github.com/gidoBOSSftw5731/go/src@v0.0.0-20210226122457-d24b0edbf019/reflect/value.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package reflect
     6  
     7  import (
     8  	"internal/abi"
     9  	"internal/unsafeheader"
    10  	"math"
    11  	"runtime"
    12  	"unsafe"
    13  )
    14  
    15  const ptrSize = 4 << (^uintptr(0) >> 63) // unsafe.Sizeof(uintptr(0)) but an ideal const
    16  
    17  // Value is the reflection interface to a Go value.
    18  //
    19  // Not all methods apply to all kinds of values. Restrictions,
    20  // if any, are noted in the documentation for each method.
    21  // Use the Kind method to find out the kind of value before
    22  // calling kind-specific methods. Calling a method
    23  // inappropriate to the kind of type causes a run time panic.
    24  //
    25  // The zero Value represents no value.
    26  // Its IsValid method returns false, its Kind method returns Invalid,
    27  // its String method returns "<invalid Value>", and all other methods panic.
    28  // Most functions and methods never return an invalid value.
    29  // If one does, its documentation states the conditions explicitly.
    30  //
    31  // A Value can be used concurrently by multiple goroutines provided that
    32  // the underlying Go value can be used concurrently for the equivalent
    33  // direct operations.
    34  //
    35  // To compare two Values, compare the results of the Interface method.
    36  // Using == on two Values does not compare the underlying values
    37  // they represent.
    38  type Value struct {
    39  	// typ holds the type of the value represented by a Value.
    40  	typ *rtype
    41  
    42  	// Pointer-valued data or, if flagIndir is set, pointer to data.
    43  	// Valid when either flagIndir is set or typ.pointers() is true.
    44  	ptr unsafe.Pointer
    45  
    46  	// flag holds metadata about the value.
    47  	// The lowest bits are flag bits:
    48  	//	- flagStickyRO: obtained via unexported not embedded field, so read-only
    49  	//	- flagEmbedRO: obtained via unexported embedded field, so read-only
    50  	//	- flagIndir: val holds a pointer to the data
    51  	//	- flagAddr: v.CanAddr is true (implies flagIndir)
    52  	//	- flagMethod: v is a method value.
    53  	// The next five bits give the Kind of the value.
    54  	// This repeats typ.Kind() except for method values.
    55  	// The remaining 23+ bits give a method number for method values.
    56  	// If flag.kind() != Func, code can assume that flagMethod is unset.
    57  	// If ifaceIndir(typ), code can assume that flagIndir is set.
    58  	flag
    59  
    60  	// A method value represents a curried method invocation
    61  	// like r.Read for some receiver r. The typ+val+flag bits describe
    62  	// the receiver r, but the flag's Kind bits say Func (methods are
    63  	// functions), and the top bits of the flag give the method number
    64  	// in r's type's method table.
    65  }
    66  
    67  type flag uintptr
    68  
    69  const (
    70  	flagKindWidth        = 5 // there are 27 kinds
    71  	flagKindMask    flag = 1<<flagKindWidth - 1
    72  	flagStickyRO    flag = 1 << 5
    73  	flagEmbedRO     flag = 1 << 6
    74  	flagIndir       flag = 1 << 7
    75  	flagAddr        flag = 1 << 8
    76  	flagMethod      flag = 1 << 9
    77  	flagMethodShift      = 10
    78  	flagRO          flag = flagStickyRO | flagEmbedRO
    79  )
    80  
    81  func (f flag) kind() Kind {
    82  	return Kind(f & flagKindMask)
    83  }
    84  
    85  func (f flag) ro() flag {
    86  	if f&flagRO != 0 {
    87  		return flagStickyRO
    88  	}
    89  	return 0
    90  }
    91  
    92  // pointer returns the underlying pointer represented by v.
    93  // v.Kind() must be Ptr, Map, Chan, Func, or UnsafePointer
    94  // if v.Kind() == Ptr, the base type must not be go:notinheap.
    95  func (v Value) pointer() unsafe.Pointer {
    96  	if v.typ.size != ptrSize || !v.typ.pointers() {
    97  		panic("can't call pointer on a non-pointer Value")
    98  	}
    99  	if v.flag&flagIndir != 0 {
   100  		return *(*unsafe.Pointer)(v.ptr)
   101  	}
   102  	return v.ptr
   103  }
   104  
   105  // packEface converts v to the empty interface.
   106  func packEface(v Value) interface{} {
   107  	t := v.typ
   108  	var i interface{}
   109  	e := (*emptyInterface)(unsafe.Pointer(&i))
   110  	// First, fill in the data portion of the interface.
   111  	switch {
   112  	case ifaceIndir(t):
   113  		if v.flag&flagIndir == 0 {
   114  			panic("bad indir")
   115  		}
   116  		// Value is indirect, and so is the interface we're making.
   117  		ptr := v.ptr
   118  		if v.flag&flagAddr != 0 {
   119  			// TODO: pass safe boolean from valueInterface so
   120  			// we don't need to copy if safe==true?
   121  			c := unsafe_New(t)
   122  			typedmemmove(t, c, ptr)
   123  			ptr = c
   124  		}
   125  		e.word = ptr
   126  	case v.flag&flagIndir != 0:
   127  		// Value is indirect, but interface is direct. We need
   128  		// to load the data at v.ptr into the interface data word.
   129  		e.word = *(*unsafe.Pointer)(v.ptr)
   130  	default:
   131  		// Value is direct, and so is the interface.
   132  		e.word = v.ptr
   133  	}
   134  	// Now, fill in the type portion. We're very careful here not
   135  	// to have any operation between the e.word and e.typ assignments
   136  	// that would let the garbage collector observe the partially-built
   137  	// interface value.
   138  	e.typ = t
   139  	return i
   140  }
   141  
   142  // unpackEface converts the empty interface i to a Value.
   143  func unpackEface(i interface{}) Value {
   144  	e := (*emptyInterface)(unsafe.Pointer(&i))
   145  	// NOTE: don't read e.word until we know whether it is really a pointer or not.
   146  	t := e.typ
   147  	if t == nil {
   148  		return Value{}
   149  	}
   150  	f := flag(t.Kind())
   151  	if ifaceIndir(t) {
   152  		f |= flagIndir
   153  	}
   154  	return Value{t, e.word, f}
   155  }
   156  
   157  // A ValueError occurs when a Value method is invoked on
   158  // a Value that does not support it. Such cases are documented
   159  // in the description of each method.
   160  type ValueError struct {
   161  	Method string
   162  	Kind   Kind
   163  }
   164  
   165  func (e *ValueError) Error() string {
   166  	if e.Kind == 0 {
   167  		return "reflect: call of " + e.Method + " on zero Value"
   168  	}
   169  	return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value"
   170  }
   171  
   172  // methodName returns the name of the calling method,
   173  // assumed to be two stack frames above.
   174  func methodName() string {
   175  	pc, _, _, _ := runtime.Caller(2)
   176  	f := runtime.FuncForPC(pc)
   177  	if f == nil {
   178  		return "unknown method"
   179  	}
   180  	return f.Name()
   181  }
   182  
   183  // methodNameSkip is like methodName, but skips another stack frame.
   184  // This is a separate function so that reflect.flag.mustBe will be inlined.
   185  func methodNameSkip() string {
   186  	pc, _, _, _ := runtime.Caller(3)
   187  	f := runtime.FuncForPC(pc)
   188  	if f == nil {
   189  		return "unknown method"
   190  	}
   191  	return f.Name()
   192  }
   193  
   194  // emptyInterface is the header for an interface{} value.
   195  type emptyInterface struct {
   196  	typ  *rtype
   197  	word unsafe.Pointer
   198  }
   199  
   200  // nonEmptyInterface is the header for an interface value with methods.
   201  type nonEmptyInterface struct {
   202  	// see ../runtime/iface.go:/Itab
   203  	itab *struct {
   204  		ityp *rtype // static interface type
   205  		typ  *rtype // dynamic concrete type
   206  		hash uint32 // copy of typ.hash
   207  		_    [4]byte
   208  		fun  [100000]unsafe.Pointer // method table
   209  	}
   210  	word unsafe.Pointer
   211  }
   212  
   213  // mustBe panics if f's kind is not expected.
   214  // Making this a method on flag instead of on Value
   215  // (and embedding flag in Value) means that we can write
   216  // the very clear v.mustBe(Bool) and have it compile into
   217  // v.flag.mustBe(Bool), which will only bother to copy the
   218  // single important word for the receiver.
   219  func (f flag) mustBe(expected Kind) {
   220  	// TODO(mvdan): use f.kind() again once mid-stack inlining gets better
   221  	if Kind(f&flagKindMask) != expected {
   222  		panic(&ValueError{methodName(), f.kind()})
   223  	}
   224  }
   225  
   226  // mustBeExported panics if f records that the value was obtained using
   227  // an unexported field.
   228  func (f flag) mustBeExported() {
   229  	if f == 0 || f&flagRO != 0 {
   230  		f.mustBeExportedSlow()
   231  	}
   232  }
   233  
   234  func (f flag) mustBeExportedSlow() {
   235  	if f == 0 {
   236  		panic(&ValueError{methodNameSkip(), Invalid})
   237  	}
   238  	if f&flagRO != 0 {
   239  		panic("reflect: " + methodNameSkip() + " using value obtained using unexported field")
   240  	}
   241  }
   242  
   243  // mustBeAssignable panics if f records that the value is not assignable,
   244  // which is to say that either it was obtained using an unexported field
   245  // or it is not addressable.
   246  func (f flag) mustBeAssignable() {
   247  	if f&flagRO != 0 || f&flagAddr == 0 {
   248  		f.mustBeAssignableSlow()
   249  	}
   250  }
   251  
   252  func (f flag) mustBeAssignableSlow() {
   253  	if f == 0 {
   254  		panic(&ValueError{methodNameSkip(), Invalid})
   255  	}
   256  	// Assignable if addressable and not read-only.
   257  	if f&flagRO != 0 {
   258  		panic("reflect: " + methodNameSkip() + " using value obtained using unexported field")
   259  	}
   260  	if f&flagAddr == 0 {
   261  		panic("reflect: " + methodNameSkip() + " using unaddressable value")
   262  	}
   263  }
   264  
   265  // Addr returns a pointer value representing the address of v.
   266  // It panics if CanAddr() returns false.
   267  // Addr is typically used to obtain a pointer to a struct field
   268  // or slice element in order to call a method that requires a
   269  // pointer receiver.
   270  func (v Value) Addr() Value {
   271  	if v.flag&flagAddr == 0 {
   272  		panic("reflect.Value.Addr of unaddressable value")
   273  	}
   274  	// Preserve flagRO instead of using v.flag.ro() so that
   275  	// v.Addr().Elem() is equivalent to v (#32772)
   276  	fl := v.flag & flagRO
   277  	return Value{v.typ.ptrTo(), v.ptr, fl | flag(Ptr)}
   278  }
   279  
   280  // Bool returns v's underlying value.
   281  // It panics if v's kind is not Bool.
   282  func (v Value) Bool() bool {
   283  	v.mustBe(Bool)
   284  	return *(*bool)(v.ptr)
   285  }
   286  
   287  // Bytes returns v's underlying value.
   288  // It panics if v's underlying value is not a slice of bytes.
   289  func (v Value) Bytes() []byte {
   290  	v.mustBe(Slice)
   291  	if v.typ.Elem().Kind() != Uint8 {
   292  		panic("reflect.Value.Bytes of non-byte slice")
   293  	}
   294  	// Slice is always bigger than a word; assume flagIndir.
   295  	return *(*[]byte)(v.ptr)
   296  }
   297  
   298  // runes returns v's underlying value.
   299  // It panics if v's underlying value is not a slice of runes (int32s).
   300  func (v Value) runes() []rune {
   301  	v.mustBe(Slice)
   302  	if v.typ.Elem().Kind() != Int32 {
   303  		panic("reflect.Value.Bytes of non-rune slice")
   304  	}
   305  	// Slice is always bigger than a word; assume flagIndir.
   306  	return *(*[]rune)(v.ptr)
   307  }
   308  
   309  // CanAddr reports whether the value's address can be obtained with Addr.
   310  // Such values are called addressable. A value is addressable if it is
   311  // an element of a slice, an element of an addressable array,
   312  // a field of an addressable struct, or the result of dereferencing a pointer.
   313  // If CanAddr returns false, calling Addr will panic.
   314  func (v Value) CanAddr() bool {
   315  	return v.flag&flagAddr != 0
   316  }
   317  
   318  // CanSet reports whether the value of v can be changed.
   319  // A Value can be changed only if it is addressable and was not
   320  // obtained by the use of unexported struct fields.
   321  // If CanSet returns false, calling Set or any type-specific
   322  // setter (e.g., SetBool, SetInt) will panic.
   323  func (v Value) CanSet() bool {
   324  	return v.flag&(flagAddr|flagRO) == flagAddr
   325  }
   326  
   327  // Call calls the function v with the input arguments in.
   328  // For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]).
   329  // Call panics if v's Kind is not Func.
   330  // It returns the output results as Values.
   331  // As in Go, each input argument must be assignable to the
   332  // type of the function's corresponding input parameter.
   333  // If v is a variadic function, Call creates the variadic slice parameter
   334  // itself, copying in the corresponding values.
   335  func (v Value) Call(in []Value) []Value {
   336  	v.mustBe(Func)
   337  	v.mustBeExported()
   338  	return v.call("Call", in)
   339  }
   340  
   341  // CallSlice calls the variadic function v with the input arguments in,
   342  // assigning the slice in[len(in)-1] to v's final variadic argument.
   343  // For example, if len(in) == 3, v.CallSlice(in) represents the Go call v(in[0], in[1], in[2]...).
   344  // CallSlice panics if v's Kind is not Func or if v is not variadic.
   345  // It returns the output results as Values.
   346  // As in Go, each input argument must be assignable to the
   347  // type of the function's corresponding input parameter.
   348  func (v Value) CallSlice(in []Value) []Value {
   349  	v.mustBe(Func)
   350  	v.mustBeExported()
   351  	return v.call("CallSlice", in)
   352  }
   353  
   354  var callGC bool // for testing; see TestCallMethodJump
   355  
   356  const debugReflectCall = false
   357  
   358  func (v Value) call(op string, in []Value) []Value {
   359  	// Get function pointer, type.
   360  	t := (*funcType)(unsafe.Pointer(v.typ))
   361  	var (
   362  		fn       unsafe.Pointer
   363  		rcvr     Value
   364  		rcvrtype *rtype
   365  	)
   366  	if v.flag&flagMethod != 0 {
   367  		rcvr = v
   368  		rcvrtype, t, fn = methodReceiver(op, v, int(v.flag)>>flagMethodShift)
   369  	} else if v.flag&flagIndir != 0 {
   370  		fn = *(*unsafe.Pointer)(v.ptr)
   371  	} else {
   372  		fn = v.ptr
   373  	}
   374  
   375  	if fn == nil {
   376  		panic("reflect.Value.Call: call of nil function")
   377  	}
   378  
   379  	isSlice := op == "CallSlice"
   380  	n := t.NumIn()
   381  	if isSlice {
   382  		if !t.IsVariadic() {
   383  			panic("reflect: CallSlice of non-variadic function")
   384  		}
   385  		if len(in) < n {
   386  			panic("reflect: CallSlice with too few input arguments")
   387  		}
   388  		if len(in) > n {
   389  			panic("reflect: CallSlice with too many input arguments")
   390  		}
   391  	} else {
   392  		if t.IsVariadic() {
   393  			n--
   394  		}
   395  		if len(in) < n {
   396  			panic("reflect: Call with too few input arguments")
   397  		}
   398  		if !t.IsVariadic() && len(in) > n {
   399  			panic("reflect: Call with too many input arguments")
   400  		}
   401  	}
   402  	for _, x := range in {
   403  		if x.Kind() == Invalid {
   404  			panic("reflect: " + op + " using zero Value argument")
   405  		}
   406  	}
   407  	for i := 0; i < n; i++ {
   408  		if xt, targ := in[i].Type(), t.In(i); !xt.AssignableTo(targ) {
   409  			panic("reflect: " + op + " using " + xt.String() + " as type " + targ.String())
   410  		}
   411  	}
   412  	if !isSlice && t.IsVariadic() {
   413  		// prepare slice for remaining values
   414  		m := len(in) - n
   415  		slice := MakeSlice(t.In(n), m, m)
   416  		elem := t.In(n).Elem()
   417  		for i := 0; i < m; i++ {
   418  			x := in[n+i]
   419  			if xt := x.Type(); !xt.AssignableTo(elem) {
   420  				panic("reflect: cannot use " + xt.String() + " as type " + elem.String() + " in " + op)
   421  			}
   422  			slice.Index(i).Set(x)
   423  		}
   424  		origIn := in
   425  		in = make([]Value, n+1)
   426  		copy(in[:n], origIn)
   427  		in[n] = slice
   428  	}
   429  
   430  	nin := len(in)
   431  	if nin != t.NumIn() {
   432  		panic("reflect.Value.Call: wrong argument count")
   433  	}
   434  	nout := t.NumOut()
   435  
   436  	// Register argument space.
