github.com/gnolang/gno@v0.0.0-20240520182011-228e9d0192ce/gnovm/stdlibs/strings/strings.gno (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package strings implements simple functions to manipulate UTF-8 encoded strings.
     6  //
     7  // For information about UTF-8 strings in Go, see https://blog.golang.org/strings.
     8  package strings
     9  
    10  import (
    11  	"unicode"
    12  	"unicode/utf8"
    13  
    14  	"internal/bytealg"
    15  )
    16  
    17  // explode splits s into a slice of UTF-8 strings,
    18  // one string per Unicode character up to a maximum of n (n < 0 means no limit).
    19  // Invalid UTF-8 sequences become correct encodings of U+FFFD.
    20  func explode(s string, n int) []string {
    21  	l := utf8.RuneCountInString(s)
    22  	if n < 0 || n > l {
    23  		n = l
    24  	}
    25  	a := make([]string, n)
    26  	for i := 0; i < n-1; i++ {
    27  		ch, size := utf8.DecodeRuneInString(s)
    28  		a[i] = s[:size]
    29  		s = s[size:]
    30  		if ch == utf8.RuneError {
    31  			a[i] = string(utf8.RuneError)
    32  		}
    33  	}
    34  	if n > 0 {
    35  		a[n-1] = s
    36  	}
    37  	return a
    38  }
    39  
    40  // Count counts the number of non-overlapping instances of substr in s.
    41  // If substr is an empty string, Count returns 1 + the number of Unicode code points in s.
    42  func Count(s, substr string) int {
    43  	// special case
    44  	if len(substr) == 0 {
    45  		return utf8.RuneCountInString(s) + 1
    46  	}
    47  	if len(substr) == 1 {
    48  		return bytealg.CountString(s, substr[0])
    49  	}
    50  	n := 0
    51  	for {
    52  		i := Index(s, substr)
    53  		if i == -1 {
    54  			return n
    55  		}
    56  		n++
    57  		s = s[i+len(substr):]
    58  	}
    59  }
    60  
    61  // Contains reports whether substr is within s.
    62  func Contains(s, substr string) bool {
    63  	return Index(s, substr) >= 0
    64  }
    65  
    66  // ContainsAny reports whether any Unicode code points in chars are within s.
    67  func ContainsAny(s, chars string) bool {
    68  	return IndexAny(s, chars) >= 0
    69  }
    70  
    71  // ContainsRune reports whether the Unicode code point r is within s.
    72  func ContainsRune(s string, r rune) bool {
    73  	return IndexRune(s, r) >= 0
    74  }
    75  
    76  // LastIndex returns the index of the last instance of substr in s, or -1 if substr is not present in s.
    77  func LastIndex(s, substr string) int {
    78  	n := len(substr)
    79  	switch {
    80  	case n == 0:
    81  		return len(s)
    82  	case n == 1:
    83  		return LastIndexByte(s, substr[0])
    84  	case n == len(s):
    85  		if substr == s {
    86  			return 0
    87  		}
    88  		return -1
    89  	case n > len(s):
    90  		return -1
    91  	}
    92  	// Rabin-Karp search from the end of the string
    93  	hashss, pow := bytealg.HashStrRev(substr)
    94  	last := len(s) - n
    95  	var h uint32
    96  	for i := len(s) - 1; i >= last; i-- {
    97  		h = h*bytealg.PrimeRK + uint32(s[i])
    98  	}
    99  	if h == hashss && s[last:] == substr {
   100  		return last
   101  	}
   102  	for i := last - 1; i >= 0; i-- {
   103  		h *= bytealg.PrimeRK
   104  		h += uint32(s[i])
   105  		h -= pow * uint32(s[i+n])
   106  		if h == hashss && s[i:i+n] == substr {
   107  			return i
   108  		}
   109  	}
   110  	return -1
   111  }
   112  
   113  // IndexByte returns the index of the first instance of c in s, or -1 if c is not present in s.
   114  func IndexByte(s string, c byte) int {
   115  	return bytealg.IndexByteString(s, c)
   116  }
   117  
   118  // IndexRune returns the index of the first instance of the Unicode code point
   119  // r, or -1 if rune is not present in s.
   120  // If r is utf8.RuneError, it returns the first instance of any
   121  // invalid UTF-8 byte sequence.
   122  func IndexRune(s string, r rune) int {
   123  	switch {
   124  	case 0 <= r && r < utf8.RuneSelf:
   125  		return IndexByte(s, byte(r))
   126  	case r == utf8.RuneError:
   127  		for i, r := range s {
   128  			if r == utf8.RuneError {
   129  				return i
   130  			}
   131  		}
   132  		return -1
   133  	case !utf8.ValidRune(r):
   134  		return -1
   135  	default:
   136  		return Index(s, string(r))
   137  	}
   138  }
   139  
   140  // IndexAny returns the index of the first instance of any Unicode code point
   141  // from chars in s, or -1 if no Unicode code point from chars is present in s.
   142  func IndexAny(s, chars string) int {
   143  	if chars == "" {
   144  		// Avoid scanning all of s.
   145  		return -1
   146  	}
   147  	if len(chars) == 1 {
   148  		// Avoid scanning all of s.
