github.com/go-asm/go@v1.21.1-0.20240213172139-40c5ead50c48/cmd/compile/dwarfgen/dwarf.go (about)

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package dwarfgen
     6  
     7  import (
     8  	"bytes"
     9  	"flag"
    10  	"fmt"
    11  	"sort"
    12  
    13  	"github.com/go-asm/go/buildcfg"
    14  
    15  	"github.com/go-asm/go/cmd/compile/base"
    16  	"github.com/go-asm/go/cmd/compile/ir"
    17  	"github.com/go-asm/go/cmd/compile/reflectdata"
    18  	"github.com/go-asm/go/cmd/compile/ssa"
    19  	"github.com/go-asm/go/cmd/compile/ssagen"
    20  	"github.com/go-asm/go/cmd/compile/types"
    21  	"github.com/go-asm/go/cmd/dwarf"
    22  	"github.com/go-asm/go/cmd/obj"
    23  	"github.com/go-asm/go/cmd/objabi"
    24  	"github.com/go-asm/go/cmd/src"
    25  )
    26  
    27  func Info(fnsym *obj.LSym, infosym *obj.LSym, curfn obj.Func) (scopes []dwarf.Scope, inlcalls dwarf.InlCalls) {
    28  	fn := curfn.(*ir.Func)
    29  
    30  	if fn.Nname != nil {
    31  		expect := fn.Linksym()
    32  		if fnsym.ABI() == obj.ABI0 {
    33  			expect = fn.LinksymABI(obj.ABI0)
    34  		}
    35  		if fnsym != expect {
    36  			base.Fatalf("unexpected fnsym: %v != %v", fnsym, expect)
    37  		}
    38  	}
    39  
    40  	// Back when there were two different *Funcs for a function, this code
    41  	// was not consistent about whether a particular *Node being processed
    42  	// was an ODCLFUNC or ONAME node. Partly this is because inlined function
    43  	// bodies have no ODCLFUNC node, which was it's own inconsistency.
    44  	// In any event, the handling of the two different nodes for DWARF purposes
    45  	// was subtly different, likely in unintended ways. CL 272253 merged the
    46  	// two nodes' Func fields, so that code sees the same *Func whether it is
    47  	// holding the ODCLFUNC or the ONAME. This resulted in changes in the
    48  	// DWARF output. To preserve the existing DWARF output and leave an
    49  	// intentional change for a future CL, this code does the following when
    50  	// fn.Op == ONAME:
    51  	//
    52  	// 1. Disallow use of createComplexVars in createDwarfVars.
    53  	//    It was not possible to reach that code for an ONAME before,
    54  	//    because the DebugInfo was set only on the ODCLFUNC Func.
    55  	//    Calling into it in the ONAME case causes an index out of bounds panic.
    56  	//
    57  	// 2. Do not populate apdecls. fn.Func.Dcl was in the ODCLFUNC Func,
    58  	//    not the ONAME Func. Populating apdecls for the ONAME case results
    59  	//    in selected being populated after createSimpleVars is called in
    60  	//    createDwarfVars, and then that causes the loop to skip all the entries
    61  	//    in dcl, meaning that the RecordAutoType calls don't happen.
    62  	//
    63  	// These two adjustments keep toolstash -cmp working for now.
    64  	// Deciding the right answer is, as they say, future work.
    65  	//
    66  	// We can tell the difference between the old ODCLFUNC and ONAME
    67  	// cases by looking at the infosym.Name. If it's empty, DebugInfo is
    68  	// being called from (*obj.Link).populateDWARF, which used to use
    69  	// the ODCLFUNC. If it's non-empty (the name will end in $abstract),
    70  	// DebugInfo is being called from (*obj.Link).DwarfAbstractFunc,
    71  	// which used to use the ONAME form.
    72  	isODCLFUNC := infosym.Name == ""
    73  
    74  	var apdecls []*ir.Name
    75  	// Populate decls for fn.
