github.com/gnolang/gno@v0.0.0-20240520182011-228e9d0192ce/gnovm/stdlibs/math/bits/bits.gno (about)

     1  // Copyright 2017 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  //go:generate go run make_tables.go
     6  
     7  // Package bits implements bit counting and manipulation
     8  // functions for the predeclared unsigned integer types.
     9  //
    10  // Functions in this package may be implemented directly by
    11  // the compiler, for better performance. For those functions
    12  // the code in this package will not be used. Which
    13  // functions are implemented by the compiler depends on the
    14  // architecture and the Go release.
    15  package bits
    16  
    17  const uintSize = 32 << (^uint(0) >> 63) // 32 or 64
    18  
    19  // UintSize is the size of a uint in bits.
    20  const UintSize = uintSize
    21  
    22  // --- LeadingZeros ---
    23  
    24  // LeadingZeros returns the number of leading zero bits in x; the result is UintSize for x == 0.
    25  func LeadingZeros(x uint) int { return UintSize - Len(x) }
    26  
    27  // LeadingZeros8 returns the number of leading zero bits in x; the result is 8 for x == 0.
    28  func LeadingZeros8(x uint8) int { return 8 - Len8(x) }
    29  
    30  // LeadingZeros16 returns the number of leading zero bits in x; the result is 16 for x == 0.
    31  func LeadingZeros16(x uint16) int { return 16 - Len16(x) }
    32  
    33  // LeadingZeros32 returns the number of leading zero bits in x; the result is 32 for x == 0.
    34  func LeadingZeros32(x uint32) int { return 32 - Len32(x) }
    35  
    36  // LeadingZeros64 returns the number of leading zero bits in x; the result is 64 for x == 0.
    37  func LeadingZeros64(x uint64) int { return 64 - Len64(x) }
    38  
    39  // --- TrailingZeros ---
    40  
    41  // See http://supertech.csail.mit.edu/papers/debruijn.pdf
    42  const deBruijn32 = 0x077CB531
    43  
    44  var deBruijn32tab = [32]byte{
    45  	0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
    46  	31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9,
    47  }
    48  
    49  const deBruijn64 = 0x03f79d71b4ca8b09
    50  
    51  var deBruijn64tab = [64]byte{
    52  	0, 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4,
    53  	62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5,
    54  	63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11,
    55  	54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6,
    56  }
    57  
    58  // TrailingZeros returns the number of trailing zero bits in x; the result is UintSize for x == 0.
    59  func TrailingZeros(x uint) int {
    60  	if UintSize == 32 {
    61  		return TrailingZeros32(uint32(x))
    62  	}
    63  	return TrailingZeros64(uint64(x))
    64  }
    65  
    66  // TrailingZeros8 returns the number of trailing zero bits in x; the result is 8 for x == 0.
    67  func TrailingZeros8(x uint8) int {
    68  	return int(ntz8tab[x])
    69  }
    70  
    71  // TrailingZeros16 returns the number of trailing zero bits in x; the result is 16 for x == 0.
    72  func TrailingZeros16(x uint16) int {
    73  	if x == 0 {
    74  		return 16
    75  	}
    76  	// see comment in TrailingZeros64
    77  	return int(deBruijn32tab[uint32(x&-x)*deBruijn32>>(32-5)])
    78  }
    79  
    80  // TrailingZeros32 returns the number of trailing zero bits in x; the result is 32 for x == 0.
    81  func TrailingZeros32(x uint32) int {
    82  	if x == 0 {
    83  		return 32
    84  	}
    85  	// see comment in TrailingZeros64
    86  	return int(deBruijn32tab[(x&-x)*deBruijn32>>(32-5)])
    87  }
    88  
    89  // TrailingZeros64 returns the number of trailing zero bits in x; the result is 64 for x == 0.
    90  func TrailingZeros64(x uint64) int {
    91  	if x == 0 {
    92  		return 64
    93  	}
    94  	// If popcount is fast, replace code below with return popcount(^x & (x - 1)).
    95  	//
    96  	// x & -x leaves only the right-most bit set in the word. Let k be the
    97  	// index of that bit. Since only a single bit is set, the value is two
    98  	// to the power of k. Multiplying by a power of two is equivalent to
    99  	// left shifting, in this case by k bits. The de Bruijn (64 bit) constant
   100  	// is such that all six bit, consecutive substrings are distinct.