   149  		r := rune(chars[0])
   150  		if r >= utf8.RuneSelf {
   151  			r = utf8.RuneError
   152  		}
   153  		return IndexRune(s, r)
   154  	}
   155  	if len(s) > 8 {
   156  		if as, isASCII := makeASCIISet(chars); isASCII {
   157  			for i := 0; i < len(s); i++ {
   158  				if as.contains(s[i]) {
   159  					return i
   160  				}
   161  			}
   162  			return -1
   163  		}
   164  	}
   165  	for i, c := range s {
   166  		if IndexRune(chars, c) >= 0 {
   167  			return i
   168  		}
   169  	}
   170  	return -1
   171  }
   172  
   173  // LastIndexAny returns the index of the last instance of any Unicode code
   174  // point from chars in s, or -1 if no Unicode code point from chars is
   175  // present in s.
   176  func LastIndexAny(s, chars string) int {
   177  	if chars == "" {
   178  		// Avoid scanning all of s.
   179  		return -1
   180  	}
   181  	if len(s) == 1 {
   182  		rc := rune(s[0])
   183  		if rc >= utf8.RuneSelf {
   184  			rc = utf8.RuneError
   185  		}
   186  		if IndexRune(chars, rc) >= 0 {
   187  			return 0
   188  		}
   189  		return -1
   190  	}
   191  	if len(s) > 8 {
   192  		if as, isASCII := makeASCIISet(chars); isASCII {
   193  			for i := len(s) - 1; i >= 0; i-- {
   194  				if as.contains(s[i]) {
   195  					return i
   196  				}
   197  			}
   198  			return -1
   199  		}
   200  	}
   201  	if len(chars) == 1 {
   202  		rc := rune(chars[0])
   203  		if rc >= utf8.RuneSelf {
   204  			rc = utf8.RuneError
   205  		}
   206  		for i := len(s); i > 0; {
   207  			r, size := utf8.DecodeLastRuneInString(s[:i])
   208  			i -= size
   209  			if rc == r {
   210  				return i
   211  			}
   212  		}
   213  		return -1
   214  	}
   215  	for i := len(s); i > 0; {
   216  		r, size := utf8.DecodeLastRuneInString(s[:i])
   217  		i -= size
   218  		if IndexRune(chars, r) >= 0 {
   219  			return i
   220  		}
   221  	}
   222  	return -1
   223  }
   224  
   225  // LastIndexByte returns the index of the last instance of c in s, or -1 if c is not present in s.
   226  func LastIndexByte(s string, c byte) int {
   227  	for i := len(s) - 1; i >= 0; i-- {
   228  		if s[i] == c {
   229  			return i
   230  		}
   231  	}
   232  	return -1
   233  }
   234  
   235  // Generic split: splits after each instance of sep,
   236  // including sepSave bytes of sep in the subarrays.
   237  func genSplit(s, sep string, sepSave, n int) []string {
   238  	if n == 0 {
   239  		return nil
   240  	}
   241  	if sep == "" {
   242  		return explode(s, n)
   243  	}
   244  	if n < 0 {
   245  		n = Count(s, sep) + 1
   246  	}
   247  
   248  	a := make([]string, n)
   249  	n--
   250  	i := 0
   251  	for i < n {
   252  		m := Index(s, sep)
   253  		if m < 0 {
   254  			break
   255  		}
   256  		a[i] = s[:m+sepSave]
   257  		s = s[m+len(sep):]
   258  		i++
   259  	}
   260  	a[i] = s
   261  	return a[:i+1]
   262  }
   263  
   264  // SplitN slices s into substrings separated by sep and returns a slice of
   265  // the substrings between those separators.
   266  //
   267  // The count determines the number of substrings to return:
   268  //
   269  //	n > 0: at most n substrings; the last substring will be the unsplit remainder.
   270  //	n == 0: the result is nil (zero substrings)
   271  //	n < 0: all substrings
   272  //
   273  // Edge cases for s and sep (for example, empty strings) are handled
   274  // as described in the documentation for Split.
   275  func SplitN(s, sep string, n int) []string { return genSplit(s, sep, 0, n) }
   276  
   277  // SplitAfterN slices s into substrings after each instance of sep and
   278  // returns a slice of those substrings.
   279  //
   280  // The count determines the number of substrings to return:
   281  //
   282  //	n > 0: at most n substrings; the last substring will be the unsplit remainder.
   283  //	n == 0: the result is nil (zero substrings)
   284  //	n < 0: all substrings
   285  //
   286  // Edge cases for s and sep (for example, empty strings) are handled
   287  // as described in the documentation for SplitAfter.
   288  func SplitAfterN(s, sep string, n int) []string {
   289  	return genSplit(s, sep, len(sep), n)
   290  }
   291  
   292  // Split slices s into all substrings separated by sep and returns a slice of
   293  // the substrings between those separators.
   294  //
   295  // If s does not contain sep and sep is not empty, Split returns a
   296  // slice of length 1 whose only element is s.
   297  //
   298  // If sep is empty, Split splits after each UTF-8 sequence. If both s
   299  // and sep are empty, Split returns an empty slice.
