github.com/gnolang/gno@v0.0.0-20240520182011-228e9d0192ce/gnovm/stdlibs/math/lgamma.gno (about) 1 // Copyright 2010 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package math 6 7 /* 8 Floating-point logarithm of the Gamma function. 9 */ 10 11 // The original C code and the long comment below are 12 // from FreeBSD's /usr/src/lib/msun/src/e_lgamma_r.c and 13 // came with this notice. The go code is a simplified 14 // version of the original C. 15 // 16 // ==================================================== 17 // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 18 // 19 // Developed at SunPro, a Sun Microsystems, Inc. business. 20 // Permission to use, copy, modify, and distribute this 21 // software is freely granted, provided that this notice 22 // is preserved. 23 // ==================================================== 24 // 25 // __ieee754_lgamma_r(x, signgamp) 26 // Reentrant version of the logarithm of the Gamma function 27 // with user provided pointer for the sign of Gamma(x). 28 // 29 // Method: 30 // 1. Argument Reduction for 0 < x <= 8 31 // Since gamma(1+s)=s*gamma(s), for x in [0,8], we may 32 // reduce x to a number in [1.5,2.5] by 33 // lgamma(1+s) = log(s) + lgamma(s) 34 // for example, 35 // lgamma(7.3) = log(6.3) + lgamma(6.3) 36 // = log(6.3*5.3) + lgamma(5.3) 37 // = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3) 38 // 2. Polynomial approximation of lgamma around its 39 // minimum (ymin=1.461632144968362245) to maintain monotonicity. 40 // On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use 41 // Let z = x-ymin; 42 // lgamma(x) = -1.214862905358496078218 + z**2*poly(z) 43 // poly(z) is a 14 degree polynomial. 44 // 2. Rational approximation in the primary interval [2,3] 45 // We use the following approximation: 46 // s = x-2.0; 47 // lgamma(x) = 0.5*s + s*P(s)/Q(s) 48 // with accuracy 49 // |P/Q - (lgamma(x)-0.5s)| < 2**-61.71 50 // Our algorithms are based on the following observation 51 // 52 // zeta(2)-1 2 zeta(3)-1 3 53 // lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ... 54 // 2 3 55 // 56 // where Euler = 0.5772156649... is the Euler constant, which 57 // is very close to 0.5. 58 // 59 // 3. For x>=8, we have 60 // lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+.... 61 // (better formula: 62 // lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...) 63 // Let z = 1/x, then we approximation 64 // f(z) = lgamma(x) - (x-0.5)(log(x)-1) 65 // by 66 // 3 5 11 67 // w = w0 + w1*z + w2*z + w3*z + ... + w6*z 68 // where 69 // |w - f(z)| < 2**-58.74 70 // 71 // 4. For negative x, since (G is gamma function) 72 // -x*G(-x)*G(x) = pi/sin(pi*x), 73 // we have 74 // G(x) = pi/(sin(pi*x)*(-x)*G(-x)) 75 // since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0 76 // Hence, for x<0, signgam = sign(sin(pi*x)) and 77 // lgamma(x) = log(|Gamma(x)|) 78 // = log(pi/(|x*sin(pi*x)|)) - lgamma(-x); 79 // Note: one should avoid computing pi*(-x) directly in the 80 // computation of sin(pi*(-x)). 