ctxt))
   601  			} else {
   602  				// This is a real call that took the
   603  				// *reflect.methodValue as its context
   604  				// register and immediately saved it
   605  				// to 0(SP). Get the methodValue from
   606  				// 0(SP).
   607  				arg0 := frame.sp + sys.MinFrameSize
   608  				mv = *(**reflectMethodValue)(unsafe.Pointer(arg0))
   609  				// Figure out whether the return values are valid.
   610  				// Reflect will update this value after it copies
   611  				// in the return values.
   612  				retValid = *(*bool)(unsafe.Pointer(arg0 + 3*sys.PtrSize))
   613  			}
   614  			if mv.fn != f.entry {
   615  				print("runtime: confused by ", funcname(f), "\n")
   616  				throw("reflect mismatch")
   617  			}
   618  			bv := mv.stack
   619  			arglen = uintptr(bv.n * sys.PtrSize)
   620  			if !retValid {
   621  				arglen = uintptr(mv.argLen) &^ (sys.PtrSize - 1)
   622  			}
   623  			argmap = bv
   624  		}
   625  	}
   626  	return
   627  }
   628  
   629  // tracebackCgoContext handles tracing back a cgo context value, from
   630  // the context argument to setCgoTraceback, for the gentraceback
   631  // function. It returns the new value of n.
   632  func tracebackCgoContext(pcbuf *uintptr, printing bool, ctxt uintptr, n, max int) int {
   633  	var cgoPCs [32]uintptr
   634  	cgoContextPCs(ctxt, cgoPCs[:])
   635  	var arg cgoSymbolizerArg
   636  	anySymbolized := false
   637  	for _, pc := range cgoPCs {
   638  		if pc == 0 || n >= max {
   639  			break
   640  		}
   641  		if pcbuf != nil {
   642  			(*[1 << 20]uintptr)(unsafe.Pointer(pcbuf))[n] = pc
   643  		}
   644  		if printing {
   645  			if cgoSymbolizer == nil {
   646  				print("non-Go function at pc=", hex(pc), "\n")
   647  			} else {
   648  				c := printOneCgoTraceback(pc, max-n, &arg)
   649  				n += c - 1 // +1 a few lines down
   650  				anySymbolized = true
   651  			}
   652  		}
   653  		n++
   654  	}
   655  	if anySymbolized {
   656  		arg.pc = 0
   657  		callCgoSymbolizer(&arg)
   658  	}
   659  	return n
   660  }
   661  
   662  func printcreatedby(gp *g) {
   663  	// Show what created goroutine, except main goroutine (goid 1).
   664  	pc := gp.gopc
   665  	f := findfunc(pc)
   666  	if f.valid() && showframe(f, gp, false, funcID_normal, funcID_normal) && gp.goid != 1 {
   667  		printcreatedby1(f, pc)
   668  	}
   669  }
   670  
   671  func printcreatedby1(f funcInfo, pc uintptr) {
   672  	print("created by ", funcname(f), "\n")
   673  	tracepc := pc // back up to CALL instruction for funcline.
   674  	if pc > f.entry {
   675  		tracepc -= sys.PCQuantum
   676  	}
   677  	file, line := funcline(f, tracepc)
   678  	print("\t", file, ":", line)
   679  	if pc > f.entry {
   680  		print(" +", hex(pc-f.entry))
   681  	}
   682  	print("\n")
   683  }
   684  
   685  func traceback(pc, sp, lr uintptr, gp *g) {
   686  	traceback1(pc, sp, lr, gp, 0)
   687  }
   688  
   689  // tracebacktrap is like traceback but expects that the PC and SP were obtained
   690  // from a trap, not from gp->sched or gp->syscallpc/gp->syscallsp or getcallerpc/getcallersp.
   691  // Because they are from a trap instead of from a saved pair,
   692  // the initial PC must not be rewound to the previous instruction.
   693  // (All the saved pairs record a PC that is a return address, so we
   694  // rewind it into the CALL instruction.)
   695  // If gp.m.libcall{g,pc,sp} information is available, it uses that information in preference to
   696  // the pc/sp/lr passed in.
