github.com/go-asm/go@v1.21.1-0.20240213172139-40c5ead50c48/cmd/compile/reflectdata/reflect.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package reflectdata
     6  
     7  import (
     8  	"encoding/binary"
     9  	"fmt"
    10  	"os"
    11  	"sort"
    12  	"strings"
    13  	"sync"
    14  
    15  	"github.com/go-asm/go/abi"
    16  
    17  	"github.com/go-asm/go/cmd/compile/base"
    18  	"github.com/go-asm/go/cmd/compile/bitvec"
    19  	"github.com/go-asm/go/cmd/compile/compare"
    20  	"github.com/go-asm/go/cmd/compile/ir"
    21  	"github.com/go-asm/go/cmd/compile/objw"
    22  	"github.com/go-asm/go/cmd/compile/rttype"
    23  	"github.com/go-asm/go/cmd/compile/staticdata"
    24  	"github.com/go-asm/go/cmd/compile/typebits"
    25  	"github.com/go-asm/go/cmd/compile/typecheck"
    26  	"github.com/go-asm/go/cmd/compile/types"
    27  	"github.com/go-asm/go/cmd/gcprog"
    28  	"github.com/go-asm/go/cmd/obj"
    29  	"github.com/go-asm/go/cmd/objabi"
    30  	"github.com/go-asm/go/cmd/src"
    31  )
    32  
    33  type ptabEntry struct {
    34  	s *types.Sym
    35  	t *types.Type
    36  }
    37  
    38  // runtime interface and reflection data structures
    39  var (
    40  	// protects signatset and signatslice
    41  	signatmu sync.Mutex
    42  	// Tracking which types need runtime type descriptor
    43  	signatset = make(map[*types.Type]struct{})
    44  	// Queue of types wait to be generated runtime type descriptor
    45  	signatslice []typeAndStr
    46  
    47  	gcsymmu  sync.Mutex // protects gcsymset and gcsymslice
    48  	gcsymset = make(map[*types.Type]struct{})
    49  )
    50  
    51  type typeSig struct {
    52  	name  *types.Sym
    53  	isym  *obj.LSym
    54  	tsym  *obj.LSym
    55  	type_ *types.Type
    56  	mtype *types.Type
    57  }
    58  
    59  // Builds a type representing a Bucket structure for
    60  // the given map type. This type is not visible to users -
    61  // we include only enough information to generate a correct GC
    62  // program for it.
    63  // Make sure this stays in sync with runtime/map.go.
    64  //
    65  //	A "bucket" is a "struct" {
    66  //	      tophash [BUCKETSIZE]uint8
    67  //	      keys [BUCKETSIZE]keyType
    68  //	      elems [BUCKETSIZE]elemType
    69  //	      overflow *bucket
    70  //	    }
    71  const (
    72  	BUCKETSIZE  = abi.MapBucketCount
    73  	MAXKEYSIZE  = abi.MapMaxKeyBytes
    74  	MAXELEMSIZE = abi.MapMaxElemBytes
    75  )
    76  
    77  func commonSize() int { return int(rttype.Type.Size()) } // Sizeof(runtime._type{})
    78  
    79  func uncommonSize(t *types.Type) int { // Sizeof(runtime.uncommontype{})
    80  	if t.Sym() == nil && len(methods(t)) == 0 {
    81  		return 0
    82  	}
    83  	return int(rttype.UncommonType.Size())
    84  }
    85  
    86  func makefield(name string, t *types.Type) *types.Field {
    87  	sym := (*types.Pkg)(nil).Lookup(name)
    88  	return types.NewField(src.NoXPos, sym, t)
    89  }
    90  
    91  // MapBucketType makes the map bucket type given the type of the map.
    92  func MapBucketType(t *types.Type) *types.Type {
    93  	if t.MapType().Bucket != nil {
    94  		return t.MapType().Bucket
    95  	}
    96  
    97  	keytype := t.Key()
    98  	elemtype := t.Elem()
    99  	types.CalcSize(keytype)
   100  	types.CalcSize(elemtype)
   101  	if keytype.Size() > MAXKEYSIZE {
   102  		keytype = types.NewPtr(keytype)
   103  	}
   104  	if elemtype.Size() > MAXELEMSIZE {
   105  		elemtype = types.NewPtr(elemtype)
   106  	}
   107  
   108  	field := make([]*types.Field, 0, 5)
   109  
   110  	// The first field is: uint8 topbits[BUCKETSIZE].
   111  	arr := types.NewArray(types.Types[types.TUINT8], BUCKETSIZE)
   112  	field = append(field, makefield("topbits", arr))
   113  
   114  	arr = types.NewArray(keytype, BUCKETSIZE)
   115  	arr.SetNoalg(true)
   116  	keys := makefield("keys", arr)
   117  	field = append(field, keys)
   118  
   119  	arr = types.NewArray(elemtype, BUCKETSIZE)
   120  	arr.SetNoalg(true)
   121  	elems := makefield("elems", arr)
   122  	field = append(field, elems)
   123  
   124  	// If keys and elems have no pointers, the map implementation
   125  	// can keep a list of overflow pointers on the side so that
   126  	// buckets can be marked as having no pointers.
   127  	// Arrange for the bucket to have no pointers by changing
   128  	// the type of the overflow field to uintptr in this case.
   129  	// See comment on hmap.overflow in runtime/map.go.
   130  	otyp := types.Types[types.TUNSAFEPTR]
   131  	if !elemtype.HasPointers() && !keytype.HasPointers() {
   132  		otyp = types.Types[types.TUINTPTR]
   133  	}
   134  	overflow := makefield("overflow", otyp)
   135  	field = append(field, overflow)
   136  
   137  	// link up fields
   138  	bucket := types.NewStruct(field[:])
   139  	bucket.SetNoalg(true)
   140  	types.CalcSize(bucket)
   141  
   142  	// Check invariants that map code depends on.
   143  	if !types.IsComparable(t.Key()) {
   144  		base.Fatalf("unsupported map key type for %v", t)
   145  	}
   146  	if BUCKETSIZE < 8 {
   147  		base.Fatalf("bucket size %d too small for proper alignment %d", BUCKETSIZE, 8)
   148  	}
   149  	if uint8(keytype.Alignment()) > BUCKETSIZE {
   150  		base.Fatalf("key align too big for %v", t)
   151  	}
   152  	if uint8(elemtype.Alignment()) > BUCKETSIZE {
   153  		base.Fatalf("elem align %d too big for %v, BUCKETSIZE=%d", elemtype.Alignment(), t, BUCKETSIZE)
   154  	}
   155  	if keytype.Size() > MAXKEYSIZE {
   156  		base.Fatalf("key size too large for %v", t)
   157  	}
   158  	if elemtype.Size() > MAXELEMSIZE {
   159  		base.Fatalf("elem size too large for %v", t)
   160  	}
   161  	if t.Key().Size() > MAXKEYSIZE && !keytype.IsPtr() {
   162  		base.Fatalf("key indirect incorrect for %v", t)
   163  	}
   164  	if t.Elem().Size() > MAXELEMSIZE && !elemtype.IsPtr() {
   165  		base.Fatalf("elem indirect incorrect for %v", t)
   166  	}
   167  	if keytype.Size()%keytype.Alignment() != 0 {
   168  		base.Fatalf("key size not a multiple of key align for %v", t)
   169  	}
   170  	if elemtype.Size()%elemtype.Alignment() != 0 {
   171  		base.Fatalf("elem size not a multiple of elem align for %v", t)
   172  	}
   173  	if uint8(bucket.Alignment())%uint8(keytype.Alignment()) != 0 {
   174  		base.Fatalf("bucket align not multiple of key align %v", t)
   175  	}
   176  	if uint8(bucket.Alignment())%uint8(elemtype.Alignment()) != 0 {
   177  		base.Fatalf("bucket align not multiple of elem align %v", t)
   178  	}
   179  	if keys.Offset%keytype.Alignment() != 0 {
   180  		base.Fatalf("bad alignment of keys in bmap for %v", t)
   181  	}
   182  	if elems.Offset%elemtype.Alignment() != 0 {
   183  		base.Fatalf("bad alignment of elems in bmap for %v", t)
   184  	}
   185  
   186  	// Double-check that overflow field is final memory in struct,
   187  	// with no padding at end.
   188  	if overflow.Offset != bucket.Size()-int64(types.PtrSize) {
   189  		base.Fatalf("bad offset of overflow in bmap for %v, overflow.Offset=%d, bucket.Size()-int64(types.PtrSize)=%d",
   190  			t, overflow.Offset, bucket.Size()-int64(types.PtrSize))
   191  	}
   192  
   193  	t.MapType().Bucket = bucket
   194  
   195  	bucket.StructType().Map = t
   196  	return bucket
   197  }
   198  
   199  var hmapType *types.Type
   200  
   201  // MapType returns a type interchangeable with runtime.hmap.
   202  // Make sure this stays in sync with runtime/map.go.
   203  func MapType() *types.Type {
   204  	if hmapType != nil {
   205  		return hmapType
   206  	}
   207  
   208  	// build a struct:
   209  	// type hmap struct {
   210  	//    count      int
   211  	//    flags      uint8
   212  	//    B          uint8
   213  	//    noverflow  uint16
   214  	//    hash0      uint32
   215  	//    buckets    unsafe.Pointer
   216  	//    oldbuckets unsafe.Pointer
   217  	//    nevacuate  uintptr
   218  	//    extra      unsafe.Pointer // *mapextra
   219  	// }
   220  	// must match runtime/map.go:hmap.
   221  	fields := []*types.Field{
   222  		makefield("count", types.Types[types.TINT]),
   223  		makefield("flags", types.Types[types.TUINT8]),
   224  		makefield("B", types.Types[types.TUINT8]),
   225  		makefield("noverflow", types.Types[types.TUINT16]),
   226  		makefield("hash0", types.Types[types.TUINT32]),      // Used in walk.go for OMAKEMAP.
   227  		makefield("buckets", types.Types[types.TUNSAFEPTR]), // Used in walk.go for OMAKEMAP.
   228  		makefield("oldbuckets", types.Types[types.TUNSAFEPTR]),
   229  		makefield("nevacuate", types.Types[types.TUINTPTR]),
   230  		makefield("extra", types.Types[types.TUNSAFEPTR]),
   231  	}
   232  
   233  	n := ir.NewDeclNameAt(src.NoXPos, ir.OTYPE, ir.Pkgs.Runtime.Lookup("hmap"))
   234  	hmap := types.NewNamed(n)
   235  	n.SetType(hmap)
   236  	n.SetTypecheck(1)
   237  
   238  	hmap.SetUnderlying(types.NewStruct(fields))
   239  	types.CalcSize(hmap)
   240  
   241  	// The size of hmap should be 48 bytes on 64 bit
   242  	// and 28 bytes on 32 bit platforms.
