github.com/go-asm/go@v1.21.1-0.20240213172139-40c5ead50c48/cmd/compile/inline/inl.go (about)

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  //
     5  // The inlining facility makes 2 passes: first CanInline determines which
     6  // functions are suitable for inlining, and for those that are it
     7  // saves a copy of the body. Then InlineCalls walks each function body to
     8  // expand calls to inlinable functions.
     9  //
    10  // The Debug.l flag controls the aggressiveness. Note that main() swaps level 0 and 1,
    11  // making 1 the default and -l disable. Additional levels (beyond -l) may be buggy and
    12  // are not supported.
    13  //      0: disabled
    14  //      1: 80-nodes leaf functions, oneliners, panic, lazy typechecking (default)
    15  //      2: (unassigned)
    16  //      3: (unassigned)
    17  //      4: allow non-leaf functions
    18  //
    19  // At some point this may get another default and become switch-offable with -N.
    20  //
    21  // The -d typcheckinl flag enables early typechecking of all imported bodies,
    22  // which is useful to flush out bugs.
    23  //
    24  // The Debug.m flag enables diagnostic output.  a single -m is useful for verifying
    25  // which calls get inlined or not, more is for debugging, and may go away at any point.
    26  
    27  package inline
    28  
    29  import (
    30  	"fmt"
    31  	"go/constant"
    32  	"strconv"
    33  
    34  	"github.com/go-asm/go/buildcfg"
    35  
    36  	"github.com/go-asm/go/cmd/compile/base"
    37  	"github.com/go-asm/go/cmd/compile/inline/inlheur"
    38  	"github.com/go-asm/go/cmd/compile/ir"
    39  	"github.com/go-asm/go/cmd/compile/logopt"
    40  	"github.com/go-asm/go/cmd/compile/pgo"
    41  	"github.com/go-asm/go/cmd/compile/typecheck"
    42  	"github.com/go-asm/go/cmd/compile/types"
    43  	"github.com/go-asm/go/cmd/obj"
    44  )
    45  
    46  // Inlining budget parameters, gathered in one place
    47  const (
    48  	inlineMaxBudget       = 80
    49  	inlineExtraAppendCost = 0
    50  	// default is to inline if there's at most one call. -l=4 overrides this by using 1 instead.
    51  	inlineExtraCallCost  = 57              // 57 was benchmarked to provided most benefit with no bad surprises; see https://github.com/golang/go/issues/19348#issuecomment-439370742
    52  	inlineExtraPanicCost = 1               // do not penalize inlining panics.
    53  	inlineExtraThrowCost = inlineMaxBudget // with current (2018-05/1.11) code, inlining runtime.throw does not help.
    54  
    55  	inlineBigFunctionNodes   = 5000 // Functions with this many nodes are considered "big".
    56  	inlineBigFunctionMaxCost = 20   // Max cost of inlinee when inlining into a "big" function.
    57  )
    58  
    59  var (
    60  	// List of all hot callee nodes.
    61  	// TODO(prattmic): Make this non-global.
    62  	candHotCalleeMap = make(map[*pgo.IRNode]struct{})
    63  
    64  	// List of all hot call sites. CallSiteInfo.Callee is always nil.
    65  	// TODO(prattmic): Make this non-global.
    66  	candHotEdgeMap = make(map[pgo.CallSiteInfo]struct{})
    67  
    68  	// Threshold in percentage for hot callsite inlining.
    69  	inlineHotCallSiteThresholdPercent float64
    70  
    71  	// Threshold in CDF percentage for hot callsite inlining,
    72  	// that is, for a threshold of X the hottest callsites that
    73  	// make up the top X% of total edge weight will be
    74  	// considered hot for inlining candidates.
    75  	inlineCDFHotCallSiteThresholdPercent = float64(99)
    76  
    77  	// Budget increased due to hotness.
    78  	inlineHotMaxBudget int32 = 2000
    79  )
    80  
    81  // PGOInlinePrologue records the hot callsites from ir-graph.
    82  func PGOInlinePrologue(p *pgo.Profile, funcs []*ir.Func) {
    83  	if base.Debug.PGOInlineCDFThreshold != "" {
    84  		if s, err := strconv.ParseFloat(base.Debug.PGOInlineCDFThreshold, 64); err == nil && s >= 0 && s <= 100 {
    85  			inlineCDFHotCallSiteThresholdPercent = s
    86  		} else {
    87  			base.Fatalf("invalid PGOInlineCDFThreshold, must be between 0 and 100")
    88  		}
    89  	}
    90  	var hotCallsites []pgo.NamedCallEdge
    91  	inlineHotCallSiteThresholdPercent, hotCallsites = hotNodesFromCDF(p)
    92  	if base.Debug.PGODebug > 0 {
    93  		fmt.Printf("hot-callsite-thres-from-CDF=%v\n", inlineHotCallSiteThresholdPercent)
    94  	}
    95  
    96  	if x := base.Debug.PGOInlineBudget; x != 0 {
    97  		inlineHotMaxBudget = int32(x)
    98  	}
    99  
   100  	for _, n := range hotCallsites {
   101  		// mark inlineable callees from hot edges
   102  		if callee := p.WeightedCG.IRNodes[n.CalleeName]; callee != nil {
   103  			candHotCalleeMap[callee] = struct{}{}
   104  		}
   105  		// mark hot call sites
   106  		if caller := p.WeightedCG.IRNodes[n.CallerName]; caller != nil && caller.AST != nil {
   107  			csi := pgo.CallSiteInfo{LineOffset: n.CallSiteOffset, Caller: caller.AST}
   108  			candHotEdgeMap[csi] = struct{}{}
   109  		}
   110  	}
   111  
   112  	if base.Debug.PGODebug >= 3 {
   113  		fmt.Printf("hot-cg before inline in dot format:")
   114  		p.PrintWeightedCallGraphDOT(inlineHotCallSiteThresholdPercent)
   115  	}
   116  }
   117  
   118  // hotNodesFromCDF computes an edge weight threshold and the list of hot
   119  // nodes that make up the given percentage of the CDF. The threshold, as
   120  // a percent, is the lower bound of weight for nodes to be considered hot
   121  // (currently only used in debug prints) (in case of equal weights,
   122  // comparing with the threshold may not accurately reflect which nodes are
   123  // considiered hot).
   124  func hotNodesFromCDF(p *pgo.Profile) (float64, []pgo.NamedCallEdge) {
   125  	cum := int64(0)
   126  	for i, n := range p.NamedEdgeMap.ByWeight {
   127  		w := p.NamedEdgeMap.Weight[n]
   128  		cum += w
   129  		if pgo.WeightInPercentage(cum, p.TotalWeight) > inlineCDFHotCallSiteThresholdPercent {
   130  			// nodes[:i+1] to include the very last node that makes it to go over the threshold.