   697  func tracebacktrap(pc, sp, lr uintptr, gp *g) {
   698  	if gp.m.libcallsp != 0 {
   699  		// We're in C code somewhere, traceback from the saved position.
   700  		traceback1(gp.m.libcallpc, gp.m.libcallsp, 0, gp.m.libcallg.ptr(), 0)
   701  		return
   702  	}
   703  	traceback1(pc, sp, lr, gp, _TraceTrap)
   704  }
   705  
   706  func traceback1(pc, sp, lr uintptr, gp *g, flags uint) {
   707  	// If the goroutine is in cgo, and we have a cgo traceback, print that.
   708  	if iscgo && gp.m != nil && gp.m.ncgo > 0 && gp.syscallsp != 0 && gp.m.cgoCallers != nil && gp.m.cgoCallers[0] != 0 {
   709  		// Lock cgoCallers so that a signal handler won't
   710  		// change it, copy the array, reset it, unlock it.
   711  		// We are locked to the thread and are not running
   712  		// concurrently with a signal handler.
   713  		// We just have to stop a signal handler from interrupting
   714  		// in the middle of our copy.
   715  		atomic.Store(&gp.m.cgoCallersUse, 1)
   716  		cgoCallers := *gp.m.cgoCallers
   717  		gp.m.cgoCallers[0] = 0
   718  		atomic.Store(&gp.m.cgoCallersUse, 0)
   719  
   720  		printCgoTraceback(&cgoCallers)
   721  	}
   722  
   723  	var n int
   724  	if readgstatus(gp)&^_Gscan == _Gsyscall {
   725  		// Override registers if blocked in system call.
   726  		pc = gp.syscallpc
   727  		sp = gp.syscallsp
   728  		flags &^= _TraceTrap
   729  	}
   730  	// Print traceback. By default, omits runtime frames.
   731  	// If that means we print nothing at all, repeat forcing all frames printed.
   732  	n = gentraceback(pc, sp, lr, gp, 0, nil, _TracebackMaxFrames, nil, nil, flags)
   733  	if n == 0 && (flags&_TraceRuntimeFrames) == 0 {
   734  		n = gentraceback(pc, sp, lr, gp, 0, nil, _TracebackMaxFrames, nil, nil, flags|_TraceRuntimeFrames)
   735  	}
   736  	if n == _TracebackMaxFrames {
   737  		print("...additional frames elided...\n")
   738  	}
   739  	printcreatedby(gp)
   740  
   741  	if gp.ancestors == nil {
   742  		return
   743  	}
   744  	for _, ancestor := range *gp.ancestors {
   745  		printAncestorTraceback(ancestor)
   746  	}
   747  }
   748  
   749  // printAncestorTraceback prints the traceback of the given ancestor.
   750  // TODO: Unify this with gentraceback and CallersFrames.
   751  func printAncestorTraceback(ancestor ancestorInfo) {
   752  	print("[originating from goroutine ", ancestor.goid, "]:\n")
   753  	for fidx, pc := range ancestor.pcs {
   754  		f := findfunc(pc) // f previously validated
   755  		if showfuncinfo(f, fidx == 0, funcID_normal, funcID_normal) {
   756  			printAncestorTracebackFuncInfo(f, pc)
   757  		}
   758  	}
   759  	if len(ancestor.pcs) == _TracebackMaxFrames {
   760  		print("...additional frames elided...\n")
   761  	}
   762  	// Show what created goroutine, except main goroutine (goid 1).
   763  	f := findfunc(ancestor.gopc)
   764  	if f.valid() && showfuncinfo(f, false, funcID_normal, funcID_normal) && ancestor.goid != 1 {
   765  		printcreatedby1(f, ancestor.gopc)
   766  	}
   767  }
   768  
   769  // printAncestorTraceback prints the given function info at a given pc
   770  // within an ancestor traceback. The precision of this info is reduced
   771  // due to only have access to the pcs at the time of the caller
   772  // goroutine being created.