   243  	if size := int64(8 + 5*types.PtrSize); hmap.Size() != size {
   244  		base.Fatalf("hmap size not correct: got %d, want %d", hmap.Size(), size)
   245  	}
   246  
   247  	hmapType = hmap
   248  	return hmap
   249  }
   250  
   251  var hiterType *types.Type
   252  
   253  // MapIterType returns a type interchangeable with runtime.hiter.
   254  // Make sure this stays in sync with runtime/map.go.
   255  func MapIterType() *types.Type {
   256  	if hiterType != nil {
   257  		return hiterType
   258  	}
   259  
   260  	hmap := MapType()
   261  
   262  	// build a struct:
   263  	// type hiter struct {
   264  	//    key         unsafe.Pointer // *Key
   265  	//    elem        unsafe.Pointer // *Elem
   266  	//    t           unsafe.Pointer // *MapType
   267  	//    h           *hmap
   268  	//    buckets     unsafe.Pointer
   269  	//    bptr        unsafe.Pointer // *bmap
   270  	//    overflow    unsafe.Pointer // *[]*bmap
   271  	//    oldoverflow unsafe.Pointer // *[]*bmap
   272  	//    startBucket uintptr
   273  	//    offset      uint8
   274  	//    wrapped     bool
   275  	//    B           uint8
   276  	//    i           uint8
   277  	//    bucket      uintptr
   278  	//    checkBucket uintptr
   279  	// }
   280  	// must match runtime/map.go:hiter.
   281  	fields := []*types.Field{
   282  		makefield("key", types.Types[types.TUNSAFEPTR]),  // Used in range.go for TMAP.
   283  		makefield("elem", types.Types[types.TUNSAFEPTR]), // Used in range.go for TMAP.
   284  		makefield("t", types.Types[types.TUNSAFEPTR]),
   285  		makefield("h", types.NewPtr(hmap)),
   286  		makefield("buckets", types.Types[types.TUNSAFEPTR]),
   287  		makefield("bptr", types.Types[types.TUNSAFEPTR]),
   288  		makefield("overflow", types.Types[types.TUNSAFEPTR]),
   289  		makefield("oldoverflow", types.Types[types.TUNSAFEPTR]),
   290  		makefield("startBucket", types.Types[types.TUINTPTR]),
   291  		makefield("offset", types.Types[types.TUINT8]),
   292  		makefield("wrapped", types.Types[types.TBOOL]),
   293  		makefield("B", types.Types[types.TUINT8]),
   294  		makefield("i", types.Types[types.TUINT8]),
   295  		makefield("bucket", types.Types[types.TUINTPTR]),
   296  		makefield("checkBucket", types.Types[types.TUINTPTR]),
   297  	}
   298  
   299  	// build iterator struct holding the above fields
   300  	n := ir.NewDeclNameAt(src.NoXPos, ir.OTYPE, ir.Pkgs.Runtime.Lookup("hiter"))
   301  	hiter := types.NewNamed(n)
   302  	n.SetType(hiter)
   303  	n.SetTypecheck(1)
   304  
   305  	hiter.SetUnderlying(types.NewStruct(fields))
   306  	types.CalcSize(hiter)
   307  	if hiter.Size() != int64(12*types.PtrSize) {
   308  		base.Fatalf("hash_iter size not correct %d %d", hiter.Size(), 12*types.PtrSize)
   309  	}
   310  
   311  	hiterType = hiter
   312  	return hiter
   313  }
   314  
   315  // methods returns the methods of the non-interface type t, sorted by name.
   316  // Generates stub functions as needed.
   317  func methods(t *types.Type) []*typeSig {
   318  	if t.HasShape() {
   319  		// Shape types have no methods.
   320  		return nil
   321  	}
   322  	// method type
   323  	mt := types.ReceiverBaseType(t)
   324  
   325  	if mt == nil {
   326  		return nil
   327  	}
   328  	typecheck.CalcMethods(mt)
   329  
   330  	// make list of methods for t,
   331  	// generating code if necessary.
   332  	var ms []*typeSig
   333  	for _, f := range mt.AllMethods() {
   334  		if f.Sym == nil {
   335  			base.Fatalf("method with no sym on %v", mt)
   336  		}
   337  		if !f.IsMethod() {
   338  			base.Fatalf("non-method on %v method %v %v", mt, f.Sym, f)
   339  		}
   340  		if f.Type.Recv() == nil {
   341  			base.Fatalf("receiver with no type on %v method %v %v", mt, f.Sym, f)
   342  		}
   343  		if f.Nointerface() && !t.IsFullyInstantiated() {
   344  			// Skip creating method wrappers if f is nointerface. But, if
   345  			// t is an instantiated type, we still have to call
   346  			// methodWrapper, because methodWrapper generates the actual
   347  			// generic method on the type as well.
   348  			continue
   349  		}
   350  
   351  		// get receiver type for this particular method.
   352  		// if pointer receiver but non-pointer t and
   353  		// this is not an embedded pointer inside a struct,
   354  		// method does not apply.
   355  		if !types.IsMethodApplicable(t, f) {
   356  			continue
   357  		}
   358  
   359  		sig := &typeSig{
   360  			name:  f.Sym,
   361  			isym:  methodWrapper(t, f, true),
   362  			tsym:  methodWrapper(t, f, false),
   363  			type_: typecheck.NewMethodType(f.Type, t),
   364  			mtype: typecheck.NewMethodType(f.Type, nil),
   365  		}
   366  		if f.Nointerface() {
   367  			// In the case of a nointerface method on an instantiated
   368  			// type, don't actually append the typeSig.
   369  			continue
   370  		}
   371  		ms = append(ms, sig)
   372  	}
   373  
   374  	return ms
   375  }
   376  
   377  // imethods returns the methods of the interface type t, sorted by name.
   378  func imethods(t *types.Type) []*typeSig {
   379  	var methods []*typeSig
   380  	for _, f := range t.AllMethods() {
   381  		if f.Type.Kind() != types.TFUNC || f.Sym == nil {
   382  			continue
   383  		}
   384  		if f.Sym.IsBlank() {
   385  			base.Fatalf("unexpected blank symbol in interface method set")
   386  		}
   387  		if n := len(methods); n > 0 {
   388  			last := methods[n-1]
   389  			if !last.name.Less(f.Sym) {
   390  				base.Fatalf("sigcmp vs sortinter %v %v", last.name, f.Sym)
   391  			}
   392  		}
   393  
   394  		sig := &typeSig{
   395  			name:  f.Sym,
   396  			mtype: f.Type,
   397  			type_: typecheck.NewMethodType(f.Type, nil),
   398  		}
   399  		methods = append(methods, sig)
   400  
   401  		// NOTE(rsc): Perhaps an oversight that
   402  		// IfaceType.Method is not in the reflect data.
   403  		// Generate the method body, so that compiled
   404  		// code can refer to it.
   405  		methodWrapper(t, f, false)
   406  	}
   407  
   408  	return methods
   409  }
   410  
   411  func dimportpath(p *types.Pkg) {
   412  	if p.Pathsym != nil {
   413  		return
   414  	}
   415  
   416  	if p == types.LocalPkg && base.Ctxt.Pkgpath == "" {
   417  		panic("missing pkgpath")
   418  	}
   419  
   420  	// If we are compiling the runtime package, there are two runtime packages around
   421  	// -- localpkg and Pkgs.Runtime. We don't want to produce import path symbols for
   422  	// both of them, so just produce one for localpkg.
   423  	if base.Ctxt.Pkgpath == "runtime" && p == ir.Pkgs.Runtime {
   424  		return
   425  	}
   426  
   427  	s := base.Ctxt.Lookup("type:.importpath." + p.Prefix + ".")
   428  	ot := dnameData(s, 0, p.Path, "", nil, false, false)
   429  	objw.Global(s, int32(ot), obj.DUPOK|obj.RODATA)
   430  	s.Set(obj.AttrContentAddressable, true)
   431  	p.Pathsym = s
   432  }
   433  
   434  func dgopkgpath(c rttype.Cursor, pkg *types.Pkg) {
   435  	c = c.Field("Bytes")
   436  	if pkg == nil {
   437  		c.WritePtr(nil)
   438  		return
   439  	}
   440  
   441  	dimportpath(pkg)
   442  	c.WritePtr(pkg.Pathsym)
   443  }
   444  
   445  // dgopkgpathOff writes an offset relocation to the pkg path symbol to c.
   446  func dgopkgpathOff(c rttype.Cursor, pkg *types.Pkg) {
   447  	if pkg == nil {
   448  		c.WriteInt32(0)
   449  		return
   450  	}
   451  
   452  	dimportpath(pkg)
   453  	c.WriteSymPtrOff(pkg.Pathsym, false)
   454  }
   455  
   456  // dnameField dumps a reflect.name for a struct field.
   457  func dnameField(c rttype.Cursor, spkg *types.Pkg, ft *types.Field) {
   458  	if !types.IsExported(ft.Sym.Name) && ft.Sym.Pkg != spkg {
   459  		base.Fatalf("package mismatch for %v", ft.Sym)
   460  	}
   461  	nsym := dname(ft.Sym.Name, ft.Note, nil, types.IsExported(ft.Sym.Name), ft.Embedded != 0)
   462  	c.Field("Bytes").WritePtr(nsym)
   463  }
   464  
   465  // dnameData writes the contents of a reflect.name into s at offset ot.
   466  func dnameData(s *obj.LSym, ot int, name, tag string, pkg *types.Pkg, exported, embedded bool) int {
   467  	if len(name) >= 1<<29 {
   468  		base.Fatalf("name too long: %d %s...", len(name), name[:1024])
   469  	}
   470  	if len(tag) >= 1<<29 {
   471  		base.Fatalf("tag too long: %d %s...", len(tag), tag[:1024])
   472  	}
   473  	var nameLen [binary.MaxVarintLen64]byte
   474  	nameLenLen := binary.PutUvarint(nameLen[:], uint64(len(name)))
   475  	var tagLen [binary.MaxVarintLen64]byte
   476  	tagLenLen := binary.PutUvarint(tagLen[:], uint64(len(tag)))
   477  
   478  	// Encode name and tag. See reflect/type.go for details.