   131  			// (Say, if the CDF threshold is 50% and one hot node takes 60% of weight, we want to
   132  			// include that node instead of excluding it.)
   133  			return pgo.WeightInPercentage(w, p.TotalWeight), p.NamedEdgeMap.ByWeight[:i+1]
   134  		}
   135  	}
   136  	return 0, p.NamedEdgeMap.ByWeight
   137  }
   138  
   139  // CanInlineFuncs computes whether a batch of functions are inlinable.
   140  func CanInlineFuncs(funcs []*ir.Func, profile *pgo.Profile) {
   141  	if profile != nil {
   142  		PGOInlinePrologue(profile, funcs)
   143  	}
   144  
   145  	ir.VisitFuncsBottomUp(funcs, func(list []*ir.Func, recursive bool) {
   146  		CanInlineSCC(list, recursive, profile)
   147  	})
   148  }
   149  
   150  // CanInlineSCC computes the inlinability of functions within an SCC
   151  // (strongly connected component).
   152  //
   153  // CanInlineSCC is designed to be used by ir.VisitFuncsBottomUp
   154  // callbacks.
   155  func CanInlineSCC(funcs []*ir.Func, recursive bool, profile *pgo.Profile) {
   156  	if base.Flag.LowerL == 0 {
   157  		return
   158  	}
   159  
   160  	numfns := numNonClosures(funcs)
   161  
   162  	for _, fn := range funcs {
   163  		if !recursive || numfns > 1 {
   164  			// We allow inlining if there is no
   165  			// recursion, or the recursion cycle is
   166  			// across more than one function.
   167  			CanInline(fn, profile)
   168  		} else {
   169  			if base.Flag.LowerM > 1 && fn.OClosure == nil {
   170  				fmt.Printf("%v: cannot inline %v: recursive\n", ir.Line(fn), fn.Nname)
   171  			}
   172  		}
   173  		if inlheur.Enabled() {
   174  			analyzeFuncProps(fn, profile)
   175  		}
   176  	}
   177  }
   178  
   179  // GarbageCollectUnreferencedHiddenClosures makes a pass over all the
   180  // top-level (non-hidden-closure) functions looking for nested closure
   181  // functions that are reachable, then sweeps through the Target.Decls
   182  // list and marks any non-reachable hidden closure function as dead.
   183  // See issues #59404 and #59638 for more context.
   184  func GarbageCollectUnreferencedHiddenClosures() {
   185  
   186  	liveFuncs := make(map[*ir.Func]bool)
   187  
   188  	var markLiveFuncs func(fn *ir.Func)
   189  	markLiveFuncs = func(fn *ir.Func) {
   190  		if liveFuncs[fn] {
   191  			return
   192  		}
   193  		liveFuncs[fn] = true
   194  		ir.Visit(fn, func(n ir.Node) {
   195  			if clo, ok := n.(*ir.ClosureExpr); ok {
   196  				markLiveFuncs(clo.Func)
   197  			}
   198  		})
   199  	}
   200  
   201  	for i := 0; i < len(typecheck.Target.Funcs); i++ {
   202  		fn := typecheck.Target.Funcs[i]
   203  		if fn.IsHiddenClosure() {
   204  			continue
   205  		}
   206  		markLiveFuncs(fn)
   207  	}
   208  
   209  	for i := 0; i < len(typecheck.Target.Funcs); i++ {
   210  		fn := typecheck.Target.Funcs[i]
   211  		if !fn.IsHiddenClosure() {
   212  			continue
   213  		}
   214  		if fn.IsDeadcodeClosure() {
   215  			continue
   216  		}
   217  		if liveFuncs[fn] {
   218  			continue
   219  		}
   220  		fn.SetIsDeadcodeClosure(true)
   221  		if base.Flag.LowerM > 2 {
   222  			fmt.Printf("%v: unreferenced closure %v marked as dead\n", ir.Line(fn), fn)
   223  		}
   224  		if fn.Inl != nil && fn.LSym == nil {
   225  			ir.InitLSym(fn, true)
   226  		}
   227  	}
   228  }
   229  
   230  // inlineBudget determines the max budget for function 'fn' prior to
   231  // analyzing the hairyness of the body of 'fn'. We pass in the pgo
   232  // profile if available (which can change the budget), also a
   233  // 'relaxed' flag, which expands the budget slightly to allow for the
   234  // possibility that a call to the function might have its score
   235  // adjusted downwards. If 'verbose' is set, then print a remark where
   236  // we boost the budget due to PGO.
   237  func inlineBudget(fn *ir.Func, profile *pgo.Profile, relaxed bool, verbose bool) int32 {
   238  	// Update the budget for profile-guided inlining.
   239  	budget := int32(inlineMaxBudget)
   240  	if profile != nil {
   241  		if n, ok := profile.WeightedCG.IRNodes[ir.LinkFuncName(fn)]; ok {
   242  			if _, ok := candHotCalleeMap[n]; ok {
   243  				budget = int32(inlineHotMaxBudget)
   244  				if verbose {
   245  					fmt.Printf("hot-node enabled increased budget=%v for func=%v\n", budget, ir.PkgFuncName(fn))
   246  				}
   247  			}
   248  		}
   249  	}
   250  	if relaxed {
   251  		budget += inlheur.BudgetExpansion(inlineMaxBudget)
   252  	}
   253  	return budget
   254  }
   255  
   256  // CanInline determines whether fn is inlineable.
   257  // If so, CanInline saves copies of fn.Body and fn.Dcl in fn.Inl.
   258  // fn and fn.Body will already have been typechecked.
   259  func CanInline(fn *ir.Func, profile *pgo.Profile) {
   260  	if fn.Nname == nil {
   261  		base.Fatalf("CanInline no nname %+v", fn)
   262  	}
   263  
   264  	var reason string // reason, if any, that the function was not inlined
   265  	if base.Flag.LowerM > 1 || logopt.Enabled() {
   266  		defer func() {
   267  			if reason != "" {
   268  				if base.Flag.LowerM > 1 {
   269  					fmt.Printf("%v: cannot inline %v: %s\n", ir.Line(fn), fn.Nname, reason)
   270  				}
   271  				if logopt.Enabled() {
   272  					logopt.LogOpt(fn.Pos(), "cannotInlineFunction", "inline", ir.FuncName(fn), reason)
   273  				}
   274  			}
   275  		}()
   276  	}
   277  
   278  	reason = InlineImpossible(fn)
   279  	if reason != "" {
   280  		return
   281  	}
   282  	if fn.Typecheck() == 0 {
   283  		base.Fatalf("CanInline on non-typechecked function %v", fn)
   284  	}
   285  
   286  	n := fn.Nname
   287  	if n.Func.InlinabilityChecked() {
   288  		return
   289  	}
   290  	defer n.Func.SetInlinabilityChecked(true)
   291  
   292  	cc := int32(inlineExtraCallCost)
   293  	if base.Flag.LowerL == 4 {
   294  		cc = 1 // this appears to yield better performance than 0.
