github.com/gnolang/gno@v0.0.0-20240520182011-228e9d0192ce/tm2/pkg/bft/mempool/reactor.go (about)

     1  package mempool
     2  
     3  import (
     4  	"fmt"
     5  	"log/slog"
     6  	"math"
     7  	"reflect"
     8  	"sync"
     9  	"time"
    10  
    11  	"github.com/gnolang/gno/tm2/pkg/amino"
    12  	cfg "github.com/gnolang/gno/tm2/pkg/bft/mempool/config"
    13  	"github.com/gnolang/gno/tm2/pkg/bft/types"
    14  	"github.com/gnolang/gno/tm2/pkg/clist"
    15  	"github.com/gnolang/gno/tm2/pkg/p2p"
    16  )
    17  
    18  const (
    19  	MempoolChannel = byte(0x30)
    20  
    21  	peerCatchupSleepIntervalMS = 100 // If peer is behind, sleep this amount
    22  
    23  	// UnknownPeerID is the peer ID to use when running CheckTx when there is
    24  	// no peer (e.g. RPC)
    25  	UnknownPeerID uint16 = 0
    26  
    27  	maxActiveIDs = math.MaxUint16
    28  )
    29  
    30  // Reactor handles mempool tx broadcasting amongst peers.
    31  // It maintains a map from peer ID to counter, to prevent gossiping txs to the
    32  // peers you received it from.
    33  type Reactor struct {
    34  	p2p.BaseReactor
    35  	config  *cfg.MempoolConfig
    36  	mempool *CListMempool
    37  	ids     *mempoolIDs
    38  }
    39  
    40  type mempoolIDs struct {
    41  	mtx       sync.RWMutex
    42  	peerMap   map[p2p.ID]uint16
    43  	nextID    uint16              // assumes that a node will never have over 65536 active peers
    44  	activeIDs map[uint16]struct{} // used to check if a given peerID key is used, the value doesn't matter
    45  }
    46  
    47  // Reserve searches for the next unused ID and assigns it to the
    48  // peer.
    49  func (ids *mempoolIDs) ReserveForPeer(peer p2p.Peer) {
    50  	ids.mtx.Lock()
    51  	defer ids.mtx.Unlock()
    52  
    53  	curID := ids.nextPeerID()
    54  	ids.peerMap[peer.ID()] = curID
    55  	ids.activeIDs[curID] = struct{}{}
    56  }
    57  
    58  // nextPeerID returns the next unused peer ID to use.
    59  // This assumes that ids's mutex is already locked.
    60  func (ids *mempoolIDs) nextPeerID() uint16 {
    61  	if len(ids.activeIDs) == maxActiveIDs {
    62  		panic(fmt.Sprintf("node has maximum %d active IDs and wanted to get one more", maxActiveIDs))
    63  	}
    64  
    65  	_, idExists := ids.activeIDs[ids.nextID]
    66  	for idExists {
    67  		ids.nextID++
    68  		_, idExists = ids.activeIDs[ids.nextID]
    69  	}
    70  	curID := ids.nextID
    71  	ids.nextID++
    72  	return curID
    73  }
    74  
    75  // Reclaim returns the ID reserved for the peer back to unused pool.
    76  func (ids *mempoolIDs) Reclaim(peer p2p.Peer) {
    77  	ids.mtx.Lock()
    78  	defer ids.mtx.Unlock()
    79  
    80  	removedID, ok := ids.peerMap[peer.ID()]
    81  	if ok {
    82  		delete(ids.activeIDs, removedID)
    83  		delete(ids.peerMap, peer.ID())
    84  	}
    85  }
    86  
    87  // GetForPeer returns an ID reserved for the peer.
    88  func (ids *mempoolIDs) GetForPeer(peer p2p.Peer) uint16 {
    89  	ids.mtx.RLock()
    90  	defer ids.mtx.RUnlock()
    91  
    92  	return ids.peerMap[peer.ID()]
    93  }
    94  
    95  func newMempoolIDs() *mempoolIDs {
    96  	return &mempoolIDs{
    97  		peerMap:   make(map[p2p.ID]uint16),
    98  		activeIDs: map[uint16]struct{}{0: {}},
    99  		nextID:    1, // reserve unknownPeerID(0) for mempoolReactor.BroadcastTx
   100  	}
   101  }
   102  
   103  // NewReactor returns a new Reactor with the given config and mempool.
   104  func NewReactor(config *cfg.MempoolConfig, mempool *CListMempool) *Reactor {
   105  	memR := &Reactor{
   106  		config:  config,
   107  		mempool: mempool,
   108  		ids:     newMempoolIDs(),
   109  	}
   110  	memR.BaseReactor = *p2p.NewBaseReactor("Reactor", memR)
   111  	return memR
   112  }
   113  
   114  // SetLogger sets the Logger on the reactor and the underlying mempool.
   115  func (memR *Reactor) SetLogger(l *slog.Logger) {
   116  	memR.Logger = l
   117  	memR.mempool.SetLogger(l)
   118  }
   119  
   120  // OnStart implements p2p.BaseReactor.
   121  func (memR *Reactor) OnStart() error {
   122  	if !memR.config.Broadcast {
   123  		memR.Logger.Info("Tx broadcasting is disabled")
   124  	}
   125  	return nil
   126  }
   127  
   128  // GetChannels implements Reactor.
   129  // It returns the list of channels for this reactor.
   130  func (memR *Reactor) GetChannels() []*p2p.ChannelDescriptor {
   131  	return []*p2p.ChannelDescriptor{
   132  		{
   133  			ID:       MempoolChannel,
   134  			Priority: 5,
   135  		},
   136  	}
   137  }
   138  
   139  // AddPeer implements Reactor.