   479  	var bits byte
   480  	l := 1 + nameLenLen + len(name)
   481  	if exported {
   482  		bits |= 1 << 0
   483  	}
   484  	if len(tag) > 0 {
   485  		l += tagLenLen + len(tag)
   486  		bits |= 1 << 1
   487  	}
   488  	if pkg != nil {
   489  		bits |= 1 << 2
   490  	}
   491  	if embedded {
   492  		bits |= 1 << 3
   493  	}
   494  	b := make([]byte, l)
   495  	b[0] = bits
   496  	copy(b[1:], nameLen[:nameLenLen])
   497  	copy(b[1+nameLenLen:], name)
   498  	if len(tag) > 0 {
   499  		tb := b[1+nameLenLen+len(name):]
   500  		copy(tb, tagLen[:tagLenLen])
   501  		copy(tb[tagLenLen:], tag)
   502  	}
   503  
   504  	ot = int(s.WriteBytes(base.Ctxt, int64(ot), b))
   505  
   506  	if pkg != nil {
   507  		c := rttype.NewCursor(s, int64(ot), types.Types[types.TUINT32])
   508  		dgopkgpathOff(c, pkg)
   509  		ot += 4
   510  	}
   511  
   512  	return ot
   513  }
   514  
   515  var dnameCount int
   516  
   517  // dname creates a reflect.name for a struct field or method.
   518  func dname(name, tag string, pkg *types.Pkg, exported, embedded bool) *obj.LSym {
   519  	// Write out data as "type:." to signal two things to the
   520  	// linker, first that when dynamically linking, the symbol
   521  	// should be moved to a relro section, and second that the
   522  	// contents should not be decoded as a type.
   523  	sname := "type:.namedata."
   524  	if pkg == nil {
   525  		// In the common case, share data with other packages.
   526  		if name == "" {
   527  			if exported {
   528  				sname += "-noname-exported." + tag
   529  			} else {
   530  				sname += "-noname-unexported." + tag
   531  			}
   532  		} else {
   533  			if exported {
   534  				sname += name + "." + tag
   535  			} else {
   536  				sname += name + "-" + tag
   537  			}
   538  		}
   539  	} else {
   540  		// TODO(mdempsky): We should be able to share these too (except
   541  		// maybe when dynamic linking).
   542  		sname = fmt.Sprintf("%s%s.%d", sname, types.LocalPkg.Prefix, dnameCount)
   543  		dnameCount++
   544  	}
   545  	if embedded {
   546  		sname += ".embedded"
   547  	}
   548  	s := base.Ctxt.Lookup(sname)
   549  	if len(s.P) > 0 {
   550  		return s
   551  	}
   552  	ot := dnameData(s, 0, name, tag, pkg, exported, embedded)
   553  	objw.Global(s, int32(ot), obj.DUPOK|obj.RODATA)
   554  	s.Set(obj.AttrContentAddressable, true)
   555  	return s
   556  }
   557  
   558  // dextratype dumps the fields of a runtime.uncommontype.
   559  // dataAdd is the offset in bytes after the header where the
   560  // backing array of the []method field should be written.
   561  func dextratype(lsym *obj.LSym, off int64, t *types.Type, dataAdd int) {
   562  	m := methods(t)
   563  	if t.Sym() == nil && len(m) == 0 {
   564  		base.Fatalf("extra requested of type with no extra info %v", t)
   565  	}
   566  	noff := types.RoundUp(off, int64(types.PtrSize))
   567  	if noff != off {
   568  		base.Fatalf("unexpected alignment in dextratype for %v", t)
   569  	}
   570  
   571  	for _, a := range m {
   572  		writeType(a.type_)
   573  	}
   574  
   575  	c := rttype.NewCursor(lsym, off, rttype.UncommonType)
   576  	dgopkgpathOff(c.Field("PkgPath"), typePkg(t))
   577  
   578  	dataAdd += uncommonSize(t)
   579  	mcount := len(m)
   580  	if mcount != int(uint16(mcount)) {
   581  		base.Fatalf("too many methods on %v: %d", t, mcount)
   582  	}
   583  	xcount := sort.Search(mcount, func(i int) bool { return !types.IsExported(m[i].name.Name) })
   584  	if dataAdd != int(uint32(dataAdd)) {
   585  		base.Fatalf("methods are too far away on %v: %d", t, dataAdd)
   586  	}
   587  
   588  	c.Field("Mcount").WriteUint16(uint16(mcount))
   589  	c.Field("Xcount").WriteUint16(uint16(xcount))
   590  	c.Field("Moff").WriteUint32(uint32(dataAdd))
   591  	// Note: there is an unused uint32 field here.
   592  
   593  	// Write the backing array for the []method field.
   594  	array := rttype.NewArrayCursor(lsym, off+int64(dataAdd), rttype.Method, mcount)
   595  	for i, a := range m {
   596  		exported := types.IsExported(a.name.Name)
   597  		var pkg *types.Pkg
   598  		if !exported && a.name.Pkg != typePkg(t) {
   599  			pkg = a.name.Pkg
   600  		}
   601  		nsym := dname(a.name.Name, "", pkg, exported, false)
   602  
   603  		e := array.Elem(i)
   604  		e.Field("Name").WriteSymPtrOff(nsym, false)
   605  		dmethodptrOff(e.Field("Mtyp"), writeType(a.mtype))
   606  		dmethodptrOff(e.Field("Ifn"), a.isym)
   607  		dmethodptrOff(e.Field("Tfn"), a.tsym)
   608  	}
   609  }
   610  
   611  func typePkg(t *types.Type) *types.Pkg {
   612  	tsym := t.Sym()
   613  	if tsym == nil {
   614  		switch t.Kind() {
   615  		case types.TARRAY, types.TSLICE, types.TPTR, types.TCHAN:
   616  			if t.Elem() != nil {
   617  				tsym = t.Elem().Sym()
   618  			}
   619  		}
   620  	}
   621  	if tsym != nil && tsym.Pkg != types.BuiltinPkg {
   622  		return tsym.Pkg
   623  	}
   624  	return nil
   625  }
   626  
   627  func dmethodptrOff(c rttype.Cursor, x *obj.LSym) {
   628  	c.WriteInt32(0)
   629  	r := c.Reloc()
   630  	r.Sym = x
   631  	r.Type = objabi.R_METHODOFF
   632  }
   633  
   634  var kinds = []int{
   635  	types.TINT:        objabi.KindInt,
   636  	types.TUINT:       objabi.KindUint,
   637  	types.TINT8:       objabi.KindInt8,
   638  	types.TUINT8:      objabi.KindUint8,
   639  	types.TINT16:      objabi.KindInt16,
   640  	types.TUINT16:     objabi.KindUint16,
   641  	types.TINT32:      objabi.KindInt32,
   642  	types.TUINT32:     objabi.KindUint32,
   643  	types.TINT64:      objabi.KindInt64,
   644  	types.TUINT64:     objabi.KindUint64,
   645  	types.TUINTPTR:    objabi.KindUintptr,
   646  	types.TFLOAT32:    objabi.KindFloat32,
   647  	types.TFLOAT64:    objabi.KindFloat64,
   648  	types.TBOOL:       objabi.KindBool,
   649  	types.TSTRING:     objabi.KindString,
   650  	types.TPTR:        objabi.KindPtr,
   651  	types.TSTRUCT:     objabi.KindStruct,
   652  	types.TINTER:      objabi.KindInterface,
   653  	types.TCHAN:       objabi.KindChan,
   654  	types.TMAP:        objabi.KindMap,
   655  	types.TARRAY:      objabi.KindArray,
   656  	types.TSLICE:      objabi.KindSlice,
   657  	types.TFUNC:       objabi.KindFunc,
   658  	types.TCOMPLEX64:  objabi.KindComplex64,
   659  	types.TCOMPLEX128: objabi.KindComplex128,
   660  	types.TUNSAFEPTR:  objabi.KindUnsafePointer,
   661  }
   662  
   663  var (
   664  	memhashvarlen  *obj.LSym
   665  	memequalvarlen *obj.LSym
   666  )
   667  
   668  // dcommontype dumps the contents of a reflect.rtype (runtime._type) to c.
   669  func dcommontype(c rttype.Cursor, t *types.Type) {
   670  	types.CalcSize(t)
   671  	eqfunc := geneq(t)
   672  
   673  	sptrWeak := true
   674  	var sptr *obj.LSym
   675  	if !t.IsPtr() || t.IsPtrElem() {
   676  		tptr := types.NewPtr(t)
   677  		if t.Sym() != nil || methods(tptr) != nil {
   678  			sptrWeak = false
   679  		}
   680  		sptr = writeType(tptr)
   681  	}
   682  
   683  	gcsym, useGCProg, ptrdata := dgcsym(t, true)
   684  	delete(gcsymset, t)
   685  
   686  	// ../../../../reflect/type.go:/^type.rtype
   687  	// actual type structure
   688  	//	type rtype struct {
   689  	//		size          uintptr
   690  	//		ptrdata       uintptr
   691  	//		hash          uint32
   692  	//		tflag         tflag
   693  	//		align         uint8
   694  	//		fieldAlign    uint8
   695  	//		kind          uint8
   696  	//		equal         func(unsafe.Pointer, unsafe.Pointer) bool
   697  	//		gcdata        *byte
   698  	//		str           nameOff
   699  	//		ptrToThis     typeOff
   700  	//	}
   701  	c.Field("Size_").WriteUintptr(uint64(t.Size()))
   702  	c.Field("PtrBytes").WriteUintptr(uint64(ptrdata))
   703  	c.Field("Hash").WriteUint32(types.TypeHash(t))
   704  
   705  	var tflag abi.TFlag
   706  	if uncommonSize(t) != 0 {
   707  		tflag |= abi.TFlagUncommon
   708  	}
   709  	if t.Sym() != nil && t.Sym().Name != "" {
   710  		tflag |= abi.TFlagNamed
   711  	}
   712  	if compare.IsRegularMemory(t) {
   713  		tflag |= abi.TFlagRegularMemory
   714  	}
   715  
   716  	exported := false
   717  	p := t.NameString()
   718  	// If we're writing out type T,
   719  	// we are very likely to write out type *T as well.
   720  	// Use the string "*T"[1:] for "T", so that the two
   721  	// share storage. This is a cheap way to reduce the
   722  	// amount of space taken up by reflect strings.