   295  	}
   296  
   297  	// Used a "relaxed" inline budget if the new inliner is enabled.
   298  	relaxed := inlheur.Enabled()
   299  
   300  	// Compute the inline budget for this func.
   301  	budget := inlineBudget(fn, profile, relaxed, base.Debug.PGODebug > 0)
   302  
   303  	// At this point in the game the function we're looking at may
   304  	// have "stale" autos, vars that still appear in the Dcl list, but
   305  	// which no longer have any uses in the function body (due to
   306  	// elimination by deadcode). We'd like to exclude these dead vars
   307  	// when creating the "Inline.Dcl" field below; to accomplish this,
   308  	// the hairyVisitor below builds up a map of used/referenced
   309  	// locals, and we use this map to produce a pruned Inline.Dcl
   310  	// list. See issue 25459 for more context.
   311  
   312  	visitor := hairyVisitor{
   313  		curFunc:       fn,
   314  		isBigFunc:     IsBigFunc(fn),
   315  		budget:        budget,
   316  		maxBudget:     budget,
   317  		extraCallCost: cc,
   318  		profile:       profile,
   319  	}
   320  	if visitor.tooHairy(fn) {
   321  		reason = visitor.reason
   322  		return
   323  	}
   324  
   325  	n.Func.Inl = &ir.Inline{
   326  		Cost:    budget - visitor.budget,
   327  		Dcl:     pruneUnusedAutos(n.Func.Dcl, &visitor),
   328  		HaveDcl: true,
   329  
   330  		CanDelayResults: canDelayResults(fn),
   331  	}
   332  	if base.Flag.LowerM != 0 || logopt.Enabled() {
   333  		noteInlinableFunc(n, fn, budget-visitor.budget)
   334  	}
   335  }
   336  
   337  // noteInlinableFunc issues a message to the user that the specified
   338  // function is inlinable.
   339  func noteInlinableFunc(n *ir.Name, fn *ir.Func, cost int32) {
   340  	if base.Flag.LowerM > 1 {
   341  		fmt.Printf("%v: can inline %v with cost %d as: %v { %v }\n", ir.Line(fn), n, cost, fn.Type(), ir.Nodes(fn.Body))
   342  	} else if base.Flag.LowerM != 0 {
   343  		fmt.Printf("%v: can inline %v\n", ir.Line(fn), n)
   344  	}
   345  	// JSON optimization log output.
   346  	if logopt.Enabled() {
   347  		logopt.LogOpt(fn.Pos(), "canInlineFunction", "inline", ir.FuncName(fn), fmt.Sprintf("cost: %d", cost))
   348  	}
   349  }
   350  
   351  // InlineImpossible returns a non-empty reason string if fn is impossible to
   352  // inline regardless of cost or contents.
   353  func InlineImpossible(fn *ir.Func) string {
   354  	var reason string // reason, if any, that the function can not be inlined.
   355  	if fn.Nname == nil {
   356  		reason = "no name"
   357  		return reason
   358  	}
   359  
   360  	// If marked "go:noinline", don't inline.
   361  	if fn.Pragma&ir.Noinline != 0 {
   362  		reason = "marked go:noinline"
   363  		return reason
   364  	}
   365  
   366  	// If marked "go:norace" and -race compilation, don't inline.
   367  	if base.Flag.Race && fn.Pragma&ir.Norace != 0 {
   368  		reason = "marked go:norace with -race compilation"
   369  		return reason
   370  	}
   371  
   372  	// If marked "go:nocheckptr" and -d checkptr compilation, don't inline.
   373  	if base.Debug.Checkptr != 0 && fn.Pragma&ir.NoCheckPtr != 0 {
   374  		reason = "marked go:nocheckptr"
   375  		return reason
   376  	}
   377  
   378  	// If marked "go:cgo_unsafe_args", don't inline, since the function
   379  	// makes assumptions about its argument frame layout.
   380  	if fn.Pragma&ir.CgoUnsafeArgs != 0 {
   381  		reason = "marked go:cgo_unsafe_args"
   382  		return reason
   383  	}
   384  
   385  	// If marked as "go:uintptrkeepalive", don't inline, since the keep
   386  	// alive information is lost during inlining.
   387  	//
   388  	// TODO(prattmic): This is handled on calls during escape analysis,
   389  	// which is after inlining. Move prior to inlining so the keep-alive is
   390  	// maintained after inlining.
   391  	if fn.Pragma&ir.UintptrKeepAlive != 0 {
   392  		reason = "marked as having a keep-alive uintptr argument"
   393  		return reason
   394  	}
   395  
   396  	// If marked as "go:uintptrescapes", don't inline, since the escape
   397  	// information is lost during inlining.
   398  	if fn.Pragma&ir.UintptrEscapes != 0 {
   399  		reason = "marked as having an escaping uintptr argument"
   400  		return reason
   401  	}
   402  
   403  	// The nowritebarrierrec checker currently works at function
   404  	// granularity, so inlining yeswritebarrierrec functions can confuse it
   405  	// (#22342). As a workaround, disallow inlining them for now.
   406  	if fn.Pragma&ir.Yeswritebarrierrec != 0 {
   407  		reason = "marked go:yeswritebarrierrec"
   408  		return reason
   409  	}
   410  
   411  	// If a local function has no fn.Body (is defined outside of Go), cannot inline it.
   412  	// Imported functions don't have fn.Body but might have inline body in fn.Inl.
   413  	if len(fn.Body) == 0 && !typecheck.HaveInlineBody(fn) {
   414  		reason = "no function body"
   415  		return reason
   416  	}
   417  
   418  	return ""
   419  }
   420  
   421  // canDelayResults reports whether inlined calls to fn can delay
   422  // declaring the result parameter until the "return" statement.
   423  func canDelayResults(fn *ir.Func) bool {
   424  	// We can delay declaring+initializing result parameters if:
   425  	// (1) there's exactly one "return" statement in the inlined function;
   426  	// (2) it's not an empty return statement (#44355); and
   427  	// (3) the result parameters aren't named.
   428  
   429  	nreturns := 0
   430  	ir.VisitList(fn.Body, func(n ir.Node) {
   431  		if n, ok := n.(*ir.ReturnStmt); ok {
   432  			nreturns++
   433  			if len(n.Results) == 0 {
   434  				nreturns++ // empty return statement (case 2)
   435  			}
   436  		}
   437  	})
   438  
   439  	if nreturns != 1 {
   440  		return false // not exactly one return statement (case 1)
   441  	}
   442  
   443  	// temporaries for return values.