   300  //
   301  // It is equivalent to SplitN with a count of -1.
   302  func Split(s, sep string) []string { return genSplit(s, sep, 0, -1) }
   303  
   304  // SplitAfter slices s into all substrings after each instance of sep and
   305  // returns a slice of those substrings.
   306  //
   307  // If s does not contain sep and sep is not empty, SplitAfter returns
   308  // a slice of length 1 whose only element is s.
   309  //
   310  // If sep is empty, SplitAfter splits after each UTF-8 sequence. If
   311  // both s and sep are empty, SplitAfter returns an empty slice.
   312  //
   313  // It is equivalent to SplitAfterN with a count of -1.
   314  func SplitAfter(s, sep string) []string {
   315  	return genSplit(s, sep, len(sep), -1)
   316  }
   317  
   318  var asciiSpace = [256]uint8{'\t': 1, '\n': 1, '\v': 1, '\f': 1, '\r': 1, ' ': 1}
   319  
   320  // Fields splits the string s around each instance of one or more consecutive white space
   321  // characters, as defined by unicode.IsSpace, returning a slice of substrings of s or an
   322  // empty slice if s contains only white space.
   323  func Fields(s string) []string {
   324  	// First count the fields.
   325  	// This is an exact count if s is ASCII, otherwise it is an approximation.
   326  	n := 0
   327  	wasSpace := 1
   328  	// setBits is used to track which bits are set in the bytes of s.
   329  	setBits := uint8(0)
   330  	for i := 0; i < len(s); i++ {
   331  		r := s[i]
   332  		setBits |= r
   333  		isSpace := int(asciiSpace[r])
   334  		n += wasSpace & ^isSpace
   335  		wasSpace = isSpace
   336  	}
   337  
   338  	if setBits >= utf8.RuneSelf {
   339  		// Some runes in the input string are not ASCII.
   340  		return FieldsFunc(s, unicode.IsSpace)
   341  	}
   342  	// ASCII fast path
   343  	a := make([]string, n)
   344  	na := 0
   345  	fieldStart := 0
   346  	i := 0
   347  	// Skip spaces in the front of the input.
   348  	for i < len(s) && asciiSpace[s[i]] != 0 {
   349  		i++
   350  	}
   351  	fieldStart = i
   352  	for i < len(s) {
   353  		if asciiSpace[s[i]] == 0 {
   354  			i++
   355  			continue
   356  		}
   357  		a[na] = s[fieldStart:i]
   358  		na++
   359  		i++
   360  		// Skip spaces in between fields.
   361  		for i < len(s) && asciiSpace[s[i]] != 0 {
   362  			i++
   363  		}
   364  		fieldStart = i
   365  	}
   366  	if fieldStart < len(s) { // Last field might end at EOF.
   367  		a[na] = s[fieldStart:]
   368  	}
   369  	return a
   370  }
   371  
   372  // FieldsFunc splits the string s at each run of Unicode code points c satisfying f(c)
   373  // and returns an array of slices of s. If all code points in s satisfy f(c) or the
   374  // string is empty, an empty slice is returned.
   375  //
   376  // FieldsFunc makes no guarantees about the order in which it calls f(c)
   377  // and assumes that f always returns the same value for a given c.
   378  func FieldsFunc(s string, f func(rune) bool) []string {
   379  	// A span is used to record a slice of s of the form s[start:end].
   380  	// The start index is inclusive and the end index is exclusive.
   381  	type span struct {
   382  		start int
   383  		end   int
   384  	}
   385  	spans := make([]span, 0, 32)
   386  
   387  	// Find the field start and end indices.
   388  	// Doing this in a separate pass (rather than slicing the string s
   389  	// and collecting the result substrings right away) is significantly
   390  	// more efficient, possibly due to cache effects.
   391  	start := -1             // valid span start if >= 0
   392  	for end, r := range s { // XXX rename rune to r.
   393  		if f(r) {
   394  			if start >= 0 {
   395  				spans = append(spans, span{start, end})
   396  				// Set start to a negative value.
   397  				// Note: using -1 here consistently and reproducibly
   398  				// slows down this code by a several percent on amd64.
   399  				start = ^start
   400  			}
   401  		} else {
   402  			if start < 0 {
   403  				start = end
   404  			}
   405  		}
   406  	}
   407  
   408  	// Last field might end at EOF.
   409  	if start >= 0 {
   410  		spans = append(spans, span{start, len(s)})
   411  	}
   412  
   413  	// Create strings from recorded field indices.
   414  	a := make([]string, len(spans))
   415  	for i, span := range spans {
   416  		a[i] = s[span.start:span.end]
   417  	}
   418  
   419  	return a
   420  }
   421  
   422  // Join concatenates the elements of its first argument to create a single string. The separator
   423  // string sep is placed between elements in the resulting string.