   437  	var regArgs abi.RegArgs
   438  
   439  	// Compute frame type.
   440  	frametype, framePool, abi := funcLayout(t, rcvrtype)
   441  
   442  	// Allocate a chunk of memory for frame if needed.
   443  	var stackArgs unsafe.Pointer
   444  	if frametype.size != 0 {
   445  		if nout == 0 {
   446  			stackArgs = framePool.Get().(unsafe.Pointer)
   447  		} else {
   448  			// Can't use pool if the function has return values.
   449  			// We will leak pointer to args in ret, so its lifetime is not scoped.
   450  			stackArgs = unsafe_New(frametype)
   451  		}
   452  	}
   453  	frameSize := frametype.size
   454  
   455  	if debugReflectCall {
   456  		println("reflect.call", t.String())
   457  		abi.dump()
   458  	}
   459  
   460  	// Copy inputs into args.
   461  
   462  	// Handle receiver.
   463  	inStart := 0
   464  	if rcvrtype != nil {
   465  		// Guaranteed to only be one word in size,
   466  		// so it will only take up exactly 1 abiStep (either
   467  		// in a register or on the stack).
   468  		switch st := abi.call.steps[0]; st.kind {
   469  		case abiStepStack:
   470  			storeRcvr(rcvr, stackArgs)
   471  		case abiStepIntReg, abiStepPointer:
   472  			// Even pointers can go into the uintptr slot because
   473  			// they'll be kept alive by the Values referenced by
   474  			// this frame. Reflection forces these to be heap-allocated,
   475  			// so we don't need to worry about stack copying.
   476  			storeRcvr(rcvr, unsafe.Pointer(&regArgs.Ints[st.ireg]))
   477  		case abiStepFloatReg:
   478  			storeRcvr(rcvr, unsafe.Pointer(&regArgs.Floats[st.freg]))
   479  		default:
   480  			panic("unknown ABI parameter kind")
   481  		}
   482  		inStart = 1
   483  	}
   484  
   485  	// Handle arguments.
   486  	for i, v := range in {
   487  		v.mustBeExported()
   488  		targ := t.In(i).(*rtype)
   489  		// TODO(mknyszek): Figure out if it's possible to get some
   490  		// scratch space for this assignment check. Previously, it
   491  		// was possible to use space in the argument frame.
   492  		v = v.assignTo("reflect.Value.Call", targ, nil)
   493  	stepsLoop:
   494  		for _, st := range abi.call.stepsForValue(i + inStart) {
   495  			switch st.kind {
   496  			case abiStepStack:
   497  				// Copy values to the "stack."
   498  				addr := add(stackArgs, st.stkOff, "precomputed stack arg offset")
   499  				if v.flag&flagIndir != 0 {
   500  					typedmemmove(targ, addr, v.ptr)
   501  				} else {
   502  					*(*unsafe.Pointer)(addr) = v.ptr
   503  				}
   504  				// There's only one step for a stack-allocated value.
   505  				break stepsLoop
   506  			case abiStepIntReg, abiStepPointer:
   507  				// Copy values to "integer registers."
   508  				if v.flag&flagIndir != 0 {
   509  					offset := add(v.ptr, st.offset, "precomputed value offset")
   510  					memmove(unsafe.Pointer(&regArgs.Ints[st.ireg]), offset, st.size)
   511  				} else {
   512  					if st.kind == abiStepPointer {
   513  						// Duplicate this pointer in the pointer area of the
   514  						// register space. Otherwise, there's the potential for
   515  						// this to be the last reference to v.ptr.
   516  						regArgs.Ptrs[st.ireg] = v.ptr
   517  					}
   518  					regArgs.Ints[st.ireg] = uintptr(v.ptr)
   519  				}
   520  			case abiStepFloatReg:
   521  				// Copy values to "float registers."
   522  				if v.flag&flagIndir == 0 {
   523  					panic("attempted to copy pointer to FP register")
   524  				}
   525  				offset := add(v.ptr, st.offset, "precomputed value offset")
   526  				memmove(unsafe.Pointer(&regArgs.Floats[st.freg]), offset, st.size)
   527  			default:
   528  				panic("unknown ABI part kind")
   529  			}
   530  		}
   531  	}
   532  	// TODO(mknyszek): Remove this when we no longer have
   533  	// caller reserved spill space.
   534  	frameSize = align(frameSize, ptrSize)
   535  	frameSize += abi.spill
   536  
   537  	// Mark pointers in registers for the return path.
   538  	regArgs.ReturnIsPtr = abi.outRegPtrs
   539  
   540  	// Call.
   541  	call(frametype, fn, stackArgs, uint32(frametype.size), uint32(abi.retOffset), uint32(frameSize), &regArgs)
   542  
   543  	// For testing; see TestCallMethodJump.
   544  	if callGC {
   545  		runtime.GC()
   546  	}
   547  
   548  	var ret []Value
   549  	if nout == 0 {
   550  		if stackArgs != nil {
   551  			typedmemclr(frametype, stackArgs)
   552  			framePool.Put(stackArgs)
   553  		}
   554  	} else {
   555  		if stackArgs != nil {
   556  			// Zero the now unused input area of args,
   557  			// because the Values returned by this function contain pointers to the args object,
   558  			// and will thus keep the args object alive indefinitely.
   559  			typedmemclrpartial(frametype, stackArgs, 0, abi.retOffset)
   560  		}
   561  
   562  		// Wrap Values around return values in args.
   563  		ret = make([]Value, nout)
   564  		for i := 0; i < nout; i++ {
   565  			tv := t.Out(i)
   566  			if tv.Size() == 0 {
   567  				// For zero-sized return value, args+off may point to the next object.
   568  				// In this case, return the zero value instead.
   569  				ret[i] = Zero(tv)
   570  				continue
   571  			}
   572  			steps := abi.ret.stepsForValue(i)
   573  			if st := steps[0]; st.kind == abiStepStack {
   574  				// This value is on the stack. If part of a value is stack
   575  				// allocated, the entire value is according to the ABI. So
   576  				// just make an indirection into the allocated frame.
   577  				fl := flagIndir | flag(tv.Kind())
   578  				ret[i] = Value{tv.common(), add(stackArgs, st.stkOff, "tv.Size() != 0"), fl}
   579  				// Note: this does introduce false sharing between results -
   580  				// if any result is live, they are all live.
   581  				// (And the space for the args is live as well, but as we've
   582  				// cleared that space it isn't as big a deal.)
   583  				continue
   584  			}
   585  
   586  			// Handle pointers passed in registers.
   587  			if !ifaceIndir(tv.common()) {
   588  				// Pointer-valued data gets put directly
   589  				// into v.ptr.
   590  				if steps[0].kind != abiStepPointer {
   591  					print("kind=", steps[0].kind, ", type=", tv.String(), "\n")
   592  					panic("mismatch between ABI description and types")
   593  				}
   594  				ret[i] = Value{tv.common(), regArgs.Ptrs[steps[0].ireg], flag(t.Kind())}
   595  				continue
   596  			}
   597  
   598  			// All that's left is values passed in registers that we need to
   599  			// create space for and copy values back into.
   600  			//
   601  			// TODO(mknyszek): We make a new allocation for each register-allocated
   602  			// value, but previously we could always point into the heap-allocated
   603  			// stack frame. This is a regression that could be fixed by adding
   604  			// additional space to the allocated stack frame and storing the
   605  			// register-allocated return values into the allocated stack frame and
   606  			// referring there in the resulting Value.
   607  			s := unsafe_New(tv.common())
   608  			for _, st := range steps {
   609  				switch st.kind {
   610  				case abiStepIntReg:
   611  					offset := add(s, st.offset, "precomputed value offset")
   612  					memmove(offset, unsafe.Pointer(&regArgs.Ints[st.ireg]), st.size)
   613  				case abiStepPointer:
   614  					s := add(s, st.offset, "precomputed value offset")
   615  					*((*unsafe.Pointer)(s)) = regArgs.Ptrs[st.ireg]
   616  				case abiStepFloatReg:
   617  					offset := add(s, st.offset, "precomputed value offset")
   618  					memmove(offset, unsafe.Pointer(&regArgs.Floats[st.freg]), st.size)
   619  				case abiStepStack:
   620  					panic("register-based return value has stack component")
   621  				default:
   622  					panic("unknown ABI part kind")
   623  				}
   624  			}
   625  			ret[i] = Value{tv.common(), s, flagIndir | flag(tv.Kind())}
   626  		}
   627  	}
   628  
   629  	return ret
   630  }
   631  
   632  // callReflect is the call implementation used by a function
   633  // returned by MakeFunc. In many ways it is the opposite of the
   634  // method Value.call above. The method above converts a call using Values
   635  // into a call of a function with a concrete argument frame, while
   636  // callReflect converts a call of a function with a concrete argument
   637  // frame into a call using Values.
   638  // It is in this file so that it can be next to the call method above.
   639  // The remainder of the MakeFunc implementation is in makefunc.go.
   640  //
   641  // NOTE: This function must be marked as a "wrapper" in the generated code,
   642  // so that the linker can make it work correctly for panic and recover.
   643  // The gc compilers know to do that for the name "reflect.callReflect".
   644  //
   645  // ctxt is the "closure" generated by MakeFunc.
   646  // frame is a pointer to the arguments to that closure on the stack.
   647  // retValid points to a boolean which should be set when the results
   648  // section of frame is set.
   649  func callReflect(ctxt *makeFuncImpl, frame unsafe.Pointer, retValid *bool) {
   650  	ftyp := ctxt.ftyp
   651  	f := ctxt.fn
   652  
   653  	// Copy argument frame into Values.
   654  	ptr := frame
   655  	off := uintptr(0)
   656  	in := make([]Value, 0, int(ftyp.inCount))
   657  	for _, typ := range ftyp.in() {
   658  		off += -off & uintptr(typ.align-1)
   659  		v := Value{typ, nil, flag(typ.Kind())}
   660  		if ifaceIndir(typ) {
   661  			// value cannot be inlined in interface data.
   662  			// Must make a copy, because f might keep a reference to it,
   663  			// and we cannot let f keep a reference to the stack frame
   664  			// after this function returns, not even a read-only reference.
   665  			v.ptr = unsafe_New(typ)
   666  			if typ.size > 0 {
   667  				typedmemmove(typ, v.ptr, add(ptr, off, "typ.size > 0"))
   668  			}
   669  			v.flag |= flagIndir
   670  		} else {
   671  			v.ptr = *(*unsafe.Pointer)(add(ptr, off, "1-ptr"))
   672  		}
   673  		in = append(in, v)
   674  		off += typ.size
   675  	}
   676  
   677  	// Call underlying function.
   678  	out := f(in)
   679  	numOut := ftyp.NumOut()
   680  	if len(out) != numOut {
   681  		panic("reflect: wrong return count from function created by MakeFunc")
   682  	}
   683  
   684  	// Copy results back into argument frame.
   685  	if numOut > 0 {
   686  		off += -off & (ptrSize - 1)
   687  		for i, typ := range ftyp.out() {
   688  			v := out[i]
   689  			if v.typ == nil {
   690  				panic("reflect: function created by MakeFunc using " + funcName(f) +
   691  					" returned zero Value")
   692  			}
   693  			if v.flag&flagRO != 0 {
   694  				panic("reflect: function created by MakeFunc using " + funcName(f) +
   695  					" returned value obtained from unexported field")
   696  			}
   697  			off += -off & uintptr(typ.align-1)
   698  			if typ.size == 0 {
   699  				continue
   700  			}
   701  			addr := add(ptr, off, "typ.size > 0")
   702  
   703  			// Convert v to type typ if v is assignable to a variable
   704  			// of type t in the language spec.
   705  			// See issue 28761.
   706  			if typ.Kind() == Interface {
   707  				// We must clear the destination before calling assignTo,
   708  				// in case assignTo writes (with memory barriers) to the
   709  				// target location used as scratch space. See issue 39541.
   710  				*(*uintptr)(addr) = 0
   711  				*(*uintptr)(add(addr, ptrSize, "typ.size == 2*ptrSize")) = 0
   712  			}
   713  			v = v.assignTo("reflect.MakeFunc", typ, addr)
   714  
   715  			// We are writing to stack. No write barrier.
   716  			if v.flag&flagIndir != 0 {
   717  				memmove(addr, v.ptr, typ.size)
   718  			} else {
   719  				*(*uintptr)(addr) = uintptr(v.ptr)
   720  			}
   721  			off += typ.size
   722  		}
   723  	}
   724  
   725  	// Announce that the return values are valid.
   726  	// After this point the runtime can depend on the return values being valid.
   727  	*retValid = true
   728  
   729  	// We have to make sure that the out slice lives at least until
   730  	// the runtime knows the return values are valid. Otherwise, the
   731  	// return values might not be scanned by anyone during a GC.
   732  	// (out would be dead, and the return slots not yet alive.)
   733  	runtime.KeepAlive(out)
   734  
   735  	// runtime.getArgInfo expects to be able to find ctxt on the
   736  	// stack when it finds our caller, makeFuncStub. Make sure it
   737  	// doesn't get garbage collected.
   738  	runtime.KeepAlive(ctxt)
   739  }
   740  
   741  // methodReceiver returns information about the receiver
   742  // described by v. The Value v may or may not have the
   743  // flagMethod bit set, so the kind cached in v.flag should
   744  // not be used.
   745  // The return value rcvrtype gives the method's actual receiver type.
   746  // The return value t gives the method type signature (without the receiver).
   747  // The return value fn is a pointer to the method code.
   748  func methodReceiver(op string, v Value, methodIndex int) (rcvrtype *rtype, t *funcType, fn unsafe.Pointer) {
   749  	i := methodIndex
   750  	if v.typ.Kind() == Interface {
   751  		tt := (*interfaceType)(unsafe.Pointer(v.typ))
   752  		if uint(i) >= uint(len(tt.methods)) {
   753  			panic("reflect: internal error: invalid method index")
   754  		}
   755  		m := &tt.methods[i]
   756  		if !tt.nameOff(m.name).isExported() {
   757  			panic("reflect: " + op + " of unexported method")
   758  		}
   759  		iface := (*nonEmptyInterface)(v.ptr)
   760  		if iface.itab == nil {
   761  			panic("reflect: " + op + " of method on nil interface value")
   762  		}
   763  		rcvrtype = iface.itab.typ
   764  		fn = unsafe.Pointer(&iface.itab.fun[i])
   765  		t = (*funcType)(unsafe.Pointer(tt.typeOff(m.typ)))
   766  	} else {
   767  		rcvrtype = v.typ
   768  		ms := v.typ.exportedMethods()
   769  		if uint(i) >= uint(len(ms)) {
   770  			panic("reflect: internal error: invalid method index")
   771  		}
   772  		m := ms[i]
   773  		if !v.typ.nameOff(m.name).isExported() {
   774  			panic("reflect: " + op + " of unexported method")
   775  		}
   776  		ifn := v.typ.textOff(m.ifn)
   777  		fn = unsafe.Pointer(&ifn)
   778  		t = (*funcType)(unsafe.Pointer(v.typ.typeOff(m.mtyp)))
   779  	}
   780  	return
   781  }
   782  
   783  // v is a method receiver. Store at p the word which is used to
   784  // encode that receiver at the start of the argument list.
