github.com/go-asm/go@v1.21.1-0.20240213172139-40c5ead50c48/cmd/compile/ssa/_gen/S390X.rules (about) 1 // Copyright 2016 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Lowering arithmetic 6 (Add(64|Ptr) ...) => (ADD ...) 7 (Add(32|16|8) ...) => (ADDW ...) 8 (Add32F x y) => (Select0 (FADDS x y)) 9 (Add64F x y) => (Select0 (FADD x y)) 10 11 (Sub(64|Ptr) ...) => (SUB ...) 12 (Sub(32|16|8) ...) => (SUBW ...) 13 (Sub32F x y) => (Select0 (FSUBS x y)) 14 (Sub64F x y) => (Select0 (FSUB x y)) 15 16 (Mul64 ...) => (MULLD ...) 17 (Mul(32|16|8) ...) => (MULLW ...) 18 (Mul32F ...) => (FMULS ...) 19 (Mul64F ...) => (FMUL ...) 20 (Mul64uhilo ...) => (MLGR ...) 21 22 (Div32F ...) => (FDIVS ...) 23 (Div64F ...) => (FDIV ...) 24 25 (Div64 x y) => (DIVD x y) 26 (Div64u ...) => (DIVDU ...) 27 // DIVW/DIVWU has a 64-bit dividend and a 32-bit divisor, 28 // so a sign/zero extension of the dividend is required. 29 (Div32 x y) => (DIVW (MOVWreg x) y) 30 (Div32u x y) => (DIVWU (MOVWZreg x) y) 31 (Div16 x y) => (DIVW (MOVHreg x) (MOVHreg y)) 32 (Div16u x y) => (DIVWU (MOVHZreg x) (MOVHZreg y)) 33 (Div8 x y) => (DIVW (MOVBreg x) (MOVBreg y)) 34 (Div8u x y) => (DIVWU (MOVBZreg x) (MOVBZreg y)) 35 36 (Hmul(64|64u) ...) => (MULH(D|DU) ...) 37 (Hmul32 x y) => (SRDconst [32] (MULLD (MOVWreg x) (MOVWreg y))) 38 (Hmul32u x y) => (SRDconst [32] (MULLD (MOVWZreg x) (MOVWZreg y))) 39 40 (Mod64 x y) => (MODD x y) 41 (Mod64u ...) => (MODDU ...) 42 // MODW/MODWU has a 64-bit dividend and a 32-bit divisor, 43 // so a sign/zero extension of the dividend is required. 44 (Mod32 x y) => (MODW (MOVWreg x) y) 45 (Mod32u x y) => (MODWU (MOVWZreg x) y) 46 (Mod16 x y) => (MODW (MOVHreg x) (MOVHreg y)) 47 (Mod16u x y) => (MODWU (MOVHZreg x) (MOVHZreg y)) 48 (Mod8 x y) => (MODW (MOVBreg x) (MOVBreg y)) 49 (Mod8u x y) => (MODWU (MOVBZreg x) (MOVBZreg y)) 50 51 // (x + y) / 2 with x>=y -> (x - y) / 2 + y 52 (Avg64u <t> x y) => (ADD (SRDconst <t> (SUB <t> x y) [1]) y) 53 54 (And64 ...) => (AND ...) 55 (And(32|16|8) ...) => (ANDW ...) 56 57 (Or64 ...) => (OR ...) 58 (Or(32|16|8) ...) => (ORW ...) 59 60 (Xor64 ...) => (XOR ...) 61 (Xor(32|16|8) ...) => (XORW ...) 62 63 (Neg64 ...) => (NEG ...) 64 (Neg(32|16|8) ...) => (NEGW ...) 65 (Neg32F ...) => (FNEGS ...) 66 (Neg64F ...) => (FNEG ...) 67 68 (Com64 ...) => (NOT ...) 69 (Com(32|16|8) ...) => (NOTW ...) 70 (NOT x) => (XOR (MOVDconst [-1]) x) 71 (NOTW x) => (XORWconst [-1] x) 72 73 // Lowering boolean ops 74 (AndB ...) => (ANDW ...) 75 (OrB ...) => (ORW ...) 76 (Not x) => (XORWconst [1] x) 77 78 // Lowering pointer arithmetic 79 (OffPtr [off] ptr:(SP)) => (MOVDaddr [int32(off)] ptr) 80 (OffPtr [off] ptr) && is32Bit(off) => (ADDconst [int32(off)] ptr) 81 (OffPtr [off] ptr) => (ADD (MOVDconst [off]) ptr) 82 83 // TODO: optimize these cases? 84 (Ctz64NonZero ...) => (Ctz64 ...) 85 (Ctz32NonZero ...) => (Ctz32 ...) 86 87 // Ctz(x) = 64 - findLeftmostOne((x-1)&^x) 88 (Ctz64 <t> x) => (SUB (MOVDconst [64]) (FLOGR (AND <t> (SUBconst <t> [1] x) (NOT <t> x)))) 89 (Ctz32 <t> x) => (SUB (MOVDconst [64]) (FLOGR (MOVWZreg (ANDW <t> (SUBWconst <t> [1] x) (NOTW <t> x))))) 90 91 (BitLen64 x) => (SUB (MOVDconst [64]) (FLOGR x)) 92 93 // POPCNT treats the input register as a vector of 8 bytes, producing 94 // a population count for each individual byte. For inputs larger than 95 // a single byte we therefore need to sum the individual bytes produced 96 // by the POPCNT instruction. For example, the following instruction 97 // sequence could be used to calculate the population count of a 4-byte 98 // value: 99 // 100 // MOVD $0x12345678, R1 // R1=0x12345678 <-- input 101 // POPCNT R1, R2 // R2=0x02030404 102 // SRW $16, R2, R3 // R3=0x00000203 103 // ADDW R2, R3, R4 // R4=0x02030607 104 // SRW $8, R4, R5 // R5=0x00020306 105 // ADDW R4, R5, R6 // R6=0x0205090d 106 // MOVBZ R6, R7 // R7=0x0000000d <-- result is 13 107 // 108 (PopCount8 x) => (POPCNT (MOVBZreg x)) 109 (PopCount16 