   424  func Join(elems []string, sep string) string {
   425  	switch len(elems) {
   426  	case 0:
   427  		return ""
   428  	case 1:
   429  		return elems[0]
   430  	}
   431  	n := len(sep) * (len(elems) - 1)
   432  	for i := 0; i < len(elems); i++ {
   433  		n += len(elems[i])
   434  	}
   435  
   436  	var b Builder
   437  	b.Grow(n)
   438  	b.WriteString(elems[0])
   439  	for _, s := range elems[1:] {
   440  		b.WriteString(sep)
   441  		b.WriteString(s)
   442  	}
   443  	return b.String()
   444  }
   445  
   446  // HasPrefix tests whether the string s begins with prefix.
   447  func HasPrefix(s, prefix string) bool {
   448  	return len(s) >= len(prefix) && s[0:len(prefix)] == prefix
   449  }
   450  
   451  // HasSuffix tests whether the string s ends with suffix.
   452  func HasSuffix(s, suffix string) bool {
   453  	return len(s) >= len(suffix) && s[len(s)-len(suffix):] == suffix
   454  }
   455  
   456  // Map returns a copy of the string s with all its characters modified
   457  // according to the mapping function. If mapping returns a negative value, the character is
   458  // dropped from the string with no replacement.
   459  func Map(mapping func(rune) rune, s string) string {
   460  	// In the worst case, the string can grow when mapped, making
   461  	// things unpleasant. But it's so rare we barge in assuming it's
   462  	// fine. It could also shrink but that falls out naturally.
   463  
   464  	// The output buffer b is initialized on demand, the first
   465  	// time a character differs.
   466  	var b Builder
   467  
   468  	for i, c := range s {
   469  		r := mapping(c)
   470  		if r == c && c != utf8.RuneError {
   471  			continue
   472  		}
   473  
   474  		var width int
   475  		if c == utf8.RuneError {
   476  			c, width = utf8.DecodeRuneInString(s[i:])
   477  			if width != 1 && r == c {
   478  				continue
   479  			}
   480  		} else {
   481  			width = utf8.RuneLen(c)
   482  		}
   483  
   484  		b.Grow(len(s) + utf8.UTFMax)
   485  		b.WriteString(s[:i])
   486  		if r >= 0 {
   487  			b.WriteRune(r)
   488  		}
   489  
   490  		s = s[i+width:]
   491  		break
   492  	}
   493  
   494  	// Fast path for unchanged input
   495  	if b.Cap() == 0 { // didn't call b.Grow above
   496  		return s
   497  	}
   498  
   499  	for _, c := range s {
   500  		r := mapping(c)
   501  
   502  		if r >= 0 {
   503  			// common case
   504  			// Due to inlining, it is more performant to determine if WriteByte should be
   505  			// invoked rather than always call WriteRune
   506  			if r < utf8.RuneSelf {
   507  				b.WriteByte(byte(r))
   508  			} else {
   509  				// r is not a ASCII rune.
   510  				b.WriteRune(r)
   511  			}
   512  		}
   513  	}
   514  
   515  	return b.String()
   516  }
   517  
   518  // Repeat returns a new string consisting of count copies of the string s.
   519  //
   520  // It panics if count is negative or if
   521  // the result of (len(s) * count) overflows.
   522  func Repeat(s string, count int) string {
   523  	if count == 0 {
   524  		return ""
   525  	}
   526  
   527  	// Since we cannot return an error on overflow,
   528  	// we should panic if the repeat will generate
   529  	// an overflow.
   530  	// See Issue golang.org/issue/16237
   531  	if count < 0 {
   532  		panic("strings: negative Repeat count")
   533  	} else if len(s)*count/count != len(s) {
   534  		panic("strings: Repeat count causes overflow")
   535  	}
   536  
   537  	n := len(s) * count
   538  	var b Builder
   539  	b.Grow(n)
   540  	b.WriteString(s)
   541  	for b.Len() < n {
   542  		if b.Len() <= n/2 {
   543  			b.WriteString(b.String())
   544  		} else {
   545  			b.WriteString(b.String()[:n-b.Len()])
   546  			break
   547  		}
   548  	}
   549  	return b.String()
   550  }
   551  
   552  // ToUpper returns s with all Unicode letters mapped to their upper case.
   553  func ToUpper(s string) string {
   554  	isASCII, hasLower := true, false
   555  	for i := 0; i < len(s); i++ {
   556  		c := s[i]
   557  		if c >= utf8.RuneSelf {
   558  			isASCII = false
   559  			break
   560  		}
   561  		hasLower = hasLower || ('a' <= c && c <= 'z')
   562  	}
   563  
   564  	if isASCII { // optimize for ASCII-only strings.
   565  		if !hasLower {
   566  			return s
   567  		}
   568  		var b Builder
   569  		b.Grow(len(s))
   570  		for i := 0; i < len(s); i++ {
   571  			c := s[i]
   572  			if 'a' <= c && c <= 'z' {
   573  				c -= 'a' - 'A'
   574  			}
   575  			b.WriteByte(c)
   576  		}
   577  		return b.String()
   578  	}
   579  	return Map(unicode.ToUpper, s)
   580  }
   581  
   582  // ToLower returns s with all Unicode letters mapped to their lower case.