   785  // Reflect uses the "interface" calling convention for
   786  // methods, which always uses one word to record the receiver.
   787  func storeRcvr(v Value, p unsafe.Pointer) {
   788  	t := v.typ
   789  	if t.Kind() == Interface {
   790  		// the interface data word becomes the receiver word
   791  		iface := (*nonEmptyInterface)(v.ptr)
   792  		*(*unsafe.Pointer)(p) = iface.word
   793  	} else if v.flag&flagIndir != 0 && !ifaceIndir(t) {
   794  		*(*unsafe.Pointer)(p) = *(*unsafe.Pointer)(v.ptr)
   795  	} else {
   796  		*(*unsafe.Pointer)(p) = v.ptr
   797  	}
   798  }
   799  
   800  // align returns the result of rounding x up to a multiple of n.
   801  // n must be a power of two.
   802  func align(x, n uintptr) uintptr {
   803  	return (x + n - 1) &^ (n - 1)
   804  }
   805  
   806  // callMethod is the call implementation used by a function returned
   807  // by makeMethodValue (used by v.Method(i).Interface()).
   808  // It is a streamlined version of the usual reflect call: the caller has
   809  // already laid out the argument frame for us, so we don't have
   810  // to deal with individual Values for each argument.
   811  // It is in this file so that it can be next to the two similar functions above.
   812  // The remainder of the makeMethodValue implementation is in makefunc.go.
   813  //
   814  // NOTE: This function must be marked as a "wrapper" in the generated code,
   815  // so that the linker can make it work correctly for panic and recover.
   816  // The gc compilers know to do that for the name "reflect.callMethod".
   817  //
   818  // ctxt is the "closure" generated by makeVethodValue.
   819  // frame is a pointer to the arguments to that closure on the stack.
   820  // retValid points to a boolean which should be set when the results
   821  // section of frame is set.
   822  func callMethod(ctxt *methodValue, frame unsafe.Pointer, retValid *bool) {
   823  	rcvr := ctxt.rcvr
   824  	rcvrtype, t, fn := methodReceiver("call", rcvr, ctxt.method)
   825  	frametype, framePool, abid := funcLayout(t, rcvrtype)
   826  	argSize, retOffset := abid.stackCallArgsSize, abid.retOffset
   827  
   828  	// Make a new frame that is one word bigger so we can store the receiver.
   829  	// This space is used for both arguments and return values.
   830  	scratch := framePool.Get().(unsafe.Pointer)
   831  
   832  	// Copy in receiver and rest of args.
   833  	storeRcvr(rcvr, scratch)
   834  	// Align the first arg. The alignment can't be larger than ptrSize.
   835  	argOffset := uintptr(ptrSize)
   836  	if len(t.in()) > 0 {
   837  		argOffset = align(argOffset, uintptr(t.in()[0].align))
   838  	}
   839  	// Avoid constructing out-of-bounds pointers if there are no args.
   840  	if argSize-argOffset > 0 {
   841  		typedmemmovepartial(frametype, add(scratch, argOffset, "argSize > argOffset"), frame, argOffset, argSize-argOffset)
   842  	}
   843  
   844  	frameSize := frametype.size
   845  	// TODO(mknyszek): Remove this when we no longer have
   846  	// caller reserved spill space.
   847  	frameSize = align(frameSize, ptrSize)
   848  	frameSize += abid.spill
   849  
   850  	// Call.
   851  	// Call copies the arguments from scratch to the stack, calls fn,
   852  	// and then copies the results back into scratch.
   853  	//
   854  	// TODO(mknyszek): Have this actually support the register-based ABI.
   855  	var regs abi.RegArgs
   856  	call(frametype, fn, scratch, uint32(frametype.size), uint32(retOffset), uint32(frameSize), &regs)
   857  
   858  	// Copy return values.
   859  	// Ignore any changes to args and just copy return values.
   860  	// Avoid constructing out-of-bounds pointers if there are no return values.
   861  	if frametype.size-retOffset > 0 {
   862  		callerRetOffset := retOffset - argOffset
   863  		// This copies to the stack. Write barriers are not needed.
   864  		memmove(add(frame, callerRetOffset, "frametype.size > retOffset"),
   865  			add(scratch, retOffset, "frametype.size > retOffset"),
   866  			frametype.size-retOffset)
   867  	}
   868  
   869  	// Tell the runtime it can now depend on the return values
   870  	// being properly initialized.
   871  	*retValid = true
   872  
   873  	// Clear the scratch space and put it back in the pool.
   874  	// This must happen after the statement above, so that the return
   875  	// values will always be scanned by someone.
   876  	typedmemclr(frametype, scratch)
   877  	framePool.Put(scratch)
   878  
   879  	// See the comment in callReflect.
   880  	runtime.KeepAlive(ctxt)
   881  }
   882  
   883  // funcName returns the name of f, for use in error messages.
   884  func funcName(f func([]Value) []Value) string {
   885  	pc := *(*uintptr)(unsafe.Pointer(&f))
   886  	rf := runtime.FuncForPC(pc)
   887  	if rf != nil {
   888  		return rf.Name()
   889  	}
   890  	return "closure"
   891  }
   892  
   893  // Cap returns v's capacity.
   894  // It panics if v's Kind is not Array, Chan, or Slice.
   895  func (v Value) Cap() int {
   896  	k := v.kind()
   897  	switch k {
   898  	case Array:
   899  		return v.typ.Len()
   900  	case Chan:
   901  		return chancap(v.pointer())
   902  	case Slice:
   903  		// Slice is always bigger than a word; assume flagIndir.
   904  		return (*unsafeheader.Slice)(v.ptr).Cap
   905  	}
   906  	panic(&ValueError{"reflect.Value.Cap", v.kind()})
   907  }
   908  
   909  // Close closes the channel v.
   910  // It panics if v's Kind is not Chan.
   911  func (v Value) Close() {
   912  	v.mustBe(Chan)
   913  	v.mustBeExported()
   914  	chanclose(v.pointer())
   915  }
   916  
   917  // Complex returns v's underlying value, as a complex128.
   918  // It panics if v's Kind is not Complex64 or Complex128
   919  func (v Value) Complex() complex128 {
   920  	k := v.kind()
   921  	switch k {
   922  	case Complex64:
   923  		return complex128(*(*complex64)(v.ptr))
   924  	case Complex128:
   925  		return *(*complex128)(v.ptr)
   926  	}
   927  	panic(&ValueError{"reflect.Value.Complex", v.kind()})
   928  }
   929  
   930  // Elem returns the value that the interface v contains
   931  // or that the pointer v points to.
   932  // It panics if v's Kind is not Interface or Ptr.
   933  // It returns the zero Value if v is nil.
   934  func (v Value) Elem() Value {
   935  	k := v.kind()
   936  	switch k {
   937  	case Interface:
   938  		var eface interface{}
   939  		if v.typ.NumMethod() == 0 {
   940  			eface = *(*interface{})(v.ptr)
   941  		} else {
   942  			eface = (interface{})(*(*interface {
   943  				M()
   944  			})(v.ptr))
   945  		}
   946  		x := unpackEface(eface)
   947  		if x.flag != 0 {
   948  			x.flag |= v.flag.ro()
   949  		}
   950  		return x
   951  	case Ptr:
   952  		ptr := v.ptr
   953  		if v.flag&flagIndir != 0 {
   954  			ptr = *(*unsafe.Pointer)(ptr)
   955  		}
   956  		// The returned value's address is v's value.
   957  		if ptr == nil {
   958  			return Value{}
   959  		}
   960  		tt := (*ptrType)(unsafe.Pointer(v.typ))
   961  		typ := tt.elem
   962  		fl := v.flag&flagRO | flagIndir | flagAddr
   963  		fl |= flag(typ.Kind())
   964  		return Value{typ, ptr, fl}
   965  	}
   966  	panic(&ValueError{"reflect.Value.Elem", v.kind()})
   967  }
   968  
   969  // Field returns the i'th field of the struct v.
   970  // It panics if v's Kind is not Struct or i is out of range.
   971  func (v Value) Field(i int) Value {
   972  	if v.kind() != Struct {
   973  		panic(&ValueError{"reflect.Value.Field", v.kind()})
   974  	}
   975  	tt := (*structType)(unsafe.Pointer(v.typ))
   976  	if uint(i) >= uint(len(tt.fields)) {
   977  		panic("reflect: Field index out of range")
   978  	}
   979  	field := &tt.fields[i]
   980  	typ := field.typ
   981  
   982  	// Inherit permission bits from v, but clear flagEmbedRO.
   983  	fl := v.flag&(flagStickyRO|flagIndir|flagAddr) | flag(typ.Kind())
   984  	// Using an unexported field forces flagRO.
   985  	if !field.name.isExported() {
   986  		if field.embedded() {
   987  			fl |= flagEmbedRO
   988  		} else {
   989  			fl |= flagStickyRO
   990  		}
   991  	}
   992  	// Either flagIndir is set and v.ptr points at struct,
   993  	// or flagIndir is not set and v.ptr is the actual struct data.
   994  	// In the former case, we want v.ptr + offset.
   995  	// In the latter case, we must have field.offset = 0,
   996  	// so v.ptr + field.offset is still the correct address.
   997  	ptr := add(v.ptr, field.offset(), "same as non-reflect &v.field")
   998  	return Value{typ, ptr, fl}
   999  }
  1000  
  1001  // FieldByIndex returns the nested field corresponding to index.
  1002  // It panics if v's Kind is not struct.
  1003  func (v Value) FieldByIndex(index []int) Value {
  1004  	if len(index) == 1 {
  1005  		return v.Field(index[0])
  1006  	}
  1007  	v.mustBe(Struct)
  1008  	for i, x := range index {
  1009  		if i > 0 {
  1010  			if v.Kind() == Ptr && v.typ.Elem().Kind() == Struct {
  1011  				if v.IsNil() {
  1012  					panic("reflect: indirection through nil pointer to embedded struct")
  1013  				}
  1014  				v = v.Elem()
  1015  			}
  1016  		}
  1017  		v = v.Field(x)
  1018  	}
  1019  	return v
  1020  }
  1021  
  1022  // FieldByName returns the struct field with the given name.
  1023  // It returns the zero Value if no field was found.
  1024  // It panics if v's Kind is not struct.
  1025  func (v Value) FieldByName(name string) Value {
  1026  	v.mustBe(Struct)
  1027  	if f, ok := v.typ.FieldByName(name); ok {
  1028  		return v.FieldByIndex(f.Index)
  1029  	}
  1030  	return Value{}
  1031  }
  1032  
  1033  // FieldByNameFunc returns the struct field with a name
  1034  // that satisfies the match function.
  1035  // It panics if v's Kind is not struct.
  1036  // It returns the zero Value if no field was found.
  1037  func (v Value) FieldByNameFunc(match func(string) bool) Value {
  1038  	if f, ok := v.typ.FieldByNameFunc(match); ok {
  1039  		return v.FieldByIndex(f.Index)
  1040  	}
  1041  	return Value{}
  1042  }
  1043  
  1044  // Float returns v's underlying value, as a float64.
  1045  // It panics if v's Kind is not Float32 or Float64
  1046  func (v Value) Float() float64 {
  1047  	k := v.kind()
  1048  	switch k {
  1049  	case Float32:
  1050  		return float64(*(*float32)(v.ptr))
  1051  	case Float64:
  1052  		return *(*float64)(v.ptr)
  1053  	}
  1054  	panic(&ValueError{"reflect.Value.Float", v.kind()})
  1055  }
  1056  
  1057  var uint8Type = TypeOf(uint8(0)).(*rtype)
  1058  
  1059  // Index returns v's i'th element.
  1060  // It panics if v's Kind is not Array, Slice, or String or i is out of range.
  1061  func (v Value) Index(i int) Value {
  1062  	switch v.kind() {
  1063  	case Array:
  1064  		tt := (*arrayType)(unsafe.Pointer(v.typ))
  1065  		if uint(i) >= uint(tt.len) {
  1066  			panic("reflect: array index out of range")
  1067  		}
  1068  		typ := tt.elem
  1069  		offset := uintptr(i) * typ.size
  1070  
  1071  		// Either flagIndir is set and v.ptr points at array,
  1072  		// or flagIndir is not set and v.ptr is the actual array data.
  1073  		// In the former case, we want v.ptr + offset.
  1074  		// In the latter case, we must be doing Index(0), so offset = 0,
  1075  		// so v.ptr + offset is still the correct address.
  1076  		val := add(v.ptr, offset, "same as &v[i], i < tt.len")
  1077  		fl := v.flag&(flagIndir|flagAddr) | v.flag.ro() | flag(typ.Kind()) // bits same as overall array
  1078  		return Value{typ, val, fl}
  1079  
  1080  	case Slice:
  1081  		// Element flag same as Elem of Ptr.
  1082  		// Addressable, indirect, possibly read-only.
  1083  		s := (*unsafeheader.Slice)(v.ptr)
  1084  		if uint(i) >= uint(s.Len) {
  1085  			panic("reflect: slice index out of range")
  1086  		}
  1087  		tt := (*sliceType)(unsafe.Pointer(v.typ))
  1088  		typ := tt.elem
  1089  		val := arrayAt(s.Data, i, typ.size, "i < s.Len")
  1090  		fl := flagAddr | flagIndir | v.flag.ro() | flag(typ.Kind())
  1091  		return Value{typ, val, fl}
  1092  
  1093  	case String:
  1094  		s := (*unsafeheader.String)(v.ptr)
  1095  		if uint(i) >= uint(s.Len) {
  1096  			panic("reflect: string index out of range")
  1097  		}
  1098  		p := arrayAt(s.Data, i, 1, "i < s.Len")
  1099  		fl := v.flag.ro() | flag(Uint8) | flagIndir
  1100  		return Value{uint8Type, p, fl}
  1101  	}
  1102  	panic(&ValueError{"reflect.Value.Index", v.kind()})
  1103  }
  1104  
  1105  // Int returns v's underlying value, as an int64.
  1106  // It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64.
  1107  func (v Value) Int() int64 {
  1108  	k := v.kind()
  1109  	p := v.ptr
  1110  	switch k {
  1111  	case Int:
  1112  		return int64(*(*int)(p))
  1113  	case Int8:
  1114  		return int64(*(*int8)(p))
  1115  	case Int16:
  1116  		return int64(*(*int16)(p))
  1117  	case Int32:
  1118  		return int64(*(*int32)(p))
  1119  	case Int64:
  1120  		return *(*int64)(p)
  1121  	}
  1122  	panic(&ValueError{"reflect.Value.Int", v.kind()})
  1123  }
  1124  
  1125  // CanInterface reports whether Interface can be used without panicking.
  1126  func (v Value) CanInterface() bool {
  1127  	if v.flag == 0 {
  1128  		panic(&ValueError{"reflect.Value.CanInterface", Invalid})
  1129  	}
  1130  	return v.flag&flagRO == 0
  1131  }
  1132  
  1133  // Interface returns v's current value as an interface{}.