   101  	// Therefore, if we have a left shifted version of this constant we can
   102  	// find by how many bits it was shifted by looking at which six bit
   103  	// substring ended up at the top of the word.
   104  	// (Knuth, volume 4, section 7.3.1)
   105  	return int(deBruijn64tab[(x&-x)*deBruijn64>>(64-6)])
   106  }
   107  
   108  // --- OnesCount ---
   109  
   110  const (
   111  	m0 = 0x5555555555555555 // 01010101 ...
   112  	m1 = 0x3333333333333333 // 00110011 ...
   113  	m2 = 0x0f0f0f0f0f0f0f0f // 00001111 ...
   114  	m3 = 0x00ff00ff00ff00ff // etc.
   115  	m4 = 0x0000ffff0000ffff
   116  )
   117  
   118  // OnesCount returns the number of one bits ("population count") in x.
   119  func OnesCount(x uint) int {
   120  	if UintSize == 32 {
   121  		return OnesCount32(uint32(x))
   122  	}
   123  	return OnesCount64(uint64(x))
   124  }
   125  
   126  // OnesCount8 returns the number of one bits ("population count") in x.
   127  func OnesCount8(x uint8) int {
   128  	return int(pop8tab[x])
   129  }
   130  
   131  // OnesCount16 returns the number of one bits ("population count") in x.
   132  func OnesCount16(x uint16) int {
   133  	return int(pop8tab[x>>8] + pop8tab[x&0xff])
   134  }
   135  
   136  // OnesCount32 returns the number of one bits ("population count") in x.
   137  func OnesCount32(x uint32) int {
   138  	return int(pop8tab[x>>24] + pop8tab[x>>16&0xff] + pop8tab[x>>8&0xff] + pop8tab[x&0xff])
   139  }
   140  
   141  // OnesCount64 returns the number of one bits ("population count") in x.
   142  func OnesCount64(x uint64) int {
   143  	// Implementation: Parallel summing of adjacent bits.
   144  	// See "Hacker's Delight", Chap. 5: Counting Bits.
   145  	// The following pattern shows the general approach:
   146  	//
   147  	//   x = x>>1&(m0&m) + x&(m0&m)
   148  	//   x = x>>2&(m1&m) + x&(m1&m)
   149  	//   x = x>>4&(m2&m) + x&(m2&m)
   150  	//   x = x>>8&(m3&m) + x&(m3&m)
   151  	//   x = x>>16&(m4&m) + x&(m4&m)
   152  	//   x = x>>32&(m5&m) + x&(m5&m)
   153  	//   return int(x)
   154  	//
   155  	// Masking (& operations) can be left away when there's no
   156  	// danger that a field's sum will carry over into the next
   157  	// field: Since the result cannot be > 64, 8 bits is enough
   158  	// and we can ignore the masks for the shifts by 8 and up.
   159  	// Per "Hacker's Delight", the first line can be simplified
   160  	// more, but it saves at best one instruction, so we leave
   161  	// it alone for clarity.
   162  	const m = 1<<64 - 1
   163  	x = x>>1&(m0&m) + x&(m0&m)
   164  	x = x>>2&(m1&m) + x&(m1&m)
   165  	x = (x>>4 + x) & (m2 & m)
   166  	x += x >> 8
   167  	x += x >> 16
   168  	x += x >> 32
   169  	return int(x) & (1<<7 - 1)
   170  }
   171  
   172  // --- RotateLeft ---
   173  
   174  // RotateLeft returns the value of x rotated left by (k mod UintSize) bits.
   175  // To rotate x right by k bits, call RotateLeft(x, -k).
   176  //
   177  // This function's execution time does not depend on the inputs.
   178  func RotateLeft(x uint, k int) uint {
   179  	if UintSize == 32 {
   180  		return uint(RotateLeft32(uint32(x), k))
   181  	}
   182  	return uint(RotateLeft64(uint64(x), k))
   183  }
   184  
   185  // RotateLeft8 returns the value of x rotated left by (k mod 8) bits.
   186  // To rotate x right by k bits, call RotateLeft8(x, -k).
   187  //
   188  // This function's execution time does not depend on the inputs.
   189  func RotateLeft8(x uint8, k int) uint8 {
   190  	const n = 8
   191  	s := uint(k) & (n - 1)
   192  	return x<<s | x>>(n-s)
   193  }
   194  
   195  // RotateLeft16 returns the value of x rotated left by (k mod 16) bits.