   583  func ToLower(s string) string {
   584  	isASCII, hasUpper := true, false
   585  	for i := 0; i < len(s); i++ {
   586  		c := s[i]
   587  		if c >= utf8.RuneSelf {
   588  			isASCII = false
   589  			break
   590  		}
   591  		hasUpper = hasUpper || ('A' <= c && c <= 'Z')
   592  	}
   593  
   594  	if isASCII { // optimize for ASCII-only strings.
   595  		if !hasUpper {
   596  			return s
   597  		}
   598  		var b Builder
   599  		b.Grow(len(s))
   600  		for i := 0; i < len(s); i++ {
   601  			c := s[i]
   602  			if 'A' <= c && c <= 'Z' {
   603  				c += 'a' - 'A'
   604  			}
   605  			b.WriteByte(c)
   606  		}
   607  		return b.String()
   608  	}
   609  	return Map(unicode.ToLower, s)
   610  }
   611  
   612  // ToTitle returns a copy of the string s with all Unicode letters mapped to
   613  // their Unicode title case.
   614  func ToTitle(s string) string { return Map(unicode.ToTitle, s) }
   615  
   616  // ToUpperSpecial returns a copy of the string s with all Unicode letters mapped to their
   617  // upper case using the case mapping specified by c.
   618  func ToUpperSpecial(c unicode.SpecialCase, s string) string {
   619  	return Map(c.ToUpper, s)
   620  }
   621  
   622  // ToLowerSpecial returns a copy of the string s with all Unicode letters mapped to their
   623  // lower case using the case mapping specified by c.
   624  func ToLowerSpecial(c unicode.SpecialCase, s string) string {
   625  	return Map(c.ToLower, s)
   626  }
   627  
   628  // ToTitleSpecial returns a copy of the string s with all Unicode letters mapped to their
   629  // Unicode title case, giving priority to the special casing rules.
   630  func ToTitleSpecial(c unicode.SpecialCase, s string) string {
   631  	return Map(c.ToTitle, s)
   632  }
   633  
   634  // ToValidUTF8 returns a copy of the string s with each run of invalid UTF-8 byte sequences
   635  // replaced by the replacement string, which may be empty.
   636  func ToValidUTF8(s, replacement string) string {
   637  	var b Builder
   638  
   639  	for i, c := range s {
   640  		if c != utf8.RuneError {
   641  			continue
   642  		}
   643  
   644  		_, wid := utf8.DecodeRuneInString(s[i:])
   645  		if wid == 1 {
   646  			b.Grow(len(s) + len(replacement))
   647  			b.WriteString(s[:i])
   648  			s = s[i:]
   649  			break
   650  		}
   651  	}
   652  
   653  	// Fast path for unchanged input
   654  	if b.Cap() == 0 { // didn't call b.Grow above
   655  		return s
   656  	}
   657  
   658  	invalid := false // previous byte was from an invalid UTF-8 sequence
   659  	for i := 0; i < len(s); {
   660  		c := s[i]
   661  		if c < utf8.RuneSelf {
   662  			i++
   663  			invalid = false
   664  			b.WriteByte(c)
   665  			continue
   666  		}
   667  		_, wid := utf8.DecodeRuneInString(s[i:])
   668  		if wid == 1 {
   669  			i++
   670  			if !invalid {
   671  				invalid = true
   672  				b.WriteString(replacement)
   673  			}
   674  			continue
   675  		}
   676  		invalid = false
   677  		b.WriteString(s[i : i+wid])
   678  		i += wid
   679  	}
   680  
   681  	return b.String()
   682  }
   683  
   684  // isSeparator reports whether the rune could mark a word boundary.
   685  // TODO: update when package unicode captures more of the properties.
   686  func isSeparator(r rune) bool {
   687  	// ASCII alphanumerics and underscore are not separators
   688  	if r <= 0x7F {
   689  		switch {
   690  		case '0' <= r && r <= '9':
   691  			return false
   692  		case 'a' <= r && r <= 'z':
   693  			return false
   694  		case 'A' <= r && r <= 'Z':
   695  			return false
   696  		case r == '_':
   697  			return false
   698  		}
   699  		return true
   700  	}
   701  	// Letters and digits are not separators
   702  	if unicode.IsLetter(r) || unicode.IsDigit(r) {
   703  		return false
   704  	}
   705  	// Otherwise, all we can do for now is treat spaces as separators.
   706  	return unicode.IsSpace(r)
   707  }
   708  
   709  // Title returns a copy of the string s with all Unicode letters that begin words
   710  // mapped to their Unicode title case.
   711  //
   712  // BUG(rsc): The rule Title uses for word boundaries does not handle Unicode punctuation properly.
   713  func Title(s string) string {
   714  	// Use a closure here to remember state.
   715  	// Hackish but effective. Depends on Map scanning in order and calling
   716  	// the closure once per rune.
   717  	prev := ' '
   718  	return Map(
   719  		func(r rune) rune {
   720  			if isSeparator(prev) {
   721  				prev = r
   722  				return unicode.ToTitle(r)
   723  			}
   724  			prev = r
   725  			return r
   726  		},
   727  		s)
   728  }
   729  
   730  // TrimLeftFunc returns a slice of the string s with all leading
   731  // Unicode code points c satisfying f(c) removed.