    76  	if isODCLFUNC {
    77  		for _, n := range fn.Dcl {
    78  			if n.Op() != ir.ONAME { // might be OTYPE or OLITERAL
    79  				continue
    80  			}
    81  			switch n.Class {
    82  			case ir.PAUTO:
    83  				if !n.Used() {
    84  					// Text == nil -> generating abstract function
    85  					if fnsym.Func().Text != nil {
    86  						base.Fatalf("debuginfo unused node (AllocFrame should truncate fn.Func.Dcl)")
    87  					}
    88  					continue
    89  				}
    90  			case ir.PPARAM, ir.PPARAMOUT:
    91  			default:
    92  				continue
    93  			}
    94  			apdecls = append(apdecls, n)
    95  			if n.Type().Kind() == types.TSSA {
    96  				// Can happen for TypeInt128 types. This only happens for
    97  				// spill locations, so not a huge deal.
    98  				continue
    99  			}
   100  			fnsym.Func().RecordAutoType(reflectdata.TypeLinksym(n.Type()))
   101  		}
   102  	}
   103  
   104  	decls, dwarfVars := createDwarfVars(fnsym, isODCLFUNC, fn, apdecls)
   105  
   106  	// For each type referenced by the functions auto vars but not
   107  	// already referenced by a dwarf var, attach an R_USETYPE relocation to
   108  	// the function symbol to insure that the type included in DWARF
   109  	// processing during linking.
   110  	typesyms := []*obj.LSym{}
   111  	for t := range fnsym.Func().Autot {
   112  		typesyms = append(typesyms, t)
   113  	}
   114  	sort.Sort(obj.BySymName(typesyms))
   115  	for _, sym := range typesyms {
   116  		r := obj.Addrel(infosym)
   117  		r.Sym = sym
   118  		r.Type = objabi.R_USETYPE
   119  	}
   120  	fnsym.Func().Autot = nil
   121  
   122  	var varScopes []ir.ScopeID
   123  	for _, decl := range decls {
   124  		pos := declPos(decl)
   125  		varScopes = append(varScopes, findScope(fn.Marks, pos))
   126  	}
   127  
   128  	scopes = assembleScopes(fnsym, fn, dwarfVars, varScopes)
   129  	if base.Flag.GenDwarfInl > 0 {
   130  		inlcalls = assembleInlines(fnsym, dwarfVars)
   131  	}
   132  	return scopes, inlcalls
   133  }
   134  
   135  func declPos(decl *ir.Name) src.XPos {
   136  	return decl.Canonical().Pos()
   137  }
   138  
   139  // createDwarfVars process fn, returning a list of DWARF variables and the
   140  // Nodes they represent.
   141  func createDwarfVars(fnsym *obj.LSym, complexOK bool, fn *ir.Func, apDecls []*ir.Name) ([]*ir.Name, []*dwarf.Var) {
   142  	// Collect a raw list of DWARF vars.
   143  	var vars []*dwarf.Var
   144  	var decls []*ir.Name
   145  	var selected ir.NameSet
   146  
   147  	if base.Ctxt.Flag_locationlists && base.Ctxt.Flag_optimize && fn.DebugInfo != nil && complexOK {
   148  		decls, vars, selected = createComplexVars(fnsym, fn)
   149  	} else if fn.ABI == obj.ABIInternal && base.Flag.N != 0 && complexOK {
   150  		decls, vars, selected = createABIVars(fnsym, fn, apDecls)
   151  	} else {
   152  		decls, vars, selected = createSimpleVars(fnsym, apDecls)
   153  	}
   154  	if fn.DebugInfo != nil {
   155  		// Recover zero sized variables eliminated by the stackframe pass
   156  		for _, n := range fn.DebugInfo.(*ssa.FuncDebug).OptDcl {
   157  			if n.Class != ir.PAUTO {
   158  				continue
   159  			}
   160  			types.CalcSize(n.Type())
   161  			if n.Type().Size() == 0 {
   162  				decls = append(decls, n)
   163  				vars = append(vars, createSimpleVar(fnsym, n))
   164  				vars[len(vars)-1].StackOffset = 0
   165  				fnsym.Func().RecordAutoType(reflectdata.TypeLinksym(n.Type()))
   166  			}
   167  		}
   168  	}
   169  
   170  	dcl := apDecls
   171  	if fnsym.WasInlined() {
   172  		dcl = preInliningDcls(fnsym)
   173  	} else {
   174  		// The backend's stackframe pass prunes away entries from the
   175  		// fn's Dcl list, including PARAMOUT nodes that correspond to
   176  		// output params passed in registers. Add back in these
   177  		// entries here so that we can process them properly during
   178  		// DWARF-gen. See issue 48573 for more details.