   196  // To rotate x right by k bits, call RotateLeft16(x, -k).
   197  //
   198  // This function's execution time does not depend on the inputs.
   199  func RotateLeft16(x uint16, k int) uint16 {
   200  	const n = 16
   201  	s := uint(k) & (n - 1)
   202  	return x<<s | x>>(n-s)
   203  }
   204  
   205  // RotateLeft32 returns the value of x rotated left by (k mod 32) bits.
   206  // To rotate x right by k bits, call RotateLeft32(x, -k).
   207  //
   208  // This function's execution time does not depend on the inputs.
   209  func RotateLeft32(x uint32, k int) uint32 {
   210  	const n = 32
   211  	s := uint(k) & (n - 1)
   212  	return x<<s | x>>(n-s)
   213  }
   214  
   215  // RotateLeft64 returns the value of x rotated left by (k mod 64) bits.
   216  // To rotate x right by k bits, call RotateLeft64(x, -k).
   217  //
   218  // This function's execution time does not depend on the inputs.
   219  func RotateLeft64(x uint64, k int) uint64 {
   220  	const n = 64
   221  	s := uint(k) & (n - 1)
   222  	return x<<s | x>>(n-s)
   223  }
   224  
   225  // --- Reverse ---
   226  
   227  // Reverse returns the value of x with its bits in reversed order.
   228  func Reverse(x uint) uint {
   229  	if UintSize == 32 {
   230  		return uint(Reverse32(uint32(x)))
   231  	}
   232  	return uint(Reverse64(uint64(x)))
   233  }
   234  
   235  // Reverse8 returns the value of x with its bits in reversed order.
   236  func Reverse8(x uint8) uint8 {
   237  	return rev8tab[x]
   238  }
   239  
   240  // Reverse16 returns the value of x with its bits in reversed order.
   241  func Reverse16(x uint16) uint16 {
   242  	return uint16(rev8tab[x>>8]) | uint16(rev8tab[x&0xff])<<8
   243  }
   244  
   245  // Reverse32 returns the value of x with its bits in reversed order.
   246  func Reverse32(x uint32) uint32 {
   247  	const m = 1<<32 - 1
   248  	x = x>>1&(m0&m) | x&(m0&m)<<1
   249  	x = x>>2&(m1&m) | x&(m1&m)<<2
   250  	x = x>>4&(m2&m) | x&(m2&m)<<4
   251  	return ReverseBytes32(x)
   252  }
   253  
   254  // Reverse64 returns the value of x with its bits in reversed order.
   255  func Reverse64(x uint64) uint64 {
   256  	const m = 1<<64 - 1
   257  	x = x>>1&(m0&m) | x&(m0&m)<<1
   258  	x = x>>2&(m1&m) | x&(m1&m)<<2
   259  	x = x>>4&(m2&m) | x&(m2&m)<<4
   260  	return ReverseBytes64(x)
   261  }
   262  
   263  // --- ReverseBytes ---
   264  
   265  // ReverseBytes returns the value of x with its bytes in reversed order.
   266  //
   267  // This function's execution time does not depend on the inputs.
   268  func ReverseBytes(x uint) uint {
   269  	if UintSize == 32 {
   270  		return uint(ReverseBytes32(uint32(x)))
   271  	}
   272  	return uint(ReverseBytes64(uint64(x)))
   273  }
   274  
   275  // ReverseBytes16 returns the value of x with its bytes in reversed order.
   276  //
   277  // This function's execution time does not depend on the inputs.
   278  func ReverseBytes16(x uint16) uint16 {
   279  	return x>>8 | x<<8
   280  }
   281  
   282  // ReverseBytes32 returns the value of x with its bytes in reversed order.
   283  //
   284  // This function's execution time does not depend on the inputs.
   285  func ReverseBytes32(x uint32) uint32 {
   286  	const m = 1<<32 - 1
   287  	x = x>>8&(m3&m) | x&(m3&m)<<8
   288  	return x>>16 | x<<16
   289  }
   290  
   291  // ReverseBytes64 returns the value of x with its bytes in reversed order.
   292  //
   293  // This function's execution time does not depend on the inputs.