   732  func TrimLeftFunc(s string, f func(rune) bool) string {
   733  	i := indexFunc(s, f, false)
   734  	if i == -1 {
   735  		return ""
   736  	}
   737  	return s[i:]
   738  }
   739  
   740  // TrimRightFunc returns a slice of the string s with all trailing
   741  // Unicode code points c satisfying f(c) removed.
   742  func TrimRightFunc(s string, f func(rune) bool) string {
   743  	i := lastIndexFunc(s, f, false)
   744  	if i >= 0 && s[i] >= utf8.RuneSelf {
   745  		_, wid := utf8.DecodeRuneInString(s[i:])
   746  		i += wid
   747  	} else {
   748  		i++
   749  	}
   750  	return s[0:i]
   751  }
   752  
   753  // TrimFunc returns a slice of the string s with all leading
   754  // and trailing Unicode code points c satisfying f(c) removed.
   755  func TrimFunc(s string, f func(rune) bool) string {
   756  	return TrimRightFunc(TrimLeftFunc(s, f), f)
   757  }
   758  
   759  // IndexFunc returns the index into s of the first Unicode
   760  // code point satisfying f(c), or -1 if none do.
   761  func IndexFunc(s string, f func(rune) bool) int {
   762  	return indexFunc(s, f, true)
   763  }
   764  
   765  // LastIndexFunc returns the index into s of the last
   766  // Unicode code point satisfying f(c), or -1 if none do.
   767  func LastIndexFunc(s string, f func(rune) bool) int {
   768  	return lastIndexFunc(s, f, true)
   769  }
   770  
   771  // indexFunc is the same as IndexFunc except that if
   772  // truth==false, the sense of the predicate function is
   773  // inverted.
   774  func indexFunc(s string, f func(rune) bool, truth bool) int {
   775  	for i, r := range s {
   776  		if f(r) == truth {
   777  			return i
   778  		}
   779  	}
   780  	return -1
   781  }
   782  
   783  // lastIndexFunc is the same as LastIndexFunc except that if
   784  // truth==false, the sense of the predicate function is
   785  // inverted.
   786  func lastIndexFunc(s string, f func(rune) bool, truth bool) int {
   787  	for i := len(s); i > 0; {
   788  		r, size := utf8.DecodeLastRuneInString(s[0:i])
   789  		i -= size
   790  		if f(r) == truth {
   791  			return i
   792  		}
   793  	}
   794  	return -1
   795  }
   796  
   797  // asciiSet is a 32-byte value, where each bit represents the presence of a
   798  // given ASCII character in the set. The 128-bits of the lower 16 bytes,
   799  // starting with the least-significant bit of the lowest word to the
   800  // most-significant bit of the highest word, map to the full range of all
   801  // 128 ASCII characters. The 128-bits of the upper 16 bytes will be zeroed,
   802  // ensuring that any non-ASCII character will be reported as not in the set.
   803  type asciiSet [8]uint32
   804  
   805  // makeASCIISet creates a set of ASCII characters and reports whether all
   806  // characters in chars are ASCII.
   807  func makeASCIISet(chars string) (as asciiSet, ok bool) {
   808  	for i := 0; i < len(chars); i++ {
   809  		c := chars[i]
   810  		if c >= utf8.RuneSelf {
   811  			return as, false
   812  		}
   813  		as[c>>5] |= 1 << uint(c&31)
   814  	}
   815  	return as, true
   816  }
   817  
   818  // contains reports whether c is inside the set.
   819  func (as *asciiSet) contains(c byte) bool {
   820  	return (as[c>>5] & (1 << uint(c&31))) != 0
   821  }
   822  
   823  func makeCutsetFunc(cutset string) func(rune) bool {
   824  	if len(cutset) == 1 && cutset[0] < utf8.RuneSelf {
   825  		return func(r rune) bool {
   826  			return r == rune(cutset[0])
   827  		}
   828  	}
   829  	if as, isASCII := makeASCIISet(cutset); isASCII {
   830  		return func(r rune) bool {
   831  			return r < utf8.RuneSelf && as.contains(byte(r))
   832  		}
   833  	}
   834  	return func(r rune) bool { return IndexRune(cutset, r) >= 0 }
   835  }
   836  
   837  // Trim returns a slice of the string s with all leading and
   838  // trailing Unicode code points contained in cutset removed.
   839  func Trim(s, cutset string) string {
   840  	if s == "" || cutset == "" {
   841  		return s
   842  	}
   843  	return TrimFunc(s, makeCutsetFunc(cutset))
   844  }
   845  
   846  // TrimLeft returns a slice of the string s with all leading
   847  // Unicode code points contained in cutset removed.
   848  //
   849  // To remove a prefix, use TrimPrefix instead.
   850  func TrimLeft(s, cutset string) string {
   851  	if s == "" || cutset == "" {
   852  		return s
   853  	}
   854  	return TrimLeftFunc(s, makeCutsetFunc(cutset))
   855  }
   856  
   857  // TrimRight returns a slice of the string s, with all trailing
   858  // Unicode code points contained in cutset removed.
   859  //
   860  // To remove a suffix, use TrimSuffix instead.