x) => (MOVBZreg (SumBytes2 (POPCNT <typ.UInt16> x))) 110 (PopCount32 x) => (MOVBZreg (SumBytes4 (POPCNT <typ.UInt32> x))) 111 (PopCount64 x) => (MOVBZreg (SumBytes8 (POPCNT <typ.UInt64> x))) 112 113 // SumBytes{2,4,8} pseudo operations sum the values of the rightmost 114 // 2, 4 or 8 bytes respectively. The result is a single byte however 115 // other bytes might contain junk so a zero extension is required if 116 // the desired output type is larger than 1 byte. 117 (SumBytes2 x) => (ADDW (SRWconst <typ.UInt8> x [8]) x) 118 (SumBytes4 x) => (SumBytes2 (ADDW <typ.UInt16> (SRWconst <typ.UInt16> x [16]) x)) 119 (SumBytes8 x) => (SumBytes4 (ADDW <typ.UInt32> (SRDconst <typ.UInt32> x [32]) x)) 120 121 (Bswap64 ...) => (MOVDBR ...) 122 (Bswap32 ...) => (MOVWBR ...) 123 124 // add with carry 125 (Select0 (Add64carry x y c)) 126 => (Select0 <typ.UInt64> (ADDE x y (Select1 <types.TypeFlags> (ADDCconst c [-1])))) 127 (Select1 (Add64carry x y c)) 128 => (Select0 <typ.UInt64> (ADDE (MOVDconst [0]) (MOVDconst [0]) (Select1 <types.TypeFlags> (ADDE x y (Select1 <types.TypeFlags> (ADDCconst c [-1])))))) 129 130 // subtract with borrow 131 (Select0 (Sub64borrow x y c)) 132 => (Select0 <typ.UInt64> (SUBE x y (Select1 <types.TypeFlags> (SUBC (MOVDconst [0]) c)))) 133 (Select1 (Sub64borrow x y c)) 134 => (NEG (Select0 <typ.UInt64> (SUBE (MOVDconst [0]) (MOVDconst [0]) (Select1 <types.TypeFlags> (SUBE x y (Select1 <types.TypeFlags> (SUBC (MOVDconst [0]) c))))))) 135 136 // math package intrinsics 137 (Sqrt ...) => (FSQRT ...) 138 (Floor x) => (FIDBR [7] x) 139 (Ceil x) => (FIDBR [6] x) 140 (Trunc x) => (FIDBR [5] x) 141 (RoundToEven x) => (FIDBR [4] x) 142 (Round x) => (FIDBR [1] x) 143 (FMA x y z) => (FMADD z x y) 144 145 (Sqrt32 ...) => (FSQRTS ...) 146 147 // Atomic loads and stores. 148 // The SYNC instruction (fast-BCR-serialization) prevents store-load 149 // reordering. Other sequences of memory operations (load-load, 150 // store-store and load-store) are already guaranteed not to be reordered. 151 (AtomicLoad(8|32|Acq32|64|Ptr) ptr mem) => (MOV(BZ|WZ|WZ|D|D)atomicload ptr mem) 152 (AtomicStore(8|32|64|PtrNoWB) ptr val mem) => (SYNC (MOV(B|W|D|D)atomicstore ptr val mem)) 153 154 // Store-release doesn't require store-load ordering. 155 (AtomicStoreRel32 ptr val mem) => (MOVWatomicstore ptr val mem) 156 157 // Atomic adds. 158 (AtomicAdd32 ptr val mem) => (AddTupleFirst32 val (LAA ptr val mem)) 159 (AtomicAdd64 ptr val mem) => (AddTupleFirst64 val (LAAG ptr val mem)) 160 (Select0 <t> (AddTupleFirst32 val tuple)) => (ADDW val (Select0 <t> tuple)) 161 (Select1 (AddTupleFirst32 _ tuple)) => (Select1 tuple) 162 (Select0 <t> (AddTupleFirst64 val tuple)) => (ADD val (Select0 <t> tuple)) 163 (Select1 (AddTupleFirst64 _ tuple)) => (Select1 tuple) 164 165 // Atomic exchanges. 166 (AtomicExchange32 ptr val mem) => (LoweredAtomicExchange32 ptr val mem) 167 (AtomicExchange64 ptr val mem) => (LoweredAtomicExchange64 ptr val mem) 168 169 // Atomic compare and swap. 170 (AtomicCompareAndSwap32 ptr old new_ mem) => (LoweredAtomicCas32 ptr old new_ mem) 171 (AtomicCompareAndSwap64 ptr old new_ mem) => (LoweredAtomicCas64 ptr old new_ mem) 172 173 // Atomic and: *(*uint8)(ptr) &= val 174 // 175 // Round pointer down to nearest word boundary and pad value with ones before 176 // applying atomic AND operation to target word. 177 // 178 // *(*uint32)(ptr &^ 3) &= rotateleft(uint32(val) | 0xffffff00, ((3 << 3) ^ ((ptr & 3) << 3)) 179 // 180 (AtomicAnd8 ptr val mem) 181 => (LANfloor 182 ptr 183 (RLL <typ.UInt32> 184 (ORWconst <typ.UInt32> val [-1<<8]) 185 (RXSBG <typ.UInt32> {s390x.NewRotateParams(59, 60, 3)} (MOVDconst [3<<3]) ptr)) 186 mem) 187 188 // Atomic or: *(*uint8)(ptr) |= val 189 // 190 // Round pointer down to nearest word boundary and pad value with zeros before 191 // applying atomic OR operation to target word. 192 // 193 // *(*uint32)(ptr &^ 3) |= uint32(val) << ((3 << 3) ^ ((ptr & 3) << 3)) 194 // 195 (AtomicOr8 ptr val mem) 196 => (LAOfloor 197 ptr 198 (SLW <typ.UInt32> 199 (MOVBZreg <typ.UInt32> val) 200 (RXSBG <typ.UInt32> {s390x.NewRotateParams(59, 60, 3)} (MOVDconst [3<<3]) ptr)) 201 mem) 202 203 (AtomicAnd32 ...) => (LAN ...) 