   444  	for _, param := range fn.Type().Results() {
   445  		if sym := param.Sym; sym != nil && !sym.IsBlank() {
   446  			return false // found a named result parameter (case 3)
   447  		}
   448  	}
   449  
   450  	return true
   451  }
   452  
   453  // hairyVisitor visits a function body to determine its inlining
   454  // hairiness and whether or not it can be inlined.
   455  type hairyVisitor struct {
   456  	// This is needed to access the current caller in the doNode function.
   457  	curFunc       *ir.Func
   458  	isBigFunc     bool
   459  	budget        int32
   460  	maxBudget     int32
   461  	reason        string
   462  	extraCallCost int32
   463  	usedLocals    ir.NameSet
   464  	do            func(ir.Node) bool
   465  	profile       *pgo.Profile
   466  }
   467  
   468  func (v *hairyVisitor) tooHairy(fn *ir.Func) bool {
   469  	v.do = v.doNode // cache closure
   470  	if ir.DoChildren(fn, v.do) {
   471  		return true
   472  	}
   473  	if v.budget < 0 {
   474  		v.reason = fmt.Sprintf("function too complex: cost %d exceeds budget %d", v.maxBudget-v.budget, v.maxBudget)
   475  		return true
   476  	}
   477  	return false
   478  }
   479  
   480  // doNode visits n and its children, updates the state in v, and returns true if
   481  // n makes the current function too hairy for inlining.
   482  func (v *hairyVisitor) doNode(n ir.Node) bool {
   483  	if n == nil {
   484  		return false
   485  	}
   486  opSwitch:
   487  	switch n.Op() {
   488  	// Call is okay if inlinable and we have the budget for the body.
   489  	case ir.OCALLFUNC:
   490  		n := n.(*ir.CallExpr)
   491  		// Functions that call runtime.getcaller{pc,sp} can not be inlined
   492  		// because getcaller{pc,sp} expect a pointer to the caller's first argument.
   493  		//
   494  		// runtime.throw is a "cheap call" like panic in normal code.
   495  		var cheap bool
   496  		if n.Fun.Op() == ir.ONAME {
   497  			name := n.Fun.(*ir.Name)
   498  			if name.Class == ir.PFUNC {
   499  				switch fn := types.RuntimeSymName(name.Sym()); fn {
   500  				case "getcallerpc", "getcallersp":
   501  					v.reason = "call to " + fn
   502  					return true
   503  				case "throw":
   504  					v.budget -= inlineExtraThrowCost
   505  					break opSwitch
   506  				case "panicrangeexit":
   507  					cheap = true
   508  				}
   509  				// Special case for reflect.noescape. It does just type
   510  				// conversions to appease the escape analysis, and doesn't
   511  				// generate code.
   512  				if types.ReflectSymName(name.Sym()) == "noescape" {
   513  					cheap = true
   514  				}
   515  			}
   516  			// Special case for coverage counter updates; although
   517  			// these correspond to real operations, we treat them as
   518  			// zero cost for the moment. This is due to the existence
   519  			// of tests that are sensitive to inlining-- if the
   520  			// insertion of coverage instrumentation happens to tip a
   521  			// given function over the threshold and move it from
   522  			// "inlinable" to "not-inlinable", this can cause changes
   523  			// in allocation behavior, which can then result in test
   524  			// failures (a good example is the TestAllocations in
   525  			// crypto/ed25519).
   526  			if isAtomicCoverageCounterUpdate(n) {
   527  				return false
   528  			}
   529  		}
   530  		if n.Fun.Op() == ir.OMETHEXPR {
   531  			if meth := ir.MethodExprName(n.Fun); meth != nil {
   532  				if fn := meth.Func; fn != nil {
   533  					s := fn.Sym()
   534  					if types.RuntimeSymName(s) == "heapBits.nextArena" {
   535  						// Special case: explicitly allow mid-stack inlining of
   536  						// runtime.heapBits.next even though it calls slow-path
   537  						// runtime.heapBits.nextArena.
   538  						cheap = true
   539  					}
   540  					// Special case: on architectures that can do unaligned loads,
   541  					// explicitly mark encoding/binary methods as cheap,
   542  					// because in practice they are, even though our inlining
   543  					// budgeting system does not see that. See issue 42958.
   544  					if base.Ctxt.Arch.CanMergeLoads && s.Pkg.Path == "encoding/binary" {
   545  						switch s.Name {
   546  						case "littleEndian.Uint64", "littleEndian.Uint32", "littleEndian.Uint16",
   547  							"bigEndian.Uint64", "bigEndian.Uint32", "bigEndian.Uint16",
   548  							"littleEndian.PutUint64", "littleEndian.PutUint32", "littleEndian.PutUint16",
   549  							"bigEndian.PutUint64", "bigEndian.PutUint32", "bigEndian.PutUint16",
   550  							"littleEndian.AppendUint64", "littleEndian.AppendUint32", "littleEndian.AppendUint16",
   551  							"bigEndian.AppendUint64", "bigEndian.AppendUint32", "bigEndian.AppendUint16":
   552  							cheap = true
   553  						}
   554  					}
   555  				}
   556  			}
   557  		}
   558  		if cheap {
   559  			break // treat like any other node, that is, cost of 1
   560  		}
   561  
   562  		if ir.IsIntrinsicCall(n) {
   563  			// Treat like any other node.
   564  			break
   565  		}
   566  
   567  		if callee := inlCallee(v.curFunc, n.Fun, v.profile); callee != nil && typecheck.HaveInlineBody(callee) {
   568  			// Check whether we'd actually inline this call. Set
   569  			// log == false since we aren't actually doing inlining
   570  			// yet.
   571  			if ok, _ := canInlineCallExpr(v.curFunc, n, callee, v.isBigFunc, false); ok {
   572  				// mkinlcall would inline this call [1], so use
   573  				// the cost of the inline body as the cost of
   574  				// the call, as that is what will actually
   575  				// appear in the code.
   576  				//
   577  				// [1] This is almost a perfect match to the
   578  				// mkinlcall logic, except that
   579  				// canInlineCallExpr considers inlining cycles
   580  				// by looking at what has already been inlined.
   581  				// Since we haven't done any inlining yet we
   582  				// will miss those.
   583  				v.budget -= callee.Inl.Cost
   584  				break
   585  			}
   586  		}
   587  
   588  		// Call cost for non-leaf inlining.
   589  		v.budget -= v.extraCallCost
   590  
   591  	case ir.OCALLMETH:
   592  		base.FatalfAt(n.Pos(), "OCALLMETH missed by typecheck")
   593  
   594  	// Things that are too hairy, irrespective of the budget
   595  	case ir.OCALL, ir.OCALLINTER:
   596  		// Call cost for non-leaf inlining.
   597  		v.budget -= v.extraCallCost
   598  
   599  	case ir.OPANIC:
   600  		n := n.(*ir.UnaryExpr)
   601  		if n.X.Op() == ir.OCONVIFACE && n.X.(*ir.ConvExpr).Implicit() {
   602  			// Hack to keep reflect.flag.mustBe inlinable for TestIntendedInlining.