   773  func printAncestorTracebackFuncInfo(f funcInfo, pc uintptr) {
   774  	name := funcname(f)
   775  	if inldata := funcdata(f, _FUNCDATA_InlTree); inldata != nil {
   776  		inltree := (*[1 << 20]inlinedCall)(inldata)
   777  		ix := pcdatavalue(f, _PCDATA_InlTreeIndex, pc, nil)
   778  		if ix >= 0 {
   779  			name = funcnameFromNameoff(f, inltree[ix].func_)
   780  		}
   781  	}
   782  	file, line := funcline(f, pc)
   783  	if name == "runtime.gopanic" {
   784  		name = "panic"
   785  	}
   786  	print(name, "(...)\n")
   787  	print("\t", file, ":", line)
   788  	if pc > f.entry {
   789  		print(" +", hex(pc-f.entry))
   790  	}
   791  	print("\n")
   792  }
   793  
   794  func callers(skip int, pcbuf []uintptr) int {
   795  	sp := getcallersp()
   796  	pc := getcallerpc()
   797  	gp := getg()
   798  	var n int
   799  	systemstack(func() {
   800  		n = gentraceback(pc, sp, 0, gp, skip, &pcbuf[0], len(pcbuf), nil, nil, 0)
   801  	})
   802  	return n
   803  }
   804  
   805  func gcallers(gp *g, skip int, pcbuf []uintptr) int {
   806  	return gentraceback(^uintptr(0), ^uintptr(0), 0, gp, skip, &pcbuf[0], len(pcbuf), nil, nil, 0)
   807  }
   808  
   809  // showframe reports whether the frame with the given characteristics should
   810  // be printed during a traceback.
   811  func showframe(f funcInfo, gp *g, firstFrame bool, funcID, childID funcID) bool {
   812  	g := getg()
   813  	if g.m.throwing > 0 && gp != nil && (gp == g.m.curg || gp == g.m.caughtsig.ptr()) {
   814  		return true
   815  	}
   816  	return showfuncinfo(f, firstFrame, funcID, childID)
   817  }
   818  
   819  // showfuncinfo reports whether a function with the given characteristics should
   820  // be printed during a traceback.
   821  func showfuncinfo(f funcInfo, firstFrame bool, funcID, childID funcID) bool {
   822  	// Note that f may be a synthesized funcInfo for an inlined
   823  	// function, in which case only nameoff and funcID are set.
   824  
   825  	level, _, _ := gotraceback()
   826  	if level > 1 {
   827  		// Show all frames.
   828  		return true
   829  	}
   830  
   831  	if !f.valid() {
   832  		return false
   833  	}
   834  
   835  	if funcID == funcID_wrapper && elideWrapperCalling(childID) {
   836  		return false
   837  	}
   838  
   839  	name := funcname(f)
   840  
   841  	// Special case: always show runtime.gopanic frame
   842  	// in the middle of a stack trace, so that we can
   843  	// see the boundary between ordinary code and
   844  	// panic-induced deferred code.
   845  	// See golang.org/issue/5832.
   846  	if name == "runtime.gopanic" && !firstFrame {
   847  		return true
   848  	}
   849  
   850  	return bytealg.IndexByteString(name, '.') >= 0 && (!hasPrefix(name, "runtime.") || isExportedRuntime(name))
   851  }
   852  
   853  // isExportedRuntime reports whether name is an exported runtime function.
   854  // It is only for runtime functions, so ASCII A-Z is fine.
   855  func isExportedRuntime(name string) bool {
   856  	const n = len("runtime.")
   857  	return len(name) > n && name[:n] == "runtime." && 'A' <= name[n] && name[n] <= 'Z'
   858  }
   859  
   860  // elideWrapperCalling reports whether a wrapper function that called
   861  // function id should be elided from stack traces.
   862  func elideWrapperCalling(id funcID) bool {
   863  	// If the wrapper called a panic function instead of the
   864  	// wrapped function, we want to include it in stacks.