204 (AtomicOr32 ...) => (LAO ...) 205 206 // Lowering extension 207 // Note: we always extend to 64 bits even though some ops don't need that many result bits. 208 (SignExt8to(16|32|64) ...) => (MOVBreg ...) 209 (SignExt16to(32|64) ...) => (MOVHreg ...) 210 (SignExt32to64 ...) => (MOVWreg ...) 211 212 (ZeroExt8to(16|32|64) ...) => (MOVBZreg ...) 213 (ZeroExt16to(32|64) ...) => (MOVHZreg ...) 214 (ZeroExt32to64 ...) => (MOVWZreg ...) 215 216 (Slicemask <t> x) => (SRADconst (NEG <t> x) [63]) 217 218 // Lowering truncation 219 // Because we ignore high parts of registers, truncates are just copies. 220 (Trunc(16|32|64)to8 ...) => (Copy ...) 221 (Trunc(32|64)to16 ...) => (Copy ...) 222 (Trunc64to32 ...) => (Copy ...) 223 224 // Lowering float <-> int 225 (Cvt32to32F ...) => (CEFBRA ...) 226 (Cvt32to64F ...) => (CDFBRA ...) 227 (Cvt64to32F ...) => (CEGBRA ...) 228 (Cvt64to64F ...) => (CDGBRA ...) 229 230 (Cvt32Fto32 ...) => (CFEBRA ...) 231 (Cvt32Fto64 ...) => (CGEBRA ...) 232 (Cvt64Fto32 ...) => (CFDBRA ...) 233 (Cvt64Fto64 ...) => (CGDBRA ...) 234 235 // Lowering float <-> uint 236 (Cvt32Uto32F ...) => (CELFBR ...) 237 (Cvt32Uto64F ...) => (CDLFBR ...) 238 (Cvt64Uto32F ...) => (CELGBR ...) 239 (Cvt64Uto64F ...) => (CDLGBR ...) 240 241 (Cvt32Fto32U ...) => (CLFEBR ...) 242 (Cvt32Fto64U ...) => (CLGEBR ...) 243 (Cvt64Fto32U ...) => (CLFDBR ...) 244 (Cvt64Fto64U ...) => (CLGDBR ...) 245 246 // Lowering float32 <-> float64 247 (Cvt32Fto64F ...) => (LDEBR ...) 248 (Cvt64Fto32F ...) => (LEDBR ...) 249 250 (CvtBoolToUint8 ...) => (Copy ...) 251 252 (Round(32|64)F ...) => (LoweredRound(32|64)F ...) 253 254 // Lowering shifts 255 256 // Lower bounded shifts first. No need to check shift value. 257 (Lsh64x(64|32|16|8) x y) && shiftIsBounded(v) => (SLD x y) 258 (Lsh32x(64|32|16|8) x y) && shiftIsBounded(v) => (SLW x y) 259 (Lsh16x(64|32|16|8) x y) && shiftIsBounded(v) => (SLW x y) 260 (Lsh8x(64|32|16|8) x y) && shiftIsBounded(v) => (SLW x y) 261 (Rsh64Ux(64|32|16|8) x y) && shiftIsBounded(v) => (SRD x y) 262 (Rsh32Ux(64|32|16|8) x y) && shiftIsBounded(v) => (SRW x y) 263 (Rsh16Ux(64|32|16|8) x y) && shiftIsBounded(v) => (SRW (MOVHZreg x) y) 264 (Rsh8Ux(64|32|16|8) x y) && shiftIsBounded(v) => (SRW (MOVBZreg x) y) 265 (Rsh64x(64|32|16|8) x y) && shiftIsBounded(v) => (SRAD x y) 266 (Rsh32x(64|32|16|8) x y) && shiftIsBounded(v) => (SRAW x y) 267 (Rsh16x(64|32|16|8) x y) && shiftIsBounded(v) => (SRAW (MOVHreg x) y) 268 (Rsh8x(64|32|16|8) x y) && shiftIsBounded(v) => (SRAW (MOVBreg x) y) 269 270 // Unsigned shifts need to return 0 if shift amount is >= width of shifted value. 271 // result = shift >= 64 ? 0 : arg << shift 272 (Lsh(64|32|16|8)x64 <t> x y) => (LOCGR {s390x.GreaterOrEqual} <t> (SL(D|W|W|W) <t> x y) (MOVDconst [0]) (CMPUconst y [64])) 273 (Lsh(64|32|16|8)x32 <t> x y) => (LOCGR {s390x.GreaterOrEqual} <t> (SL(D|W|W|W) <t> x y) (MOVDconst [0]) (CMPWUconst y [64])) 274 (Lsh(64|32|16|8)x16 <t> x y) => (LOCGR {s390x.GreaterOrEqual} <t> (SL(D|W|W|W) <t> x y) (MOVDconst [0]) (CMPWUconst (MOVHZreg y) [64])) 275 (Lsh(64|32|16|8)x8 <t> x y) => (LOCGR {s390x.GreaterOrEqual} <t> (SL(D|W|W|W) <t> x y) (MOVDconst [0]) (CMPWUconst (MOVBZreg y) [64])) 276 277 (Rsh(64|32)Ux64 <t> x y) => (LOCGR {s390x.GreaterOrEqual} <t> (SR(D|W) <t> x y) (MOVDconst [0]) (CMPUconst y [64])) 278 (Rsh(64|32)Ux32 <t> x y) => (LOCGR {s390x.GreaterOrEqual} <t> (SR(D|W) <t> x y) (MOVDconst [0]) (CMPWUconst y [64])) 279 (Rsh(64|32)Ux16 <t> x y) => (LOCGR {s390x.GreaterOrEqual} <t> (SR(D|W) <t> x y) (MOVDconst [0]) (CMPWUconst (MOVHZreg y) [64])) 280 (Rsh(64|32)Ux8 <t> x y) => (LOCGR {s390x.GreaterOrEqual} <t> (SR(D|W) <t> x y) (MOVDconst [0]) (CMPWUconst (MOVBZreg y) [64])) 281 282 (Rsh(16|8)Ux64 <t> x y) => (LOCGR {s390x.GreaterOrEqual} <t> (SRW <t> (MOV(H|B)Zreg x) y) (MOVDconst [0]) (CMPUconst y [64])) 283 (Rsh(16|8)Ux32 <t> x y) => (LOCGR {s390x.GreaterOrEqual} <t> (SRW <t> (MOV(H|B)Zreg x) y) (MOVDconst [0]) (CMPWUconst y [64])) 284 (Rsh(16|8)Ux16 <t> x y) => (LOCGR {s390x.GreaterOrEqual} <t> (SRW <t> (MOV(H|B)Zreg x) y) (MOVDconst [0]) (CMPWUconst (MOVHZreg y) [64])) 285 (Rsh(16|8)Ux8 <t> x y) => (LOCGR {s390x.GreaterOrEqual} <t> (SRW <t> (MOV(H|B)Zreg x) y) (MOVDconst [0]) (CMPWUconst (MOVBZreg y) [64])) 286 287 // Signed right shift needs to return 0/-1 if shift amount is >= width of shifted value. 288 // We implement this by setting the shift value to 63 (all ones) if the shift value is more than 63. 289 // result = arg >> (shift >= 64 ? 63 : shift) 290 (Rsh(64|32)x64 x y) => (SRA(D|W) x (LOCGR {s390x.GreaterOrEqual} <y.Type> y (MOVDconst <y.Type> [63]) (CMPUconst y [64]))) 291 (Rsh(64|32)x32 x y) => (SRA(D|W) x (LOCGR {s390x.GreaterOrEqual} <y.Type> y (MOVDconst <y.Type> [63]) (CMPWUconst y [64]))) 292 (Rsh(64|32)x16 x y) => (SRA(D|W) x (LOCGR {s390x.GreaterOrEqual} <y.Type> y (MOVDconst <y.Type> [63]) (CMPWUconst (MOVHZreg y) [64]))) 293 (Rsh(64|32)x8 x y) => (SRA(D|W) x (LOCGR {s390x.GreaterOrEqual} <y.Type> y (MOVDconst <y.Type> [63]) (CMPWUconst (MOVBZreg y) [64]))) 294 295 (Rsh(16|8)x64 x y) => (SRAW (MOV(H|B)reg x) (LOCGR {s390x.GreaterOrEqual} <y.Type> y (MOVDconst <y.Type> [63]) (CMPUconst y [64]))) 296 (Rsh(16|8)x32 x y) => (SRAW (MOV(H|B)reg x) (LOCGR {s390x.GreaterOrEqual} <y.Type> y (MOVDconst <y.Type> [63]) (CMPWUconst y [64]))) 297 (Rsh(16|8)x16 x y) => (SRAW (MOV(H|B)reg x) (LOCGR {s390x.GreaterOrEqual} <y.Type> y (MOVDconst <y.Type> [63]) (CMPWUconst (MOVHZreg y) [64]))) 298 (Rsh(16|8)x8 x y) => (SRAW (MOV(H|B)reg x) (LOCGR {s390x.GreaterOrEqual} <y.Type> y (MOVDconst <y.Type> [63]) (CMPWUconst (MOVBZreg y) [64]))) 299 300 // Lowering rotates 301 (RotateLeft8 <t> x (MOVDconst [c])) => (Or8 (Lsh8x64 <t> x (MOVDconst [c&7])) (Rsh8Ux64 <t> x (MOVDconst [-c&7]))) 302 (RotateLeft16 <t> x (MOVDconst [c])) => (Or16 (Lsh16x64 <t> x (MOVDconst [c&15])) (Rsh16Ux64 <t> x (MOVDconst [-c&15]))) 303 (RotateLeft32 ...) => (RLL ...) 304 (RotateLeft64 ...) => (RLLG ...) 305 306 // Lowering comparisons 307 (Less64 x y) => (LOCGR {s390x.Less} (MOVDconst [0]) (MOVDconst [1]) (CMP x y)) 308 (Less32 x y) => (LOCGR {s390x.Less} (MOVDconst [0]) (MOVDconst [1]) (CMPW x y)) 309 (Less(16|8) x y) => (LOCGR {s390x.Less} (MOVDconst [0]) (MOVDconst [1]) (CMPW (MOV(H|B)reg x) (MOV(H|B)reg y))) 310 (Less64U x y) => (LOCGR {s390x.Less} (MOVDconst [0]) (MOVDconst [1]) (CMPU x y)) 311 (Less32U x y) => (LOCGR {s390x.Less} (MOVDconst [0]) (MOVDconst [1]) (CMPWU x y)) 312 (Less(16|8)U x y) => (LOCGR {s390x.Less} (MOVDconst [0]) (MOVDconst [1]) (CMPWU (MOV(H|B)Zreg x) (MOV(H|B)Zreg y))) 313 (Less64F x y) => (LOCGR {s390x.Less} (MOVDconst [0]) (MOVDconst [1]) (FCMP x y)) 314 (Less32F x y) => (LOCGR {s390x.Less} (MOVDconst [0]) (MOVDconst [1]) (FCMPS x y)) 315 316 (Leq64 x y) => (LOCGR {s390x.LessOrEqual} (MOVDconst [0]) (MOVDconst [1]) (CMP x y)) 317 (Leq32 x y) => (LOCGR {s390x.LessOrEqual} (MOVDconst [0]) (MOVDconst [1]) (CMPW x y)) 318 (Leq(16|8) x y) => (LOCGR {s390x.LessOrEqual} (MOVDconst [0]) (MOVDconst [1]) (CMPW (MOV(H|B)reg x) (MOV(H|B)reg y))) 319 (Leq64U x y) => (LOCGR {s390x.LessOrEqual} (MOVDconst [0]) (MOVDconst [1]) (CMPU x y)) 320 (Leq32U x y) => (LOCGR {s390x.LessOrEqual} (MOVDconst [0]) (MOVDconst [1]) (CMPWU x y)) 321 (Leq(16|8)U x y) => (LOCGR {s390x.LessOrEqual} (MOVDconst [0]) (MOVDconst [1]) (CMPWU (MOV(H|B)Zreg x) (MOV(H|B)Zreg y))) 322 (Leq64F x y) => (LOCGR {s390x.LessOrEqual} (MOVDconst [0]) (MOVDconst [1]) (FCMP x y)) 323 (Leq32F x y) => (LOCGR {s390x.LessOrEqual} (MOVDconst [0]) (MOVDconst [1]) (FCMPS x y)) 324 325 (Eq(64|Ptr) x y) => (LOCGR {s390x.Equal} (MOVDconst [0]) (MOVDconst [1]) (CMP x