   603  			// Before CL 284412, these conversions were introduced later in the
   604  			// compiler, so they didn't count against inlining budget.
   605  			v.budget++
   606  		}
   607  		v.budget -= inlineExtraPanicCost
   608  
   609  	case ir.ORECOVER:
   610  		base.FatalfAt(n.Pos(), "ORECOVER missed typecheck")
   611  	case ir.ORECOVERFP:
   612  		// recover matches the argument frame pointer to find
   613  		// the right panic value, so it needs an argument frame.
   614  		v.reason = "call to recover"
   615  		return true
   616  
   617  	case ir.OCLOSURE:
   618  		if base.Debug.InlFuncsWithClosures == 0 {
   619  			v.reason = "not inlining functions with closures"
   620  			return true
   621  		}
   622  
   623  		// TODO(danscales): Maybe make budget proportional to number of closure
   624  		// variables, e.g.:
   625  		//v.budget -= int32(len(n.(*ir.ClosureExpr).Func.ClosureVars) * 3)
   626  		// TODO(austin): However, if we're able to inline this closure into
   627  		// v.curFunc, then we actually pay nothing for the closure captures. We
   628  		// should try to account for that if we're going to account for captures.
   629  		v.budget -= 15
   630  
   631  	case ir.OGO, ir.ODEFER, ir.OTAILCALL:
   632  		v.reason = "unhandled op " + n.Op().String()
   633  		return true
   634  
   635  	case ir.OAPPEND:
   636  		v.budget -= inlineExtraAppendCost
   637  
   638  	case ir.OADDR:
   639  		n := n.(*ir.AddrExpr)
   640  		// Make "&s.f" cost 0 when f's offset is zero.
   641  		if dot, ok := n.X.(*ir.SelectorExpr); ok && (dot.Op() == ir.ODOT || dot.Op() == ir.ODOTPTR) {
   642  			if _, ok := dot.X.(*ir.Name); ok && dot.Selection.Offset == 0 {
   643  				v.budget += 2 // undo ir.OADDR+ir.ODOT/ir.ODOTPTR
   644  			}
   645  		}
   646  
   647  	case ir.ODEREF:
   648  		// *(*X)(unsafe.Pointer(&x)) is low-cost
   649  		n := n.(*ir.StarExpr)
   650  
   651  		ptr := n.X
   652  		for ptr.Op() == ir.OCONVNOP {
   653  			ptr = ptr.(*ir.ConvExpr).X
   654  		}
   655  		if ptr.Op() == ir.OADDR {
   656  			v.budget += 1 // undo half of default cost of ir.ODEREF+ir.OADDR
   657  		}
   658  
   659  	case ir.OCONVNOP:
   660  		// This doesn't produce code, but the children might.
   661  		v.budget++ // undo default cost
   662  
   663  	case ir.OFALL, ir.OTYPE:
   664  		// These nodes don't produce code; omit from inlining budget.
   665  		return false
   666  
   667  	case ir.OIF:
   668  		n := n.(*ir.IfStmt)
   669  		if ir.IsConst(n.Cond, constant.Bool) {
   670  			// This if and the condition cost nothing.
   671  			if doList(n.Init(), v.do) {
   672  				return true
   673  			}
   674  			if ir.BoolVal(n.Cond) {
   675  				return doList(n.Body, v.do)
   676  			} else {
   677  				return doList(n.Else, v.do)
   678  			}
   679  		}
   680  
   681  	case ir.ONAME:
   682  		n := n.(*ir.Name)
   683  		if n.Class == ir.PAUTO {
   684  			v.usedLocals.Add(n)
   685  		}
   686  
   687  	case ir.OBLOCK:
   688  		// The only OBLOCK we should see at this point is an empty one.
   689  		// In any event, let the visitList(n.List()) below take care of the statements,
   690  		// and don't charge for the OBLOCK itself. The ++ undoes the -- below.
   691  		v.budget++
   692  
   693  	case ir.OMETHVALUE, ir.OSLICELIT:
   694  		v.budget-- // Hack for toolstash -cmp.
   695  
   696  	case ir.OMETHEXPR:
   697  		v.budget++ // Hack for toolstash -cmp.
   698  
   699  	case ir.OAS2:
   700  		n := n.(*ir.AssignListStmt)
   701  
   702  		// Unified IR unconditionally rewrites:
   703  		//
   704  		//	a, b = f()
   705  		//
   706  		// into:
   707  		//
   708  		//	DCL tmp1
   709  		//	DCL tmp2
   710  		//	tmp1, tmp2 = f()
   711  		//	a, b = tmp1, tmp2
   712  		//
   713  		// so that it can insert implicit conversions as necessary. To
   714  		// minimize impact to the existing inlining heuristics (in
   715  		// particular, to avoid breaking the existing inlinability regress
   716  		// tests), we need to compensate for this here.
   717  		//
   718  		// See also identical logic in IsBigFunc.
   719  		if len(n.Rhs) > 0 {
   720  			if init := n.Rhs[0].Init(); len(init) == 1 {
   721  				if _, ok := init[0].(*ir.AssignListStmt); ok {
   722  					// 4 for each value, because each temporary variable now
   723  					// appears 3 times (DCL, LHS, RHS), plus an extra DCL node.
   724  					//
   725  					// 1 for the extra "tmp1, tmp2 = f()" assignment statement.
   726  					v.budget += 4*int32(len(n.Lhs)) + 1
   727  				}
   728  			}
   729  		}
   730  
   731  	case ir.OAS:
   732  		// Special case for coverage counter updates and coverage
   733  		// function registrations. Although these correspond to real
   734  		// operations, we treat them as zero cost for the moment. This
   735  		// is primarily due to the existence of tests that are
   736  		// sensitive to inlining-- if the insertion of coverage
   737  		// instrumentation happens to tip a given function over the
   738  		// threshold and move it from "inlinable" to "not-inlinable",
   739  		// this can cause changes in allocation behavior, which can
   740  		// then result in test failures (a good example is the
   741  		// TestAllocations in crypto/ed25519).
   742  		n := n.(*ir.AssignStmt)
   743  		if n.X.Op() == ir.OINDEX && isIndexingCoverageCounter(n.X) {
   744  			return false
   745  		}
   746  	}
   747  
   748  	v.budget--
   749  
   750  	// When debugging, don't stop early, to get full cost of inlining this function
   751  	if v.budget < 0 && base.Flag.LowerM < 2 && !logopt.Enabled() {
   752  		v.reason = "too expensive"
   753  		return true
   754  	}
   755  
   756  	return ir.DoChildren(n, v.do)
   757  }
   758  
   759  // IsBigFunc reports whether fn is a "big" function.
   760  //
   761  // Note: The criteria for "big" is heuristic and subject to change.