   861  func TrimRight(s, cutset string) string {
   862  	if s == "" || cutset == "" {
   863  		return s
   864  	}
   865  	return TrimRightFunc(s, makeCutsetFunc(cutset))
   866  }
   867  
   868  // TrimSpace returns a slice of the string s, with all leading
   869  // and trailing white space removed, as defined by Unicode.
   870  func TrimSpace(s string) string {
   871  	// Fast path for ASCII: look for the first ASCII non-space byte
   872  	start := 0
   873  	for ; start < len(s); start++ {
   874  		c := s[start]
   875  		if c >= utf8.RuneSelf {
   876  			// If we run into a non-ASCII byte, fall back to the
   877  			// slower unicode-aware method on the remaining bytes
   878  			return TrimFunc(s[start:], unicode.IsSpace)
   879  		}
   880  		if asciiSpace[c] == 0 {
   881  			break
   882  		}
   883  	}
   884  
   885  	// Now look for the first ASCII non-space byte from the end
   886  	stop := len(s)
   887  	for ; stop > start; stop-- {
   888  		c := s[stop-1]
   889  		if c >= utf8.RuneSelf {
   890  			return TrimFunc(s[start:stop], unicode.IsSpace)
   891  		}
   892  		if asciiSpace[c] == 0 {
   893  			break
   894  		}
   895  	}
   896  
   897  	// At this point s[start:stop] starts and ends with an ASCII
   898  	// non-space bytes, so we're done. Non-ASCII cases have already
   899  	// been handled above.
   900  	return s[start:stop]
   901  }
   902  
   903  // TrimPrefix returns s without the provided leading prefix string.
   904  // If s doesn't start with prefix, s is returned unchanged.
   905  func TrimPrefix(s, prefix string) string {
   906  	if HasPrefix(s, prefix) {
   907  		return s[len(prefix):]
   908  	}
   909  	return s
   910  }
   911  
   912  // TrimSuffix returns s without the provided trailing suffix string.
   913  // If s doesn't end with suffix, s is returned unchanged.
   914  func TrimSuffix(s, suffix string) string {
   915  	if HasSuffix(s, suffix) {
   916  		return s[:len(s)-len(suffix)]
   917  	}
   918  	return s
   919  }
   920  
   921  // Replace returns a copy of the string s with the first n
   922  // non-overlapping instances of old replaced by new.
   923  // If old is empty, it matches at the beginning of the string
   924  // and after each UTF-8 sequence, yielding up to k+1 replacements
   925  // for a k-rune string.
   926  // If n < 0, there is no limit on the number of replacements.
   927  // XXX rename new
   928  func Replace(s, old, new_ string, n int) string {
   929  	if old == new_ || n == 0 {
   930  		return s // avoid allocation
   931  	}
   932  
   933  	// Compute number of replacements.
   934  	if m := Count(s, old); m == 0 {
   935  		return s // avoid allocation
   936  	} else if n < 0 || m < n {
   937  		n = m
   938  	}
   939  
   940  	// Apply replacements to buffer.
   941  	var b Builder
   942  	b.Grow(len(s) + n*(len(new_)-len(old)))
   943  	start := 0
   944  	for i := 0; i < n; i++ {
   945  		j := start
   946  		if len(old) == 0 {
   947  			if i > 0 {
   948  				_, wid := utf8.DecodeRuneInString(s[start:])
   949  				j += wid
   950  			}
   951  		} else {
   952  			j += Index(s[start:], old)
   953  		}
   954  		b.WriteString(s[start:j])
   955  		b.WriteString(new_)
   956  		start = j + len(old)
   957  	}
   958  	b.WriteString(s[start:])
   959  	return b.String()
   960  }
   961  
   962  // ReplaceAll returns a copy of the string s with all
   963  // non-overlapping instances of old replaced by new.
   964  // If old is empty, it matches at the beginning of the string
   965  // and after each UTF-8 sequence, yielding up to k+1 replacements
   966  // for a k-rune string.
   967  func ReplaceAll(s, old, new_ string) string {
   968  	return Replace(s, old, new_, -1)
   969  }
   970  
   971  // EqualFold reports whether s and t, interpreted as UTF-8 strings,
   972  // are equal under Unicode case-folding, which is a more general
   973  // form of case-insensitivity.
   974  func EqualFold(s, t string) bool {
   975  	for s != "" && t != "" {
   976  		// Extract first rune from each string.
   977  		var sr, tr rune
   978  		if s[0] < utf8.RuneSelf {
   979  			sr, s = rune(s[0]), s[1:]
   980  		} else {
   981  			r, size := utf8.DecodeRuneInString(s)
   982  			sr, s = r, s[size:]
   983  		}
   984  		if t[0] < utf8.RuneSelf {
   985  			tr, t = rune(t[0]), t[1:]
   986  		} else {
   987  			r, size := utf8.DecodeRuneInString(t)
   988  			tr, t = r, t[size:]
   989  		}
   990  
   991  		// If they match, keep going; if not, return false.
   992  
   993  		// Easy case.
   994  		if tr == sr {
   995  			continue
   996  		}
   997  
   998  		// Make sr < tr to simplify what follows.