   179  		debugInfo := fn.DebugInfo.(*ssa.FuncDebug)
   180  		for _, n := range debugInfo.RegOutputParams {
   181  			if n.Class != ir.PPARAMOUT || !n.IsOutputParamInRegisters() {
   182  				panic("invalid ir.Name on debugInfo.RegOutputParams list")
   183  			}
   184  			dcl = append(dcl, n)
   185  		}
   186  	}
   187  
   188  	// If optimization is enabled, the list above will typically be
   189  	// missing some of the original pre-optimization variables in the
   190  	// function (they may have been promoted to registers, folded into
   191  	// constants, dead-coded away, etc).  Input arguments not eligible
   192  	// for SSA optimization are also missing.  Here we add back in entries
   193  	// for selected missing vars. Note that the recipe below creates a
   194  	// conservative location. The idea here is that we want to
   195  	// communicate to the user that "yes, there is a variable named X
   196  	// in this function, but no, I don't have enough information to
   197  	// reliably report its contents."
   198  	// For non-SSA-able arguments, however, the correct information
   199  	// is known -- they have a single home on the stack.
   200  	for _, n := range dcl {
   201  		if selected.Has(n) {
   202  			continue
   203  		}
   204  		c := n.Sym().Name[0]
   205  		if c == '.' || n.Type().IsUntyped() {
   206  			continue
   207  		}
   208  		if n.Class == ir.PPARAM && !ssa.CanSSA(n.Type()) {
   209  			// SSA-able args get location lists, and may move in and
   210  			// out of registers, so those are handled elsewhere.
   211  			// Autos and named output params seem to get handled
   212  			// with VARDEF, which creates location lists.
   213  			// Args not of SSA-able type are treated here; they
   214  			// are homed on the stack in a single place for the
   215  			// entire call.
   216  			vars = append(vars, createSimpleVar(fnsym, n))
   217  			decls = append(decls, n)
   218  			continue
   219  		}
   220  		typename := dwarf.InfoPrefix + types.TypeSymName(n.Type())
   221  		decls = append(decls, n)
   222  		abbrev := dwarf.DW_ABRV_AUTO_LOCLIST
   223  		isReturnValue := (n.Class == ir.PPARAMOUT)
   224  		if n.Class == ir.PPARAM || n.Class == ir.PPARAMOUT {
   225  			abbrev = dwarf.DW_ABRV_PARAM_LOCLIST
   226  		}
   227  		if n.Esc() == ir.EscHeap {
   228  			// The variable in question has been promoted to the heap.
   229  			// Its address is in n.Heapaddr.