   762  func IsBigFunc(fn *ir.Func) bool {
   763  	budget := inlineBigFunctionNodes
   764  	return ir.Any(fn, func(n ir.Node) bool {
   765  		// See logic in hairyVisitor.doNode, explaining unified IR's
   766  		// handling of "a, b = f()" assignments.
   767  		if n, ok := n.(*ir.AssignListStmt); ok && n.Op() == ir.OAS2 && len(n.Rhs) > 0 {
   768  			if init := n.Rhs[0].Init(); len(init) == 1 {
   769  				if _, ok := init[0].(*ir.AssignListStmt); ok {
   770  					budget += 4*len(n.Lhs) + 1
   771  				}
   772  			}
   773  		}
   774  
   775  		budget--
   776  		return budget <= 0
   777  	})
   778  }
   779  
   780  // TryInlineCall returns an inlined call expression for call, or nil
   781  // if inlining is not possible.
   782  func TryInlineCall(callerfn *ir.Func, call *ir.CallExpr, bigCaller bool, profile *pgo.Profile) *ir.InlinedCallExpr {
   783  	if base.Flag.LowerL == 0 {
   784  		return nil
   785  	}
   786  	if call.Op() != ir.OCALLFUNC {
   787  		return nil
   788  	}
   789  	if call.GoDefer || call.NoInline {
   790  		return nil
   791  	}
   792  
   793  	// Prevent inlining some reflect.Value methods when using checkptr,
   794  	// even when package reflect was compiled without it (#35073).
   795  	if base.Debug.Checkptr != 0 && call.Fun.Op() == ir.OMETHEXPR {
   796  		if method := ir.MethodExprName(call.Fun); method != nil {
   797  			switch types.ReflectSymName(method.Sym()) {
   798  			case "Value.UnsafeAddr", "Value.Pointer":
   799  				return nil
   800  			}
   801  		}
   802  	}
   803  
   804  	if base.Flag.LowerM > 3 {
   805  		fmt.Printf("%v:call to func %+v\n", ir.Line(call), call.Fun)
   806  	}
   807  	if ir.IsIntrinsicCall(call) {
   808  		return nil
   809  	}
   810  	if fn := inlCallee(callerfn, call.Fun, profile); fn != nil && typecheck.HaveInlineBody(fn) {
   811  		return mkinlcall(callerfn, call, fn, bigCaller)
   812  	}
   813  	return nil
   814  }
   815  
   816  // inlCallee takes a function-typed expression and returns the underlying function ONAME
   817  // that it refers to if statically known. Otherwise, it returns nil.
   818  func inlCallee(caller *ir.Func, fn ir.Node, profile *pgo.Profile) (res *ir.Func) {
   819  	fn = ir.StaticValue(fn)
   820  	switch fn.Op() {
   821  	case ir.OMETHEXPR:
   822  		fn := fn.(*ir.SelectorExpr)
   823  		n := ir.MethodExprName(fn)
   824  		// Check that receiver type matches fn.X.
   825  		// TODO(mdempsky): Handle implicit dereference
   826  		// of pointer receiver argument?
   827  		if n == nil || !types.Identical(n.Type().Recv().Type, fn.X.Type()) {
   828  			return nil
   829  		}
   830  		return n.Func
   831  	case ir.ONAME:
   832  		fn := fn.(*ir.Name)
   833  		if fn.Class == ir.PFUNC {
   834  			return fn.Func
   835  		}
   836  	case ir.OCLOSURE:
   837  		fn := fn.(*ir.ClosureExpr)
   838  		c := fn.Func
   839  		if len(c.ClosureVars) != 0 && c.ClosureVars[0].Outer.Curfn != caller {
   840  			return nil // inliner doesn't support inlining across closure frames
   841  		}
   842  		CanInline(c, profile)
   843  		return c
   844  	}
   845  	return nil
   846  }
   847  
   848  var inlgen int
   849  
   850  // SSADumpInline gives the SSA back end a chance to dump the function
   851  // when producing output for debugging the compiler itself.
   852  var SSADumpInline = func(*ir.Func) {}
   853  
   854  // InlineCall allows the inliner implementation to be overridden.
   855  // If it returns nil, the function will not be inlined.
   856  var InlineCall = func(callerfn *ir.Func, call *ir.CallExpr, fn *ir.Func, inlIndex int) *ir.InlinedCallExpr {
   857  	base.Fatalf("inline.InlineCall not overridden")
   858  	panic("unreachable")
   859  }
   860  
   861  // inlineCostOK returns true if call n from caller to callee is cheap enough to
   862  // inline. bigCaller indicates that caller is a big function.
   863  //
   864  // In addition to the "cost OK" boolean, it also returns the "max
   865  // cost" limit used to make the decision (which may differ depending
   866  // on func size), and the score assigned to this specific callsite.
   867  func inlineCostOK(n *ir.CallExpr, caller, callee *ir.Func, bigCaller bool) (bool, int32, int32) {
   868  	maxCost := int32(inlineMaxBudget)
   869  	if bigCaller {
   870  		// We use this to restrict inlining into very big functions.
   871  		// See issue 26546 and 17566.
   872  		maxCost = inlineBigFunctionMaxCost
   873  	}
   874  
   875  	metric := callee.Inl.Cost
   876  	if inlheur.Enabled() {
   877  		score, ok := inlheur.GetCallSiteScore(caller, n)
   878  		if ok {
   879  			metric = int32(score)
   880  		}
   881  	}
   882  
   883  	if metric <= maxCost {
   884  		// Simple case. Function is already cheap enough.
   885  		return true, 0, metric
   886  	}
   887  
   888  	// We'll also allow inlining of hot functions below inlineHotMaxBudget,
   889  	// but only in small functions.
   890  
   891  	lineOffset := pgo.NodeLineOffset(n, caller)
   892  	csi := pgo.CallSiteInfo{LineOffset: lineOffset, Caller: caller}
   893  	if _, ok := candHotEdgeMap[csi]; !ok {
   894  		// Cold
   895  		return false, maxCost, metric
   896  	}
   897  
   898  	// Hot
   899  
   900  	if bigCaller {
   901  		if base.Debug.PGODebug > 0 {
   902  			fmt.Printf("hot-big check disallows inlining for call %s (cost %d) at %v in big function %s\n", ir.PkgFuncName(callee), callee.Inl.Cost, ir.Line(n), ir.PkgFuncName(caller))
   903  		}
   904  		return false, maxCost, metric
   905  	}
   906  
   907  	if metric > inlineHotMaxBudget {
   908  		return false, inlineHotMaxBudget, metric
   909  	}
   910  
   911  	if !base.PGOHash.MatchPosWithInfo(n.Pos(), "inline", nil) {
   912  		// De-selected by PGO Hash.