  1134  // It is equivalent to:
  1135  //	var i interface{} = (v's underlying value)
  1136  // It panics if the Value was obtained by accessing
  1137  // unexported struct fields.
  1138  func (v Value) Interface() (i interface{}) {
  1139  	return valueInterface(v, true)
  1140  }
  1141  
  1142  func valueInterface(v Value, safe bool) interface{} {
  1143  	if v.flag == 0 {
  1144  		panic(&ValueError{"reflect.Value.Interface", Invalid})
  1145  	}
  1146  	if safe && v.flag&flagRO != 0 {
  1147  		// Do not allow access to unexported values via Interface,
  1148  		// because they might be pointers that should not be
  1149  		// writable or methods or function that should not be callable.
  1150  		panic("reflect.Value.Interface: cannot return value obtained from unexported field or method")
  1151  	}
  1152  	if v.flag&flagMethod != 0 {
  1153  		v = makeMethodValue("Interface", v)
  1154  	}
  1155  
  1156  	if v.kind() == Interface {
  1157  		// Special case: return the element inside the interface.
  1158  		// Empty interface has one layout, all interfaces with
  1159  		// methods have a second layout.
  1160  		if v.NumMethod() == 0 {
  1161  			return *(*interface{})(v.ptr)
  1162  		}
  1163  		return *(*interface {
  1164  			M()
  1165  		})(v.ptr)
  1166  	}
  1167  
  1168  	// TODO: pass safe to packEface so we don't need to copy if safe==true?
  1169  	return packEface(v)
  1170  }
  1171  
  1172  // InterfaceData returns the interface v's value as a uintptr pair.
  1173  // It panics if v's Kind is not Interface.
  1174  func (v Value) InterfaceData() [2]uintptr {
  1175  	// TODO: deprecate this
  1176  	v.mustBe(Interface)
  1177  	// We treat this as a read operation, so we allow
  1178  	// it even for unexported data, because the caller
  1179  	// has to import "unsafe" to turn it into something
  1180  	// that can be abused.
  1181  	// Interface value is always bigger than a word; assume flagIndir.
  1182  	return *(*[2]uintptr)(v.ptr)
  1183  }
  1184  
  1185  // IsNil reports whether its argument v is nil. The argument must be
  1186  // a chan, func, interface, map, pointer, or slice value; if it is
  1187  // not, IsNil panics. Note that IsNil is not always equivalent to a
  1188  // regular comparison with nil in Go. For example, if v was created
  1189  // by calling ValueOf with an uninitialized interface variable i,
  1190  // i==nil will be true but v.IsNil will panic as v will be the zero
  1191  // Value.
  1192  func (v Value) IsNil() bool {
  1193  	k := v.kind()
  1194  	switch k {
  1195  	case Chan, Func, Map, Ptr, UnsafePointer:
  1196  		if v.flag&flagMethod != 0 {
  1197  			return false
  1198  		}
  1199  		ptr := v.ptr
  1200  		if v.flag&flagIndir != 0 {
  1201  			ptr = *(*unsafe.Pointer)(ptr)
  1202  		}
  1203  		return ptr == nil
  1204  	case Interface, Slice:
  1205  		// Both interface and slice are nil if first word is 0.
  1206  		// Both are always bigger than a word; assume flagIndir.
  1207  		return *(*unsafe.Pointer)(v.ptr) == nil
  1208  	}
  1209  	panic(&ValueError{"reflect.Value.IsNil", v.kind()})
  1210  }
  1211  
  1212  // IsValid reports whether v represents a value.
  1213  // It returns false if v is the zero Value.
  1214  // If IsValid returns false, all other methods except String panic.
  1215  // Most functions and methods never return an invalid Value.
  1216  // If one does, its documentation states the conditions explicitly.
  1217  func (v Value) IsValid() bool {
  1218  	return v.flag != 0
  1219  }
  1220  
  1221  // IsZero reports whether v is the zero value for its type.
  1222  // It panics if the argument is invalid.
  1223  func (v Value) IsZero() bool {
  1224  	switch v.kind() {
  1225  	case Bool:
  1226  		return !v.Bool()
  1227  	case Int, Int8, Int16, Int32, Int64:
  1228  		return v.Int() == 0
  1229  	case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
  1230  		return v.Uint() == 0
  1231  	case Float32, Float64:
  1232  		return math.Float64bits(v.Float()) == 0
  1233  	case Complex64, Complex128:
  1234  		c := v.Complex()
  1235  		return math.Float64bits(real(c)) == 0 && math.Float64bits(imag(c)) == 0
  1236  	case Array:
  1237  		for i := 0; i < v.Len(); i++ {
  1238  			if !v.Index(i).IsZero() {
  1239  				return false
  1240  			}
  1241  		}
  1242  		return true
  1243  	case Chan, Func, Interface, Map, Ptr, Slice, UnsafePointer:
  1244  		return v.IsNil()
  1245  	case String:
  1246  		return v.Len() == 0
  1247  	case Struct:
  1248  		for i := 0; i < v.NumField(); i++ {
  1249  			if !v.Field(i).IsZero() {
  1250  				return false
  1251  			}
  1252  		}
  1253  		return true
  1254  	default:
  1255  		// This should never happens, but will act as a safeguard for
  1256  		// later, as a default value doesn't makes sense here.
  1257  		panic(&ValueError{"reflect.Value.IsZero", v.Kind()})
  1258  	}
  1259  }
  1260  
  1261  // Kind returns v's Kind.
  1262  // If v is the zero Value (IsValid returns false), Kind returns Invalid.
  1263  func (v Value) Kind() Kind {
  1264  	return v.kind()
  1265  }
  1266  
  1267  // Len returns v's length.
  1268  // It panics if v's Kind is not Array, Chan, Map, Slice, or String.
  1269  func (v Value) Len() int {
  1270  	k := v.kind()
  1271  	switch k {
  1272  	case Array:
  1273  		tt := (*arrayType)(unsafe.Pointer(v.typ))
  1274  		return int(tt.len)
  1275  	case Chan:
  1276  		return chanlen(v.pointer())
  1277  	case Map:
  1278  		return maplen(v.pointer())
  1279  	case Slice:
  1280  		// Slice is bigger than a word; assume flagIndir.
  1281  		return (*unsafeheader.Slice)(v.ptr).Len
  1282  	case String:
  1283  		// String is bigger than a word; assume flagIndir.
  1284  		return (*unsafeheader.String)(v.ptr).Len
  1285  	}
  1286  	panic(&ValueError{"reflect.Value.Len", v.kind()})
  1287  }
  1288  
  1289  // MapIndex returns the value associated with key in the map v.
  1290  // It panics if v's Kind is not Map.
  1291  // It returns the zero Value if key is not found in the map or if v represents a nil map.
  1292  // As in Go, the key's value must be assignable to the map's key type.
  1293  func (v Value) MapIndex(key Value) Value {
  1294  	v.mustBe(Map)
  1295  	tt := (*mapType)(unsafe.Pointer(v.typ))
  1296  
  1297  	// Do not require key to be exported, so that DeepEqual
  1298  	// and other programs can use all the keys returned by
  1299  	// MapKeys as arguments to MapIndex. If either the map
  1300  	// or the key is unexported, though, the result will be
  1301  	// considered unexported. This is consistent with the
  1302  	// behavior for structs, which allow read but not write
  1303  	// of unexported fields.
  1304  	key = key.assignTo("reflect.Value.MapIndex", tt.key, nil)
  1305  
  1306  	var k unsafe.Pointer
  1307  	if key.flag&flagIndir != 0 {
  1308  		k = key.ptr
  1309  	} else {
  1310  		k = unsafe.Pointer(&key.ptr)
  1311  	}
  1312  	e := mapaccess(v.typ, v.pointer(), k)
  1313  	if e == nil {
  1314  		return Value{}
  1315  	}
  1316  	typ := tt.elem
  1317  	fl := (v.flag | key.flag).ro()
  1318  	fl |= flag(typ.Kind())
  1319  	return copyVal(typ, fl, e)
  1320  }
  1321  
  1322  // MapKeys returns a slice containing all the keys present in the map,
  1323  // in unspecified order.
  1324  // It panics if v's Kind is not Map.
  1325  // It returns an empty slice if v represents a nil map.
  1326  func (v Value) MapKeys() []Value {
  1327  	v.mustBe(Map)
  1328  	tt := (*mapType)(unsafe.Pointer(v.typ))
  1329  	keyType := tt.key
  1330  
  1331  	fl := v.flag.ro() | flag(keyType.Kind())
  1332  
  1333  	m := v.pointer()
  1334  	mlen := int(0)
  1335  	if m != nil {
  1336  		mlen = maplen(m)
  1337  	}
  1338  	it := mapiterinit(v.typ, m)
  1339  	a := make([]Value, mlen)
  1340  	var i int
  1341  	for i = 0; i < len(a); i++ {
  1342  		key := mapiterkey(it)
  1343  		if key == nil {
  1344  			// Someone deleted an entry from the map since we
  1345  			// called maplen above. It's a data race, but nothing
  1346  			// we can do about it.
  1347  			break
  1348  		}
  1349  		a[i] = copyVal(keyType, fl, key)
  1350  		mapiternext(it)
  1351  	}
  1352  	return a[:i]
  1353  }
  1354  
  1355  // A MapIter is an iterator for ranging over a map.
  1356  // See Value.MapRange.
  1357  type MapIter struct {
  1358  	m  Value
  1359  	it unsafe.Pointer
  1360  }
  1361  
  1362  // Key returns the key of the iterator's current map entry.
  1363  func (it *MapIter) Key() Value {
  1364  	if it.it == nil {
  1365  		panic("MapIter.Key called before Next")
  1366  	}
  1367  	if mapiterkey(it.it) == nil {
  1368  		panic("MapIter.Key called on exhausted iterator")
  1369  	}
  1370  
  1371  	t := (*mapType)(unsafe.Pointer(it.m.typ))
  1372  	ktype := t.key
  1373  	return copyVal(ktype, it.m.flag.ro()|flag(ktype.Kind()), mapiterkey(it.it))
  1374  }
  1375  
  1376  // Value returns the value of the iterator's current map entry.
  1377  func (it *MapIter) Value() Value {
  1378  	if it.it == nil {
  1379  		panic("MapIter.Value called before Next")
  1380  	}
  1381  	if mapiterkey(it.it) == nil {
  1382  		panic("MapIter.Value called on exhausted iterator")
  1383  	}
  1384  
  1385  	t := (*mapType)(unsafe.Pointer(it.m.typ))
  1386  	vtype := t.elem
  1387  	return copyVal(vtype, it.m.flag.ro()|flag(vtype.Kind()), mapiterelem(it.it))
  1388  }
  1389  
  1390  // Next advances the map iterator and reports whether there is another
  1391  // entry. It returns false when the iterator is exhausted; subsequent
  1392  // calls to Key, Value, or Next will panic.
  1393  func (it *MapIter) Next() bool {
  1394  	if it.it == nil {
  1395  		it.it = mapiterinit(it.m.typ, it.m.pointer())
  1396  	} else {
  1397  		if mapiterkey(it.it) == nil {
  1398  			panic("MapIter.Next called on exhausted iterator")
  1399  		}
  1400  		mapiternext(it.it)
  1401  	}
  1402  	return mapiterkey(it.it) != nil
  1403  }
  1404  
  1405  // MapRange returns a range iterator for a map.
  1406  // It panics if v's Kind is not Map.
  1407  //
  1408  // Call Next to advance the iterator, and Key/Value to access each entry.
  1409  // Next returns false when the iterator is exhausted.
  1410  // MapRange follows the same iteration semantics as a range statement.
  1411  //
  1412  // Example:
  1413  //
  1414  //	iter := reflect.ValueOf(m).MapRange()
  1415  // 	for iter.Next() {
  1416  //		k := iter.Key()
  1417  //		v := iter.Value()
  1418  //		...
  1419  //	}
  1420  //
  1421  func (v Value) MapRange() *MapIter {
  1422  	v.mustBe(Map)
  1423  	return &MapIter{m: v}
  1424  }
  1425  
  1426  // copyVal returns a Value containing the map key or value at ptr,
  1427  // allocating a new variable as needed.
  1428  func copyVal(typ *rtype, fl flag, ptr unsafe.Pointer) Value {
  1429  	if ifaceIndir(typ) {
  1430  		// Copy result so future changes to the map
  1431  		// won't change the underlying value.
  1432  		c := unsafe_New(typ)
  1433  		typedmemmove(typ, c, ptr)
  1434  		return Value{typ, c, fl | flagIndir}
  1435  	}
  1436  	return Value{typ, *(*unsafe.Pointer)(ptr), fl}
  1437  }
  1438  
  1439  // Method returns a function value corresponding to v's i'th method.
  1440  // The arguments to a Call on the returned function should not include
  1441  // a receiver; the returned function will always use v as the receiver.
  1442  // Method panics if i is out of range or if v is a nil interface value.
  1443  func (v Value) Method(i int) Value {
  1444  	if v.typ == nil {
  1445  		panic(&ValueError{"reflect.Value.Method", Invalid})
  1446  	}
  1447  	if v.flag&flagMethod != 0 || uint(i) >= uint(v.typ.NumMethod()) {
  1448  		panic("reflect: Method index out of range")
  1449  	}
  1450  	if v.typ.Kind() == Interface && v.IsNil() {
  1451  		panic("reflect: Method on nil interface value")
  1452  	}
  1453  	fl := v.flag.ro() | (v.flag & flagIndir)
  1454  	fl |= flag(Func)
  1455  	fl |= flag(i)<<flagMethodShift | flagMethod
  1456  	return Value{v.typ, v.ptr, fl}
  1457  }
  1458  
  1459  // NumMethod returns the number of exported methods in the value's method set.
  1460  func (v Value) NumMethod() int {
  1461  	if v.typ == nil {
  1462  		panic(&ValueError{"reflect.Value.NumMethod", Invalid})
  1463  	}
  1464  	if v.flag&flagMethod != 0 {
  1465  		return 0
  1466  	}
  1467  	return v.typ.NumMethod()
  1468  }
  1469  
  1470  // MethodByName returns a function value corresponding to the method
  1471  // of v with the given name.
  1472  // The arguments to a Call on the returned function should not include
  1473  // a receiver; the returned function will always use v as the receiver.
  1474  // It returns the zero Value if no method was found.
  1475  func (v Value) MethodByName(name string) Value {
  1476  	if v.typ == nil {
  1477  		panic(&ValueError{"reflect.Value.MethodByName", Invalid})
  1478  	}
  1479  	if v.flag&flagMethod != 0 {
  1480  		return Value{}
  1481  	}
  1482  	m, ok := v.typ.MethodByName(name)
  1483  	if !ok {
  1484  		return Value{}
  1485  	}
  1486  	return v.Method(m.Index)
  1487  }
  1488  
  1489  // NumField returns the number of fields in the struct v.
  1490  // It panics if v's Kind is not Struct.
  1491  func (v Value) NumField() int {
  1492  	v.mustBe(Struct)
  1493  	tt := (*structType)(unsafe.Pointer(v.typ))
  1494  	return len(tt.fields)
  1495  }
  1496  
  1497  // OverflowComplex reports whether the complex128 x cannot be represented by v's type.
  1498  // It panics if v's Kind is not Complex64 or Complex128.
  1499  func (v Value) OverflowComplex(x complex128) bool {
  1500  	k := v.kind()
  1501  	switch k {
  1502  	case Complex64:
  1503  		return overflowFloat32(real(x)) || overflowFloat32(imag(x))
  1504  	case Complex128:
  1505  		return false
  1506  	}
  1507  	panic(&ValueError{"reflect.Value.OverflowComplex", v.kind()})
  1508  }
  1509  
  1510  // OverflowFloat reports whether the float64 x cannot be represented by v's type.
  1511  // It panics if v's Kind is not Float32 or Float64.