   230  			// TODO(thanm): generate a better location expression
   231  		}
   232  		inlIndex := 0
   233  		if base.Flag.GenDwarfInl > 1 {
   234  			if n.InlFormal() || n.InlLocal() {
   235  				inlIndex = posInlIndex(n.Pos()) + 1
   236  				if n.InlFormal() {
   237  					abbrev = dwarf.DW_ABRV_PARAM_LOCLIST
   238  				}
   239  			}
   240  		}
   241  		declpos := base.Ctxt.InnermostPos(n.Pos())
   242  		vars = append(vars, &dwarf.Var{
   243  			Name:          n.Sym().Name,
   244  			IsReturnValue: isReturnValue,
   245  			Abbrev:        abbrev,
   246  			StackOffset:   int32(n.FrameOffset()),
   247  			Type:          base.Ctxt.Lookup(typename),
   248  			DeclFile:      declpos.RelFilename(),
   249  			DeclLine:      declpos.RelLine(),
   250  			DeclCol:       declpos.RelCol(),
   251  			InlIndex:      int32(inlIndex),
   252  			ChildIndex:    -1,
   253  			DictIndex:     n.DictIndex,
   254  		})
   255  		// Record go type of to insure that it gets emitted by the linker.
   256  		fnsym.Func().RecordAutoType(reflectdata.TypeLinksym(n.Type()))
   257  	}
   258  
   259  	// Sort decls and vars.
   260  	sortDeclsAndVars(fn, decls, vars)
   261  
   262  	return decls, vars
   263  }
   264  
   265  // sortDeclsAndVars sorts the decl and dwarf var lists according to
   266  // parameter declaration order, so as to insure that when a subprogram
   267  // DIE is emitted, its parameter children appear in declaration order.
   268  // Prior to the advent of the register ABI, sorting by frame offset
   269  // would achieve this; with the register we now need to go back to the
   270  // original function signature.
   271  func sortDeclsAndVars(fn *ir.Func, decls []*ir.Name, vars []*dwarf.Var) {
   272  	paramOrder := make(map[*ir.Name]int)
   273  	idx := 1
   274  	for _, f := range fn.Type().RecvParamsResults() {
   275  		if n, ok := f.Nname.(*ir.Name); ok {
   276  			paramOrder[n] = idx
   277  			idx++
   278  		}
   279  	}
   280  	sort.Stable(varsAndDecls{decls, vars, paramOrder})
   281  }
   282  
   283  type varsAndDecls struct {
   284  	decls      []*ir.Name
   285  	vars       []*dwarf.Var
   286  	paramOrder map[*ir.Name]int
   287  }
   288  
   289  func (v varsAndDecls) Len() int {
   290  	return len(v.decls)
   291  }
   292  
   293  func (v varsAndDecls) Less(i, j int) bool {
   294  	nameLT := func(ni, nj *ir.Name) bool {
   295  		oi, foundi := v.paramOrder[ni]
   296  		oj, foundj := v.paramOrder[nj]
   297  		if foundi {
   298  			if foundj {
   299  				return oi < oj
   300  			} else {
   301  				return true
   302  			}
   303  		}
   304  		return false
   305  	}
   306  	return nameLT(v.decls[i], v.decls[j])
   307  }
   308  
   309  func (v varsAndDecls) Swap(i, j int) {
   310  	v.vars[i], v.vars[j] = v.vars[j], v.vars[i]
   311  	v.decls[i], v.decls[j] = v.decls[j], v.decls[i]
   312  }
   313  
   314  // Given a function that was inlined at some point during the
   315  // compilation, return a sorted list of nodes corresponding to the
   316  // autos/locals in that function prior to inlining. If this is a
   317  // function that is not local to the package being compiled, then the
   318  // names of the variables may have been "versioned" to avoid conflicts
   319  // with local vars; disregard this versioning when sorting.
   320  func preInliningDcls(fnsym *obj.LSym) []*ir.Name {
   321  	fn := base.Ctxt.DwFixups.GetPrecursorFunc(fnsym).(*ir.Func)
   322  	var rdcl []*ir.Name
   323  	for _, n := range fn.Inl.Dcl {
   324  		c := n.Sym().Name[0]
   325  		// Avoid reporting "_" parameters, since if there are more than
   326  		// one, it can result in a collision later on, as in #23179.
   327  		if n.Sym().Name == "_" || c == '.' || n.Type().IsUntyped() {
   328  			continue
   329  		}
   330  		rdcl = append(rdcl, n)
   331  	}
   332  	return rdcl
   333  }
   334  
   335  // createSimpleVars creates a DWARF entry for every variable declared in the
   336  // function, claiming that they are permanently on the stack.