   294  func ReverseBytes64(x uint64) uint64 {
   295  	const m = 1<<64 - 1
   296  	x = x>>8&(m3&m) | x&(m3&m)<<8
   297  	x = x>>16&(m4&m) | x&(m4&m)<<16
   298  	return x>>32 | x<<32
   299  }
   300  
   301  // --- Len ---
   302  
   303  // Len returns the minimum number of bits required to represent x; the result is 0 for x == 0.
   304  func Len(x uint) int {
   305  	if UintSize == 32 {
   306  		return Len32(uint32(x))
   307  	}
   308  	return Len64(uint64(x))
   309  }
   310  
   311  // Len8 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
   312  func Len8(x uint8) int {
   313  	return int(len8tab[x])
   314  }
   315  
   316  // Len16 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
   317  func Len16(x uint16) (n int) {
   318  	if x >= 1<<8 {
   319  		x >>= 8
   320  		n = 8
   321  	}
   322  	return n + int(len8tab[x])
   323  }
   324  
   325  // Len32 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
   326  func Len32(x uint32) (n int) {
   327  	if x >= 1<<16 {
   328  		x >>= 16
   329  		n = 16
   330  	}
   331  	if x >= 1<<8 {
   332  		x >>= 8
   333  		n += 8
   334  	}
   335  	return n + int(len8tab[x])
   336  }
   337  
   338  // Len64 returns the minimum number of bits required to represent x; the result is 0 for x == 0.
   339  func Len64(x uint64) (n int) {
   340  	if x >= 1<<32 {
   341  		x >>= 32
   342  		n = 32
   343  	}
   344  	if x >= 1<<16 {
   345  		x >>= 16
   346  		n += 16
   347  	}
   348  	if x >= 1<<8 {
   349  		x >>= 8
   350  		n += 8
   351  	}
   352  	return n + int(len8tab[x])
   353  }
   354  
   355  // --- Add with carry ---
   356  
   357  // Add returns the sum with carry of x, y and carry: sum = x + y + carry.
   358  // The carry input must be 0 or 1; otherwise the behavior is undefined.
   359  // The carryOut output is guaranteed to be 0 or 1.
   360  //
   361  // This function's execution time does not depend on the inputs.
   362  func Add(x, y, carry uint) (sum, carryOut uint) {
   363  	if UintSize == 32 {
   364  		s32, c32 := Add32(uint32(x), uint32(y), uint32(carry))
   365  		return uint(s32), uint(c32)
   366  	}
   367  	s64, c64 := Add64(uint64(x), uint64(y), uint64(carry))
   368  	return uint(s64), uint(c64)
   369  }
   370  
   371  // Add32 returns the sum with carry of x, y and carry: sum = x + y + carry.
   372  // The carry input must be 0 or 1; otherwise the behavior is undefined.
   373  // The carryOut output is guaranteed to be 0 or 1.
   374  //
   375  // This function's execution time does not depend on the inputs.
   376  func Add32(x, y, carry uint32) (sum, carryOut uint32) {
   377  	sum64 := uint64(x) + uint64(y) + uint64(carry)
   378  	sum = uint32(sum64)
   379  	carryOut = uint32(sum64 >> 32)
   380  	return
   381  }
   382  
   383  // Add64 returns the sum with carry of x, y and carry: sum = x + y + carry.
   384  // The carry input must be 0 or 1; otherwise the behavior is undefined.
   385  // The carryOut output is guaranteed to be 0 or 1.
   386  //
   387  // This function's execution time does not depend on the inputs.
   388  func Add64(x, y, carry uint64) (sum, carryOut uint64) {
   389  	sum = x + y + carry
   390  	// The sum will overflow if both top bits are set (x & y) or if one of them
   391  	// is (x | y), and a carry from the lower place happened. If such a carry
   392  	// happens, the top bit will be 1 + 0 + 1 = 0 (&^ sum).
   393  	carryOut = ((x & y) | ((x | y) &^ sum)) >> 63
   394  	return
   395  }
   396  
   397  // --- Subtract with borrow ---
   398  
   399  // Sub returns the difference of x, y and borrow: diff = x - y - borrow.
   400  // The borrow input must be 0 or 1; otherwise the behavior is undefined.
   401  // The borrowOut output is guaranteed to be 0 or 1.
   402  //
   403  // This function's execution time does not depend on the inputs.