   865  	return !(id == funcID_gopanic || id == funcID_sigpanic || id == funcID_panicwrap)
   866  }
   867  
   868  var gStatusStrings = [...]string{
   869  	_Gidle:      "idle",
   870  	_Grunnable:  "runnable",
   871  	_Grunning:   "running",
   872  	_Gsyscall:   "syscall",
   873  	_Gwaiting:   "waiting",
   874  	_Gdead:      "dead",
   875  	_Gcopystack: "copystack",
   876  	_Gpreempted: "preempted",
   877  }
   878  
   879  func goroutineheader(gp *g) {
   880  	gpstatus := readgstatus(gp)
   881  
   882  	isScan := gpstatus&_Gscan != 0
   883  	gpstatus &^= _Gscan // drop the scan bit
   884  
   885  	// Basic string status
   886  	var status string
   887  	if 0 <= gpstatus && gpstatus < uint32(len(gStatusStrings)) {
   888  		status = gStatusStrings[gpstatus]
   889  	} else {
   890  		status = "???"
   891  	}
   892  
   893  	// Override.
   894  	if gpstatus == _Gwaiting && gp.waitreason != waitReasonZero {
   895  		status = gp.waitreason.String()
   896  	}
   897  
   898  	// approx time the G is blocked, in minutes
   899  	var waitfor int64
   900  	if (gpstatus == _Gwaiting || gpstatus == _Gsyscall) && gp.waitsince != 0 {
   901  		waitfor = (nanotime() - gp.waitsince) / 60e9
   902  	}
   903  	print("goroutine ", gp.goid, " [", status)
   904  	if isScan {
   905  		print(" (scan)")
   906  	}
   907  	if waitfor >= 1 {
   908  		print(", ", waitfor, " minutes")
   909  	}
   910  	if gp.lockedm != 0 {
   911  		print(", locked to thread")
   912  	}
   913  	print("]:\n")
   914  }
   915  
   916  func tracebackothers(me *g) {
   917  	level, _, _ := gotraceback()
   918  
   919  	// Show the current goroutine first, if we haven't already.
   920  	curgp := getg().m.curg
   921  	if curgp != nil && curgp != me {
   922  		print("\n")
   923  		goroutineheader(curgp)
   924  		traceback(^uintptr(0), ^uintptr(0), 0, curgp)
   925  	}
   926  
   927  	// We can't take allglock here because this may be during fatal
   928  	// throw/panic, where locking allglock could be out-of-order or a
   929  	// direct deadlock.
   930  	//
   931  	// Instead, use atomic access to allgs which requires no locking. We
   932  	// don't lock against concurrent creation of new Gs, but even with
   933  	// allglock we may miss Gs created after this loop.
   934  	ptr, length := atomicAllG()
   935  	for i := uintptr(0); i < length; i++ {
   936  		gp := atomicAllGIndex(ptr, i)
   937  
   938  		if gp == me || gp == curgp || readgstatus(gp) == _Gdead || isSystemGoroutine(gp, false) && level < 2 {
   939  			continue
   940  		}
   941  		print("\n")
   942  		goroutineheader(gp)
   943  		// Note: gp.m == g.m occurs when tracebackothers is
   944  		// called from a signal handler initiated during a
   945  		// systemstack call. The original G is still in the
   946  		// running state, and we want to print its stack.
   947  		if gp.m != getg().m && readgstatus(gp)&^_Gscan == _Grunning {
   948  			print("\tgoroutine running on other thread; stack unavailable\n")
   949  			printcreatedby(gp)
   950  		} else {
   951  			traceback(^uintptr(0), ^uintptr(0), 0, gp)
   952  		}
   953  	}
   954  }
   955  
   956  // tracebackHexdump hexdumps part of stk around frame.sp and frame.fp
   957  // for debugging purposes. If the address bad is included in the
   958  // hexdumped range, it will mark it as well.
   959  func tracebackHexdump(stk stack, frame *stkframe, bad uintptr) {
   960  	const expand = 32 * sys.PtrSize
   961  	const maxExpand = 256 * sys.PtrSize
   962  	// Start around frame.sp.
   963  	lo, hi := frame.sp, frame.sp
   964  	// Expand to include frame.fp.