   337  func createSimpleVars(fnsym *obj.LSym, apDecls []*ir.Name) ([]*ir.Name, []*dwarf.Var, ir.NameSet) {
   338  	var vars []*dwarf.Var
   339  	var decls []*ir.Name
   340  	var selected ir.NameSet
   341  	for _, n := range apDecls {
   342  		if ir.IsAutoTmp(n) {
   343  			continue
   344  		}
   345  
   346  		decls = append(decls, n)
   347  		vars = append(vars, createSimpleVar(fnsym, n))
   348  		selected.Add(n)
   349  	}
   350  	return decls, vars, selected
   351  }
   352  
   353  func createSimpleVar(fnsym *obj.LSym, n *ir.Name) *dwarf.Var {
   354  	var abbrev int
   355  	var offs int64
   356  
   357  	localAutoOffset := func() int64 {
   358  		offs = n.FrameOffset()
   359  		if base.Ctxt.Arch.FixedFrameSize == 0 {
   360  			offs -= int64(types.PtrSize)
   361  		}
   362  		if buildcfg.FramePointerEnabled {
   363  			offs -= int64(types.PtrSize)
   364  		}
   365  		return offs
   366  	}
   367  
   368  	switch n.Class {
   369  	case ir.PAUTO:
   370  		offs = localAutoOffset()
   371  		abbrev = dwarf.DW_ABRV_AUTO
   372  	case ir.PPARAM, ir.PPARAMOUT:
   373  		abbrev = dwarf.DW_ABRV_PARAM
   374  		if n.IsOutputParamInRegisters() {
   375  			offs = localAutoOffset()
   376  		} else {
   377  			offs = n.FrameOffset() + base.Ctxt.Arch.FixedFrameSize
   378  		}
   379  
   380  	default:
   381  		base.Fatalf("createSimpleVar unexpected class %v for node %v", n.Class, n)
   382  	}
   383  
   384  	typename := dwarf.InfoPrefix + types.TypeSymName(n.Type())
   385  	delete(fnsym.Func().Autot, reflectdata.TypeLinksym(n.Type()))
   386  	inlIndex := 0
   387  	if base.Flag.GenDwarfInl > 1 {
   388  		if n.InlFormal() || n.InlLocal() {
   389  			inlIndex = posInlIndex(n.Pos()) + 1
   390  			if n.InlFormal() {
   391  				abbrev = dwarf.DW_ABRV_PARAM
   392  			}
   393  		}
   394  	}
   395  	declpos := base.Ctxt.InnermostPos(declPos(n))
   396  	return &dwarf.Var{
   397  		Name:          n.Sym().Name,
   398  		IsReturnValue: n.Class == ir.PPARAMOUT,
   399  		IsInlFormal:   n.InlFormal(),
   400  		Abbrev:        abbrev,
   401  		StackOffset:   int32(offs),
   402  		Type:          base.Ctxt.Lookup(typename),
   403  		DeclFile:      declpos.RelFilename(),
   404  		DeclLine:      declpos.RelLine(),
   405  		DeclCol:       declpos.RelCol(),
   406  		InlIndex:      int32(inlIndex),
   407  		ChildIndex:    -1,
   408  		DictIndex:     n.DictIndex,
   409  	}
   410  }
   411  
   412  // createABIVars creates DWARF variables for functions in which the
   413  // register ABI is enabled but optimization is turned off. It uses a
   414  // hybrid approach in which register-resident input params are
   415  // captured with location lists, and all other vars use the "simple"
   416  // strategy.
   417  func createABIVars(fnsym *obj.LSym, fn *ir.Func, apDecls []*ir.Name) ([]*ir.Name, []*dwarf.Var, ir.NameSet) {
   418  
   419  	// Invoke createComplexVars to generate dwarf vars for input parameters
   420  	// that are register-allocated according to the ABI rules.