  1512  func (v Value) OverflowFloat(x float64) bool {
  1513  	k := v.kind()
  1514  	switch k {
  1515  	case Float32:
  1516  		return overflowFloat32(x)
  1517  	case Float64:
  1518  		return false
  1519  	}
  1520  	panic(&ValueError{"reflect.Value.OverflowFloat", v.kind()})
  1521  }
  1522  
  1523  func overflowFloat32(x float64) bool {
  1524  	if x < 0 {
  1525  		x = -x
  1526  	}
  1527  	return math.MaxFloat32 < x && x <= math.MaxFloat64
  1528  }
  1529  
  1530  // OverflowInt reports whether the int64 x cannot be represented by v's type.
  1531  // It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64.
  1532  func (v Value) OverflowInt(x int64) bool {
  1533  	k := v.kind()
  1534  	switch k {
  1535  	case Int, Int8, Int16, Int32, Int64:
  1536  		bitSize := v.typ.size * 8
  1537  		trunc := (x << (64 - bitSize)) >> (64 - bitSize)
  1538  		return x != trunc
  1539  	}
  1540  	panic(&ValueError{"reflect.Value.OverflowInt", v.kind()})
  1541  }
  1542  
  1543  // OverflowUint reports whether the uint64 x cannot be represented by v's type.
  1544  // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
  1545  func (v Value) OverflowUint(x uint64) bool {
  1546  	k := v.kind()
  1547  	switch k {
  1548  	case Uint, Uintptr, Uint8, Uint16, Uint32, Uint64:
  1549  		bitSize := v.typ.size * 8
  1550  		trunc := (x << (64 - bitSize)) >> (64 - bitSize)
  1551  		return x != trunc
  1552  	}
  1553  	panic(&ValueError{"reflect.Value.OverflowUint", v.kind()})
  1554  }
  1555  
  1556  //go:nocheckptr
  1557  // This prevents inlining Value.Pointer when -d=checkptr is enabled,
  1558  // which ensures cmd/compile can recognize unsafe.Pointer(v.Pointer())
  1559  // and make an exception.
  1560  
  1561  // Pointer returns v's value as a uintptr.
  1562  // It returns uintptr instead of unsafe.Pointer so that
  1563  // code using reflect cannot obtain unsafe.Pointers
  1564  // without importing the unsafe package explicitly.
  1565  // It panics if v's Kind is not Chan, Func, Map, Ptr, Slice, or UnsafePointer.
  1566  //
  1567  // If v's Kind is Func, the returned pointer is an underlying
  1568  // code pointer, but not necessarily enough to identify a
  1569  // single function uniquely. The only guarantee is that the
  1570  // result is zero if and only if v is a nil func Value.
  1571  //
  1572  // If v's Kind is Slice, the returned pointer is to the first
  1573  // element of the slice. If the slice is nil the returned value
  1574  // is 0.  If the slice is empty but non-nil the return value is non-zero.
  1575  func (v Value) Pointer() uintptr {
  1576  	// TODO: deprecate
  1577  	k := v.kind()
  1578  	switch k {
  1579  	case Ptr:
  1580  		if v.typ.ptrdata == 0 {
  1581  			// Handle pointers to go:notinheap types directly,
  1582  			// so we never materialize such pointers as an
  1583  			// unsafe.Pointer. (Such pointers are always indirect.)
  1584  			// See issue 42076.
  1585  			return *(*uintptr)(v.ptr)
  1586  		}
  1587  		fallthrough
  1588  	case Chan, Map, UnsafePointer:
  1589  		return uintptr(v.pointer())
  1590  	case Func:
  1591  		if v.flag&flagMethod != 0 {
  1592  			// As the doc comment says, the returned pointer is an
  1593  			// underlying code pointer but not necessarily enough to
  1594  			// identify a single function uniquely. All method expressions
  1595  			// created via reflect have the same underlying code pointer,
  1596  			// so their Pointers are equal. The function used here must
  1597  			// match the one used in makeMethodValue.
  1598  			f := methodValueCall
  1599  			return **(**uintptr)(unsafe.Pointer(&f))
  1600  		}
  1601  		p := v.pointer()
  1602  		// Non-nil func value points at data block.
  1603  		// First word of data block is actual code.
  1604  		if p != nil {
  1605  			p = *(*unsafe.Pointer)(p)
  1606  		}
  1607  		return uintptr(p)
  1608  
  1609  	case Slice:
  1610  		return (*SliceHeader)(v.ptr).Data
  1611  	}
  1612  	panic(&ValueError{"reflect.Value.Pointer", v.kind()})
  1613  }
  1614  
  1615  // Recv receives and returns a value from the channel v.
  1616  // It panics if v's Kind is not Chan.
  1617  // The receive blocks until a value is ready.
  1618  // The boolean value ok is true if the value x corresponds to a send
  1619  // on the channel, false if it is a zero value received because the channel is closed.
  1620  func (v Value) Recv() (x Value, ok bool) {
  1621  	v.mustBe(Chan)
  1622  	v.mustBeExported()
  1623  	return v.recv(false)
  1624  }
  1625  
  1626  // internal recv, possibly non-blocking (nb).
  1627  // v is known to be a channel.
  1628  func (v Value) recv(nb bool) (val Value, ok bool) {
  1629  	tt := (*chanType)(unsafe.Pointer(v.typ))
  1630  	if ChanDir(tt.dir)&RecvDir == 0 {
  1631  		panic("reflect: recv on send-only channel")
  1632  	}
  1633  	t := tt.elem
  1634  	val = Value{t, nil, flag(t.Kind())}
  1635  	var p unsafe.Pointer
  1636  	if ifaceIndir(t) {
  1637  		p = unsafe_New(t)
  1638  		val.ptr = p
  1639  		val.flag |= flagIndir
  1640  	} else {
  1641  		p = unsafe.Pointer(&val.ptr)
  1642  	}
  1643  	selected, ok := chanrecv(v.pointer(), nb, p)
  1644  	if !selected {
  1645  		val = Value{}
  1646  	}
  1647  	return
  1648  }
  1649  
  1650  // Send sends x on the channel v.
  1651  // It panics if v's kind is not Chan or if x's type is not the same type as v's element type.
  1652  // As in Go, x's value must be assignable to the channel's element type.
  1653  func (v Value) Send(x Value) {
  1654  	v.mustBe(Chan)
  1655  	v.mustBeExported()
  1656  	v.send(x, false)
  1657  }
  1658  
  1659  // internal send, possibly non-blocking.
  1660  // v is known to be a channel.
  1661  func (v Value) send(x Value, nb bool) (selected bool) {
  1662  	tt := (*chanType)(unsafe.Pointer(v.typ))
  1663  	if ChanDir(tt.dir)&SendDir == 0 {
  1664  		panic("reflect: send on recv-only channel")
  1665  	}
  1666  	x.mustBeExported()
  1667  	x = x.assignTo("reflect.Value.Send", tt.elem, nil)
  1668  	var p unsafe.Pointer
  1669  	if x.flag&flagIndir != 0 {
  1670  		p = x.ptr
  1671  	} else {
  1672  		p = unsafe.Pointer(&x.ptr)
  1673  	}
  1674  	return chansend(v.pointer(), p, nb)
  1675  }
  1676  
  1677  // Set assigns x to the value v.
  1678  // It panics if CanSet returns false.
  1679  // As in Go, x's value must be assignable to v's type.
  1680  func (v Value) Set(x Value) {
  1681  	v.mustBeAssignable()
  1682  	x.mustBeExported() // do not let unexported x leak
  1683  	var target unsafe.Pointer
  1684  	if v.kind() == Interface {
  1685  		target = v.ptr
  1686  	}
  1687  	x = x.assignTo("reflect.Set", v.typ, target)
  1688  	if x.flag&flagIndir != 0 {
  1689  		if x.ptr == unsafe.Pointer(&zeroVal[0]) {
  1690  			typedmemclr(v.typ, v.ptr)
  1691  		} else {
  1692  			typedmemmove(v.typ, v.ptr, x.ptr)
  1693  		}
  1694  	} else {
  1695  		*(*unsafe.Pointer)(v.ptr) = x.ptr
  1696  	}
  1697  }
  1698  
  1699  // SetBool sets v's underlying value.
  1700  // It panics if v's Kind is not Bool or if CanSet() is false.
  1701  func (v Value) SetBool(x bool) {
  1702  	v.mustBeAssignable()
  1703  	v.mustBe(Bool)
  1704  	*(*bool)(v.ptr) = x
  1705  }
  1706  
  1707  // SetBytes sets v's underlying value.
  1708  // It panics if v's underlying value is not a slice of bytes.
  1709  func (v Value) SetBytes(x []byte) {
  1710  	v.mustBeAssignable()
  1711  	v.mustBe(Slice)
  1712  	if v.typ.Elem().Kind() != Uint8 {
  1713  		panic("reflect.Value.SetBytes of non-byte slice")
  1714  	}
  1715  	*(*[]byte)(v.ptr) = x
  1716  }
  1717  
  1718  // setRunes sets v's underlying value.
  1719  // It panics if v's underlying value is not a slice of runes (int32s).
  1720  func (v Value) setRunes(x []rune) {
  1721  	v.mustBeAssignable()
  1722  	v.mustBe(Slice)
  1723  	if v.typ.Elem().Kind() != Int32 {
  1724  		panic("reflect.Value.setRunes of non-rune slice")
  1725  	}
  1726  	*(*[]rune)(v.ptr) = x
  1727  }
  1728  
  1729  // SetComplex sets v's underlying value to x.
  1730  // It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false.
  1731  func (v Value) SetComplex(x complex128) {
  1732  	v.mustBeAssignable()
  1733  	switch k := v.kind(); k {
  1734  	default:
  1735  		panic(&ValueError{"reflect.Value.SetComplex", v.kind()})
  1736  	case Complex64:
  1737  		*(*complex64)(v.ptr) = complex64(x)
  1738  	case Complex128:
  1739  		*(*complex128)(v.ptr) = x
  1740  	}
  1741  }
  1742  
  1743  // SetFloat sets v's underlying value to x.
  1744  // It panics if v's Kind is not Float32 or Float64, or if CanSet() is false.
  1745  func (v Value) SetFloat(x float64) {
  1746  	v.mustBeAssignable()
  1747  	switch k := v.kind(); k {
  1748  	default:
  1749  		panic(&ValueError{"reflect.Value.SetFloat", v.kind()})
  1750  	case Float32:
  1751  		*(*float32)(v.ptr) = float32(x)
  1752  	case Float64:
  1753  		*(*float64)(v.ptr) = x
  1754  	}
  1755  }
  1756  
  1757  // SetInt sets v's underlying value to x.
  1758  // It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64, or if CanSet() is false.
  1759  func (v Value) SetInt(x int64) {
  1760  	v.mustBeAssignable()
  1761  	switch k := v.kind(); k {
  1762  	default:
  1763  		panic(&ValueError{"reflect.Value.SetInt", v.kind()})
  1764  	case Int:
  1765  		*(*int)(v.ptr) = int(x)
  1766  	case Int8:
  1767  		*(*int8)(v.ptr) = int8(x)
  1768  	case Int16:
  1769  		*(*int16)(v.ptr) = int16(x)
  1770  	case Int32:
  1771  		*(*int32)(v.ptr) = int32(x)
  1772  	case Int64:
  1773  		*(*int64)(v.ptr) = x
  1774  	}
  1775  }
  1776  
  1777  // SetLen sets v's length to n.
  1778  // It panics if v's Kind is not Slice or if n is negative or
  1779  // greater than the capacity of the slice.
  1780  func (v Value) SetLen(n int) {
  1781  	v.mustBeAssignable()
  1782  	v.mustBe(Slice)
  1783  	s := (*unsafeheader.Slice)(v.ptr)
  1784  	if uint(n) > uint(s.Cap) {
  1785  		panic("reflect: slice length out of range in SetLen")
  1786  	}
  1787  	s.Len = n
  1788  }
  1789  
  1790  // SetCap sets v's capacity to n.
  1791  // It panics if v's Kind is not Slice or if n is smaller than the length or
  1792  // greater than the capacity of the slice.
  1793  func (v Value) SetCap(n int) {
  1794  	v.mustBeAssignable()
  1795  	v.mustBe(Slice)
  1796  	s := (*unsafeheader.Slice)(v.ptr)
  1797  	if n < s.Len || n > s.Cap {
  1798  		panic("reflect: slice capacity out of range in SetCap")
  1799  	}
  1800  	s.Cap = n
  1801  }
  1802  
  1803  // SetMapIndex sets the element associated with key in the map v to elem.
  1804  // It panics if v's Kind is not Map.
  1805  // If elem is the zero Value, SetMapIndex deletes the key from the map.
  1806  // Otherwise if v holds a nil map, SetMapIndex will panic.
  1807  // As in Go, key's elem must be assignable to the map's key type,
  1808  // and elem's value must be assignable to the map's elem type.
  1809  func (v Value) SetMapIndex(key, elem Value) {
  1810  	v.mustBe(Map)
  1811  	v.mustBeExported()
  1812  	key.mustBeExported()
  1813  	tt := (*mapType)(unsafe.Pointer(v.typ))
  1814  	key = key.assignTo("reflect.Value.SetMapIndex", tt.key, nil)
  1815  	var k unsafe.Pointer
  1816  	if key.flag&flagIndir != 0 {
  1817  		k = key.ptr
  1818  	} else {
  1819  		k = unsafe.Pointer(&key.ptr)
  1820  	}
  1821  	if elem.typ == nil {
  1822  		mapdelete(v.typ, v.pointer(), k)
  1823  		return
  1824  	}
  1825  	elem.mustBeExported()
  1826  	elem = elem.assignTo("reflect.Value.SetMapIndex", tt.elem, nil)
  1827  	var e unsafe.Pointer
  1828  	if elem.flag&flagIndir != 0 {
  1829  		e = elem.ptr
  1830  	} else {
  1831  		e = unsafe.Pointer(&elem.ptr)
  1832  	}
  1833  	mapassign(v.typ, v.pointer(), k, e)
  1834  }
  1835  
  1836  // SetUint sets v's underlying value to x.
  1837  // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64, or if CanSet() is false.
  1838  func (v Value) SetUint(x uint64) {
  1839  	v.mustBeAssignable()
  1840  	switch k := v.kind(); k {
  1841  	default:
  1842  		panic(&ValueError{"reflect.Value.SetUint", v.kind()})
  1843  	case Uint:
  1844  		*(*uint)(v.ptr) = uint(x)
  1845  	case Uint8:
  1846  		*(*uint8)(v.ptr) = uint8(x)
  1847  	case Uint16:
  1848  		*(*uint16)(v.ptr) = uint16(x)
  1849  	case Uint32:
  1850  		*(*uint32)(v.ptr) = uint32(x)
  1851  	case Uint64:
  1852  		*(*uint64)(v.ptr) = x
  1853  	case Uintptr:
  1854  		*(*uintptr)(v.ptr) = uintptr(x)
  1855  	}
  1856  }
  1857  
  1858  // SetPointer sets the unsafe.Pointer value v to x.
  1859  // It panics if v's Kind is not UnsafePointer.
  1860  func (v Value) SetPointer(x unsafe.Pointer) {
  1861  	v.mustBeAssignable()
  1862  	v.mustBe(UnsafePointer)
  1863  	*(*unsafe.Pointer)(v.ptr) = x
  1864  }
  1865  
  1866  // SetString sets v's underlying value to x.
  1867  // It panics if v's Kind is not String or if CanSet() is false.
  1868  func (v Value) SetString(x string) {
  1869  	v.mustBeAssignable()
  1870  	v.mustBe(String)
  1871  	*(*string)(v.ptr) = x
  1872  }
  1873  
  1874  // Slice returns v[i:j].