   965  	if frame.fp != 0 && frame.fp < lo {
   966  		lo = frame.fp
   967  	}
   968  	if frame.fp != 0 && frame.fp > hi {
   969  		hi = frame.fp
   970  	}
   971  	// Expand a bit more.
   972  	lo, hi = lo-expand, hi+expand
   973  	// But don't go too far from frame.sp.
   974  	if lo < frame.sp-maxExpand {
   975  		lo = frame.sp - maxExpand
   976  	}
   977  	if hi > frame.sp+maxExpand {
   978  		hi = frame.sp + maxExpand
   979  	}
   980  	// And don't go outside the stack bounds.
   981  	if lo < stk.lo {
   982  		lo = stk.lo
   983  	}
   984  	if hi > stk.hi {
   985  		hi = stk.hi
   986  	}
   987  
   988  	// Print the hex dump.
   989  	print("stack: frame={sp:", hex(frame.sp), ", fp:", hex(frame.fp), "} stack=[", hex(stk.lo), ",", hex(stk.hi), ")\n")
   990  	hexdumpWords(lo, hi, func(p uintptr) byte {
   991  		switch p {
   992  		case frame.fp:
   993  			return '>'
   994  		case frame.sp:
   995  			return '<'
   996  		case bad:
   997  			return '!'
   998  		}
   999  		return 0
  1000  	})
  1001  }
  1002  
  1003  // Does f mark the top of a goroutine stack?
  1004  func topofstack(f funcInfo, g0 bool) bool {
  1005  	return f.funcID == funcID_goexit ||
  1006  		f.funcID == funcID_mstart ||
  1007  		f.funcID == funcID_mcall ||
  1008  		f.funcID == funcID_morestack ||
  1009  		f.funcID == funcID_rt0_go ||
  1010  		f.funcID == funcID_externalthreadhandler ||
  1011  		// asmcgocall is TOS on the system stack because it
  1012  		// switches to the system stack, but in this case we
  1013  		// can come back to the regular stack and still want
  1014  		// to be able to unwind through the call that appeared
  1015  		// on the regular stack.
  1016  		(g0 && f.funcID == funcID_asmcgocall)
  1017  }
  1018  
  1019  // isSystemGoroutine reports whether the goroutine g must be omitted
  1020  // in stack dumps and deadlock detector. This is any goroutine that
  1021  // starts at a runtime.* entry point, except for runtime.main,
  1022  // runtime.handleAsyncEvent (wasm only) and sometimes runtime.runfinq.
  1023  //
  1024  // If fixed is true, any goroutine that can vary between user and
  1025  // system (that is, the finalizer goroutine) is considered a user
  1026  // goroutine.
  1027  func isSystemGoroutine(gp *g, fixed bool) bool {
  1028  	// Keep this in sync with cmd/trace/trace.go:isSystemGoroutine.
  1029  	f := findfunc(gp.startpc)
  1030  	if !f.valid() {
  1031  		return false
  1032  	}
  1033  	if f.funcID == funcID_runtime_main || f.funcID == funcID_handleAsyncEvent {
  1034  		return false
  1035  	}
  1036  	if f.funcID == funcID_runfinq {
  1037  		// We include the finalizer goroutine if it's calling
  1038  		// back into user code.
  1039  		if fixed {
  1040  			// This goroutine can vary. In fixed mode,
  1041  			// always consider it a user goroutine.
  1042  			return false
  1043  		}
  1044  		return !fingRunning
  1045  	}
  1046  	return hasPrefix(funcname(f), "runtime.")
  1047  }
  1048  
  1049  // SetCgoTraceback records three C functions to use to gather
  1050  // traceback information from C code and to convert that traceback
  1051  // information into symbolic information. These are used when printing
  1052  // stack traces for a program that uses cgo.
  1053  //
  1054  // The traceback and context functions may be called from a signal
  1055  // handler, and must therefore use only async-signal safe functions.
  1056  // The symbolizer function may be called while the program is
  1057  // crashing, and so must be cautious about using memory.  None of the
  1058  // functions may call back into Go.