   913  		return false, maxCost, metric
   914  	}
   915  
   916  	if base.Debug.PGODebug > 0 {
   917  		fmt.Printf("hot-budget check allows inlining for call %s (cost %d) at %v in function %s\n", ir.PkgFuncName(callee), callee.Inl.Cost, ir.Line(n), ir.PkgFuncName(caller))
   918  	}
   919  
   920  	return true, 0, metric
   921  }
   922  
   923  // canInlineCallsite returns true if the call n from caller to callee
   924  // can be inlined, plus the score computed for the call expr in
   925  // question. bigCaller indicates that caller is a big function. log
   926  // indicates that the 'cannot inline' reason should be logged.
   927  //
   928  // Preconditions: CanInline(callee) has already been called.
   929  func canInlineCallExpr(callerfn *ir.Func, n *ir.CallExpr, callee *ir.Func, bigCaller bool, log bool) (bool, int32) {
   930  	if callee.Inl == nil {
   931  		// callee is never inlinable.
   932  		if log && logopt.Enabled() {
   933  			logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn),
   934  				fmt.Sprintf("%s cannot be inlined", ir.PkgFuncName(callee)))
   935  		}
   936  		return false, 0
   937  	}
   938  
   939  	ok, maxCost, callSiteScore := inlineCostOK(n, callerfn, callee, bigCaller)
   940  	if !ok {
   941  		// callee cost too high for this call site.
   942  		if log && logopt.Enabled() {
   943  			logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn),
   944  				fmt.Sprintf("cost %d of %s exceeds max caller cost %d", callee.Inl.Cost, ir.PkgFuncName(callee), maxCost))
   945  		}
   946  		return false, 0
   947  	}
   948  
   949  	if callee == callerfn {
   950  		// Can't recursively inline a function into itself.
   951  		if log && logopt.Enabled() {
   952  			logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", fmt.Sprintf("recursive call to %s", ir.FuncName(callerfn)))
   953  		}
   954  		return false, 0
   955  	}
   956  
   957  	if base.Flag.Cfg.Instrumenting && types.IsNoInstrumentPkg(callee.Sym().Pkg) {
   958  		// Runtime package must not be instrumented.
   959  		// Instrument skips runtime package. However, some runtime code can be
   960  		// inlined into other packages and instrumented there. To avoid this,
   961  		// we disable inlining of runtime functions when instrumenting.
   962  		// The example that we observed is inlining of LockOSThread,
   963  		// which lead to false race reports on m contents.
   964  		if log && logopt.Enabled() {
   965  			logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn),
   966  				fmt.Sprintf("call to runtime function %s in instrumented build", ir.PkgFuncName(callee)))
   967  		}
   968  		return false, 0
   969  	}
   970  
   971  	if base.Flag.Race && types.IsNoRacePkg(callee.Sym().Pkg) {
   972  		if log && logopt.Enabled() {
   973  			logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn),
   974  				fmt.Sprintf(`call to into "no-race" package function %s in race build`, ir.PkgFuncName(callee)))
   975  		}
   976  		return false, 0
   977  	}
   978  
   979  	// Check if we've already inlined this function at this particular
   980  	// call site, in order to stop inlining when we reach the beginning
   981  	// of a recursion cycle again. We don't inline immediately recursive
   982  	// functions, but allow inlining if there is a recursion cycle of
   983  	// many functions. Most likely, the inlining will stop before we
   984  	// even hit the beginning of the cycle again, but this catches the
   985  	// unusual case.
   986  	parent := base.Ctxt.PosTable.Pos(n.Pos()).Base().InliningIndex()
   987  	sym := callee.Linksym()
   988  	for inlIndex := parent; inlIndex >= 0; inlIndex = base.Ctxt.InlTree.Parent(inlIndex) {
   989  		if base.Ctxt.InlTree.InlinedFunction(inlIndex) == sym {
   990  			if log {
   991  				if base.Flag.LowerM > 1 {
   992  					fmt.Printf("%v: cannot inline %v into %v: repeated recursive cycle\n", ir.Line(n), callee, ir.FuncName(callerfn))
   993  				}
   994  				if logopt.Enabled() {
   995  					logopt.LogOpt(n.Pos(), "cannotInlineCall", "inline", ir.FuncName(callerfn),
   996  						fmt.Sprintf("repeated recursive cycle to %s", ir.PkgFuncName(callee)))
   997  				}
   998  			}
   999  			return false, 0
  1000  		}
  1001  	}
  1002  
  1003  	return true, callSiteScore
  1004  }
  1005  
  1006  // mkinlcall returns an OINLCALL node that can replace OCALLFUNC n, or
  1007  // nil if it cannot be inlined. callerfn is the function that contains
  1008  // n, and fn is the function being called.
  1009  //
  1010  // The result of mkinlcall MUST be assigned back to n, e.g.
  1011  //
  1012  //	n.Left = mkinlcall(n.Left, fn, isddd)
  1013  func mkinlcall(callerfn *ir.Func, n *ir.CallExpr, fn *ir.Func, bigCaller bool) *ir.InlinedCallExpr {
  1014  	ok, score := canInlineCallExpr(callerfn, n, fn, bigCaller, true)
  1015  	if !ok {
  1016  		return nil
  1017  	}
  1018  	typecheck.AssertFixedCall(n)
  1019  
  1020  	parent := base.Ctxt.PosTable.Pos(n.Pos()).Base().InliningIndex()
  1021  	sym := fn.Linksym()
  1022  	inlIndex := base.Ctxt.InlTree.Add(parent, n.Pos(), sym, ir.FuncName(fn))
  1023  
  1024  	closureInitLSym := func(n *ir.CallExpr, fn *ir.Func) {
  1025  		// The linker needs FuncInfo metadata for all inlined
  1026  		// functions. This is typically handled by gc.enqueueFunc
  1027  		// calling ir.InitLSym for all function declarations in
  1028  		// typecheck.Target.Decls (ir.UseClosure adds all closures to
  1029  		// Decls).
  1030  		//
  1031  		// However, non-trivial closures in Decls are ignored, and are
  1032  		// insteaded enqueued when walk of the calling function
  1033  		// discovers them.
  1034  		//
  1035  		// This presents a problem for direct calls to closures.
  1036  		// Inlining will replace the entire closure definition with its
  1037  		// body, which hides the closure from walk and thus suppresses
  1038  		// symbol creation.
  1039  		//
  1040  		// Explicitly create a symbol early in this edge case to ensure
  1041  		// we keep this metadata.
  1042  		//
  1043  		// TODO: Refactor to keep a reference so this can all be done
  1044  		// by enqueueFunc.
  1045  
  1046  		if n.Op() != ir.OCALLFUNC {
  1047  			// Not a standard call.
  1048  			return
  1049  		}
  1050  		if n.Fun.Op() != ir.OCLOSURE {
  1051  			// Not a direct closure call.