   404  func Sub(x, y, borrow uint) (diff, borrowOut uint) {
   405  	if UintSize == 32 {
   406  		d32, b32 := Sub32(uint32(x), uint32(y), uint32(borrow))
   407  		return uint(d32), uint(b32)
   408  	}
   409  	d64, b64 := Sub64(uint64(x), uint64(y), uint64(borrow))
   410  	return uint(d64), uint(b64)
   411  }
   412  
   413  // Sub32 returns the difference of x, y and borrow, diff = x - y - borrow.
   414  // The borrow input must be 0 or 1; otherwise the behavior is undefined.
   415  // The borrowOut output is guaranteed to be 0 or 1.
   416  //
   417  // This function's execution time does not depend on the inputs.
   418  func Sub32(x, y, borrow uint32) (diff, borrowOut uint32) {
   419  	diff = x - y - borrow
   420  	// The difference will underflow if the top bit of x is not set and the top
   421  	// bit of y is set (^x & y) or if they are the same (^(x ^ y)) and a borrow
   422  	// from the lower place happens. If that borrow happens, the result will be
   423  	// 1 - 1 - 1 = 0 - 0 - 1 = 1 (& diff).
   424  	borrowOut = ((^x & y) | (^(x ^ y) & diff)) >> 31
   425  	return
   426  }
   427  
   428  // Sub64 returns the difference of x, y and borrow: diff = x - y - borrow.
   429  // The borrow input must be 0 or 1; otherwise the behavior is undefined.
   430  // The borrowOut output is guaranteed to be 0 or 1.
   431  //
   432  // This function's execution time does not depend on the inputs.
   433  func Sub64(x, y, borrow uint64) (diff, borrowOut uint64) {
   434  	diff = x - y - borrow
   435  	// See Sub32 for the bit logic.
   436  	borrowOut = ((^x & y) | (^(x ^ y) & diff)) >> 63
   437  	return
   438  }
   439  
   440  // --- Full-width multiply ---
   441  
   442  // Mul returns the full-width product of x and y: (hi, lo) = x * y
   443  // with the product bits' upper half returned in hi and the lower
   444  // half returned in lo.
   445  //
   446  // This function's execution time does not depend on the inputs.
   447  func Mul(x, y uint) (hi, lo uint) {
   448  	if UintSize == 32 {
   449  		h, l := Mul32(uint32(x), uint32(y))
   450  		return uint(h), uint(l)
   451  	}
   452  	h, l := Mul64(uint64(x), uint64(y))
   453  	return uint(h), uint(l)
   454  }
   455  
   456  // Mul32 returns the 64-bit product of x and y: (hi, lo) = x * y
   457  // with the product bits' upper half returned in hi and the lower
   458  // half returned in lo.
   459  //
   460  // This function's execution time does not depend on the inputs.
   461  func Mul32(x, y uint32) (hi, lo uint32) {
   462  	tmp := uint64(x) * uint64(y)
   463  	hi, lo = uint32(tmp>>32), uint32(tmp)
   464  	return
   465  }
   466  
   467  // Mul64 returns the 128-bit product of x and y: (hi, lo) = x * y
   468  // with the product bits' upper half returned in hi and the lower
   469  // half returned in lo.
   470  //
   471  // This function's execution time does not depend on the inputs.
   472  func Mul64(x, y uint64) (hi, lo uint64) {
   473  	const mask32 = 1<<32 - 1
   474  	x0 := x & mask32
   475  	x1 := x >> 32
   476  	y0 := y & mask32
   477  	y1 := y >> 32
   478  	w0 := x0 * y0
   479  	t := x1*y0 + w0>>32
   480  	w1 := t & mask32
   481  	w2 := t >> 32
   482  	w1 += x0 * y1
   483  	hi = x1*y1 + w2 + w1>>32
   484  	lo = x * y
   485  	return
   486  }
   487  
   488  // --- Full-width divide ---
   489  
   490  // Div returns the quotient and remainder of (hi, lo) divided by y:
   491  // quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
   492  // half in parameter hi and the lower half in parameter lo.
   493  // Div panics for y == 0 (division by zero) or y <= hi (quotient overflow).
   494  func Div(hi, lo, y uint) (quo, rem uint) {
   495  	if UintSize == 32 {
   496  		q, r := Div32(uint32(hi), uint32(lo), uint32(y))
   497  		return uint(q), uint(r)
   498  	}
   499  	q, r := Div64(uint64(hi), uint64(lo), uint64(y))
   500  	return uint(q), uint(r)
   501  }
   502  
   503  // Div32 returns the quotient and remainder of (hi, lo) divided by y:
   504  // quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
   505  // half in parameter hi and the lower half in parameter lo.