  1059  //
  1060  // The context function will be called with a single argument, a
  1061  // pointer to a struct:
  1062  //
  1063  //	struct {
  1064  //		Context uintptr
  1065  //	}
  1066  //
  1067  // In C syntax, this struct will be
  1068  //
  1069  //	struct {
  1070  //		uintptr_t Context;
  1071  //	};
  1072  //
  1073  // If the Context field is 0, the context function is being called to
  1074  // record the current traceback context. It should record in the
  1075  // Context field whatever information is needed about the current
  1076  // point of execution to later produce a stack trace, probably the
  1077  // stack pointer and PC. In this case the context function will be
  1078  // called from C code.
  1079  //
  1080  // If the Context field is not 0, then it is a value returned by a
  1081  // previous call to the context function. This case is called when the
  1082  // context is no longer needed; that is, when the Go code is returning
  1083  // to its C code caller. This permits the context function to release
  1084  // any associated resources.
  1085  //
  1086  // While it would be correct for the context function to record a
  1087  // complete a stack trace whenever it is called, and simply copy that
  1088  // out in the traceback function, in a typical program the context
  1089  // function will be called many times without ever recording a
  1090  // traceback for that context. Recording a complete stack trace in a
  1091  // call to the context function is likely to be inefficient.
  1092  //
  1093  // The traceback function will be called with a single argument, a
  1094  // pointer to a struct:
  1095  //
  1096  //	struct {
  1097  //		Context    uintptr
  1098  //		SigContext uintptr
  1099  //		Buf        *uintptr
  1100  //		Max        uintptr
  1101  //	}
  1102  //
  1103  // In C syntax, this struct will be
  1104  //
  1105  //	struct {
  1106  //		uintptr_t  Context;
  1107  //		uintptr_t  SigContext;
  1108  //		uintptr_t* Buf;
  1109  //		uintptr_t  Max;
  1110  //	};
  1111  //
  1112  // The Context field will be zero to gather a traceback from the
  1113  // current program execution point. In this case, the traceback
  1114  // function will be called from C code.
  1115  //
  1116  // Otherwise Context will be a value previously returned by a call to
  1117  // the context function. The traceback function should gather a stack
  1118  // trace from that saved point in the program execution. The traceback
  1119  // function may be called from an execution thread other than the one
  1120  // that recorded the context, but only when the context is known to be
  1121  // valid and unchanging. The traceback function may also be called
  1122  // deeper in the call stack on the same thread that recorded the
  1123  // context. The traceback function may be called multiple times with
  1124  // the same Context value; it will usually be appropriate to cache the
  1125  // result, if possible, the first time this is called for a specific
  1126  // context value.
  1127  //
  1128  // If the traceback function is called from a signal handler on a Unix
  1129  // system, SigContext will be the signal context argument passed to
  1130  // the signal handler (a C ucontext_t* cast to uintptr_t). This may be
  1131  // used to start tracing at the point where the signal occurred. If
  1132  // the traceback function is not called from a signal handler,
  1133  // SigContext will be zero.
  1134  //
  1135  // Buf is where the traceback information should be stored. It should
  1136  // be PC values, such that Buf[0] is the PC of the caller, Buf[1] is
  1137  // the PC of that function's caller, and so on.  Max is the maximum
  1138  // number of entries to store.  The function should store a zero to
  1139  // indicate the top of the stack, or that the caller is on a different
  1140  // stack, presumably a Go stack.
  1141  //
  1142  // Unlike runtime.Callers, the PC values returned should, when passed
  1143  // to the symbolizer function, return the file/line of the call
  1144  // instruction.  No additional subtraction is required or appropriate.
  1145  //
  1146  // On all platforms, the traceback function is invoked when a call from
  1147  // Go to C to Go requests a stack trace. On linux/amd64, linux/ppc64le,
  1148  // and freebsd/amd64, the traceback function is also invoked when a
  1149  // signal is received by a thread that is executing a cgo call. The
  1150  // traceback function should not make assumptions about when it is
  1151  // called, as future versions of Go may make additional calls.