y)) 326 (Eq32 x y) => (LOCGR {s390x.Equal} (MOVDconst [0]) (MOVDconst [1]) (CMPW x y)) 327 (Eq(16|8|B) x y) => (LOCGR {s390x.Equal} (MOVDconst [0]) (MOVDconst [1]) (CMPW (MOV(H|B|B)reg x) (MOV(H|B|B)reg y))) 328 (Eq64F x y) => (LOCGR {s390x.Equal} (MOVDconst [0]) (MOVDconst [1]) (FCMP x y)) 329 (Eq32F x y) => (LOCGR {s390x.Equal} (MOVDconst [0]) (MOVDconst [1]) (FCMPS x y)) 330 331 (Neq(64|Ptr) x y) => (LOCGR {s390x.NotEqual} (MOVDconst [0]) (MOVDconst [1]) (CMP x y)) 332 (Neq32 x y) => (LOCGR {s390x.NotEqual} (MOVDconst [0]) (MOVDconst [1]) (CMPW x y)) 333 (Neq(16|8|B) x y) => (LOCGR {s390x.NotEqual} (MOVDconst [0]) (MOVDconst [1]) (CMPW (MOV(H|B|B)reg x) (MOV(H|B|B)reg y))) 334 (Neq64F x y) => (LOCGR {s390x.NotEqual} (MOVDconst [0]) (MOVDconst [1]) (FCMP x y)) 335 (Neq32F x y) => (LOCGR {s390x.NotEqual} (MOVDconst [0]) (MOVDconst [1]) (FCMPS x y)) 336 337 // Lowering loads 338 (Load <t> ptr mem) && (is64BitInt(t) || isPtr(t)) => (MOVDload ptr mem) 339 (Load <t> ptr mem) && is32BitInt(t) && t.IsSigned() => (MOVWload ptr mem) 340 (Load <t> ptr mem) && is32BitInt(t) && !t.IsSigned() => (MOVWZload ptr mem) 341 (Load <t> ptr mem) && is16BitInt(t) && t.IsSigned() => (MOVHload ptr mem) 342 (Load <t> ptr mem) && is16BitInt(t) && !t.IsSigned() => (MOVHZload ptr mem) 343 (Load <t> ptr mem) && is8BitInt(t) && t.IsSigned() => (MOVBload ptr mem) 344 (Load <t> ptr mem) && (t.IsBoolean() || (is8BitInt(t) && !t.IsSigned())) => (MOVBZload ptr mem) 345 (Load <t> ptr mem) && is32BitFloat(t) => (FMOVSload ptr mem) 346 (Load <t> ptr mem) && is64BitFloat(t) => (FMOVDload ptr mem) 347 348 // Lowering stores 349 (Store {t} ptr val mem) && t.Size() == 8 && t.IsFloat() => (FMOVDstore ptr val mem) 350 (Store {t} ptr val mem) && t.Size() == 4 && t.IsFloat() => (FMOVSstore ptr val mem) 351 (Store {t} ptr val mem) && t.Size() == 8 && !t.IsFloat() => (MOVDstore ptr val mem) 352 (Store {t} ptr val mem) && t.Size() == 4 && !t.IsFloat() => (MOVWstore ptr val mem) 353 (Store {t} ptr val mem) && t.Size() == 2 => (MOVHstore ptr val mem) 354 (Store {t} ptr val mem) && t.Size() == 1 => (MOVBstore ptr val mem) 355 356 // Lowering moves 357 358 // Load and store for small copies. 359 (Move [0] _ _ mem) => mem 360 (Move [1] dst src mem) => (MOVBstore dst (MOVBZload src mem) mem) 361 (Move [2] dst src mem) => (MOVHstore dst (MOVHZload src mem) mem) 362 (Move [4] dst src mem) => (MOVWstore dst (MOVWZload src mem) mem) 363 (Move [8] dst src mem) => (MOVDstore dst (MOVDload src mem) mem) 364 (Move [16] dst src mem) => 365 (MOVDstore [8] dst (MOVDload [8] src mem) 366 (MOVDstore dst (MOVDload src mem) mem)) 367 (Move [24] dst src mem) => 368 (MOVDstore [16] dst (MOVDload [16] src mem) 369 (MOVDstore [8] dst (MOVDload [8] src mem) 370 (MOVDstore dst (MOVDload src mem) mem))) 371 (Move [3] dst src mem) => 372 (MOVBstore [2] dst (MOVBZload [2] src mem) 373 (MOVHstore dst (MOVHZload src mem) mem)) 374 (Move [5] dst src mem) => 375 (MOVBstore [4] dst (MOVBZload [4] src mem) 376 (MOVWstore dst (MOVWZload src mem) mem)) 377 (Move [6] dst src mem) => 378 (MOVHstore [4] dst (MOVHZload [4] src mem) 379 (MOVWstore dst (MOVWZload src mem) mem)) 380 (Move [7] dst src mem) => 381 (MOVBstore [6] dst (MOVBZload [6] src mem) 382 (MOVHstore [4] dst (MOVHZload [4] src mem) 383 (MOVWstore dst (MOVWZload src mem) mem))) 384 385 // MVC for other moves. Use up to 4 instructions (sizes up to 1024 bytes). 