   421  	decls, vars, selected := createComplexVars(fnsym, fn)
   422  
   423  	// Now fill in the remainder of the variables: input parameters
   424  	// that are not register-resident, output parameters, and local
   425  	// variables.
   426  	for _, n := range apDecls {
   427  		if ir.IsAutoTmp(n) {
   428  			continue
   429  		}
   430  		if _, ok := selected[n]; ok {
   431  			// already handled
   432  			continue
   433  		}
   434  
   435  		decls = append(decls, n)
   436  		vars = append(vars, createSimpleVar(fnsym, n))
   437  		selected.Add(n)
   438  	}
   439  
   440  	return decls, vars, selected
   441  }
   442  
   443  // createComplexVars creates recomposed DWARF vars with location lists,
   444  // suitable for describing optimized code.
   445  func createComplexVars(fnsym *obj.LSym, fn *ir.Func) ([]*ir.Name, []*dwarf.Var, ir.NameSet) {
   446  	debugInfo := fn.DebugInfo.(*ssa.FuncDebug)
   447  
   448  	// Produce a DWARF variable entry for each user variable.
   449  	var decls []*ir.Name
   450  	var vars []*dwarf.Var
   451  	var ssaVars ir.NameSet
   452  
   453  	for varID, dvar := range debugInfo.Vars {
   454  		n := dvar
   455  		ssaVars.Add(n)
   456  		for _, slot := range debugInfo.VarSlots[varID] {
   457  			ssaVars.Add(debugInfo.Slots[slot].N)
   458  		}
   459  
   460  		if dvar := createComplexVar(fnsym, fn, ssa.VarID(varID)); dvar != nil {
   461  			decls = append(decls, n)
   462  			vars = append(vars, dvar)
   463  		}
   464  	}
   465  
   466  	return decls, vars, ssaVars
   467  }
   468  
   469  // createComplexVar builds a single DWARF variable entry and location list.
   470  func createComplexVar(fnsym *obj.LSym, fn *ir.Func, varID ssa.VarID) *dwarf.Var {
   471  	debug := fn.DebugInfo.(*ssa.FuncDebug)
   472  	n := debug.Vars[varID]
   473  
   474  	var abbrev int
   475  	switch n.Class {
   476  	case ir.PAUTO:
   477  		abbrev = dwarf.DW_ABRV_AUTO_LOCLIST
   478  	case ir.PPARAM, ir.PPARAMOUT:
   479  		abbrev = dwarf.DW_ABRV_PARAM_LOCLIST
   480  	default:
   481  		return nil
   482  	}
   483  
   484  	gotype := reflectdata.TypeLinksym(n.Type())
   485  	delete(fnsym.Func().Autot, gotype)
   486  	typename := dwarf.InfoPrefix + gotype.Name[len("type:"):]
   487  	inlIndex := 0
   488  	if base.Flag.GenDwarfInl > 1 {
   489  		if n.InlFormal() || n.InlLocal() {
   490  			inlIndex = posInlIndex(n.Pos()) + 1
   491  			if n.InlFormal() {
   492  				abbrev = dwarf.DW_ABRV_PARAM_LOCLIST
   493  			}
   494  		}
   495  	}
   496  	declpos := base.Ctxt.InnermostPos(n.Pos())
   497  	dvar := &dwarf.Var{
   498  		Name:          n.Sym().Name,
   499  		IsReturnValue: n.Class == ir.PPARAMOUT,
   500  		IsInlFormal:   n.InlFormal(),
   501  		Abbrev:        abbrev,
   502  		Type:          base.Ctxt.Lookup(typename),
   503  		// The stack offset is used as a sorting key, so for decomposed
   504  		// variables just give it the first one. It's not used otherwise.
   505  		// This won't work well if the first slot hasn't been assigned a stack
   506  		// location, but it's not obvious how to do better.