81 // 82 // 5. Special Cases 83 // lgamma(2+s) ~ s*(1-Euler) for tiny s 84 // lgamma(1)=lgamma(2)=0 85 // lgamma(x) ~ -log(x) for tiny x 86 // lgamma(0) = lgamma(inf) = inf 87 // lgamma(-integer) = +-inf 88 // 89 // 90 91 var _lgamA = [...]float64{ 92 7.72156649015328655494e-02, // 0x3FB3C467E37DB0C8 93 3.22467033424113591611e-01, // 0x3FD4A34CC4A60FAD 94 6.73523010531292681824e-02, // 0x3FB13E001A5562A7 95 2.05808084325167332806e-02, // 0x3F951322AC92547B 96 7.38555086081402883957e-03, // 0x3F7E404FB68FEFE8 97 2.89051383673415629091e-03, // 0x3F67ADD8CCB7926B 98 1.19270763183362067845e-03, // 0x3F538A94116F3F5D 99 5.10069792153511336608e-04, // 0x3F40B6C689B99C00 100 2.20862790713908385557e-04, // 0x3F2CF2ECED10E54D 101 1.08011567247583939954e-04, // 0x3F1C5088987DFB07 102 2.52144565451257326939e-05, // 0x3EFA7074428CFA52 103 4.48640949618915160150e-05, // 0x3F07858E90A45837 104 } 105 106 var _lgamR = [...]float64{ 107 1.0, // placeholder 108 1.39200533467621045958e+00, // 0x3FF645A762C4AB74 109 7.21935547567138069525e-01, // 0x3FE71A1893D3DCDC 110 1.71933865632803078993e-01, // 0x3FC601EDCCFBDF27 111 1.86459191715652901344e-02, // 0x3F9317EA742ED475 112 7.77942496381893596434e-04, // 0x3F497DDACA41A95B 113 7.32668430744625636189e-06, // 0x3EDEBAF7A5B38140 114 } 115 116 var _lgamS = [...]float64{ 117 -7.72156649015328655494e-02, // 0xBFB3C467E37DB0C8 118 2.14982415960608852501e-01, // 0x3FCB848B36E20878 119 3.25778796408930981787e-01, // 0x3FD4D98F4F139F59 120 1.46350472652464452805e-01, // 0x3FC2BB9CBEE5F2F7 121 2.66422703033638609560e-02, // 0x3F9B481C7E939961 122 1.84028451407337715652e-03, // 0x3F5E26B67368F239 123 3.19475326584100867617e-05, // 0x3F00BFECDD17E945 124 } 125 126 var _lgamT = [...]float64{ 127 4.83836122723810047042e-01, // 0x3FDEF72BC8EE38A2 128 -1.47587722994593911752e-01, // 0xBFC2E4278DC6C509 129 6.46249402391333854778e-02, // 0x3FB08B4294D5419B 130 -3.27885410759859649565e-02, // 0xBFA0C9A8DF35B713 131 1.79706750811820387126e-02, // 0x3F9266E7970AF9EC 132 -1.03142241298341437450e-02, // 0xBF851F9FBA91EC6A 133 6.10053870246291332635e-03, // 0x3F78FCE0E370E344 134 -3.68452016781138256760e-03, // 0xBF6E2EFFB3E914D7 135 2.25964780900612472250e-03, // 0x3F6282D32E15C915 136 -1.40346469989232843813e-03, // 0xBF56FE8EBF2D1AF1 137 8.81081882437654011382e-04, // 0x3F4CDF0CEF61A8E9 138 -5.38595305356740546715e-04, // 0xBF41A6109C73E0EC 139 3.15632070903625950361e-04, // 0x3F34AF6D6C0EBBF7 140 -3.12754168375120860518e-04, // 0xBF347F24ECC38C38 141 3.35529192635519073543e-04, // 0x3F35FD3EE8C2D3F4 142 } 143 144 var _lgamU = [...]float64{ 145 -7.72156649015328655494e-02, // 0xBFB3C467E37DB0C8 146 6.32827064025093366517e-01, // 0x3FE4401E8B005DFF 147 1.45492250137234768737e+00, // 