   506  // Div32 panics for y == 0 (division by zero) or y <= hi (quotient overflow).
   507  func Div32(hi, lo, y uint32) (quo, rem uint32) {
   508  	if y != 0 && y <= hi {
   509  		panic(overflowError)
   510  	}
   511  	if y == 0 {
   512  		panic(divideError)
   513  	}
   514  	z := uint64(hi)<<32 | uint64(lo)
   515  	quo, rem = uint32(z/uint64(y)), uint32(z%uint64(y))
   516  	return
   517  }
   518  
   519  // Div64 returns the quotient and remainder of (hi, lo) divided by y:
   520  // quo = (hi, lo)/y, rem = (hi, lo)%y with the dividend bits' upper
   521  // half in parameter hi and the lower half in parameter lo.
   522  // Div64 panics for y == 0 (division by zero) or y <= hi (quotient overflow).
   523  func Div64(hi, lo, y uint64) (quo, rem uint64) {
   524  	if y == 0 {
   525  		panic(divideError)
   526  	}
   527  	if y <= hi {
   528  		panic(overflowError)
   529  	}
   530  
   531  	// If high part is zero, we can directly return the results.
   532  	if hi == 0 {
   533  		return lo / y, lo % y
   534  	}
   535  
   536  	s := uint(LeadingZeros64(y))
   537  	y <<= s
   538  
   539  	const (
   540  		two32  = 1 << 32
   541  		mask32 = two32 - 1
   542  	)
   543  	yn1 := y >> 32
   544  	yn0 := y & mask32
   545  	un32 := hi<<s | lo>>(64-s)
   546  	un10 := lo << s
   547  	un1 := un10 >> 32
   548  	un0 := un10 & mask32
   549  	q1 := un32 / yn1
   550  	rhat := un32 - q1*yn1
   551  
   552  	for q1 >= two32 || q1*yn0 > two32*rhat+un1 {
   553  		q1--
   554  		rhat += yn1
   555  		if rhat >= two32 {
   556  			break
   557  		}
   558  	}
   559  
   560  	un21 := un32*two32 + un1 - q1*y
   561  	q0 := un21 / yn1
   562  	rhat = un21 - q0*yn1
   563  
   564  	for q0 >= two32 || q0*yn0 > two32*rhat+un0 {
   565  		q0--
   566  		rhat += yn1
   567  		if rhat >= two32 {
   568  			break
   569  		}
   570  	}
   571  
   572  	return q1*two32 + q0, (un21*two32 + un0 - q0*y) >> s
   573  }
   574  
   575  // Rem returns the remainder of (hi, lo) divided by y. Rem panics for
   576  // y == 0 (division by zero) but, unlike Div, it doesn't panic on a
   577  // quotient overflow.
   578  func Rem(hi, lo, y uint) uint {
   579  	if UintSize == 32 {
   580  		return uint(Rem32(uint32(hi), uint32(lo), uint32(y)))
   581  	}
   582  	return uint(Rem64(uint64(hi), uint64(lo), uint64(y)))
   583  }
   584  
   585  // Rem32 returns the remainder of (hi, lo) divided by y. Rem32 panics
   586  // for y == 0 (division by zero) but, unlike Div32, it doesn't panic
   587  // on a quotient overflow.
   588  func Rem32(hi, lo, y uint32) uint32 {
   589  	return uint32((uint64(hi)<<32 | uint64(lo)) % uint64(y))
   590  }
   591  
   592  // Rem64 returns the remainder of (hi, lo) divided by y. Rem64 panics
   593  // for y == 0 (division by zero) but, unlike Div64, it doesn't panic
   594  // on a quotient overflow.
   595  func Rem64(hi, lo, y uint64) uint64 {
   596  	// We scale down hi so that hi < y, then use Div64 to compute the
   597  	// rem with the guarantee that it won't panic on quotient overflow.
   598  	// Given that
   599  	//   hi ≡ hi%y    (mod y)
   600  	// we have
   601  	//   hi<<64 + lo ≡ (hi%y)<<64 + lo    (mod y)
   602  	_, rem := Div64(hi%y, lo, y)
   603  	return rem
   604  }