github.com/gnolang/gno@v0.0.0-20240520182011-228e9d0192ce/gnovm/stdlibs/math/tan.gno (about) 1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package math 6 7 /* 8 Floating-point tangent. 9 */ 10 11 // The original C code, the long comment, and the constants 12 // below were from http://netlib.sandia.gov/cephes/cmath/sin.c, 13 // available from http://www.netlib.org/cephes/cmath.tgz. 14 // The go code is a simplified version of the original C. 15 // 16 // tan.c 17 // 18 // Circular tangent 19 // 20 // SYNOPSIS: 21 // 22 // double x, y, tan(); 23 // y = tan( x ); 24 // 25 // DESCRIPTION: 26 // 27 // Returns the circular tangent of the radian argument x. 28 // 29 // Range reduction is modulo pi/4. A rational function 30 // x + x**3 P(x**2)/Q(x**2) 31 // is employed in the basic interval [0, pi/4]. 32 // 33 // ACCURACY: 34 // Relative error: 35 // arithmetic domain # trials peak rms 36 // DEC +-1.07e9 44000 4.1e-17 1.0e-17 37 // IEEE +-1.07e9 30000 2.9e-16 8.1e-17 38 // 39 // Partial loss of accuracy begins to occur at x = 2**30 = 1.074e9. The loss 40 // is not gradual, but jumps suddenly to about 1 part in 10e7. Results may 41 // be meaningless for x > 2**49 = 5.6e14. 42 // [Accuracy loss statement from sin.go comments.] 43 // 44 // Cephes Math Library Release 2.8: June, 2000 45 // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier 46 // 47 // The readme file at http://netlib.sandia.gov/cephes/ says: 48 // Some software in this archive may be from the book _Methods and 49 // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster 50 // International, 1989) or from the Cephes Mathematical Library, a 51 // commercial product. In either event, it is copyrighted by the author. 52 // What you see here may be used freely but it comes with no support or 53 // guarantee. 54 // 55 // The two known misprints in the book are repaired here in the 56 // source listings for the gamma function and the incomplete beta 57 // integral. 58 // 59 // Stephen L. Moshier 60 // moshier@na-net.ornl.gov 61 62 // tan coefficients 63 var _tanP = [...]float64{ 64 -1.30936939181383777646e4, // 0xc0c992d8d24f3f38 65 1.15351664838587416140e6, // 0x413199eca5fc9ddd 66 -1.79565251976484877988e7, // 0xc1711fead3299176 67 } 68 69 var _tanQ = [...]float64{ 70 1.00000000000000000000e0, 71 1.36812963470692954678e4, // 0x40cab8a5eeb36572 72 -1.32089234440210967447e6, // 0xc13427bc582abc96 73 2.50083801823357915839e7, // 0x4177d98fc2ead8ef 74 -5.38695755929454629881e7, // 0xc189afe03cbe5a31 75 } 76 77 // Tan returns the tangent of the radian argument x. 78 // 79 // Special cases are: 80 // 81 // Tan(±0) = ±0 82 // Tan(±Inf) = NaN 83 // Tan(NaN) = NaN 84 func Tan(x float64) float64 { 85 return tan(x) 86 } 87 88 func tan(x float64) float64 { 89 const ( 90 PI4A = 7.85398125648498535156e-1 // 0x3fe921fb40000000, Pi/4 split into three parts 91 PI4B = 3.77489470793079817668e-8 // 0x3e64442d00000000, 92 PI4C = 2.69515142907905952645e-15 // 0x3ce8469898cc5170, 93 ) 94 // special cases 95 switch { 96 case x == 0 || IsNaN(x): 97 return x // return ±0 || NaN() 98 case IsInf(x, 0): 99 return NaN() 100 } 101 102 // make argument positive but save the sign 103 sign := false 104 if x < 0 { 105 x = -x 106 sign = true 107 } 108 var j uint64 109 var y, z float64 110 if x >= reduceThreshold { 111 j, z = trigReduce(x) 112 } else { 113 j = uint64(x * (4 / Pi)) // integer part of x/(Pi/4), as integer for tests on the phase angle 114 y = float64(j) // integer part of x/(Pi/4), as float 115 116 /* map zeros and singularities to origin */ 117 if j&1 == 1 { 118 j++ 119 y++ 120 } 121 122 z = ((x - y*PI4A) - y*PI4B) - y*PI4C 123 } 124 zz := z * z 125 126 if zz > 1e-14 { 127 y = z + z*(zz*(((_tanP[0]*zz)+_tanP[1])*zz+_tanP[2])/((((zz+_tanQ[1])*zz+_tanQ[2])*zz+_tanQ[3])*zz+_tanQ[4])) 128 } else { 129 y = z 130 } 131 if j&2 == 2 { 132 y = -1 / y 133 } 134 if sign { 135 y = -y 136 } 137 return y 138 }