   507  		StackOffset: ssagen.StackOffset(debug.Slots[debug.VarSlots[varID][0]]),
   508  		DeclFile:    declpos.RelFilename(),
   509  		DeclLine:    declpos.RelLine(),
   510  		DeclCol:     declpos.RelCol(),
   511  		InlIndex:    int32(inlIndex),
   512  		ChildIndex:  -1,
   513  		DictIndex:   n.DictIndex,
   514  	}
   515  	list := debug.LocationLists[varID]
   516  	if len(list) != 0 {
   517  		dvar.PutLocationList = func(listSym, startPC dwarf.Sym) {
   518  			debug.PutLocationList(list, base.Ctxt, listSym.(*obj.LSym), startPC.(*obj.LSym))
   519  		}
   520  	}
   521  	return dvar
   522  }
   523  
   524  // RecordFlags records the specified command-line flags to be placed
   525  // in the DWARF info.
   526  func RecordFlags(flags ...string) {
   527  	if base.Ctxt.Pkgpath == "" {
   528  		panic("missing pkgpath")
   529  	}
   530  
   531  	type BoolFlag interface {
   532  		IsBoolFlag() bool
   533  	}
   534  	type CountFlag interface {
   535  		IsCountFlag() bool
   536  	}
   537  	var cmd bytes.Buffer
   538  	for _, name := range flags {
   539  		f := flag.Lookup(name)
   540  		if f == nil {
   541  			continue
   542  		}
   543  		getter := f.Value.(flag.Getter)
   544  		if getter.String() == f.DefValue {
   545  			// Flag has default value, so omit it.
   546  			continue
   547  		}
   548  		if bf, ok := f.Value.(BoolFlag); ok && bf.IsBoolFlag() {
   549  			val, ok := getter.Get().(bool)
   550  			if ok && val {
   551  				fmt.Fprintf(&cmd, " -%s", f.Name)
   552  				continue
   553  			}
   554  		}
   555  		if cf, ok := f.Value.(CountFlag); ok && cf.IsCountFlag() {
   556  			val, ok := getter.Get().(int)
   557  			if ok && val == 1 {
   558  				fmt.Fprintf(&cmd, " -%s", f.Name)
   559  				continue
   560  			}
   561  		}
   562  		fmt.Fprintf(&cmd, " -%s=%v", f.Name, getter.Get())
   563  	}
   564  
   565  	// Adds flag to producer string signaling whether regabi is turned on or
   566  	// off.
   567  	// Once regabi is turned on across the board and the relative GOEXPERIMENT
   568  	// knobs no longer exist this code should be removed.
   569  	if buildcfg.Experiment.RegabiArgs {
   570  		cmd.Write([]byte(" regabi"))
   571  	}
   572  
   573  	if cmd.Len() == 0 {
   574  		return
   575  	}
   576  	s := base.Ctxt.Lookup(dwarf.CUInfoPrefix + "producer." + base.Ctxt.Pkgpath)
   577  	s.Type = objabi.SDWARFCUINFO
   578  	// Sometimes (for example when building tests) we can link
   579  	// together two package main archives. So allow dups.
   580  	s.Set(obj.AttrDuplicateOK, true)
   581  	base.Ctxt.Data = append(base.Ctxt.Data, s)
   582  	s.P = cmd.Bytes()[1:]
   583  }
   584  
   585  // RecordPackageName records the name of the package being
   586  // compiled, so that the linker can save it in the compile unit's DIE.
   587  func RecordPackageName() {
   588  	s := base.Ctxt.Lookup(dwarf.CUInfoPrefix + "packagename." + base.Ctxt.Pkgpath)
   589  	s.Type = objabi.SDWARFCUINFO
   590  	// Sometimes (for example when building tests) we can link
   591  	// together two package main archives. So allow dups.
   592  	s.Set(obj.AttrDuplicateOK, true)
   593  	base.Ctxt.Data = append(base.Ctxt.Data, s)
   594  	s.P = []byte(types.LocalPkg.Name)
   595  }