0x3FF7475CD119BD6F 148 9.77717527963372745603e-01, // 0x3FEF497644EA8450 149 2.28963728064692451092e-01, // 0x3FCD4EAEF6010924 150 1.33810918536787660377e-02, // 0x3F8B678BBF2BAB09 151 } 152 153 var _lgamV = [...]float64{ 154 1.0, 155 2.45597793713041134822e+00, // 0x4003A5D7C2BD619C 156 2.12848976379893395361e+00, // 0x40010725A42B18F5 157 7.69285150456672783825e-01, // 0x3FE89DFBE45050AF 158 1.04222645593369134254e-01, // 0x3FBAAE55D6537C88 159 3.21709242282423911810e-03, // 0x3F6A5ABB57D0CF61 160 } 161 162 var _lgamW = [...]float64{ 163 4.18938533204672725052e-01, // 0x3FDACFE390C97D69 164 8.33333333333329678849e-02, // 0x3FB555555555553B 165 -2.77777777728775536470e-03, // 0xBF66C16C16B02E5C 166 7.93650558643019558500e-04, // 0x3F4A019F98CF38B6 167 -5.95187557450339963135e-04, // 0xBF4380CB8C0FE741 168 8.36339918996282139126e-04, // 0x3F4B67BA4CDAD5D1 169 -1.63092934096575273989e-03, // 0xBF5AB89D0B9E43E4 170 } 171 172 // Lgamma returns the natural logarithm and sign (-1 or +1) of Gamma(x). 173 // 174 // Special cases are: 175 // 176 // Lgamma(+Inf) = +Inf 177 // Lgamma(0) = +Inf 178 // Lgamma(-integer) = +Inf 179 // Lgamma(-Inf) = -Inf 180 // Lgamma(NaN) = NaN 181 func Lgamma(x float64) (lgamma float64, sign int) { 182 const ( 183 Ymin = 1.461632144968362245 184 Two52 = 1 << 52 // 0x4330000000000000 ~4.5036e+15 185 Two53 = 1 << 53 // 0x4340000000000000 ~9.0072e+15 186 Two58 = 1 << 58 // 0x4390000000000000 ~2.8823e+17 187 Tiny = 1.0 / (1 << 70) // 0x3b90000000000000 ~8.47033e-22 188 Tc = 1.46163214496836224576e+00 // 0x3FF762D86356BE3F 189 Tf = -1.21486290535849611461e-01 // 0xBFBF19B9BCC38A42 190 // Tt = -(tail of Tf) 191 Tt = -3.63867699703950536541e-18 // 0xBC50C7CAA48A971F 192 ) 193 // special cases 194 sign = 1 195 switch { 196 case IsNaN(x): 197 lgamma = x 198 return 199 case IsInf(x, 0): 200 lgamma = x 201 return 202 case x == 0: 203 lgamma = Inf(1) 204 return 205 } 206 207 neg := false 208 if x < 0 { 209 x = -x 210 neg = true 211 } 212 213 if x < Tiny { // if |x| < 2**-70, return -log(|x|) 214 if neg { 215 sign = -1 216 } 217 lgamma = -Log(x) 218 return 219 } 220 var nadj float64 221 if neg { 222 if x >= Two52 { // |x| >= 2**52, must be -integer 223 lgamma = Inf(1) 224 return 225 } 226 t := sinPi(x) 227 if t == 0 { 228 lgamma = Inf(1) // -integer 229 return 230 } 231 nadj = Log(Pi / Abs(t*x)) 232 if t < 0 { 233 sign = -1 234 } 235 } 236 237 switch { 238 case x == 1 || x == 2: // purge off 1 and 2 239 lgamma = 0 240 return 241 case x < 2: // use lgamma(x) = lgamma(x+1) - log(x) 242 var y float64 243 var i int 244 if x <= 0.9 { 245 lgamma = -Log(x) 246 switch { 247 case x >= (Ymin - 1 + 0.27): // 0.7316 <= x <= 0.9 248 y = 1 - x 249 i = 0 250 case x >= (Ymin - 1 - 0.27): // 0.2316 <= x < 0.7316 251 y = x - (Tc - 1) 252 i = 1 253 default: // 0 < x < 0.2316 254 y = x 255 i = 2 256 } 257 } else { 258 lgamma = 0 259 