   140  // It starts a broadcast routine ensuring all txs are forwarded to the given peer.
   141  func (memR *Reactor) AddPeer(peer p2p.Peer) {
   142  	memR.ids.ReserveForPeer(peer)
   143  	go memR.broadcastTxRoutine(peer)
   144  }
   145  
   146  // RemovePeer implements Reactor.
   147  func (memR *Reactor) RemovePeer(peer p2p.Peer, reason interface{}) {
   148  	memR.ids.Reclaim(peer)
   149  	// broadcast routine checks if peer is gone and returns
   150  }
   151  
   152  // Receive implements Reactor.
   153  // It adds any received transactions to the mempool.
   154  func (memR *Reactor) Receive(chID byte, src p2p.Peer, msgBytes []byte) {
   155  	msg, err := memR.decodeMsg(msgBytes)
   156  	if err != nil {
   157  		memR.Logger.Error("Error decoding mempool message", "src", src, "chId", chID, "msg", msg, "err", err, "bytes", msgBytes)
   158  		memR.Switch.StopPeerForError(src, err)
   159  		return
   160  	}
   161  	memR.Logger.Debug("Receive", "src", src, "chId", chID, "msg", msg)
   162  
   163  	switch msg := msg.(type) {
   164  	case *TxMessage:
   165  		peerID := memR.ids.GetForPeer(src)
   166  		err := memR.mempool.CheckTxWithInfo(msg.Tx, nil, TxInfo{SenderID: peerID})
   167  		if err != nil {
   168  			memR.Logger.Info("Could not check tx", "tx", txID(msg.Tx), "err", err)
   169  		}
   170  		// broadcasting happens from go routines per peer
   171  	default:
   172  		memR.Logger.Error(fmt.Sprintf("Unknown message type %v", reflect.TypeOf(msg)))
   173  	}
   174  }
   175  
   176  // PeerState describes the state of a peer.
   177  type PeerState interface {
   178  	GetHeight() int64
   179  }
   180  
   181  // Send new mempool txs to peer.
   182  func (memR *Reactor) broadcastTxRoutine(peer p2p.Peer) {
   183  	if !memR.config.Broadcast {
   184  		return
   185  	}
   186  
   187  	peerID := memR.ids.GetForPeer(peer)
   188  	var next *clist.CElement
   189  	for {
   190  		// In case of both next.NextWaitChan() and peer.Quit() are variable at the same time
   191  		if !memR.IsRunning() || !peer.IsRunning() {
   192  			return
   193  		}
   194  		// This happens because the CElement we were looking at got garbage
   195  		// collected (removed). That is, .NextWait() returned nil. Go ahead and
   196  		// start from the beginning.
   197  		if next == nil {
   198  			select {
   199  			case <-memR.mempool.TxsWaitChan(): // Wait until a tx is available
   200  				if next = memR.mempool.TxsFront(); next == nil {
   201  					continue
   202  				}
   203  			case <-peer.Quit():
   204  				return
   205  			case <-memR.Quit():
   206  				return
   207  			}
   208  		}
   209  
   210  		memTx := next.Value.(*mempoolTx)
   211  
   212  		// make sure the peer is up to date
   213  		peerState, ok := peer.Get(types.PeerStateKey).(PeerState)
   214  		if !ok {
   215  			// Peer does not have a state yet. We set it in the consensus reactor, but
   216  			// when we add peer in Switch, the order we call reactors#AddPeer is
   217  			// different every time due to us using a map. Sometimes other reactors
   218  			// will be initialized before the consensus reactor. We should wait a few
   219  			// milliseconds and retry.
   220  			time.Sleep(peerCatchupSleepIntervalMS * time.Millisecond)
   221  			continue
   222  		}
   223  		if peerState.GetHeight() < memTx.Height()-1 { // Allow for a lag of 1 block
   224  			time.Sleep(peerCatchupSleepIntervalMS * time.Millisecond)
   225  			continue
   226  		}
   227  
   228  		// ensure peer hasn't already sent us this tx
   229  		if _, ok := memTx.senders.Load(peerID); !ok {
   230  			// send memTx
   231  			msg := &TxMessage{Tx: memTx.tx}
   232  			success := peer.Send(MempoolChannel, amino.MustMarshalAny(msg))
   233  			if !success {
   234  				time.Sleep(peerCatchupSleepIntervalMS * time.Millisecond)
   235  				continue
   236  			}
   237  		}
   238  
   239  		select {
   240  		case <-next.NextWaitChan():
   241  			// see the start of the for loop for nil check
   242  			next = next.Next()
   243  		case <-peer.Quit():
   244  			return
   245  		case <-memR.Quit():
   246  			return
   247  		}
   248  	}
   249  }
   250  
   251  // -----------------------------------------------------------------------------
   252  // Messages
   253  
   254  // MempoolMessage is a message sent or received by the Reactor.
   255  type MempoolMessage interface{}
   256  
   257  func (memR *Reactor) decodeMsg(bz []byte) (msg MempoolMessage, err error) {
   258  	err = amino.Unmarshal(bz, &msg)
   259  	return
   260  }
   261  
   262  // -------------------------------------
   263  
   264  // TxMessage is a MempoolMessage containing a transaction.
   265  type TxMessage struct {
   266  	Tx types.Tx
   267  }
   268  
   269  // String returns a string representation of the TxMessage.
   270  func (m *TxMessage) String() string {
   271  	return fmt.Sprintf("[TxMessage %v]", m.Tx)
   272  }