  1152  //
  1153  // The symbolizer function will be called with a single argument, a
  1154  // pointer to a struct:
  1155  //
  1156  //	struct {
  1157  //		PC      uintptr // program counter to fetch information for
  1158  //		File    *byte   // file name (NUL terminated)
  1159  //		Lineno  uintptr // line number
  1160  //		Func    *byte   // function name (NUL terminated)
  1161  //		Entry   uintptr // function entry point
  1162  //		More    uintptr // set non-zero if more info for this PC
  1163  //		Data    uintptr // unused by runtime, available for function
  1164  //	}
  1165  //
  1166  // In C syntax, this struct will be
  1167  //
  1168  //	struct {
  1169  //		uintptr_t PC;
  1170  //		char*     File;
  1171  //		uintptr_t Lineno;
  1172  //		char*     Func;
  1173  //		uintptr_t Entry;
  1174  //		uintptr_t More;
  1175  //		uintptr_t Data;
  1176  //	};
  1177  //
  1178  // The PC field will be a value returned by a call to the traceback
  1179  // function.
  1180  //
  1181  // The first time the function is called for a particular traceback,
  1182  // all the fields except PC will be 0. The function should fill in the
  1183  // other fields if possible, setting them to 0/nil if the information
  1184  // is not available. The Data field may be used to store any useful
  1185  // information across calls. The More field should be set to non-zero
  1186  // if there is more information for this PC, zero otherwise. If More
  1187  // is set non-zero, the function will be called again with the same
  1188  // PC, and may return different information (this is intended for use
  1189  // with inlined functions). If More is zero, the function will be
  1190  // called with the next PC value in the traceback. When the traceback
  1191  // is complete, the function will be called once more with PC set to
  1192  // zero; this may be used to free any information. Each call will
  1193  // leave the fields of the struct set to the same values they had upon
  1194  // return, except for the PC field when the More field is zero. The
  1195  // function must not keep a copy of the struct pointer between calls.
  1196  //
  1197  // When calling SetCgoTraceback, the version argument is the version
  1198  // number of the structs that the functions expect to receive.
  1199  // Currently this must be zero.
  1200  //
  1201  // The symbolizer function may be nil, in which case the results of
  1202  // the traceback function will be displayed as numbers. If the
  1203  // traceback function is nil, the symbolizer function will never be
  1204  // called. The context function may be nil, in which case the
  1205  // traceback function will only be called with the context field set
  1206  // to zero.  If the context function is nil, then calls from Go to C
  1207  // to Go will not show a traceback for the C portion of the call stack.
  1208  //
  1209  // SetCgoTraceback should be called only once, ideally from an init function.
  1210  func SetCgoTraceback(version int, traceback, context, symbolizer unsafe.Pointer) {
  1211  	if version != 0 {
  1212  		panic("unsupported version")
  1213  	}
  1214  
  1215  	if cgoTraceback != nil && cgoTraceback != traceback ||
  1216  		cgoContext != nil && cgoContext != context ||
  1217  		cgoSymbolizer != nil && cgoSymbolizer != symbolizer {
  1218  		panic("call SetCgoTraceback only once")
  1219  	}
  1220  
  1221  	cgoTraceback = traceback
  1222  	cgoContext = context
  1223  	cgoSymbolizer = symbolizer
  1224  
  1225  	// The context function is called when a C function calls a Go
  1226  	// function. As such it is only called by C code in runtime/cgo.
  1227  	if _cgo_set_context_function != nil {
  1228  		cgocall(_cgo_set_context_function, context)
  1229  	}
  1230  }
  1231  
  1232  var cgoTraceback unsafe.Pointer
  1233  var cgoContext unsafe.Pointer
  1234  var cgoSymbolizer unsafe.Pointer
  1235  
  1236  // cgoTracebackArg is the type passed to cgoTraceback.
  1237  type cgoTracebackArg struct {
  1238  	context    uintptr
  1239  	sigContext uintptr
  1240  	buf        *uintptr
  1241  	max        uintptr
  1242  }
  1243  
  1244  // cgoContextArg is the type passed to the context function.