   723  	if !strings.HasPrefix(p, "*") {
   724  		p = "*" + p
   725  		tflag |= abi.TFlagExtraStar
   726  		if t.Sym() != nil {
   727  			exported = types.IsExported(t.Sym().Name)
   728  		}
   729  	} else {
   730  		if t.Elem() != nil && t.Elem().Sym() != nil {
   731  			exported = types.IsExported(t.Elem().Sym().Name)
   732  		}
   733  	}
   734  
   735  	if tflag != abi.TFlag(uint8(tflag)) {
   736  		// this should optimize away completely
   737  		panic("Unexpected change in size of abi.TFlag")
   738  	}
   739  	c.Field("TFlag").WriteUint8(uint8(tflag))
   740  
   741  	// runtime (and common sense) expects alignment to be a power of two.
   742  	i := int(uint8(t.Alignment()))
   743  
   744  	if i == 0 {
   745  		i = 1
   746  	}
   747  	if i&(i-1) != 0 {
   748  		base.Fatalf("invalid alignment %d for %v", uint8(t.Alignment()), t)
   749  	}
   750  	c.Field("Align_").WriteUint8(uint8(t.Alignment()))
   751  	c.Field("FieldAlign_").WriteUint8(uint8(t.Alignment()))
   752  
   753  	i = kinds[t.Kind()]
   754  	if types.IsDirectIface(t) {
   755  		i |= objabi.KindDirectIface
   756  	}
   757  	if useGCProg {
   758  		i |= objabi.KindGCProg
   759  	}
   760  	c.Field("Kind_").WriteUint8(uint8(i))
   761  
   762  	c.Field("Equal").WritePtr(eqfunc)
   763  	c.Field("GCData").WritePtr(gcsym)
   764  
   765  	nsym := dname(p, "", nil, exported, false)
   766  	c.Field("Str").WriteSymPtrOff(nsym, false)
   767  	c.Field("PtrToThis").WriteSymPtrOff(sptr, sptrWeak)
   768  }
   769  
   770  // TrackSym returns the symbol for tracking use of field/method f, assumed
   771  // to be a member of struct/interface type t.
   772  func TrackSym(t *types.Type, f *types.Field) *obj.LSym {
   773  	return base.PkgLinksym("go:track", t.LinkString()+"."+f.Sym.Name, obj.ABI0)
   774  }
   775  
   776  func TypeSymPrefix(prefix string, t *types.Type) *types.Sym {
   777  	p := prefix + "." + t.LinkString()
   778  	s := types.TypeSymLookup(p)
   779  
   780  	// This function is for looking up type-related generated functions
   781  	// (e.g. eq and hash). Make sure they are indeed generated.
   782  	signatmu.Lock()
   783  	NeedRuntimeType(t)
   784  	signatmu.Unlock()
   785  
   786  	//print("algsym: %s -> %+S\n", p, s);
   787  
   788  	return s
   789  }
   790  
   791  func TypeSym(t *types.Type) *types.Sym {
   792  	if t == nil || (t.IsPtr() && t.Elem() == nil) || t.IsUntyped() {
   793  		base.Fatalf("TypeSym %v", t)
   794  	}
   795  	if t.Kind() == types.TFUNC && t.Recv() != nil {
   796  		base.Fatalf("misuse of method type: %v", t)
   797  	}
   798  	s := types.TypeSym(t)
   799  	signatmu.Lock()
   800  	NeedRuntimeType(t)
   801  	signatmu.Unlock()
   802  	return s
   803  }
   804  
   805  func TypeLinksymPrefix(prefix string, t *types.Type) *obj.LSym {
   806  	return TypeSymPrefix(prefix, t).Linksym()
   807  }
   808  
   809  func TypeLinksymLookup(name string) *obj.LSym {
   810  	return types.TypeSymLookup(name).Linksym()
   811  }
   812  
   813  func TypeLinksym(t *types.Type) *obj.LSym {
   814  	lsym := TypeSym(t).Linksym()
   815  	signatmu.Lock()
   816  	if lsym.Extra == nil {
   817  		ti := lsym.NewTypeInfo()
   818  		ti.Type = t
   819  	}
   820  	signatmu.Unlock()
   821  	return lsym
   822  }
   823  
   824  // TypePtrAt returns an expression that evaluates to the
   825  // *runtime._type value for t.
   826  func TypePtrAt(pos src.XPos, t *types.Type) *ir.AddrExpr {
   827  	return typecheck.LinksymAddr(pos, TypeLinksym(t), types.Types[types.TUINT8])
   828  }
   829  
   830  // ITabLsym returns the LSym representing the itab for concrete type typ implementing
   831  // interface iface. A dummy tab will be created in the unusual case where typ doesn't
   832  // implement iface. Normally, this wouldn't happen, because the typechecker would
   833  // have reported a compile-time error. This situation can only happen when the
   834  // destination type of a type assert or a type in a type switch is parameterized, so
   835  // it may sometimes, but not always, be a type that can't implement the specified
   836  // interface.
   837  func ITabLsym(typ, iface *types.Type) *obj.LSym {
   838  	s, existed := ir.Pkgs.Itab.LookupOK(typ.LinkString() + "," + iface.LinkString())
   839  	lsym := s.Linksym()
   840  
   841  	if !existed {
   842  		writeITab(lsym, typ, iface, true)
   843  	}
   844  	return lsym
   845  }
   846  
   847  // ITabAddrAt returns an expression that evaluates to the
   848  // *runtime.itab value for concrete type typ implementing interface
   849  // iface.
   850  func ITabAddrAt(pos src.XPos, typ, iface *types.Type) *ir.AddrExpr {
   851  	s, existed := ir.Pkgs.Itab.LookupOK(typ.LinkString() + "," + iface.LinkString())
   852  	lsym := s.Linksym()
   853  
   854  	if !existed {
   855  		writeITab(lsym, typ, iface, false)
   856  	}
   857  
   858  	return typecheck.LinksymAddr(pos, lsym, types.Types[types.TUINT8])
   859  }
   860  
   861  // needkeyupdate reports whether map updates with t as a key
   862  // need the key to be updated.
   863  func needkeyupdate(t *types.Type) bool {
   864  	switch t.Kind() {
   865  	case types.TBOOL, types.TINT, types.TUINT, types.TINT8, types.TUINT8, types.TINT16, types.TUINT16, types.TINT32, types.TUINT32,
   866  		types.TINT64, types.TUINT64, types.TUINTPTR, types.TPTR, types.TUNSAFEPTR, types.TCHAN:
   867  		return false
   868  
   869  	case types.TFLOAT32, types.TFLOAT64, types.TCOMPLEX64, types.TCOMPLEX128, // floats and complex can be +0/-0
   870  		types.TINTER,
   871  		types.TSTRING: // strings might have smaller backing stores
   872  		return true
   873  
   874  	case types.TARRAY:
   875  		return needkeyupdate(t.Elem())
   876  
   877  	case types.TSTRUCT:
   878  		for _, t1 := range t.Fields() {
   879  			if needkeyupdate(t1.Type) {
   880  				return true
   881  			}
   882  		}
   883  		return false
   884  
   885  	default:
   886  		base.Fatalf("bad type for map key: %v", t)
   887  		return true
   888  	}
   889  }
   890  
   891  // hashMightPanic reports whether the hash of a map key of type t might panic.
   892  func hashMightPanic(t *types.Type) bool {
   893  	switch t.Kind() {
   894  	case types.TINTER:
   895  		return true
   896  
   897  	case types.TARRAY:
   898  		return hashMightPanic(t.Elem())
   899  
   900  	case types.TSTRUCT:
   901  		for _, t1 := range t.Fields() {
   902  			if hashMightPanic(t1.Type) {
   903  				return true
   904  			}
   905  		}
   906  		return false
   907  
   908  	default:
   909  		return false
   910  	}
   911  }
   912  
   913  // formalType replaces predeclared aliases with real types.
   914  // They've been separate internally to make error messages
   915  // better, but we have to merge them in the reflect tables.
   916  func formalType(t *types.Type) *types.Type {
   917  	switch t {
   918  	case types.AnyType, types.ByteType, types.RuneType:
   919  		return types.Types[t.Kind()]
   920  	}
   921  	return t
   922  }
   923  
   924  func writeType(t *types.Type) *obj.LSym {
   925  	t = formalType(t)
   926  	if t.IsUntyped() {
   927  		base.Fatalf("writeType %v", t)
   928  	}
   929  
   930  	s := types.TypeSym(t)
   931  	lsym := s.Linksym()
   932  
   933  	// special case (look for runtime below):
   934  	// when compiling package runtime,
   935  	// emit the type structures for int, float, etc.
   936  	tbase := t
   937  	if t.IsPtr() && t.Sym() == nil && t.Elem().Sym() != nil {
   938  		tbase = t.Elem()
   939  	}
   940  	if tbase.Kind() == types.TFORW {
   941  		base.Fatalf("unresolved defined type: %v", tbase)
   942  	}
   943  
   944  	// This is a fake type we generated for our builtin pseudo-runtime
   945  	// package. We'll emit a description for the real type while
   946  	// compiling package runtime, so we don't need or want to emit one
   947  	// from this fake type.
   948  	if sym := tbase.Sym(); sym != nil && sym.Pkg == ir.Pkgs.Runtime {
   949  		return lsym
   950  	}
   951  
   952  	if s.Siggen() {
   953  		return lsym
   954  	}
   955  	s.SetSiggen(true)
   956  
   957  	if !NeedEmit(tbase) {
   958  		if i := typecheck.BaseTypeIndex(t); i >= 0 {
   959  			lsym.Pkg = tbase.Sym().Pkg.Prefix
   960  			lsym.SymIdx = int32(i)
   961  			lsym.Set(obj.AttrIndexed, true)
   962  		}
   963  
   964  		// TODO(mdempsky): Investigate whether this still happens.
   965  		// If we know we don't need to emit code for a type,
   966  		// we should have a link-symbol index for it.
   967  		// See also TODO in NeedEmit.
   968  		return lsym
   969  	}
   970  
   971  	// Type layout                          Written by               Marker
   972  	// +--------------------------------+                            - 0
   973  	// | abi/internal.Type              |   dcommontype
   974  	// +--------------------------------+                            - A
   975  	// | additional type-dependent      |   code in the switch below
   976  	// | fields, e.g.                   |
   977  	// | abi/internal.ArrayType.Len     |
   978  	// +--------------------------------+                            - B
   979  	// | github.com/go-asm/go/abi.UncommonType      |   dextratype
   980  	// | This section is optional,      |
   981  	// | if type has a name or methods  |
   982  	// +--------------------------------+                            - C
   983  	// | variable-length data           |   code in the switch below
   984  	// | referenced by                  |
   985  	// | type-dependent fields, e.g.    |
   986  	// | abi/internal.StructType.Fields |
   987  	// | dataAdd = size of this section |
   988  	// +--------------------------------+                            - D
   989  	// | method list, if any            |   dextratype
   990  	// +--------------------------------+                            - E
   991  
   992  	// UncommonType section is included if we have a name or a method.