  1875  // It panics if v's Kind is not Array, Slice or String, or if v is an unaddressable array,
  1876  // or if the indexes are out of bounds.
  1877  func (v Value) Slice(i, j int) Value {
  1878  	var (
  1879  		cap  int
  1880  		typ  *sliceType
  1881  		base unsafe.Pointer
  1882  	)
  1883  	switch kind := v.kind(); kind {
  1884  	default:
  1885  		panic(&ValueError{"reflect.Value.Slice", v.kind()})
  1886  
  1887  	case Array:
  1888  		if v.flag&flagAddr == 0 {
  1889  			panic("reflect.Value.Slice: slice of unaddressable array")
  1890  		}
  1891  		tt := (*arrayType)(unsafe.Pointer(v.typ))
  1892  		cap = int(tt.len)
  1893  		typ = (*sliceType)(unsafe.Pointer(tt.slice))
  1894  		base = v.ptr
  1895  
  1896  	case Slice:
  1897  		typ = (*sliceType)(unsafe.Pointer(v.typ))
  1898  		s := (*unsafeheader.Slice)(v.ptr)
  1899  		base = s.Data
  1900  		cap = s.Cap
  1901  
  1902  	case String:
  1903  		s := (*unsafeheader.String)(v.ptr)
  1904  		if i < 0 || j < i || j > s.Len {
  1905  			panic("reflect.Value.Slice: string slice index out of bounds")
  1906  		}
  1907  		var t unsafeheader.String
  1908  		if i < s.Len {
  1909  			t = unsafeheader.String{Data: arrayAt(s.Data, i, 1, "i < s.Len"), Len: j - i}
  1910  		}
  1911  		return Value{v.typ, unsafe.Pointer(&t), v.flag}
  1912  	}
  1913  
  1914  	if i < 0 || j < i || j > cap {
  1915  		panic("reflect.Value.Slice: slice index out of bounds")
  1916  	}
  1917  
  1918  	// Declare slice so that gc can see the base pointer in it.
  1919  	var x []unsafe.Pointer
  1920  
  1921  	// Reinterpret as *unsafeheader.Slice to edit.
  1922  	s := (*unsafeheader.Slice)(unsafe.Pointer(&x))
  1923  	s.Len = j - i
  1924  	s.Cap = cap - i
  1925  	if cap-i > 0 {
  1926  		s.Data = arrayAt(base, i, typ.elem.Size(), "i < cap")
  1927  	} else {
  1928  		// do not advance pointer, to avoid pointing beyond end of slice
  1929  		s.Data = base
  1930  	}
  1931  
  1932  	fl := v.flag.ro() | flagIndir | flag(Slice)
  1933  	return Value{typ.common(), unsafe.Pointer(&x), fl}
  1934  }
  1935  
  1936  // Slice3 is the 3-index form of the slice operation: it returns v[i:j:k].
  1937  // It panics if v's Kind is not Array or Slice, or if v is an unaddressable array,
  1938  // or if the indexes are out of bounds.
  1939  func (v Value) Slice3(i, j, k int) Value {
  1940  	var (
  1941  		cap  int
  1942  		typ  *sliceType
  1943  		base unsafe.Pointer
  1944  	)
  1945  	switch kind := v.kind(); kind {
  1946  	default:
  1947  		panic(&ValueError{"reflect.Value.Slice3", v.kind()})
  1948  
  1949  	case Array:
  1950  		if v.flag&flagAddr == 0 {
  1951  			panic("reflect.Value.Slice3: slice of unaddressable array")
  1952  		}
  1953  		tt := (*arrayType)(unsafe.Pointer(v.typ))
  1954  		cap = int(tt.len)
  1955  		typ = (*sliceType)(unsafe.Pointer(tt.slice))
  1956  		base = v.ptr
  1957  
  1958  	case Slice:
  1959  		typ = (*sliceType)(unsafe.Pointer(v.typ))
  1960  		s := (*unsafeheader.Slice)(v.ptr)
  1961  		base = s.Data
  1962  		cap = s.Cap
  1963  	}
  1964  
  1965  	if i < 0 || j < i || k < j || k > cap {
  1966  		panic("reflect.Value.Slice3: slice index out of bounds")
  1967  	}
  1968  
  1969  	// Declare slice so that the garbage collector
  1970  	// can see the base pointer in it.
  1971  	var x []unsafe.Pointer
  1972  
  1973  	// Reinterpret as *unsafeheader.Slice to edit.
  1974  	s := (*unsafeheader.Slice)(unsafe.Pointer(&x))
  1975  	s.Len = j - i
  1976  	s.Cap = k - i
  1977  	if k-i > 0 {
  1978  		s.Data = arrayAt(base, i, typ.elem.Size(), "i < k <= cap")
  1979  	} else {
  1980  		// do not advance pointer, to avoid pointing beyond end of slice
  1981  		s.Data = base
  1982  	}
  1983  
  1984  	fl := v.flag.ro() | flagIndir | flag(Slice)
  1985  	return Value{typ.common(), unsafe.Pointer(&x), fl}
  1986  }
  1987  
  1988  // String returns the string v's underlying value, as a string.
  1989  // String is a special case because of Go's String method convention.
  1990  // Unlike the other getters, it does not panic if v's Kind is not String.
  1991  // Instead, it returns a string of the form "<T value>" where T is v's type.
  1992  // The fmt package treats Values specially. It does not call their String
  1993  // method implicitly but instead prints the concrete values they hold.
  1994  func (v Value) String() string {
  1995  	switch k := v.kind(); k {
  1996  	case Invalid:
  1997  		return "<invalid Value>"
  1998  	case String:
  1999  		return *(*string)(v.ptr)
  2000  	}
  2001  	// If you call String on a reflect.Value of other type, it's better to
  2002  	// print something than to panic. Useful in debugging.
  2003  	return "<" + v.Type().String() + " Value>"
  2004  }
  2005  
  2006  // TryRecv attempts to receive a value from the channel v but will not block.
  2007  // It panics if v's Kind is not Chan.
  2008  // If the receive delivers a value, x is the transferred value and ok is true.
  2009  // If the receive cannot finish without blocking, x is the zero Value and ok is false.
  2010  // If the channel is closed, x is the zero value for the channel's element type and ok is false.
  2011  func (v Value) TryRecv() (x Value, ok bool) {
  2012  	v.mustBe(Chan)
  2013  	v.mustBeExported()
  2014  	return v.recv(true)
  2015  }
  2016  
  2017  // TrySend attempts to send x on the channel v but will not block.
  2018  // It panics if v's Kind is not Chan.
  2019  // It reports whether the value was sent.
  2020  // As in Go, x's value must be assignable to the channel's element type.
  2021  func (v Value) TrySend(x Value) bool {
  2022  	v.mustBe(Chan)
  2023  	v.mustBeExported()
  2024  	return v.send(x, true)
  2025  }
  2026  
  2027  // Type returns v's type.
  2028  func (v Value) Type() Type {
  2029  	f := v.flag
  2030  	if f == 0 {
  2031  		panic(&ValueError{"reflect.Value.Type", Invalid})
  2032  	}
  2033  	if f&flagMethod == 0 {
  2034  		// Easy case
  2035  		return v.typ
  2036  	}
  2037  
  2038  	// Method value.
  2039  	// v.typ describes the receiver, not the method type.
  2040  	i := int(v.flag) >> flagMethodShift
  2041  	if v.typ.Kind() == Interface {
  2042  		// Method on interface.
  2043  		tt := (*interfaceType)(unsafe.Pointer(v.typ))
  2044  		if uint(i) >= uint(len(tt.methods)) {
  2045  			panic("reflect: internal error: invalid method index")
  2046  		}
  2047  		m := &tt.methods[i]
  2048  		return v.typ.typeOff(m.typ)
  2049  	}
  2050  	// Method on concrete type.
  2051  	ms := v.typ.exportedMethods()
  2052  	if uint(i) >= uint(len(ms)) {
  2053  		panic("reflect: internal error: invalid method index")
  2054  	}
  2055  	m := ms[i]
  2056  	return v.typ.typeOff(m.mtyp)
  2057  }
  2058  
  2059  // Uint returns v's underlying value, as a uint64.
  2060  // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64.
  2061  func (v Value) Uint() uint64 {
  2062  	k := v.kind()
  2063  	p := v.ptr
  2064  	switch k {
  2065  	case Uint:
  2066  		return uint64(*(*uint)(p))
  2067  	case Uint8:
  2068  		return uint64(*(*uint8)(p))
  2069  	case Uint16:
  2070  		return uint64(*(*uint16)(p))
  2071  	case Uint32:
  2072  		return uint64(*(*uint32)(p))
  2073  	case Uint64:
  2074  		return *(*uint64)(p)
  2075  	case Uintptr:
  2076  		return uint64(*(*uintptr)(p))
  2077  	}
  2078  	panic(&ValueError{"reflect.Value.Uint", v.kind()})
  2079  }
  2080  
  2081  //go:nocheckptr
  2082  // This prevents inlining Value.UnsafeAddr when -d=checkptr is enabled,
  2083  // which ensures cmd/compile can recognize unsafe.Pointer(v.UnsafeAddr())
  2084  // and make an exception.
  2085  
  2086  // UnsafeAddr returns a pointer to v's data.
  2087  // It is for advanced clients that also import the "unsafe" package.
  2088  // It panics if v is not addressable.
  2089  func (v Value) UnsafeAddr() uintptr {
  2090  	// TODO: deprecate
  2091  	if v.typ == nil {
  2092  		panic(&ValueError{"reflect.Value.UnsafeAddr", Invalid})
  2093  	}
  2094  	if v.flag&flagAddr == 0 {
  2095  		panic("reflect.Value.UnsafeAddr of unaddressable value")
  2096  	}
  2097  	return uintptr(v.ptr)
  2098  }
  2099  
  2100  // StringHeader is the runtime representation of a string.
  2101  // It cannot be used safely or portably and its representation may
  2102  // change in a later release.
  2103  // Moreover, the Data field is not sufficient to guarantee the data
  2104  // it references will not be garbage collected, so programs must keep
  2105  // a separate, correctly typed pointer to the underlying data.
  2106  type StringHeader struct {
  2107  	Data uintptr
  2108  	Len  int
  2109  }
  2110  
  2111  // SliceHeader is the runtime representation of a slice.
  2112  // It cannot be used safely or portably and its representation may
  2113  // change in a later release.
  2114  // Moreover, the Data field is not sufficient to guarantee the data
  2115  // it references will not be garbage collected, so programs must keep
  2116  // a separate, correctly typed pointer to the underlying data.
  2117  type SliceHeader struct {
  2118  	Data uintptr
  2119  	Len  int
  2120  	Cap  int
  2121  }
  2122  
  2123  func typesMustMatch(what string, t1, t2 Type) {
  2124  	if t1 != t2 {
  2125  		panic(what + ": " + t1.String() + " != " + t2.String())
  2126  	}
  2127  }
  2128  
  2129  // arrayAt returns the i-th element of p,
  2130  // an array whose elements are eltSize bytes wide.
  2131  // The array pointed at by p must have at least i+1 elements:
  2132  // it is invalid (but impossible to check here) to pass i >= len,
  2133  // because then the result will point outside the array.
  2134  // whySafe must explain why i < len. (Passing "i < len" is fine;
  2135  // the benefit is to surface this assumption at the call site.)
  2136  func arrayAt(p unsafe.Pointer, i int, eltSize uintptr, whySafe string) unsafe.Pointer {
  2137  	return add(p, uintptr(i)*eltSize, "i < len")
  2138  }
  2139  
  2140  // grow grows the slice s so that it can hold extra more values, allocating
  2141  // more capacity if needed. It also returns the old and new slice lengths.
  2142  func grow(s Value, extra int) (Value, int, int) {
  2143  	i0 := s.Len()
  2144  	i1 := i0 + extra
  2145  	if i1 < i0 {
  2146  		panic("reflect.Append: slice overflow")
  2147  	}
  2148  	m := s.Cap()
  2149  	if i1 <= m {
  2150  		return s.Slice(0, i1), i0, i1
  2151  	}
  2152  	if m == 0 {
  2153  		m = extra
  2154  	} else {
  2155  		for m < i1 {
  2156  			if i0 < 1024 {
  2157  				m += m
  2158  			} else {
  2159  				m += m / 4
  2160  			}
  2161  		}
  2162  	}
  2163  	t := MakeSlice(s.Type(), i1, m)
  2164  	Copy(t, s)
  2165  	return t, i0, i1
  2166  }
  2167  
  2168  // Append appends the values x to a slice s and returns the resulting slice.
  2169  // As in Go, each x's value must be assignable to the slice's element type.
  2170  func Append(s Value, x ...Value) Value {
  2171  	s.mustBe(Slice)
  2172  	s, i0, i1 := grow(s, len(x))
  2173  	for i, j := i0, 0; i < i1; i, j = i+1, j+1 {
  2174  		s.Index(i).Set(x[j])
  2175  	}
  2176  	return s
  2177  }
  2178  
  2179  // AppendSlice appends a slice t to a slice s and returns the resulting slice.
  2180  // The slices s and t must have the same element type.
  2181  func AppendSlice(s, t Value) Value {
  2182  	s.mustBe(Slice)
  2183  	t.mustBe(Slice)
  2184  	typesMustMatch("reflect.AppendSlice", s.Type().Elem(), t.Type().Elem())
  2185  	s, i0, i1 := grow(s, t.Len())
  2186  	Copy(s.Slice(i0, i1), t)
  2187  	return s
  2188  }
  2189  
  2190  // Copy copies the contents of src into dst until either
  2191  // dst has been filled or src has been exhausted.
  2192  // It returns the number of elements copied.
  2193  // Dst and src each must have kind Slice or Array, and
  2194  // dst and src must have the same element type.
  2195  //
  2196  // As a special case, src can have kind String if the element type of dst is kind Uint8.
  2197  func Copy(dst, src Value) int {
  2198  	dk := dst.kind()
  2199  	if dk != Array && dk != Slice {
  2200  		panic(&ValueError{"reflect.Copy", dk})
  2201  	}
  2202  	if dk == Array {
  2203  		dst.mustBeAssignable()
  2204  	}
  2205  	dst.mustBeExported()
  2206  
  2207  	sk := src.kind()
  2208  	var stringCopy bool
  2209  	if sk != Array && sk != Slice {
  2210  		stringCopy = sk == String && dst.typ.Elem().Kind() == Uint8
  2211  		if !stringCopy {
  2212  			panic(&ValueError{"reflect.Copy", sk})
  2213  		}
  2214  	}
  2215  	src.mustBeExported()
  2216  
  2217  	de := dst.typ.Elem()
  2218  	if !stringCopy {
  2219  		se := src.typ.Elem()
  2220  		typesMustMatch("reflect.Copy", de, se)
  2221  	}
  2222  
  2223  	var ds, ss unsafeheader.Slice
  2224  	if dk == Array {
  2225  		ds.Data = dst.ptr
  2226  		ds.Len = dst.Len()
  2227  		ds.Cap = ds.Len
  2228  	} else {
  2229  		ds = *(*unsafeheader.Slice)(dst.ptr)
  2230  	}
  2231  	if sk == Array {
  2232  		ss.Data = src.ptr
  2233  		ss.Len = src.Len()
  2234  		ss.Cap = ss.Len
  2235  	} else if sk == Slice {
  2236  		ss = *(*unsafeheader.Slice)(src.ptr)
  2237  	} else {
  2238  		sh := *(*unsafeheader.String)(src.ptr)
  2239  		ss.Data = sh.Data
  2240  		ss.Len = sh.Len
  2241  		ss.Cap = sh.Len
  2242  	}
  2243  
  2244  	return typedslicecopy(de.common(), ds, ss)
  2245  }
  2246  
  2247  // A runtimeSelect is a single case passed to rselect.