  1245  type cgoContextArg struct {
  1246  	context uintptr
  1247  }
  1248  
  1249  // cgoSymbolizerArg is the type passed to cgoSymbolizer.
  1250  type cgoSymbolizerArg struct {
  1251  	pc       uintptr
  1252  	file     *byte
  1253  	lineno   uintptr
  1254  	funcName *byte
  1255  	entry    uintptr
  1256  	more     uintptr
  1257  	data     uintptr
  1258  }
  1259  
  1260  // cgoTraceback prints a traceback of callers.
  1261  func printCgoTraceback(callers *cgoCallers) {
  1262  	if cgoSymbolizer == nil {
  1263  		for _, c := range callers {
  1264  			if c == 0 {
  1265  				break
  1266  			}
  1267  			print("non-Go function at pc=", hex(c), "\n")
  1268  		}
  1269  		return
  1270  	}
  1271  
  1272  	var arg cgoSymbolizerArg
  1273  	for _, c := range callers {
  1274  		if c == 0 {
  1275  			break
  1276  		}
  1277  		printOneCgoTraceback(c, 0x7fffffff, &arg)
  1278  	}
  1279  	arg.pc = 0
  1280  	callCgoSymbolizer(&arg)
  1281  }
  1282  
  1283  // printOneCgoTraceback prints the traceback of a single cgo caller.
  1284  // This can print more than one line because of inlining.
  1285  // Returns the number of frames printed.
  1286  func printOneCgoTraceback(pc uintptr, max int, arg *cgoSymbolizerArg) int {
  1287  	c := 0
  1288  	arg.pc = pc
  1289  	for c <= max {
  1290  		callCgoSymbolizer(arg)
  1291  		if arg.funcName != nil {
  1292  			// Note that we don't print any argument
  1293  			// information here, not even parentheses.
  1294  			// The symbolizer must add that if appropriate.
  1295  			println(gostringnocopy(arg.funcName))
  1296  		} else {
  1297  			println("non-Go function")
  1298  		}
  1299  		print("\t")
  1300  		if arg.file != nil {
  1301  			print(gostringnocopy(arg.file), ":", arg.lineno, " ")
  1302  		}
  1303  		print("pc=", hex(pc), "\n")
  1304  		c++
  1305  		if arg.more == 0 {
  1306  			break
  1307  		}
  1308  	}
  1309  	return c
  1310  }
  1311  
  1312  // callCgoSymbolizer calls the cgoSymbolizer function.
  1313  func callCgoSymbolizer(arg *cgoSymbolizerArg) {
  1314  	call := cgocall
  1315  	if panicking > 0 || getg().m.curg != getg() {
  1316  		// We do not want to call into the scheduler when panicking
  1317  		// or when on the system stack.
  1318  		call = asmcgocall
  1319  	}
  1320  	if msanenabled {
  1321  		msanwrite(unsafe.Pointer(arg), unsafe.Sizeof(cgoSymbolizerArg{}))
  1322  	}
  1323  	call(cgoSymbolizer, noescape(unsafe.Pointer(arg)))
  1324  }
  1325  
  1326  // cgoContextPCs gets the PC values from a cgo traceback.
  1327  func cgoContextPCs(ctxt uintptr, buf []uintptr) {
  1328  	if cgoTraceback == nil {
  1329  		return
  1330  	}
  1331  	call := cgocall
  1332  	if panicking > 0 || getg().m.curg != getg() {
  1333  		// We do not want to call into the scheduler when panicking
  1334  		// or when on the system stack.
  1335  		call = asmcgocall
  1336  	}
  1337  	arg := cgoTracebackArg{
  1338  		context: ctxt,
  1339  		buf:     (*uintptr)(noescape(unsafe.Pointer(&buf[0]))),
  1340  		max:     uintptr(len(buf)),
  1341  	}
  1342  	if msanenabled {
  1343  		msanwrite(unsafe.Pointer(&arg), unsafe.Sizeof(arg))
  1344  	}
  1345  	call(cgoTraceback, noescape(unsafe.Pointer(&arg)))
  1346  }