   993  	extra := t.Sym() != nil || len(methods(t)) != 0
   994  
   995  	// Decide the underlying type of the descriptor, and remember
   996  	// the size we need for variable-length data.
   997  	var rt *types.Type
   998  	dataAdd := 0
   999  	switch t.Kind() {
  1000  	default:
  1001  		rt = rttype.Type
  1002  	case types.TARRAY:
  1003  		rt = rttype.ArrayType
  1004  	case types.TSLICE:
  1005  		rt = rttype.SliceType
  1006  	case types.TCHAN:
  1007  		rt = rttype.ChanType
  1008  	case types.TFUNC:
  1009  		rt = rttype.FuncType
  1010  		dataAdd = (t.NumRecvs() + t.NumParams() + t.NumResults()) * types.PtrSize
  1011  	case types.TINTER:
  1012  		rt = rttype.InterfaceType
  1013  		dataAdd = len(imethods(t)) * int(rttype.IMethod.Size())
  1014  	case types.TMAP:
  1015  		rt = rttype.MapType
  1016  	case types.TPTR:
  1017  		rt = rttype.PtrType
  1018  		// TODO: use rttype.Type for Elem() is ANY?
  1019  	case types.TSTRUCT:
  1020  		rt = rttype.StructType
  1021  		dataAdd = t.NumFields() * int(rttype.StructField.Size())
  1022  	}
  1023  
  1024  	// Compute offsets of each section.
  1025  	B := rt.Size()
  1026  	C := B
  1027  	if extra {
  1028  		C = B + rttype.UncommonType.Size()
  1029  	}
  1030  	D := C + int64(dataAdd)
  1031  	E := D + int64(len(methods(t)))*rttype.Method.Size()
  1032  
  1033  	// Write the runtime._type
  1034  	c := rttype.NewCursor(lsym, 0, rt)
  1035  	if rt == rttype.Type {
  1036  		dcommontype(c, t)
  1037  	} else {
  1038  		dcommontype(c.Field("Type"), t)
  1039  	}
  1040  
  1041  	// Write additional type-specific data
  1042  	// (Both the fixed size and variable-sized sections.)
  1043  	switch t.Kind() {
  1044  	case types.TARRAY:
  1045  		// github.com/go-asm/go/abi.ArrayType
  1046  		s1 := writeType(t.Elem())
  1047  		t2 := types.NewSlice(t.Elem())
  1048  		s2 := writeType(t2)
  1049  		c.Field("Elem").WritePtr(s1)
  1050  		c.Field("Slice").WritePtr(s2)
  1051  		c.Field("Len").WriteUintptr(uint64(t.NumElem()))
  1052  
  1053  	case types.TSLICE:
  1054  		// github.com/go-asm/go/abi.SliceType
  1055  		s1 := writeType(t.Elem())
  1056  		c.Field("Elem").WritePtr(s1)
  1057  
  1058  	case types.TCHAN:
  1059  		// github.com/go-asm/go/abi.ChanType
  1060  		s1 := writeType(t.Elem())
  1061  		c.Field("Elem").WritePtr(s1)
  1062  		c.Field("Dir").WriteInt(int64(t.ChanDir()))
  1063  
  1064  	case types.TFUNC:
  1065  		// github.com/go-asm/go/abi.FuncType
  1066  		for _, t1 := range t.RecvParamsResults() {
  1067  			writeType(t1.Type)
  1068  		}
  1069  		inCount := t.NumRecvs() + t.NumParams()
  1070  		outCount := t.NumResults()
  1071  		if t.IsVariadic() {
  1072  			outCount |= 1 << 15
  1073  		}
  1074  
  1075  		c.Field("InCount").WriteUint16(uint16(inCount))
  1076  		c.Field("OutCount").WriteUint16(uint16(outCount))
  1077  
  1078  		// Array of rtype pointers follows funcType.
  1079  		typs := t.RecvParamsResults()
  1080  		array := rttype.NewArrayCursor(lsym, C, types.Types[types.TUNSAFEPTR], len(typs))
  1081  		for i, t1 := range typs {
  1082  			array.Elem(i).WritePtr(writeType(t1.Type))
  1083  		}
  1084  
  1085  	case types.TINTER:
  1086  		// github.com/go-asm/go/abi.InterfaceType
  1087  		m := imethods(t)
  1088  		n := len(m)
  1089  		for _, a := range m {
  1090  			writeType(a.type_)
  1091  		}
  1092  
  1093  		var tpkg *types.Pkg
  1094  		if t.Sym() != nil && t != types.Types[t.Kind()] && t != types.ErrorType {
  1095  			tpkg = t.Sym().Pkg
  1096  		}
  1097  		dgopkgpath(c.Field("PkgPath"), tpkg)
  1098  		c.Field("Methods").WriteSlice(lsym, C, int64(n), int64(n))
  1099  
  1100  		array := rttype.NewArrayCursor(lsym, C, rttype.IMethod, n)
  1101  		for i, a := range m {
  1102  			exported := types.IsExported(a.name.Name)
  1103  			var pkg *types.Pkg
  1104  			if !exported && a.name.Pkg != tpkg {
  1105  				pkg = a.name.Pkg
  1106  			}
  1107  			nsym := dname(a.name.Name, "", pkg, exported, false)
  1108  
  1109  			e := array.Elem(i)
  1110  			e.Field("Name").WriteSymPtrOff(nsym, false)
  1111  			e.Field("Typ").WriteSymPtrOff(writeType(a.type_), false)
  1112  		}
  1113  
  1114  	case types.TMAP:
  1115  		// github.com/go-asm/go/abi.MapType
  1116  		s1 := writeType(t.Key())
  1117  		s2 := writeType(t.Elem())
  1118  		s3 := writeType(MapBucketType(t))
  1119  		hasher := genhash(t.Key())
  1120  
  1121  		c.Field("Key").WritePtr(s1)
  1122  		c.Field("Elem").WritePtr(s2)
  1123  		c.Field("Bucket").WritePtr(s3)
  1124  		c.Field("Hasher").WritePtr(hasher)
  1125  		var flags uint32
  1126  		// Note: flags must match maptype accessors in ../../../../runtime/type.go
  1127  		// and maptype builder in ../../../../reflect/type.go:MapOf.
  1128  		if t.Key().Size() > MAXKEYSIZE {
  1129  			c.Field("KeySize").WriteUint8(uint8(types.PtrSize))
  1130  			flags |= 1 // indirect key
  1131  		} else {
  1132  			c.Field("KeySize").WriteUint8(uint8(t.Key().Size()))
  1133  		}
  1134  
  1135  		if t.Elem().Size() > MAXELEMSIZE {
  1136  			c.Field("ValueSize").WriteUint8(uint8(types.PtrSize))
  1137  			flags |= 2 // indirect value
  1138  		} else {
  1139  			c.Field("ValueSize").WriteUint8(uint8(t.Elem().Size()))
  1140  		}
  1141  		c.Field("BucketSize").WriteUint16(uint16(MapBucketType(t).Size()))
  1142  		if types.IsReflexive(t.Key()) {
  1143  			flags |= 4 // reflexive key
  1144  		}
  1145  		if needkeyupdate(t.Key()) {
  1146  			flags |= 8 // need key update
  1147  		}
  1148  		if hashMightPanic(t.Key()) {
  1149  			flags |= 16 // hash might panic
  1150  		}
  1151  		c.Field("Flags").WriteUint32(flags)
  1152  
  1153  		if u := t.Underlying(); u != t {
  1154  			// If t is a named map type, also keep the underlying map
  1155  			// type live in the binary. This is important to make sure that
  1156  			// a named map and that same map cast to its underlying type via
  1157  			// reflection, use the same hash function. See issue 37716.
  1158  			r := obj.Addrel(lsym)
  1159  			r.Sym = writeType(u)
  1160  			r.Type = objabi.R_KEEP
  1161  		}
  1162  
  1163  	case types.TPTR:
  1164  		// github.com/go-asm/go/abi.PtrType
  1165  		if t.Elem().Kind() == types.TANY {
  1166  			base.Fatalf("bad pointer base type")
  1167  		}
  1168  
  1169  		s1 := writeType(t.Elem())
  1170  		c.Field("Elem").WritePtr(s1)
  1171  
  1172  	case types.TSTRUCT:
  1173  		// github.com/go-asm/go/abi.StructType
  1174  		fields := t.Fields()
  1175  		for _, t1 := range fields {
  1176  			writeType(t1.Type)
  1177  		}
  1178  
  1179  		// All non-exported struct field names within a struct
  1180  		// type must originate from a single package. By
  1181  		// identifying and recording that package within the
  1182  		// struct type descriptor, we can omit that
  1183  		// information from the field descriptors.
  1184  		var spkg *types.Pkg
  1185  		for _, f := range fields {
  1186  			if !types.IsExported(f.Sym.Name) {
  1187  				spkg = f.Sym.Pkg
  1188  				break
  1189  			}
  1190  		}
  1191  
  1192  		dgopkgpath(c.Field("PkgPath"), spkg)
  1193  		c.Field("Fields").WriteSlice(lsym, C, int64(len(fields)), int64(len(fields)))
  1194  
  1195  		array := rttype.NewArrayCursor(lsym, C, rttype.StructField, len(fields))
  1196  		for i, f := range fields {
  1197  			e := array.Elem(i)
  1198  			dnameField(e.Field("Name"), spkg, f)
  1199  			e.Field("Typ").WritePtr(writeType(f.Type))
  1200  			e.Field("Offset").WriteUintptr(uint64(f.Offset))
  1201  		}
  1202  	}
  1203  
  1204  	// Write the extra info, if any.
  1205  	if extra {
  1206  		dextratype(lsym, B, t, dataAdd)
  1207  	}
  1208  
  1209  	// Note: DUPOK is required to ensure that we don't end up with more
  1210  	// than one type descriptor for a given type, if the type descriptor
  1211  	// can be defined in multiple packages, that is, unnamed types,
  1212  	// instantiated types and shape types.