386 (Move [s] dst src mem) && s > 0 && s <= 256 && logLargeCopy(v, s) => 387 (MVC [makeValAndOff(int32(s), 0)] dst src mem) 388 (Move [s] dst src mem) && s > 256 && s <= 512 && logLargeCopy(v, s) => 389 (MVC [makeValAndOff(int32(s)-256, 256)] dst src (MVC [makeValAndOff(256, 0)] dst src mem)) 390 (Move [s] dst src mem) && s > 512 && s <= 768 && logLargeCopy(v, s) => 391 (MVC [makeValAndOff(int32(s)-512, 512)] dst src (MVC [makeValAndOff(256, 256)] dst src (MVC [makeValAndOff(256, 0)] dst src mem))) 392 (Move [s] dst src mem) && s > 768 && s <= 1024 && logLargeCopy(v, s) => 393 (MVC [makeValAndOff(int32(s)-768, 768)] dst src (MVC [makeValAndOff(256, 512)] dst src (MVC [makeValAndOff(256, 256)] dst src (MVC [makeValAndOff(256, 0)] dst src mem)))) 394 395 // Move more than 1024 bytes using a loop. 396 (Move [s] dst src mem) && s > 1024 && logLargeCopy(v, s) => 397 (LoweredMove [s%256] dst src (ADD <src.Type> src (MOVDconst [(s/256)*256])) mem) 398 399 // Lowering Zero instructions 400 (Zero [0] _ mem) => mem 401 (Zero [1] destptr mem) => (MOVBstoreconst [0] destptr mem) 402 (Zero [2] destptr mem) => (MOVHstoreconst [0] destptr mem) 403 (Zero [4] destptr mem) => (MOVWstoreconst [0] destptr mem) 404 (Zero [8] destptr mem) => (MOVDstoreconst [0] destptr mem) 405 (Zero [3] destptr mem) => 406 (MOVBstoreconst [makeValAndOff(0,2)] destptr 407 (MOVHstoreconst [0] destptr mem)) 408 (Zero [5] destptr mem) => 409 (MOVBstoreconst [makeValAndOff(0,4)] destptr 410 (MOVWstoreconst [0] destptr mem)) 411 (Zero [6] destptr mem) => 412 (MOVHstoreconst [makeValAndOff(0,4)] destptr 413 (MOVWstoreconst [0] destptr mem)) 414 (Zero [7] destptr mem) => 415 (MOVWstoreconst [makeValAndOff(0,3)] destptr 416 (MOVWstoreconst [0] destptr mem)) 417 418 (Zero [s] destptr mem) && s > 0 && s <= 1024 => 419 (CLEAR [makeValAndOff(int32(s), 0)] destptr mem) 420 421 // Zero more than 1024 bytes using a loop. 422 (Zero [s] destptr mem) && s > 1024 => 423 (LoweredZero [s%256] destptr (ADDconst <destptr.Type> destptr [(int32(s)/256)*256]) mem) 424 425 // Lowering constants 426 (Const(64|32|16|8) [val]) => (MOVDconst [int64(val)]) 427 (Const(32|64)F ...) => (FMOV(S|D)const ...) 428 (ConstNil) => (MOVDconst [0]) 429 (ConstBool [t]) => (MOVDconst [b2i(t)]) 430 431 // Lowering calls 432 (StaticCall ...) => (CALLstatic ...) 433 (ClosureCall ...) => (CALLclosure ...) 434 (InterCall ...) => (CALLinter ...) 435 (TailCall ...) => (CALLtail ...) 436 437 // Miscellaneous 438 (IsNonNil p) => (LOCGR {s390x.NotEqual} (MOVDconst [0]) (MOVDconst [1]) (CMPconst p [0])) 439 (IsInBounds idx len) => (LOCGR {s390x.Less} (MOVDconst [0]) (MOVDconst [1]) (CMPU idx len)) 440 (IsSliceInBounds idx len) => (LOCGR {s390x.LessOrEqual} (MOVDconst [0]) (MOVDconst [1]) (CMPU idx len)) 441 (NilCheck ...) => (LoweredNilCheck ...) 442 (GetG ...) => (LoweredGetG ...) 443 (GetClosurePtr ...) => (LoweredGetClosurePtr ...) 444 (GetCallerSP ...) => (LoweredGetCallerSP ...) 445 (GetCallerPC ...) => (LoweredGetCallerPC ...) 446 (Addr {sym} base) => (MOVDaddr {sym} base) 447 (LocalAddr <t> {sym} base mem) && t.Elem().HasPointers() => (MOVDaddr {sym} (SPanchored base mem)) 448 (LocalAddr <t> {sym} base _) && !t.Elem().HasPointers() => (MOVDaddr {sym} base) 449 (ITab (Load ptr mem)) => (MOVDload ptr mem) 450 451 // block rewrites 452 (If cond yes no) => (CLIJ {s390x.LessOrGreater} (MOVBZreg <typ.Bool> cond) [0] yes no) 453 454 // Write barrier. 455 (WB ...) => (LoweredWB ...) 456 457 (PanicBounds [kind] x y mem) && boundsABI(kind) == 0 => (LoweredPanicBoundsA [kind] x y mem) 458 (PanicBounds [kind] x y mem) && boundsABI(kind) == 1 => (LoweredPanicBoundsB [kind] x y mem) 459 (PanicBounds [kind] x y mem) && boundsABI(kind) == 2 => (LoweredPanicBoundsC [kind] x y mem) 460 461 // *************************** 462 // Above: lowering rules 463 // Below: optimizations 464 // *************************** 465 // TODO: Should the optimizations be a separate pass? 466 467 // Note: when removing unnecessary sign/zero extensions. 468 // 469 // After a value is spilled it is restored using a sign- or zero-extension 470 // to register-width as appropriate for its type. For example, a uint8 will 471 // be restored using a MOVBZ (llgc) instruction which will zero extend the 472 // 8-bit value to 64-bits. 473 // 474 // This is a hazard when folding sign- and zero-extensions since we need to 475 // ensure not only that the value in the argument register is correctly 476 // extended but also that it will still be correctly extended if it is 477 // spilled and restored. 