  2248  // This must match ../runtime/select.go:/runtimeSelect
  2249  type runtimeSelect struct {
  2250  	dir SelectDir      // SelectSend, SelectRecv or SelectDefault
  2251  	typ *rtype         // channel type
  2252  	ch  unsafe.Pointer // channel
  2253  	val unsafe.Pointer // ptr to data (SendDir) or ptr to receive buffer (RecvDir)
  2254  }
  2255  
  2256  // rselect runs a select. It returns the index of the chosen case.
  2257  // If the case was a receive, val is filled in with the received value.
  2258  // The conventional OK bool indicates whether the receive corresponds
  2259  // to a sent value.
  2260  //go:noescape
  2261  func rselect([]runtimeSelect) (chosen int, recvOK bool)
  2262  
  2263  // A SelectDir describes the communication direction of a select case.
  2264  type SelectDir int
  2265  
  2266  // NOTE: These values must match ../runtime/select.go:/selectDir.
  2267  
  2268  const (
  2269  	_             SelectDir = iota
  2270  	SelectSend              // case Chan <- Send
  2271  	SelectRecv              // case <-Chan:
  2272  	SelectDefault           // default
  2273  )
  2274  
  2275  // A SelectCase describes a single case in a select operation.
  2276  // The kind of case depends on Dir, the communication direction.
  2277  //
  2278  // If Dir is SelectDefault, the case represents a default case.
  2279  // Chan and Send must be zero Values.
  2280  //
  2281  // If Dir is SelectSend, the case represents a send operation.
  2282  // Normally Chan's underlying value must be a channel, and Send's underlying value must be
  2283  // assignable to the channel's element type. As a special case, if Chan is a zero Value,
  2284  // then the case is ignored, and the field Send will also be ignored and may be either zero
  2285  // or non-zero.
  2286  //
  2287  // If Dir is SelectRecv, the case represents a receive operation.
  2288  // Normally Chan's underlying value must be a channel and Send must be a zero Value.
  2289  // If Chan is a zero Value, then the case is ignored, but Send must still be a zero Value.
  2290  // When a receive operation is selected, the received Value is returned by Select.
  2291  //
  2292  type SelectCase struct {
  2293  	Dir  SelectDir // direction of case
  2294  	Chan Value     // channel to use (for send or receive)
  2295  	Send Value     // value to send (for send)
  2296  }
  2297  
  2298  // Select executes a select operation described by the list of cases.
  2299  // Like the Go select statement, it blocks until at least one of the cases
  2300  // can proceed, makes a uniform pseudo-random choice,
  2301  // and then executes that case. It returns the index of the chosen case
  2302  // and, if that case was a receive operation, the value received and a
  2303  // boolean indicating whether the value corresponds to a send on the channel
  2304  // (as opposed to a zero value received because the channel is closed).
  2305  // Select supports a maximum of 65536 cases.
  2306  func Select(cases []SelectCase) (chosen int, recv Value, recvOK bool) {
  2307  	if len(cases) > 65536 {
  2308  		panic("reflect.Select: too many cases (max 65536)")
  2309  	}
  2310  	// NOTE: Do not trust that caller is not modifying cases data underfoot.
  2311  	// The range is safe because the caller cannot modify our copy of the len
  2312  	// and each iteration makes its own copy of the value c.
  2313  	var runcases []runtimeSelect
  2314  	if len(cases) > 4 {
  2315  		// Slice is heap allocated due to runtime dependent capacity.
  2316  		runcases = make([]runtimeSelect, len(cases))
  2317  	} else {
  2318  		// Slice can be stack allocated due to constant capacity.
  2319  		runcases = make([]runtimeSelect, len(cases), 4)
  2320  	}
  2321  
  2322  	haveDefault := false
  2323  	for i, c := range cases {
  2324  		rc := &runcases[i]
  2325  		rc.dir = c.Dir
  2326  		switch c.Dir {
  2327  		default:
  2328  			panic("reflect.Select: invalid Dir")
  2329  
  2330  		case SelectDefault: // default
  2331  			if haveDefault {
  2332  				panic("reflect.Select: multiple default cases")
  2333  			}
  2334  			haveDefault = true
  2335  			if c.Chan.IsValid() {
  2336  				panic("reflect.Select: default case has Chan value")
  2337  			}
  2338  			if c.Send.IsValid() {
  2339  				panic("reflect.Select: default case has Send value")
  2340  			}
  2341  
  2342  		case SelectSend:
  2343  			ch := c.Chan
  2344  			if !ch.IsValid() {
  2345  				break
  2346  			}
  2347  			ch.mustBe(Chan)
  2348  			ch.mustBeExported()
  2349  			tt := (*chanType)(unsafe.Pointer(ch.typ))
  2350  			if ChanDir(tt.dir)&SendDir == 0 {
  2351  				panic("reflect.Select: SendDir case using recv-only channel")
  2352  			}
  2353  			rc.ch = ch.pointer()
  2354  			rc.typ = &tt.rtype
  2355  			v := c.Send
  2356  			if !v.IsValid() {
  2357  				panic("reflect.Select: SendDir case missing Send value")
  2358  			}
  2359  			v.mustBeExported()
  2360  			v = v.assignTo("reflect.Select", tt.elem, nil)
  2361  			if v.flag&flagIndir != 0 {
  2362  				rc.val = v.ptr
  2363  			} else {
  2364  				rc.val = unsafe.Pointer(&v.ptr)
  2365  			}
  2366  
  2367  		case SelectRecv:
  2368  			if c.Send.IsValid() {
  2369  				panic("reflect.Select: RecvDir case has Send value")
  2370  			}
  2371  			ch := c.Chan
  2372  			if !ch.IsValid() {
  2373  				break
  2374  			}
  2375  			ch.mustBe(Chan)
  2376  			ch.mustBeExported()
  2377  			tt := (*chanType)(unsafe.Pointer(ch.typ))
  2378  			if ChanDir(tt.dir)&RecvDir == 0 {
  2379  				panic("reflect.Select: RecvDir case using send-only channel")
  2380  			}
  2381  			rc.ch = ch.pointer()
  2382  			rc.typ = &tt.rtype
  2383  			rc.val = unsafe_New(tt.elem)
  2384  		}
  2385  	}
  2386  
  2387  	chosen, recvOK = rselect(runcases)
  2388  	if runcases[chosen].dir == SelectRecv {
  2389  		tt := (*chanType)(unsafe.Pointer(runcases[chosen].typ))
  2390  		t := tt.elem
  2391  		p := runcases[chosen].val
  2392  		fl := flag(t.Kind())
  2393  		if ifaceIndir(t) {
  2394  			recv = Value{t, p, fl | flagIndir}
  2395  		} else {
  2396  			recv = Value{t, *(*unsafe.Pointer)(p), fl}
  2397  		}
  2398  	}
  2399  	return chosen, recv, recvOK
  2400  }
  2401  
  2402  /*
  2403   * constructors
  2404   */
  2405  
  2406  // implemented in package runtime
  2407  func unsafe_New(*rtype) unsafe.Pointer
  2408  func unsafe_NewArray(*rtype, int) unsafe.Pointer
  2409  
  2410  // MakeSlice creates a new zero-initialized slice value
  2411  // for the specified slice type, length, and capacity.
  2412  func MakeSlice(typ Type, len, cap int) Value {
  2413  	if typ.Kind() != Slice {
  2414  		panic("reflect.MakeSlice of non-slice type")
  2415  	}
  2416  	if len < 0 {
  2417  		panic("reflect.MakeSlice: negative len")
  2418  	}
  2419  	if cap < 0 {
  2420  		panic("reflect.MakeSlice: negative cap")
  2421  	}
  2422  	if len > cap {
  2423  		panic("reflect.MakeSlice: len > cap")
  2424  	}
  2425  
  2426  	s := unsafeheader.Slice{Data: unsafe_NewArray(typ.Elem().(*rtype), cap), Len: len, Cap: cap}
  2427  	return Value{typ.(*rtype), unsafe.Pointer(&s), flagIndir | flag(Slice)}
  2428  }
  2429  
  2430  // MakeChan creates a new channel with the specified type and buffer size.
  2431  func MakeChan(typ Type, buffer int) Value {
  2432  	if typ.Kind() != Chan {
  2433  		panic("reflect.MakeChan of non-chan type")
  2434  	}
  2435  	if buffer < 0 {
  2436  		panic("reflect.MakeChan: negative buffer size")
  2437  	}
  2438  	if typ.ChanDir() != BothDir {
  2439  		panic("reflect.MakeChan: unidirectional channel type")
  2440  	}
  2441  	t := typ.(*rtype)
  2442  	ch := makechan(t, buffer)
  2443  	return Value{t, ch, flag(Chan)}
  2444  }
  2445  
  2446  // MakeMap creates a new map with the specified type.
  2447  func MakeMap(typ Type) Value {
  2448  	return MakeMapWithSize(typ, 0)
  2449  }
  2450  
  2451  // MakeMapWithSize creates a new map with the specified type
  2452  // and initial space for approximately n elements.
  2453  func MakeMapWithSize(typ Type, n int) Value {
  2454  	if typ.Kind() != Map {
  2455  		panic("reflect.MakeMapWithSize of non-map type")
  2456  	}
  2457  	t := typ.(*rtype)
  2458  	m := makemap(t, n)
  2459  	return Value{t, m, flag(Map)}
  2460  }
  2461  
  2462  // Indirect returns the value that v points to.
  2463  // If v is a nil pointer, Indirect returns a zero Value.
  2464  // If v is not a pointer, Indirect returns v.
  2465  func Indirect(v Value) Value {
  2466  	if v.Kind() != Ptr {
  2467  		return v
  2468  	}
  2469  	return v.Elem()
  2470  }
  2471  
  2472  // ValueOf returns a new Value initialized to the concrete value
  2473  // stored in the interface i. ValueOf(nil) returns the zero Value.
  2474  func ValueOf(i interface{}) Value {
  2475  	if i == nil {
  2476  		return Value{}
  2477  	}
  2478  
  2479  	// TODO: Maybe allow contents of a Value to live on the stack.
  2480  	// For now we make the contents always escape to the heap. It
  2481  	// makes life easier in a few places (see chanrecv/mapassign
  2482  	// comment below).
  2483  	escapes(i)
  2484  
  2485  	return unpackEface(i)
  2486  }
  2487  
  2488  // Zero returns a Value representing the zero value for the specified type.
  2489  // The result is different from the zero value of the Value struct,
  2490  // which represents no value at all.
  2491  // For example, Zero(TypeOf(42)) returns a Value with Kind Int and value 0.
  2492  // The returned value is neither addressable nor settable.
  2493  func Zero(typ Type) Value {
  2494  	if typ == nil {
  2495  		panic("reflect: Zero(nil)")
  2496  	}
  2497  	t := typ.(*rtype)
  2498  	fl := flag(t.Kind())
  2499  	if ifaceIndir(t) {
  2500  		var p unsafe.Pointer
  2501  		if t.size <= maxZero {
  2502  			p = unsafe.Pointer(&zeroVal[0])
  2503  		} else {
  2504  			p = unsafe_New(t)
  2505  		}
  2506  		return Value{t, p, fl | flagIndir}
  2507  	}
  2508  	return Value{t, nil, fl}
  2509  }
  2510  
  2511  // must match declarations in runtime/map.go.
  2512  const maxZero = 1024
  2513  
  2514  //go:linkname zeroVal runtime.zeroVal
  2515  var zeroVal [maxZero]byte
  2516  
  2517  // New returns a Value representing a pointer to a new zero value
  2518  // for the specified type. That is, the returned Value's Type is PtrTo(typ).
  2519  func New(typ Type) Value {
  2520  	if typ == nil {
  2521  		panic("reflect: New(nil)")
  2522  	}
  2523  	t := typ.(*rtype)
  2524  	ptr := unsafe_New(t)
  2525  	fl := flag(Ptr)
  2526  	return Value{t.ptrTo(), ptr, fl}
  2527  }
  2528  
  2529  // NewAt returns a Value representing a pointer to a value of the
  2530  // specified type, using p as that pointer.
  2531  func NewAt(typ Type, p unsafe.Pointer) Value {
  2532  	fl := flag(Ptr)
  2533  	t := typ.(*rtype)
  2534  	return Value{t.ptrTo(), p, fl}
  2535  }
  2536  
  2537  // assignTo returns a value v that can be assigned directly to typ.
  2538  // It panics if v is not assignable to typ.
  2539  // For a conversion to an interface type, target is a suggested scratch space to use.
  2540  // target must be initialized memory (or nil).
  2541  func (v Value) assignTo(context string, dst *rtype, target unsafe.Pointer) Value {
  2542  	if v.flag&flagMethod != 0 {
  2543  		v = makeMethodValue(context, v)
  2544  	}
  2545  
  2546  	switch {
  2547  	case directlyAssignable(dst, v.typ):
  2548  		// Overwrite type so that they match.
  2549  		// Same memory layout, so no harm done.
  2550  		fl := v.flag&(flagAddr|flagIndir) | v.flag.ro()
  2551  		fl |= flag(dst.Kind())
  2552  		return Value{dst, v.ptr, fl}
  2553  
  2554  	case implements(dst, v.typ):
  2555  		if target == nil {
  2556  			target = unsafe_New(dst)
  2557  		}
  2558  		if v.Kind() == Interface && v.IsNil() {
  2559  			// A nil ReadWriter passed to nil Reader is OK,
  2560  			// but using ifaceE2I below will panic.
  2561  			// Avoid the panic by returning a nil dst (e.g., Reader) explicitly.
  2562  			return Value{dst, nil, flag(Interface)}
  2563  		}
  2564  		x := valueInterface(v, false)
  2565  		if dst.NumMethod() == 0 {
  2566  			*(*interface{})(target) = x
  2567  		} else {
  2568  			ifaceE2I(dst, x, target)
  2569  		}
  2570  		return Value{dst, target, flagIndir | flag(Interface)}
  2571  	}
  2572  
  2573  	// Failed.
  2574  	panic(context + ": value of type " + v.typ.String() + " is not assignable to type " + dst.String())
  2575  }
  2576  
  2577  // Convert returns the value v converted to type t.
  2578  // If the usual Go conversion rules do not allow conversion
  2579  // of the value v to type t, Convert panics.
  2580  func (v Value) Convert(t Type) Value {
  2581  	if v.flag&flagMethod != 0 {
  2582  		v = makeMethodValue("Convert", v)
  2583  	}
  2584  	op := convertOp(t.common(), v.typ)
  2585  	if op == nil {
  2586  		panic("reflect.Value.Convert: value of type " + v.typ.String() + " cannot be converted to type " + t.String())
  2587  	}
  2588  	return op(v, t)
  2589  }
  2590  
  2591  // convertOp returns the function to convert a value of type src
  2592  // to a value of type dst. If the conversion is illegal, convertOp returns nil.