  1213  	dupok := 0
  1214  	if tbase.Sym() == nil || tbase.IsFullyInstantiated() || tbase.HasShape() {
  1215  		dupok = obj.DUPOK
  1216  	}
  1217  
  1218  	objw.Global(lsym, int32(E), int16(dupok|obj.RODATA))
  1219  
  1220  	// The linker will leave a table of all the typelinks for
  1221  	// types in the binary, so the runtime can find them.
  1222  	//
  1223  	// When buildmode=shared, all types are in typelinks so the
  1224  	// runtime can deduplicate type pointers.
  1225  	keep := base.Ctxt.Flag_dynlink
  1226  	if !keep && t.Sym() == nil {
  1227  		// For an unnamed type, we only need the link if the type can
  1228  		// be created at run time by reflect.PointerTo and similar
  1229  		// functions. If the type exists in the program, those
  1230  		// functions must return the existing type structure rather
  1231  		// than creating a new one.
  1232  		switch t.Kind() {
  1233  		case types.TPTR, types.TARRAY, types.TCHAN, types.TFUNC, types.TMAP, types.TSLICE, types.TSTRUCT:
  1234  			keep = true
  1235  		}
  1236  	}
  1237  	// Do not put Noalg types in typelinks.  See issue #22605.
  1238  	if types.TypeHasNoAlg(t) {
  1239  		keep = false
  1240  	}
  1241  	lsym.Set(obj.AttrMakeTypelink, keep)
  1242  
  1243  	return lsym
  1244  }
  1245  
  1246  // InterfaceMethodOffset returns the offset of the i-th method in the interface
  1247  // type descriptor, ityp.
  1248  func InterfaceMethodOffset(ityp *types.Type, i int64) int64 {
  1249  	// interface type descriptor layout is struct {
  1250  	//   _type        // commonSize
  1251  	//   pkgpath      // 1 word
  1252  	//   []imethod    // 3 words (pointing to [...]imethod below)
  1253  	//   uncommontype // uncommonSize
  1254  	//   [...]imethod
  1255  	// }
  1256  	// The size of imethod is 8.
  1257  	return int64(commonSize()+4*types.PtrSize+uncommonSize(ityp)) + i*8
  1258  }
  1259  
  1260  // NeedRuntimeType ensures that a runtime type descriptor is emitted for t.
  1261  func NeedRuntimeType(t *types.Type) {
  1262  	if _, ok := signatset[t]; !ok {
  1263  		signatset[t] = struct{}{}
  1264  		signatslice = append(signatslice, typeAndStr{t: t, short: types.TypeSymName(t), regular: t.String()})
  1265  	}
  1266  }
  1267  
  1268  func WriteRuntimeTypes() {
  1269  	// Process signatslice. Use a loop, as writeType adds
  1270  	// entries to signatslice while it is being processed.
  1271  	for len(signatslice) > 0 {
  1272  		signats := signatslice
  1273  		// Sort for reproducible builds.
  1274  		sort.Sort(typesByString(signats))
  1275  		for _, ts := range signats {
  1276  			t := ts.t
  1277  			writeType(t)
  1278  			if t.Sym() != nil {
  1279  				writeType(types.NewPtr(t))
  1280  			}
  1281  		}
  1282  		signatslice = signatslice[len(signats):]
  1283  	}
  1284  }
  1285  
  1286  func WriteGCSymbols() {
  1287  	// Emit GC data symbols.
  1288  	gcsyms := make([]typeAndStr, 0, len(gcsymset))
  1289  	for t := range gcsymset {
  1290  		gcsyms = append(gcsyms, typeAndStr{t: t, short: types.TypeSymName(t), regular: t.String()})
  1291  	}
  1292  	sort.Sort(typesByString(gcsyms))
  1293  	for _, ts := range gcsyms {
  1294  		dgcsym(ts.t, true)
  1295  	}
  1296  }
  1297  
  1298  // writeITab writes the itab for concrete type typ implementing interface iface. If
  1299  // allowNonImplement is true, allow the case where typ does not implement iface, and just
  1300  // create a dummy itab with zeroed-out method entries.
  1301  func writeITab(lsym *obj.LSym, typ, iface *types.Type, allowNonImplement bool) {
  1302  	// TODO(mdempsky): Fix methodWrapper, geneq, and genhash (and maybe
  1303  	// others) to stop clobbering these.
  1304  	oldpos, oldfn := base.Pos, ir.CurFunc
  1305  	defer func() { base.Pos, ir.CurFunc = oldpos, oldfn }()
  1306  
  1307  	if typ == nil || (typ.IsPtr() && typ.Elem() == nil) || typ.IsUntyped() || iface == nil || !iface.IsInterface() || iface.IsEmptyInterface() {
  1308  		base.Fatalf("writeITab(%v, %v)", typ, iface)
  1309  	}
  1310  
  1311  	sigs := iface.AllMethods()
  1312  	entries := make([]*obj.LSym, 0, len(sigs))
  1313  
  1314  	// both sigs and methods are sorted by name,
  1315  	// so we can find the intersection in a single pass
  1316  	for _, m := range methods(typ) {
  1317  		if m.name == sigs[0].Sym {
  1318  			entries = append(entries, m.isym)
  1319  			if m.isym == nil {
  1320  				panic("NO ISYM")
  1321  			}
  1322  			sigs = sigs[1:]
  1323  			if len(sigs) == 0 {
  1324  				break
  1325  			}
  1326  		}
  1327  	}
  1328  	completeItab := len(sigs) == 0
  1329  	if !allowNonImplement && !completeItab {
  1330  		base.Fatalf("incomplete itab")
  1331  	}
  1332  
  1333  	// dump empty itab symbol into i.sym
  1334  	// type itab struct {
  1335  	//   inter  *interfacetype
  1336  	//   _type  *_type
  1337  	//   hash   uint32 // copy of _type.hash. Used for type switches.
  1338  	//   _      [4]byte
  1339  	//   fun    [1]uintptr // variable sized. fun[0]==0 means _type does not implement inter.
  1340  	// }
  1341  	o := objw.SymPtr(lsym, 0, writeType(iface), 0)
  1342  	o = objw.SymPtr(lsym, o, writeType(typ), 0)
  1343  	o = objw.Uint32(lsym, o, types.TypeHash(typ)) // copy of type hash
  1344  	o += 4                                        // skip unused field
  1345  	if !completeItab {
  1346  		// If typ doesn't implement iface, make method entries be zero.
  1347  		o = objw.Uintptr(lsym, o, 0)
  1348  		entries = entries[:0]
  1349  	}
  1350  	for _, fn := range entries {
  1351  		o = objw.SymPtrWeak(lsym, o, fn, 0) // method pointer for each method
  1352  	}
  1353  	// Nothing writes static itabs, so they are read only.
  1354  	objw.Global(lsym, int32(o), int16(obj.DUPOK|obj.RODATA))
  1355  	lsym.Set(obj.AttrContentAddressable, true)
  1356  }
  1357  
  1358  func WritePluginTable() {
  1359  	ptabs := typecheck.Target.PluginExports
  1360  	if len(ptabs) == 0 {
  1361  		return
  1362  	}
  1363  
  1364  	lsym := base.Ctxt.Lookup("go:plugin.tabs")
  1365  	ot := 0
  1366  	for _, p := range ptabs {
  1367  		// Dump ptab symbol into go.pluginsym package.
  1368  		//
  1369  		// type ptab struct {
  1370  		//	name nameOff
  1371  		//	typ  typeOff // pointer to symbol
  1372  		// }
  1373  		nsym := dname(p.Sym().Name, "", nil, true, false)
  1374  		t := p.Type()
  1375  		if p.Class != ir.PFUNC {
  1376  			t = types.NewPtr(t)
  1377  		}
  1378  		tsym := writeType(t)
  1379  		ot = objw.SymPtrOff(lsym, ot, nsym)
  1380  		ot = objw.SymPtrOff(lsym, ot, tsym)
  1381  		// Plugin exports symbols as interfaces. Mark their types
  1382  		// as UsedInIface.
  1383  		tsym.Set(obj.AttrUsedInIface, true)
  1384  	}
  1385  	objw.Global(lsym, int32(ot), int16(obj.RODATA))
  1386  
  1387  	lsym = base.Ctxt.Lookup("go:plugin.exports")
  1388  	ot = 0
  1389  	for _, p := range ptabs {
  1390  		ot = objw.SymPtr(lsym, ot, p.Linksym(), 0)
  1391  	}
  1392  	objw.Global(lsym, int32(ot), int16(obj.RODATA))
  1393  }
  1394  
  1395  // writtenByWriteBasicTypes reports whether typ is written by WriteBasicTypes.
  1396  // WriteBasicTypes always writes pointer types; any pointer has been stripped off typ already.
  1397  func writtenByWriteBasicTypes(typ *types.Type) bool {
  1398  	if typ.Sym() == nil && typ.Kind() == types.TFUNC {
  1399  		// func(error) string
  1400  		if typ.NumRecvs() == 0 &&
  1401  			typ.NumParams() == 1 && typ.NumResults() == 1 &&
  1402  			typ.Param(0).Type == types.ErrorType &&
  1403  			typ.Result(0).Type == types.Types[types.TSTRING] {
  1404  			return true
  1405  		}
  1406  	}
  1407  
  1408  	// Now we have left the basic types plus any and error, plus slices of them.
  1409  	// Strip the slice.
  1410  	if typ.Sym() == nil && typ.IsSlice() {
  1411  		typ = typ.Elem()
  1412  	}
  1413  
  1414  	// Basic types.
  1415  	sym := typ.Sym()
  1416  	if sym != nil && (sym.Pkg == types.BuiltinPkg || sym.Pkg == types.UnsafePkg) {
  1417  		return true
  1418  	}
  1419  	// any or error
  1420  	return (sym == nil && typ.IsEmptyInterface()) || typ == types.ErrorType
  1421  }
  1422  
  1423  func WriteBasicTypes() {
  1424  	// do basic types if compiling package runtime.
  1425  	// they have to be in at least one package,
  1426  	// and runtime is always loaded implicitly,
  1427  	// so this is as good as any.
  1428  	// another possible choice would be package main,
  1429  	// but using runtime means fewer copies in object files.
  1430  	// The code here needs to be in sync with writtenByWriteBasicTypes above.
  1431  	if base.Ctxt.Pkgpath != "runtime" {
  1432  		return
  1433  	}
  1434  
  1435  	// Note: always write NewPtr(t) because NeedEmit's caller strips the pointer.