478 // 479 // In general this means we need type checks when the RHS of a rule is an 480 // OpCopy (i.e. "(... x:(...) ...) -> x"). 481 482 // Merge double extensions. 483 (MOV(H|HZ)reg e:(MOV(B|BZ)reg x)) && clobberIfDead(e) => (MOV(B|BZ)reg x) 484 (MOV(W|WZ)reg e:(MOV(B|BZ)reg x)) && clobberIfDead(e) => (MOV(B|BZ)reg x) 485 (MOV(W|WZ)reg e:(MOV(H|HZ)reg x)) && clobberIfDead(e) => (MOV(H|HZ)reg x) 486 487 // Bypass redundant sign extensions. 488 (MOV(B|BZ)reg e:(MOVBreg x)) && clobberIfDead(e) => (MOV(B|BZ)reg x) 489 (MOV(B|BZ)reg e:(MOVHreg x)) && clobberIfDead(e) => (MOV(B|BZ)reg x) 490 (MOV(B|BZ)reg e:(MOVWreg x)) && clobberIfDead(e) => (MOV(B|BZ)reg x) 491 (MOV(H|HZ)reg e:(MOVHreg x)) && clobberIfDead(e) => (MOV(H|HZ)reg x) 492 (MOV(H|HZ)reg e:(MOVWreg x)) && clobberIfDead(e) => (MOV(H|HZ)reg x) 493 (MOV(W|WZ)reg e:(MOVWreg x)) && clobberIfDead(e) => (MOV(W|WZ)reg x) 494 495 // Bypass redundant zero extensions. 496 (MOV(B|BZ)reg e:(MOVBZreg x)) && clobberIfDead(e) => (MOV(B|BZ)reg x) 497 (MOV(B|BZ)reg e:(MOVHZreg x)) && clobberIfDead(e) => (MOV(B|BZ)reg x) 498 (MOV(B|BZ)reg e:(MOVWZreg x)) && clobberIfDead(e) => (MOV(B|BZ)reg x) 499 (MOV(H|HZ)reg e:(MOVHZreg x)) && clobberIfDead(e) => (MOV(H|HZ)reg x) 500 (MOV(H|HZ)reg e:(MOVWZreg x)) && clobberIfDead(e) => (MOV(H|HZ)reg x) 501 (MOV(W|WZ)reg e:(MOVWZreg x)) && clobberIfDead(e) => (MOV(W|WZ)reg x) 502 503 // Remove zero extensions after zero extending load. 504 // Note: take care that if x is spilled it is restored correctly. 505 (MOV(B|H|W)Zreg x:(MOVBZload _ _)) && (!x.Type.IsSigned() || x.Type.Size() > 1) => x 506 (MOV(H|W)Zreg x:(MOVHZload _ _)) && (!x.Type.IsSigned() || x.Type.Size() > 2) => x 507 (MOVWZreg x:(MOVWZload _ _)) && (!x.Type.IsSigned() || x.Type.Size() > 4) => x 508 509 // Remove sign extensions after sign extending load. 510 // Note: take care that if x is spilled it is restored correctly. 511 (MOV(B|H|W)reg x:(MOVBload _ _)) && (x.Type.IsSigned() || x.Type.Size() == 8) => x 512 (MOV(H|W)reg x:(MOVHload _ _)) && (x.Type.IsSigned() || x.Type.Size() == 8) => x 513 (MOVWreg x:(MOVWload _ _)) && (x.Type.IsSigned() || x.Type.Size() == 8) => x 514 515 // Remove sign extensions after zero extending load. 516 // These type checks are probably unnecessary but do them anyway just in case. 517 (MOV(H|W)reg x:(MOVBZload _ _)) && (!x.Type.IsSigned() || x.Type.Size() > 1) => x 518 (MOVWreg x:(MOVHZload _ _)) && (!x.Type.IsSigned() || x.Type.Size() > 2) => x 519 520 // Fold sign and zero extensions into loads. 521 // 522 // Note: The combined instruction must end up in the same block 523 // as the original load. If not, we end up making a value with 524 // memory type live in two different blocks, which can lead to 525 // multiple memory values alive simultaneously. 526 // 527 // Make sure we don't combine these ops if the load has another use. 528 // This prevents a single load from being split into multiple loads 529 // which then might return different values. See test/atomicload.go. 530 (MOV(B|H|W)Zreg <t> x:(MOV(B|H|W)load [o] {s} p mem)) 531 && x.Uses == 1 532 && clobber(x) 533 => @x.Block (MOV(B|H|W)Zload <t> [o] {s} p mem) 534 (MOV(B|H|W)reg <t> x:(MOV(B|H|W)Zload [o] {s} p mem)) 535 && x.Uses == 1 536 && clobber(x) 537 => @x.Block (MOV(B|H|W)load <t> [o] {s} p mem) 538 539 // Remove zero extensions after argument load. 540 (MOVBZreg x:(Arg <t>)) && !t.IsSigned() && t.Size() == 1 => x 541 (MOVHZreg x:(Arg <t>)) && !t.IsSigned() && t.Size() <= 2 => x 542 (MOVWZreg x:(Arg <t>)) && !t.IsSigned() && t.Size() <= 4 => x 543 544 // Remove sign extensions after argument load. 545 (MOVBreg x:(Arg <t>)) && t.IsSigned() && t.Size() == 1 => x 546 (MOVHreg x:(Arg <t>)) && t.IsSigned() && t.Size() <= 2 => x 547 (MOVWreg x:(Arg <t>)) && t.IsSigned() && t.Size() <= 4 => x 548 549 // Fold zero extensions into constants. 