  2593  func convertOp(dst, src *rtype) func(Value, Type) Value {
  2594  	switch src.Kind() {
  2595  	case Int, Int8, Int16, Int32, Int64:
  2596  		switch dst.Kind() {
  2597  		case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
  2598  			return cvtInt
  2599  		case Float32, Float64:
  2600  			return cvtIntFloat
  2601  		case String:
  2602  			return cvtIntString
  2603  		}
  2604  
  2605  	case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
  2606  		switch dst.Kind() {
  2607  		case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
  2608  			return cvtUint
  2609  		case Float32, Float64:
  2610  			return cvtUintFloat
  2611  		case String:
  2612  			return cvtUintString
  2613  		}
  2614  
  2615  	case Float32, Float64:
  2616  		switch dst.Kind() {
  2617  		case Int, Int8, Int16, Int32, Int64:
  2618  			return cvtFloatInt
  2619  		case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
  2620  			return cvtFloatUint
  2621  		case Float32, Float64:
  2622  			return cvtFloat
  2623  		}
  2624  
  2625  	case Complex64, Complex128:
  2626  		switch dst.Kind() {
  2627  		case Complex64, Complex128:
  2628  			return cvtComplex
  2629  		}
  2630  
  2631  	case String:
  2632  		if dst.Kind() == Slice && dst.Elem().PkgPath() == "" {
  2633  			switch dst.Elem().Kind() {
  2634  			case Uint8:
  2635  				return cvtStringBytes
  2636  			case Int32:
  2637  				return cvtStringRunes
  2638  			}
  2639  		}
  2640  
  2641  	case Slice:
  2642  		if dst.Kind() == String && src.Elem().PkgPath() == "" {
  2643  			switch src.Elem().Kind() {
  2644  			case Uint8:
  2645  				return cvtBytesString
  2646  			case Int32:
  2647  				return cvtRunesString
  2648  			}
  2649  		}
  2650  
  2651  	case Chan:
  2652  		if dst.Kind() == Chan && specialChannelAssignability(dst, src) {
  2653  			return cvtDirect
  2654  		}
  2655  	}
  2656  
  2657  	// dst and src have same underlying type.
  2658  	if haveIdenticalUnderlyingType(dst, src, false) {
  2659  		return cvtDirect
  2660  	}
  2661  
  2662  	// dst and src are non-defined pointer types with same underlying base type.
  2663  	if dst.Kind() == Ptr && dst.Name() == "" &&
  2664  		src.Kind() == Ptr && src.Name() == "" &&
  2665  		haveIdenticalUnderlyingType(dst.Elem().common(), src.Elem().common(), false) {
  2666  		return cvtDirect
  2667  	}
  2668  
  2669  	if implements(dst, src) {
  2670  		if src.Kind() == Interface {
  2671  			return cvtI2I
  2672  		}
  2673  		return cvtT2I
  2674  	}
  2675  
  2676  	return nil
  2677  }
  2678  
  2679  // makeInt returns a Value of type t equal to bits (possibly truncated),
  2680  // where t is a signed or unsigned int type.
  2681  func makeInt(f flag, bits uint64, t Type) Value {
  2682  	typ := t.common()
  2683  	ptr := unsafe_New(typ)
  2684  	switch typ.size {
  2685  	case 1:
  2686  		*(*uint8)(ptr) = uint8(bits)
  2687  	case 2:
  2688  		*(*uint16)(ptr) = uint16(bits)
  2689  	case 4:
  2690  		*(*uint32)(ptr) = uint32(bits)
  2691  	case 8:
  2692  		*(*uint64)(ptr) = bits
  2693  	}
  2694  	return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
  2695  }
  2696  
  2697  // makeFloat returns a Value of type t equal to v (possibly truncated to float32),
  2698  // where t is a float32 or float64 type.
  2699  func makeFloat(f flag, v float64, t Type) Value {
  2700  	typ := t.common()
  2701  	ptr := unsafe_New(typ)
  2702  	switch typ.size {
  2703  	case 4:
  2704  		*(*float32)(ptr) = float32(v)
  2705  	case 8:
  2706  		*(*float64)(ptr) = v
  2707  	}
  2708  	return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
  2709  }
  2710  
  2711  // makeFloat returns a Value of type t equal to v, where t is a float32 type.
  2712  func makeFloat32(f flag, v float32, t Type) Value {
  2713  	typ := t.common()
  2714  	ptr := unsafe_New(typ)
  2715  	*(*float32)(ptr) = v
  2716  	return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
  2717  }
  2718  
  2719  // makeComplex returns a Value of type t equal to v (possibly truncated to complex64),
  2720  // where t is a complex64 or complex128 type.
  2721  func makeComplex(f flag, v complex128, t Type) Value {
  2722  	typ := t.common()
  2723  	ptr := unsafe_New(typ)
  2724  	switch typ.size {
  2725  	case 8:
  2726  		*(*complex64)(ptr) = complex64(v)
  2727  	case 16:
  2728  		*(*complex128)(ptr) = v
  2729  	}
  2730  	return Value{typ, ptr, f | flagIndir | flag(typ.Kind())}
  2731  }
  2732  
  2733  func makeString(f flag, v string, t Type) Value {
  2734  	ret := New(t).Elem()
  2735  	ret.SetString(v)
  2736  	ret.flag = ret.flag&^flagAddr | f
  2737  	return ret
  2738  }
  2739  
  2740  func makeBytes(f flag, v []byte, t Type) Value {
  2741  	ret := New(t).Elem()
  2742  	ret.SetBytes(v)
  2743  	ret.flag = ret.flag&^flagAddr | f
  2744  	return ret
  2745  }
  2746  
  2747  func makeRunes(f flag, v []rune, t Type) Value {
  2748  	ret := New(t).Elem()
  2749  	ret.setRunes(v)
  2750  	ret.flag = ret.flag&^flagAddr | f
  2751  	return ret
  2752  }
  2753  
  2754  // These conversion functions are returned by convertOp
  2755  // for classes of conversions. For example, the first function, cvtInt,
  2756  // takes any value v of signed int type and returns the value converted
  2757  // to type t, where t is any signed or unsigned int type.
  2758  
  2759  // convertOp: intXX -> [u]intXX
  2760  func cvtInt(v Value, t Type) Value {
  2761  	return makeInt(v.flag.ro(), uint64(v.Int()), t)
  2762  }
  2763  
  2764  // convertOp: uintXX -> [u]intXX
  2765  func cvtUint(v Value, t Type) Value {
  2766  	return makeInt(v.flag.ro(), v.Uint(), t)
  2767  }
  2768  
  2769  // convertOp: floatXX -> intXX
  2770  func cvtFloatInt(v Value, t Type) Value {
  2771  	return makeInt(v.flag.ro(), uint64(int64(v.Float())), t)
  2772  }
  2773  
  2774  // convertOp: floatXX -> uintXX
  2775  func cvtFloatUint(v Value, t Type) Value {
  2776  	return makeInt(v.flag.ro(), uint64(v.Float()), t)
  2777  }
  2778  
  2779  // convertOp: intXX -> floatXX
  2780  func cvtIntFloat(v Value, t Type) Value {
  2781  	return makeFloat(v.flag.ro(), float64(v.Int()), t)
  2782  }
  2783  
  2784  // convertOp: uintXX -> floatXX
  2785  func cvtUintFloat(v Value, t Type) Value {
  2786  	return makeFloat(v.flag.ro(), float64(v.Uint()), t)
  2787  }
  2788  
  2789  // convertOp: floatXX -> floatXX
  2790  func cvtFloat(v Value, t Type) Value {
  2791  	if v.Type().Kind() == Float32 && t.Kind() == Float32 {
  2792  		// Don't do any conversion if both types have underlying type float32.
  2793  		// This avoids converting to float64 and back, which will
  2794  		// convert a signaling NaN to a quiet NaN. See issue 36400.
  2795  		return makeFloat32(v.flag.ro(), *(*float32)(v.ptr), t)
  2796  	}
  2797  	return makeFloat(v.flag.ro(), v.Float(), t)
  2798  }
  2799  
  2800  // convertOp: complexXX -> complexXX
  2801  func cvtComplex(v Value, t Type) Value {
  2802  	return makeComplex(v.flag.ro(), v.Complex(), t)
  2803  }
  2804  
  2805  // convertOp: intXX -> string
  2806  func cvtIntString(v Value, t Type) Value {
  2807  	s := "\uFFFD"
  2808  	if x := v.Int(); int64(rune(x)) == x {
  2809  		s = string(rune(x))
  2810  	}
  2811  	return makeString(v.flag.ro(), s, t)
  2812  }
  2813  
  2814  // convertOp: uintXX -> string
  2815  func cvtUintString(v Value, t Type) Value {
  2816  	s := "\uFFFD"
  2817  	if x := v.Uint(); uint64(rune(x)) == x {
  2818  		s = string(rune(x))
  2819  	}
  2820  	return makeString(v.flag.ro(), s, t)
  2821  }
  2822  
  2823  // convertOp: []byte -> string
  2824  func cvtBytesString(v Value, t Type) Value {
  2825  	return makeString(v.flag.ro(), string(v.Bytes()), t)
  2826  }
  2827  
  2828  // convertOp: string -> []byte
  2829  func cvtStringBytes(v Value, t Type) Value {
  2830  	return makeBytes(v.flag.ro(), []byte(v.String()), t)
  2831  }
  2832  
  2833  // convertOp: []rune -> string
  2834  func cvtRunesString(v Value, t Type) Value {
  2835  	return makeString(v.flag.ro(), string(v.runes()), t)
  2836  }
  2837  
  2838  // convertOp: string -> []rune
  2839  func cvtStringRunes(v Value, t Type) Value {
  2840  	return makeRunes(v.flag.ro(), []rune(v.String()), t)
  2841  }
  2842  
  2843  // convertOp: direct copy
  2844  func cvtDirect(v Value, typ Type) Value {
  2845  	f := v.flag
  2846  	t := typ.common()
  2847  	ptr := v.ptr
  2848  	if f&flagAddr != 0 {
  2849  		// indirect, mutable word - make a copy
  2850  		c := unsafe_New(t)
  2851  		typedmemmove(t, c, ptr)
  2852  		ptr = c
  2853  		f &^= flagAddr
  2854  	}
  2855  	return Value{t, ptr, v.flag.ro() | f} // v.flag.ro()|f == f?
  2856  }
  2857  
  2858  // convertOp: concrete -> interface
  2859  func cvtT2I(v Value, typ Type) Value {
  2860  	target := unsafe_New(typ.common())
  2861  	x := valueInterface(v, false)
  2862  	if typ.NumMethod() == 0 {
  2863  		*(*interface{})(target) = x
  2864  	} else {
  2865  		ifaceE2I(typ.(*rtype), x, target)
  2866  	}
  2867  	return Value{typ.common(), target, v.flag.ro() | flagIndir | flag(Interface)}
  2868  }
  2869  
  2870  // convertOp: interface -> interface
  2871  func cvtI2I(v Value, typ Type) Value {
  2872  	if v.IsNil() {
  2873  		ret := Zero(typ)
  2874  		ret.flag |= v.flag.ro()
  2875  		return ret
  2876  	}
  2877  	return cvtT2I(v.Elem(), typ)
  2878  }
  2879  
  2880  // implemented in ../runtime
  2881  func chancap(ch unsafe.Pointer) int
  2882  func chanclose(ch unsafe.Pointer)
  2883  func chanlen(ch unsafe.Pointer) int
  2884  
  2885  // Note: some of the noescape annotations below are technically a lie,
  2886  // but safe in the context of this package. Functions like chansend
  2887  // and mapassign don't escape the referent, but may escape anything
  2888  // the referent points to (they do shallow copies of the referent).
  2889  // It is safe in this package because the referent may only point
  2890  // to something a Value may point to, and that is always in the heap
  2891  // (due to the escapes() call in ValueOf).
  2892  
  2893  //go:noescape
  2894  func chanrecv(ch unsafe.Pointer, nb bool, val unsafe.Pointer) (selected, received bool)
  2895  
  2896  //go:noescape
  2897  func chansend(ch unsafe.Pointer, val unsafe.Pointer, nb bool) bool
  2898  
  2899  func makechan(typ *rtype, size int) (ch unsafe.Pointer)
  2900  func makemap(t *rtype, cap int) (m unsafe.Pointer)
  2901  
  2902  //go:noescape
  2903  func mapaccess(t *rtype, m unsafe.Pointer, key unsafe.Pointer) (val unsafe.Pointer)
  2904  
  2905  //go:noescape
  2906  func mapassign(t *rtype, m unsafe.Pointer, key, val unsafe.Pointer)
  2907  
  2908  //go:noescape
  2909  func mapdelete(t *rtype, m unsafe.Pointer, key unsafe.Pointer)
  2910  
  2911  // m escapes into the return value, but the caller of mapiterinit
  2912  // doesn't let the return value escape.
  2913  //go:noescape
  2914  func mapiterinit(t *rtype, m unsafe.Pointer) unsafe.Pointer
  2915  
  2916  //go:noescape
  2917  func mapiterkey(it unsafe.Pointer) (key unsafe.Pointer)
  2918  
  2919  //go:noescape
  2920  func mapiterelem(it unsafe.Pointer) (elem unsafe.Pointer)
  2921  
  2922  //go:noescape
  2923  func mapiternext(it unsafe.Pointer)
  2924  
  2925  //go:noescape
  2926  func maplen(m unsafe.Pointer) int
  2927  
  2928  // call calls fn with "stackArgsSize" bytes of stack arguments laid out
  2929  // at stackArgs and register arguments laid out in regArgs. frameSize is
  2930  // the total amount of stack space that will be reserved by call, so this
  2931  // should include enough space to spill register arguments to the stack in
  2932  // case of preemption.
  2933  //
  2934  // After fn returns, call copies stackArgsSize-stackRetOffset result bytes
  2935  // back into stackArgs+stackRetOffset before returning, for any return
  2936  // values passed on the stack. Register-based return values will be found
  2937  // in the same regArgs structure.
  2938  //
  2939  // regArgs must also be prepared with an appropriate ReturnIsPtr bitmap
  2940  // indicating which registers will contain pointer-valued return values. The
  2941  // purpose of this bitmap is to keep pointers visible to the GC between
  2942  // returning from reflectcall and actually using them.
  2943  //
  2944  // If copying result bytes back from the stack, the caller must pass the
  2945  // argument frame type as stackArgsType, so that call can execute appropriate
  2946  // write barriers during the copy.
  2947  //
  2948  // Arguments passed through to call do not escape. The type is used only in a
  2949  // very limited callee of call, the stackArgs are copied, and regArgs is only
  2950  // used in the call frame.
  2951  //go:noescape
  2952  //go:linkname call runtime.reflectcall
  2953  func call(stackArgsType *rtype, f, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs)
  2954  
  2955  func ifaceE2I(t *rtype, src interface{}, dst unsafe.Pointer)
  2956  
  2957  // memmove copies size bytes to dst from src. No write barriers are used.
  2958  //go:noescape
  2959  func memmove(dst, src unsafe.Pointer, size uintptr)
  2960  
  2961  // typedmemmove copies a value of type t to dst from src.
  2962  //go:noescape
  2963  func typedmemmove(t *rtype, dst, src unsafe.Pointer)
  2964  
  2965  // typedmemmovepartial is like typedmemmove but assumes that
  2966  // dst and src point off bytes into the value and only copies size bytes.
  2967  //go:noescape
  2968  func typedmemmovepartial(t *rtype, dst, src unsafe.Pointer, off, size uintptr)
  2969  
  2970  // typedmemclr zeros the value at ptr of type t.
  2971  //go:noescape
  2972  func typedmemclr(t *rtype, ptr unsafe.Pointer)
  2973  
  2974  // typedmemclrpartial is like typedmemclr but assumes that
  2975  // dst points off bytes into the value and only clears size bytes.
  2976  //go:noescape
  2977  func typedmemclrpartial(t *rtype, ptr unsafe.Pointer, off, size uintptr)
  2978  
  2979  // typedslicecopy copies a slice of elemType values from src to dst,
  2980  // returning the number of elements copied.
  2981  //go:noescape
  2982  func typedslicecopy(elemType *rtype, dst, src unsafeheader.Slice) int
  2983  
  2984  //go:noescape
  2985  func typehash(t *rtype, p unsafe.Pointer, h uintptr) uintptr
  2986  
  2987  // Dummy annotation marking that the value x escapes,
  2988  // for use in cases where the reflect code is so clever that
  2989  // the compiler cannot follow.
  2990  func escapes(x interface{}) {
  2991  	if dummy.b {
  2992  		dummy.x = x
  2993  	}
  2994  }
  2995  
  2996  var dummy struct {
  2997  	b bool
  2998  	x interface{}
  2999  }