  1436  	var list []*types.Type
  1437  	for i := types.Kind(1); i <= types.TBOOL; i++ {
  1438  		list = append(list, types.Types[i])
  1439  	}
  1440  	list = append(list,
  1441  		types.Types[types.TSTRING],
  1442  		types.Types[types.TUNSAFEPTR],
  1443  		types.AnyType,
  1444  		types.ErrorType)
  1445  	for _, t := range list {
  1446  		writeType(types.NewPtr(t))
  1447  		writeType(types.NewPtr(types.NewSlice(t)))
  1448  	}
  1449  
  1450  	// emit type for func(error) string,
  1451  	// which is the type of an auto-generated wrapper.
  1452  	writeType(types.NewPtr(types.NewSignature(nil, []*types.Field{
  1453  		types.NewField(base.Pos, nil, types.ErrorType),
  1454  	}, []*types.Field{
  1455  		types.NewField(base.Pos, nil, types.Types[types.TSTRING]),
  1456  	})))
  1457  }
  1458  
  1459  type typeAndStr struct {
  1460  	t       *types.Type
  1461  	short   string // "short" here means TypeSymName
  1462  	regular string
  1463  }
  1464  
  1465  type typesByString []typeAndStr
  1466  
  1467  func (a typesByString) Len() int { return len(a) }
  1468  func (a typesByString) Less(i, j int) bool {
  1469  	// put named types before unnamed types
  1470  	if a[i].t.Sym() != nil && a[j].t.Sym() == nil {
  1471  		return true
  1472  	}
  1473  	if a[i].t.Sym() == nil && a[j].t.Sym() != nil {
  1474  		return false
  1475  	}
  1476  
  1477  	if a[i].short != a[j].short {
  1478  		return a[i].short < a[j].short
  1479  	}
  1480  	// When the only difference between the types is whether
  1481  	// they refer to byte or uint8, such as **byte vs **uint8,
  1482  	// the types' NameStrings can be identical.
  1483  	// To preserve deterministic sort ordering, sort these by String().
  1484  	//
  1485  	// TODO(mdempsky): This all seems suspect. Using LinkString would
  1486  	// avoid naming collisions, and there shouldn't be a reason to care
  1487  	// about "byte" vs "uint8": they share the same runtime type
  1488  	// descriptor anyway.
  1489  	if a[i].regular != a[j].regular {
  1490  		return a[i].regular < a[j].regular
  1491  	}
  1492  	// Identical anonymous interfaces defined in different locations
  1493  	// will be equal for the above checks, but different in DWARF output.
  1494  	// Sort by source position to ensure deterministic order.
  1495  	// See issues 27013 and 30202.
  1496  	if a[i].t.Kind() == types.TINTER && len(a[i].t.AllMethods()) > 0 {
  1497  		return a[i].t.AllMethods()[0].Pos.Before(a[j].t.AllMethods()[0].Pos)
  1498  	}
  1499  	return false
  1500  }
  1501  func (a typesByString) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
  1502  
  1503  // maxPtrmaskBytes is the maximum length of a GC ptrmask bitmap,
  1504  // which holds 1-bit entries describing where pointers are in a given type.
  1505  // Above this length, the GC information is recorded as a GC program,
  1506  // which can express repetition compactly. In either form, the
  1507  // information is used by the runtime to initialize the heap bitmap,
  1508  // and for large types (like 128 or more words), they are roughly the
  1509  // same speed. GC programs are never much larger and often more
  1510  // compact. (If large arrays are involved, they can be arbitrarily
  1511  // more compact.)
  1512  //
  1513  // The cutoff must be large enough that any allocation large enough to
  1514  // use a GC program is large enough that it does not share heap bitmap
  1515  // bytes with any other objects, allowing the GC program execution to
  1516  // assume an aligned start and not use atomic operations. In the current
  1517  // runtime, this means all malloc size classes larger than the cutoff must
  1518  // be multiples of four words. On 32-bit systems that's 16 bytes, and
  1519  // all size classes >= 16 bytes are 16-byte aligned, so no real constraint.
  1520  // On 64-bit systems, that's 32 bytes, and 32-byte alignment is guaranteed
  1521  // for size classes >= 256 bytes. On a 64-bit system, 256 bytes allocated
  1522  // is 32 pointers, the bits for which fit in 4 bytes. So maxPtrmaskBytes
  1523  // must be >= 4.
  1524  //
  1525  // We used to use 16 because the GC programs do have some constant overhead
  1526  // to get started, and processing 128 pointers seems to be enough to
  1527  // amortize that overhead well.
  1528  //
  1529  // To make sure that the runtime's chansend can call typeBitsBulkBarrier,
  1530  // we raised the limit to 2048, so that even 32-bit systems are guaranteed to
  1531  // use bitmaps for objects up to 64 kB in size.
  1532  //
  1533  // Also known to reflect/type.go.
  1534  const maxPtrmaskBytes = 2048
  1535  
  1536  // GCSym returns a data symbol containing GC information for type t, along
  1537  // with a boolean reporting whether the UseGCProg bit should be set in the
  1538  // type kind, and the ptrdata field to record in the reflect type information.
  1539  // GCSym may be called in concurrent backend, so it does not emit the symbol
  1540  // content.
  1541  func GCSym(t *types.Type) (lsym *obj.LSym, useGCProg bool, ptrdata int64) {
  1542  	// Record that we need to emit the GC symbol.
  1543  	gcsymmu.Lock()
  1544  	if _, ok := gcsymset[t]; !ok {
  1545  		gcsymset[t] = struct{}{}
  1546  	}
  1547  	gcsymmu.Unlock()
  1548  
  1549  	return dgcsym(t, false)
  1550  }
  1551  
  1552  // dgcsym returns a data symbol containing GC information for type t, along
  1553  // with a boolean reporting whether the UseGCProg bit should be set in the
  1554  // type kind, and the ptrdata field to record in the reflect type information.
  1555  // When write is true, it writes the symbol data.
  1556  func dgcsym(t *types.Type, write bool) (lsym *obj.LSym, useGCProg bool, ptrdata int64) {
  1557  	ptrdata = types.PtrDataSize(t)
  1558  	if ptrdata/int64(types.PtrSize) <= maxPtrmaskBytes*8 {
  1559  		lsym = dgcptrmask(t, write)
  1560  		return
  1561  	}
  1562  
  1563  	useGCProg = true
  1564  	lsym, ptrdata = dgcprog(t, write)
  1565  	return
  1566  }
  1567  
  1568  // dgcptrmask emits and returns the symbol containing a pointer mask for type t.
  1569  func dgcptrmask(t *types.Type, write bool) *obj.LSym {
  1570  	// Bytes we need for the ptrmask.
  1571  	n := (types.PtrDataSize(t)/int64(types.PtrSize) + 7) / 8
  1572  	// Runtime wants ptrmasks padded to a multiple of uintptr in size.
  1573  	n = (n + int64(types.PtrSize) - 1) &^ (int64(types.PtrSize) - 1)
  1574  	ptrmask := make([]byte, n)
  1575  	fillptrmask(t, ptrmask)
  1576  	p := fmt.Sprintf("runtime.gcbits.%x", ptrmask)
  1577  
  1578  	lsym := base.Ctxt.Lookup(p)
  1579  	if write && !lsym.OnList() {
  1580  		for i, x := range ptrmask {
  1581  			objw.Uint8(lsym, i, x)
  1582  		}
  1583  		objw.Global(lsym, int32(len(ptrmask)), obj.DUPOK|obj.RODATA|obj.LOCAL)
  1584  		lsym.Set(obj.AttrContentAddressable, true)
  1585  	}
  1586  	return lsym
  1587  }
  1588  
  1589  // fillptrmask fills in ptrmask with 1s corresponding to the
  1590  // word offsets in t that hold pointers.
  1591  // ptrmask is assumed to fit at least types.PtrDataSize(t)/PtrSize bits.
  1592  func fillptrmask(t *types.Type, ptrmask []byte) {
  1593  	for i := range ptrmask {
  1594  		ptrmask[i] = 0
  1595  	}
  1596  	if !t.HasPointers() {
  1597  		return
  1598  	}
  1599  
  1600  	vec := bitvec.New(8 * int32(len(ptrmask)))
  1601  	typebits.Set(t, 0, vec)
  1602  
  1603  	nptr := types.PtrDataSize(t) / int64(types.PtrSize)
  1604  	for i := int64(0); i < nptr; i++ {
  1605  		if vec.Get(int32(i)) {
  1606  			ptrmask[i/8] |= 1 << (uint(i) % 8)
  1607  		}
  1608  	}
  1609  }
  1610  
  1611  // dgcprog emits and returns the symbol containing a GC program for type t
  1612  // along with the size of the data described by the program (in the range
  1613  // [types.PtrDataSize(t), t.Width]).
  1614  // In practice, the size is types.PtrDataSize(t) except for non-trivial arrays.
  1615  // For non-trivial arrays, the program describes the full t.Width size.