switch { 260 case x >= (Ymin + 0.27): // 1.7316 <= x < 2 261 y = 2 - x 262 i = 0 263 case x >= (Ymin - 0.27): // 1.2316 <= x < 1.7316 264 y = x - Tc 265 i = 1 266 default: // 0.9 < x < 1.2316 267 y = x - 1 268 i = 2 269 } 270 } 271 switch i { 272 case 0: 273 z := y * y 274 p1 := _lgamA[0] + z*(_lgamA[2]+z*(_lgamA[4]+z*(_lgamA[6]+z*(_lgamA[8]+z*_lgamA[10])))) 275 p2 := z * (_lgamA[1] + z*(+_lgamA[3]+z*(_lgamA[5]+z*(_lgamA[7]+z*(_lgamA[9]+z*_lgamA[11]))))) 276 p := y*p1 + p2 277 lgamma += (p - 0.5*y) 278 case 1: 279 z := y * y 280 w := z * y 281 p1 := _lgamT[0] + w*(_lgamT[3]+w*(_lgamT[6]+w*(_lgamT[9]+w*_lgamT[12]))) // parallel comp 282 p2 := _lgamT[1] + w*(_lgamT[4]+w*(_lgamT[7]+w*(_lgamT[10]+w*_lgamT[13]))) 283 p3 := _lgamT[2] + w*(_lgamT[5]+w*(_lgamT[8]+w*(_lgamT[11]+w*_lgamT[14]))) 284 p := z*p1 - (Tt - w*(p2+y*p3)) 285 lgamma += (Tf + p) 286 case 2: 287 p1 := y * (_lgamU[0] + y*(_lgamU[1]+y*(_lgamU[2]+y*(_lgamU[3]+y*(_lgamU[4]+y*_lgamU[5]))))) 288 p2 := 1 + y*(_lgamV[1]+y*(_lgamV[2]+y*(_lgamV[3]+y*(_lgamV[4]+y*_lgamV[5])))) 289 lgamma += (-0.5*y + p1/p2) 290 } 291 case x < 8: // 2 <= x < 8 292 i := int(x) 293 y := x - float64(i) 294 p := y * (_lgamS[0] + y*(_lgamS[1]+y*(_lgamS[2]+y*(_lgamS[3]+y*(_lgamS[4]+y*(_lgamS[5]+y*_lgamS[6])))))) 295 q := 1 + y*(_lgamR[1]+y*(_lgamR[2]+y*(_lgamR[3]+y*(_lgamR[4]+y*(_lgamR[5]+y*_lgamR[6]))))) 296 lgamma = 0.5*y + p/q 297 z := 1.0 // Lgamma(1+s) = Log(s) + Lgamma(s) 298 switch i { 299 case 7: 300 z *= (y + 6) 301 fallthrough 302 case 6: 303 z *= (y + 5) 304 fallthrough 305 case 5: 306 z *= (y + 4) 307 fallthrough 308 case 4: 309 z *= (y + 3) 310 fallthrough 311 case 3: 312 z *= (y + 2) 313 lgamma += Log(z) 314 } 315 case x < Two58: // 8 <= x < 2**58 316 t := Log(x) 317 z := 1 / x 318 y := z * z 319 w := _lgamW[0] + z*(_lgamW[1]+y*(_lgamW[2]+y*(_lgamW[3]+y*(_lgamW[4]+y*(_lgamW[5]+y*_lgamW[6]))))) 320 lgamma = (x-0.5)*(t-1) + w 321 default: // 2**58 <= x <= Inf 322 lgamma = x * (Log(x) - 1) 323 } 324 if neg { 325 lgamma = nadj - lgamma 326 } 327 return 328 } 329 330 // sinPi(x) is a helper function for negative x 331 func sinPi(x float64) float64 { 332 const ( 333 Two52 = 1 << 52 // 0x4330000000000000 ~4.5036e+15 334 Two53 = 1 << 53 // 0x4340000000000000 ~9.0072e+15 335 ) 336 if x < 0.25 { 337 return -Sin(Pi * x) 338 } 339 340 // argument reduction 341 z := Floor(x) 342 var n int 343 if z != x { // inexact 344 x = Mod(x, 2) 345 n = int(x * 4) 346 } else { 347 if x >= Two53 { // x must be even 348 x = 0 349 n = 0 350 } else { 351 if x < Two52 { 352 z = x + Two52 // exact 353 } 354 n = int(1 & Float64bits(z)) 355 x = float64(n) 356 n <<= 2 357 } 358 } 359 switch n { 360 case 0: 361 x = Sin(Pi * x) 362 case 1, 2: 363 x = Cos(Pi * (0.5 - x)) 364 case 3, 4: 365 x = Sin(Pi * (1 - x)) 366 case 5, 6: 367 x = -Cos(Pi * (x - 1.5)) 368 default: 369 x = Sin(Pi * (x - 2)) 370 } 371 return -x 372 }