   999  		if tr < sr {
  1000  			tr, sr = sr, tr
  1001  		}
  1002  		// Fast check for ASCII.
  1003  		if tr < utf8.RuneSelf {
  1004  			// ASCII only, sr/tr must be upper/lower case
  1005  			if 'A' <= sr && sr <= 'Z' && tr == sr+'a'-'A' {
  1006  				continue
  1007  			}
  1008  			return false
  1009  		}
  1010  
  1011  		// General case. SimpleFold(x) returns the next equivalent rune > x
  1012  		// or wraps around to smaller values.
  1013  		r := unicode.SimpleFold(sr)
  1014  		for r != sr && r < tr {
  1015  			r = unicode.SimpleFold(r)
  1016  		}
  1017  		if r == tr {
  1018  			continue
  1019  		}
  1020  		return false
  1021  	}
  1022  
  1023  	// One string is empty. Are both?
  1024  	return s == t
  1025  }
  1026  
  1027  // Index returns the index of the first instance of substr in s, or -1 if substr is not present in s.
  1028  func Index(s, substr string) int {
  1029  	n := len(substr)
  1030  	switch {
  1031  	case n == 0:
  1032  		return 0
  1033  	case n == 1:
  1034  		return IndexByte(s, substr[0])
  1035  	case n == len(s):
  1036  		if substr == s {
  1037  			return 0
  1038  		}
  1039  		return -1
  1040  	case n > len(s):
  1041  		return -1
  1042  	case n <= bytealg.MaxLen:
  1043  		// Use brute force when s and substr both are small
  1044  		if len(s) <= bytealg.MaxBruteForce {
  1045  			return bytealg.IndexString(s, substr)
  1046  		}
  1047  		c0 := substr[0]
  1048  		c1 := substr[1]
  1049  		i := 0
  1050  		t := len(s) - n + 1
  1051  		fails := 0
  1052  		for i < t {
  1053  			if s[i] != c0 {
  1054  				// IndexByte is faster than bytealg.IndexString, so use it as long as
  1055  				// we're not getting lots of false positives.
  1056  				o := IndexByte(s[i+1:t], c0)
  1057  				if o < 0 {
  1058  					return -1
  1059  				}
  1060  				i += o + 1
  1061  			}
  1062  			if s[i+1] == c1 && s[i:i+n] == substr {
  1063  				return i
  1064  			}
  1065  			fails++
  1066  			i++
  1067  			// Switch to bytealg.IndexString when IndexByte produces too many false positives.
  1068  			if fails > bytealg.Cutover(i) {
  1069  				r := bytealg.IndexString(s[i:], substr)
  1070  				if r >= 0 {
  1071  					return r + i
  1072  				}
  1073  				return -1
  1074  			}
  1075  		}
  1076  		return -1
  1077  	}
  1078  	c0 := substr[0]
  1079  	c1 := substr[1]
  1080  	i := 0
  1081  	t := len(s) - n + 1
  1082  	fails := 0
  1083  	for i < t {
  1084  		if s[i] != c0 {
  1085  			o := IndexByte(s[i+1:t], c0)
  1086  			if o < 0 {
  1087  				return -1
  1088  			}
  1089  			i += o + 1
  1090  		}
  1091  		if s[i+1] == c1 && s[i:i+n] == substr {
  1092  			return i
  1093  		}
  1094  		i++
  1095  		fails++
  1096  		if fails >= 4+i>>4 && i < t {
  1097  			// See comment in ../bytes/bytes.go.
  1098  			j := bytealg.IndexRabinKarp(s[i:], substr)
  1099  			if j < 0 {
  1100  				return -1
  1101  			}
  1102  			return i + j
  1103  		}
  1104  	}
  1105  	return -1
  1106  }
  1107  
  1108  // Cut slices s around the first instance of sep,
  1109  // returning the text before and after sep.
  1110  // The found result reports whether sep appears in s.
  1111  // If sep does not appear in s, cut returns s, "", false.
  1112  func Cut(s, sep string) (before, after string, found bool) {
  1113  	if i := Index(s, sep); i >= 0 {
  1114  		return s[:i], s[i+len(sep):], true
  1115  	}
  1116  	return s, "", false
  1117  }
  1118  
  1119  // CutPrefix returns s without the provided leading prefix string
  1120  // and reports whether it found the prefix.
  1121  // If s doesn't start with prefix, CutPrefix returns s, false.
  1122  // If prefix is the empty string, CutPrefix returns s, true.
  1123  func CutPrefix(s, prefix string) (after string, found bool) {
  1124  	if !HasPrefix(s, prefix) {
  1125  		return s, false
  1126  	}
  1127  	return s[len(prefix):], true
  1128  }
  1129  
  1130  // CutSuffix returns s without the provided ending suffix string
  1131  // and reports whether it found the suffix.
  1132  // If s doesn't end with suffix, CutSuffix returns s, false.
  1133  // If suffix is the empty string, CutSuffix returns s, true.
  1134  func CutSuffix(s, suffix string) (before string, found bool) {
  1135  	if !HasSuffix(s, suffix) {
  1136  		return s, false
  1137  	}
  1138  	return s[:len(s)-len(suffix)], true
  1139  }