  1052  			return
  1053  		}
  1054  
  1055  		clo := n.Fun.(*ir.ClosureExpr)
  1056  		if ir.IsTrivialClosure(clo) {
  1057  			// enqueueFunc will handle trivial closures anyways.
  1058  			return
  1059  		}
  1060  
  1061  		ir.InitLSym(fn, true)
  1062  	}
  1063  
  1064  	closureInitLSym(n, fn)
  1065  
  1066  	if base.Flag.GenDwarfInl > 0 {
  1067  		if !sym.WasInlined() {
  1068  			base.Ctxt.DwFixups.SetPrecursorFunc(sym, fn)
  1069  			sym.Set(obj.AttrWasInlined, true)
  1070  		}
  1071  	}
  1072  
  1073  	if base.Flag.LowerM != 0 {
  1074  		if buildcfg.Experiment.NewInliner {
  1075  			fmt.Printf("%v: inlining call to %v with score %d\n",
  1076  				ir.Line(n), fn, score)
  1077  		} else {
  1078  			fmt.Printf("%v: inlining call to %v\n", ir.Line(n), fn)
  1079  		}
  1080  	}
  1081  	if base.Flag.LowerM > 2 {
  1082  		fmt.Printf("%v: Before inlining: %+v\n", ir.Line(n), n)
  1083  	}
  1084  
  1085  	res := InlineCall(callerfn, n, fn, inlIndex)
  1086  
  1087  	if res == nil {
  1088  		base.FatalfAt(n.Pos(), "inlining call to %v failed", fn)
  1089  	}
  1090  
  1091  	if base.Flag.LowerM > 2 {
  1092  		fmt.Printf("%v: After inlining %+v\n\n", ir.Line(res), res)
  1093  	}
  1094  
  1095  	if inlheur.Enabled() {
  1096  		inlheur.UpdateCallsiteTable(callerfn, n, res)
  1097  	}
  1098  
  1099  	return res
  1100  }
  1101  
  1102  // CalleeEffects appends any side effects from evaluating callee to init.
  1103  func CalleeEffects(init *ir.Nodes, callee ir.Node) {
  1104  	for {
  1105  		init.Append(ir.TakeInit(callee)...)
  1106  
  1107  		switch callee.Op() {
  1108  		case ir.ONAME, ir.OCLOSURE, ir.OMETHEXPR:
  1109  			return // done
  1110  
  1111  		case ir.OCONVNOP:
  1112  			conv := callee.(*ir.ConvExpr)
  1113  			callee = conv.X
  1114  
  1115  		case ir.OINLCALL:
  1116  			ic := callee.(*ir.InlinedCallExpr)
  1117  			init.Append(ic.Body.Take()...)
  1118  			callee = ic.SingleResult()
  1119  
  1120  		default:
  1121  			base.FatalfAt(callee.Pos(), "unexpected callee expression: %v", callee)
  1122  		}
  1123  	}
  1124  }
  1125  
  1126  func pruneUnusedAutos(ll []*ir.Name, vis *hairyVisitor) []*ir.Name {
  1127  	s := make([]*ir.Name, 0, len(ll))
  1128  	for _, n := range ll {
  1129  		if n.Class == ir.PAUTO {
  1130  			if !vis.usedLocals.Has(n) {
  1131  				// TODO(mdempsky): Simplify code after confident that this
  1132  				// never happens anymore.
  1133  				base.FatalfAt(n.Pos(), "unused auto: %v", n)
  1134  				continue
  1135  			}
  1136  		}
  1137  		s = append(s, n)
  1138  	}
  1139  	return s
  1140  }
  1141  
  1142  // numNonClosures returns the number of functions in list which are not closures.
  1143  func numNonClosures(list []*ir.Func) int {
  1144  	count := 0
  1145  	for _, fn := range list {
  1146  		if fn.OClosure == nil {
  1147  			count++
  1148  		}
  1149  	}
  1150  	return count
  1151  }
  1152  
  1153  func doList(list []ir.Node, do func(ir.Node) bool) bool {
  1154  	for _, x := range list {
  1155  		if x != nil {
  1156  			if do(x) {
  1157  				return true
  1158  			}
  1159  		}
  1160  	}
  1161  	return false
  1162  }
  1163  
  1164  // isIndexingCoverageCounter returns true if the specified node 'n' is indexing
  1165  // into a coverage counter array.
  1166  func isIndexingCoverageCounter(n ir.Node) bool {
  1167  	if n.Op() != ir.OINDEX {
  1168  		return false
  1169  	}
  1170  	ixn := n.(*ir.IndexExpr)
  1171  	if ixn.X.Op() != ir.ONAME || !ixn.X.Type().IsArray() {
  1172  		return false
  1173  	}
  1174  	nn := ixn.X.(*ir.Name)
  1175  	return nn.CoverageCounter()
  1176  }
  1177  
  1178  // isAtomicCoverageCounterUpdate examines the specified node to
  1179  // determine whether it represents a call to sync/atomic.AddUint32 to
  1180  // increment a coverage counter.
  1181  func isAtomicCoverageCounterUpdate(cn *ir.CallExpr) bool {
  1182  	if cn.Fun.Op() != ir.ONAME {
  1183  		return false
  1184  	}
  1185  	name := cn.Fun.(*ir.Name)
  1186  	if name.Class != ir.PFUNC {
  1187  		return false
  1188  	}
  1189  	fn := name.Sym().Name
  1190  	if name.Sym().Pkg.Path != "sync/atomic" ||
  1191  		(fn != "AddUint32" && fn != "StoreUint32") {
  1192  		return false
  1193  	}
  1194  	if len(cn.Args) != 2 || cn.Args[0].Op() != ir.OADDR {
  1195  		return false
  1196  	}
  1197  	adn := cn.Args[0].(*ir.AddrExpr)
  1198  	v := isIndexingCoverageCounter(adn.X)
  1199  	return v
  1200  }
  1201  
  1202  func PostProcessCallSites(profile *pgo.Profile) {
  1203  	if base.Debug.DumpInlCallSiteScores != 0 {
  1204  		budgetCallback := func(fn *ir.Func, prof *pgo.Profile) (int32, bool) {
  1205  			v := inlineBudget(fn, prof, false, false)
  1206  			return v, v == inlineHotMaxBudget
  1207  		}
  1208  		inlheur.DumpInlCallSiteScores(profile, budgetCallback)
  1209  	}
  1210  }
  1211  
  1212  func analyzeFuncProps(fn *ir.Func, p *pgo.Profile) {
  1213  	canInline := func(fn *ir.Func) { CanInline(fn, p) }
  1214  	budgetForFunc := func(fn *ir.Func) int32 {
  1215  		return inlineBudget(fn, p, true, false)
  1216  	}
  1217  	inlheur.AnalyzeFunc(fn, canInline, budgetForFunc, inlineMaxBudget)
  1218  }