  1616  func dgcprog(t *types.Type, write bool) (*obj.LSym, int64) {
  1617  	types.CalcSize(t)
  1618  	if t.Size() == types.BADWIDTH {
  1619  		base.Fatalf("dgcprog: %v badwidth", t)
  1620  	}
  1621  	lsym := TypeLinksymPrefix(".gcprog", t)
  1622  	var p gcProg
  1623  	p.init(lsym, write)
  1624  	p.emit(t, 0)
  1625  	offset := p.w.BitIndex() * int64(types.PtrSize)
  1626  	p.end()
  1627  	if ptrdata := types.PtrDataSize(t); offset < ptrdata || offset > t.Size() {
  1628  		base.Fatalf("dgcprog: %v: offset=%d but ptrdata=%d size=%d", t, offset, ptrdata, t.Size())
  1629  	}
  1630  	return lsym, offset
  1631  }
  1632  
  1633  type gcProg struct {
  1634  	lsym   *obj.LSym
  1635  	symoff int
  1636  	w      gcprog.Writer
  1637  	write  bool
  1638  }
  1639  
  1640  func (p *gcProg) init(lsym *obj.LSym, write bool) {
  1641  	p.lsym = lsym
  1642  	p.write = write && !lsym.OnList()
  1643  	p.symoff = 4 // first 4 bytes hold program length
  1644  	if !write {
  1645  		p.w.Init(func(byte) {})
  1646  		return
  1647  	}
  1648  	p.w.Init(p.writeByte)
  1649  	if base.Debug.GCProg > 0 {
  1650  		fmt.Fprintf(os.Stderr, "compile: start GCProg for %v\n", lsym)
  1651  		p.w.Debug(os.Stderr)
  1652  	}
  1653  }
  1654  
  1655  func (p *gcProg) writeByte(x byte) {
  1656  	p.symoff = objw.Uint8(p.lsym, p.symoff, x)
  1657  }
  1658  
  1659  func (p *gcProg) end() {
  1660  	p.w.End()
  1661  	if !p.write {
  1662  		return
  1663  	}
  1664  	objw.Uint32(p.lsym, 0, uint32(p.symoff-4))
  1665  	objw.Global(p.lsym, int32(p.symoff), obj.DUPOK|obj.RODATA|obj.LOCAL)
  1666  	p.lsym.Set(obj.AttrContentAddressable, true)
  1667  	if base.Debug.GCProg > 0 {
  1668  		fmt.Fprintf(os.Stderr, "compile: end GCProg for %v\n", p.lsym)
  1669  	}
  1670  }
  1671  
  1672  func (p *gcProg) emit(t *types.Type, offset int64) {
  1673  	types.CalcSize(t)
  1674  	if !t.HasPointers() {
  1675  		return
  1676  	}
  1677  	if t.Size() == int64(types.PtrSize) {
  1678  		p.w.Ptr(offset / int64(types.PtrSize))
  1679  		return
  1680  	}
  1681  	switch t.Kind() {
  1682  	default:
  1683  		base.Fatalf("gcProg.emit: unexpected type %v", t)
  1684  
  1685  	case types.TSTRING:
  1686  		p.w.Ptr(offset / int64(types.PtrSize))
  1687  
  1688  	case types.TINTER:
  1689  		// Note: the first word isn't a pointer. See comment in typebits.Set
  1690  		p.w.Ptr(offset/int64(types.PtrSize) + 1)
  1691  
  1692  	case types.TSLICE:
  1693  		p.w.Ptr(offset / int64(types.PtrSize))
  1694  
  1695  	case types.TARRAY:
  1696  		if t.NumElem() == 0 {
  1697  			// should have been handled by haspointers check above
  1698  			base.Fatalf("gcProg.emit: empty array")
  1699  		}
  1700  
  1701  		// Flatten array-of-array-of-array to just a big array by multiplying counts.
  1702  		count := t.NumElem()
  1703  		elem := t.Elem()
  1704  		for elem.IsArray() {
  1705  			count *= elem.NumElem()
  1706  			elem = elem.Elem()
  1707  		}
  1708  
  1709  		if !p.w.ShouldRepeat(elem.Size()/int64(types.PtrSize), count) {
  1710  			// Cheaper to just emit the bits.
  1711  			for i := int64(0); i < count; i++ {
  1712  				p.emit(elem, offset+i*elem.Size())
  1713  			}
  1714  			return
  1715  		}
  1716  		p.emit(elem, offset)
  1717  		p.w.ZeroUntil((offset + elem.Size()) / int64(types.PtrSize))
  1718  		p.w.Repeat(elem.Size()/int64(types.PtrSize), count-1)
  1719  
  1720  	case types.TSTRUCT:
  1721  		for _, t1 := range t.Fields() {
  1722  			p.emit(t1.Type, offset+t1.Offset)
  1723  		}
  1724  	}
  1725  }
  1726  
  1727  // ZeroAddr returns the address of a symbol with at least
  1728  // size bytes of zeros.
  1729  func ZeroAddr(size int64) ir.Node {
  1730  	if size >= 1<<31 {
  1731  		base.Fatalf("map elem too big %d", size)
  1732  	}
  1733  	if ZeroSize < size {
  1734  		ZeroSize = size
  1735  	}
  1736  	lsym := base.PkgLinksym("go:map", "zero", obj.ABI0)
  1737  	x := ir.NewLinksymExpr(base.Pos, lsym, types.Types[types.TUINT8])
  1738  	return typecheck.Expr(typecheck.NodAddr(x))
  1739  }
  1740  
  1741  // NeedEmit reports whether typ is a type that we need to emit code
  1742  // for (e.g., runtime type descriptors, method wrappers).
  1743  func NeedEmit(typ *types.Type) bool {
  1744  	// TODO(mdempsky): Export data should keep track of which anonymous
  1745  	// and instantiated types were emitted, so at least downstream
  1746  	// packages can skip re-emitting them.
  1747  	//
  1748  	// Perhaps we can just generalize the linker-symbol indexing to
  1749  	// track the index of arbitrary types, not just defined types, and
  1750  	// use its presence to detect this. The same idea would work for
  1751  	// instantiated generic functions too.
  1752  
  1753  	switch sym := typ.Sym(); {
  1754  	case writtenByWriteBasicTypes(typ):
  1755  		return base.Ctxt.Pkgpath == "runtime"
  1756  
  1757  	case sym == nil:
  1758  		// Anonymous type; possibly never seen before or ever again.
  1759  		// Need to emit to be safe (however, see TODO above).
  1760  		return true
  1761  
  1762  	case sym.Pkg == types.LocalPkg:
  1763  		// Local defined type; our responsibility.
  1764  		return true
  1765  
  1766  	case typ.IsFullyInstantiated():
  1767  		// Instantiated type; possibly instantiated with unique type arguments.
  1768  		// Need to emit to be safe (however, see TODO above).
  1769  		return true
  1770  
  1771  	case typ.HasShape():
  1772  		// Shape type; need to emit even though it lives in the .shape package.
  1773  		// TODO: make sure the linker deduplicates them (see dupok in writeType above).
  1774  		return true
  1775  
  1776  	default:
  1777  		// Should have been emitted by an imported package.
  1778  		return false
  1779  	}
  1780  }
  1781  
  1782  // Generate a wrapper function to convert from
  1783  // a receiver of type T to a receiver of type U.
  1784  // That is,
  1785  //
  1786  //	func (t T) M() {
  1787  //		...
  1788  //	}
  1789  //
  1790  // already exists; this function generates
  1791  //
  1792  //	func (u U) M() {
  1793  //		u.M()
  1794  //	}
  1795  //
  1796  // where the types T and U are such that u.M() is valid
  1797  // and calls the T.M method.
  1798  // The resulting function is for use in method tables.
  1799  //
  1800  //	rcvr - U
  1801  //	method - M func (t T)(), a TFIELD type struct
  1802  //
  1803  // Also wraps methods on instantiated generic types for use in itab entries.
  1804  // For an instantiated generic type G[int], we generate wrappers like:
  1805  // G[int] pointer shaped:
  1806  //
  1807  //	func (x G[int]) f(arg) {
  1808  //		.inst.G[int].f(dictionary, x, arg)
  1809  //	}
  1810  //
  1811  // G[int] not pointer shaped:
  1812  //
  1813  //	func (x *G[int]) f(arg) {
  1814  //		.inst.G[int].f(dictionary, *x, arg)
  1815  //	}
  1816  //
  1817  // These wrappers are always fully stenciled.
  1818  func methodWrapper(rcvr *types.Type, method *types.Field, forItab bool) *obj.LSym {
  1819  	if forItab && !types.IsDirectIface(rcvr) {
  1820  		rcvr = rcvr.PtrTo()
  1821  	}
  1822  
  1823  	newnam := ir.MethodSym(rcvr, method.Sym)
  1824  	lsym := newnam.Linksym()
  1825  
  1826  	// Unified IR creates its own wrappers.
  1827  	return lsym
  1828  }
  1829  
  1830  var ZeroSize int64
  1831  
  1832  // MarkTypeUsedInInterface marks that type t is converted to an interface.
  1833  // This information is used in the linker in dead method elimination.
  1834  func MarkTypeUsedInInterface(t *types.Type, from *obj.LSym) {
  1835  	if t.HasShape() {
  1836  		// Shape types shouldn't be put in interfaces, so we shouldn't ever get here.
  1837  		base.Fatalf("shape types have no methods %+v", t)
  1838  	}
  1839  	MarkTypeSymUsedInInterface(TypeLinksym(t), from)
  1840  }
  1841  func MarkTypeSymUsedInInterface(tsym *obj.LSym, from *obj.LSym) {
  1842  	// Emit a marker relocation. The linker will know the type is converted
  1843  	// to an interface if "from" is reachable.
  1844  	r := obj.Addrel(from)
  1845  	r.Sym = tsym
  1846  	r.Type = objabi.R_USEIFACE
  1847  }
  1848  
  1849  // MarkUsedIfaceMethod marks that an interface method is used in the current
  1850  // function. n is OCALLINTER node.
  1851  func MarkUsedIfaceMethod(n *ir.CallExpr) {
  1852  	// skip unnamed functions (func _())
  1853  	if ir.CurFunc.LSym == nil {
  1854  		return
  1855  	}
  1856  	dot := n.Fun.(*ir.SelectorExpr)
  1857  	ityp := dot.X.Type()
  1858  	if ityp.HasShape() {
  1859  		// Here we're calling a method on a generic interface. Something like:
  1860  		//
  1861  		// type I[T any] interface { foo() T }
  1862  		// func f[T any](x I[T]) {
  1863  		//     ... = x.foo()
  1864  		// }
  1865  		// f[int](...)
  1866  		// f[string](...)
  1867  		//
  1868  		// In this case, in f we're calling foo on a generic interface.
  1869  		// Which method could that be? Normally we could match the method
  1870  		// both by name and by type. But in this case we don't really know
  1871  		// the type of the method we're calling. It could be func()int
  1872  		// or func()string. So we match on just the function name, instead
  1873  		// of both the name and the type used for the non-generic case below.
  1874  		// TODO: instantiations at least know the shape of the instantiated
  1875  		// type, and the linker could do more complicated matching using
  1876  		// some sort of fuzzy shape matching. For now, only use the name
  1877  		// of the method for matching.
  1878  		r := obj.Addrel(ir.CurFunc.LSym)
  1879  		r.Sym = staticdata.StringSymNoCommon(dot.Sel.Name)
  1880  		r.Type = objabi.R_USENAMEDMETHOD
  1881  		return
  1882  	}
  1883  
  1884  	tsym := TypeLinksym(ityp)
  1885  	r := obj.Addrel(ir.CurFunc.LSym)
  1886  	r.Sym = tsym
  1887  	// dot.Offset() is the method index * PtrSize (the offset of code pointer
  1888  	// in itab).
  1889  	midx := dot.Offset() / int64(types.PtrSize)
  1890  	r.Add = InterfaceMethodOffset(ityp, midx)
  1891  	r.Type = objabi.R_USEIFACEMETHOD
  1892  }
  1893  
  1894  func deref(t *types.Type) *types.Type {
  1895  	if t.IsPtr() {
  1896  		return t.Elem()
  1897  	}
  1898  	return t
  1899  }