550 (MOVBZreg (MOVDconst [c])) => (MOVDconst [int64( uint8(c))]) 551 (MOVHZreg (MOVDconst [c])) => (MOVDconst [int64(uint16(c))]) 552 (MOVWZreg (MOVDconst [c])) => (MOVDconst [int64(uint32(c))]) 553 554 // Fold sign extensions into constants. 555 (MOVBreg (MOVDconst [c])) => (MOVDconst [int64( int8(c))]) 556 (MOVHreg (MOVDconst [c])) => (MOVDconst [int64(int16(c))]) 557 (MOVWreg (MOVDconst [c])) => (MOVDconst [int64(int32(c))]) 558 559 // Remove zero extension of conditional move. 560 // Note: only for MOVBZreg for now since it is added as part of 'if' statement lowering. 561 (MOVBZreg x:(LOCGR (MOVDconst [c]) (MOVDconst [d]) _)) 562 && int64(uint8(c)) == c 563 && int64(uint8(d)) == d 564 && (!x.Type.IsSigned() || x.Type.Size() > 1) 565 => x 566 567 // Fold boolean tests into blocks. 568 // Note: this must match If statement lowering. 569 (CLIJ {s390x.LessOrGreater} (LOCGR {d} (MOVDconst [0]) (MOVDconst [x]) cmp) [0] yes no) 570 && int32(x) != 0 571 => (BRC {d} cmp yes no) 572 573 // Canonicalize BRC condition code mask by removing impossible conditions. 574 // Integer comparisons cannot generate the unordered condition. 575 (BRC {c} x:((CMP|CMPW|CMPU|CMPWU) _ _) yes no) && c&s390x.Unordered != 0 => (BRC {c&^s390x.Unordered} x yes no) 576 (BRC {c} x:((CMP|CMPW|CMPU|CMPWU)const _) yes no) && c&s390x.Unordered != 0 => (BRC {c&^s390x.Unordered} x yes no) 577 578 // Compare-and-branch. 579 // Note: bit 3 (unordered) must not be set so we mask out s390x.Unordered. 580 (BRC {c} (CMP x y) yes no) => (CGRJ {c&^s390x.Unordered} x y yes no) 581 (BRC {c} (CMPW x y) yes no) => (CRJ {c&^s390x.Unordered} x y yes no) 582 (BRC {c} (CMPU x y) yes no) => (CLGRJ {c&^s390x.Unordered} x y yes no) 583 (BRC {c} (CMPWU x y) yes no) => (CLRJ {c&^s390x.Unordered} x y yes no) 584 585 // Compare-and-branch (immediate). 586 // Note: bit 3 (unordered) must not be set so we mask out s390x.Unordered. 587 (BRC {c} (CMPconst x [y]) yes no) && y == int32( int8(y)) => (CGIJ {c&^s390x.Unordered} x [ int8(y)] yes no) 588 (BRC {c} (CMPWconst x [y]) yes no) && y == int32( int8(y)) => (CIJ {c&^s390x.Unordered} x [ int8(y)] yes no) 589 (BRC {c} (CMPUconst x [y]) yes no) && y == int32(uint8(y)) => (CLGIJ {c&^s390x.Unordered} x [uint8(y)] yes no) 590 (BRC {c} (CMPWUconst x [y]) yes no) && y == int32(uint8(y)) => (CLIJ {c&^s390x.Unordered} x [uint8(y)] yes no) 591 592 // Absorb immediate into compare-and-branch. 593 (C(R|GR)J {c} x (MOVDconst [y]) yes no) && is8Bit(y) => (C(I|GI)J {c} x [ int8(y)] yes no) 594 (CL(R|GR)J {c} x (MOVDconst [y]) yes no) && isU8Bit(y) => (CL(I|GI)J {c} x [uint8(y)] yes no) 595 (C(R|GR)J {c} (MOVDconst [x]) y yes no) && is8Bit(x) => (C(I|GI)J {c.ReverseComparison()} y [ int8(x)] yes no) 596 (CL(R|GR)J {c} (MOVDconst [x]) y yes no) && isU8Bit(x) => (CL(I|GI)J {c.ReverseComparison()} y [uint8(x)] yes no) 597 598 // Prefer comparison with immediate to compare-and-branch. 599 (CGRJ {c} x (MOVDconst [y]) yes no) && !is8Bit(y) && is32Bit(y) => (BRC {c} (CMPconst x [int32(y)]) yes no) 600 (CRJ {c} x (MOVDconst [y]) yes no) && !is8Bit(y) && is32Bit(y) => (BRC {c} (CMPWconst x [int32(y)]) yes no) 601 (CLGRJ {c} x (MOVDconst [y]) yes no) && !isU8Bit(y) && isU32Bit(y) => (BRC {c} (CMPUconst x [int32(y)]) yes no) 602 (CLRJ {c} x (MOVDconst [y]) yes no) && !isU8Bit(y) && isU32Bit(y) => (BRC {c} (CMPWUconst x [int32(y)]) yes no) 603 (CGRJ {c} (MOVDconst [x]) y yes no) && !is8Bit(x) && is32Bit(x) => (BRC {c.ReverseComparison()} (CMPconst y [int32(x)]) yes no) 604 (CRJ {c} (MOVDconst [x]) y yes no) && !is8Bit(x) && is32Bit(x) => (BRC {c.ReverseComparison()} (CMPWconst y [int32(x)]) yes no) 605 (CLGRJ {c} (MOVDconst [x]) y yes no) && !isU8Bit(x) && isU32Bit(x) => (BRC {c.ReverseComparison()} (CMPUconst y [int32(x)]) yes no) 606 (CLRJ {c} (MOVDconst [x]) y yes no) && !isU8Bit(x) && isU32Bit(x) => (BRC {c.ReverseComparison()} (CMPWUconst y [int32(x)]) yes no) 607 608 // Absorb sign/zero extensions into 32-bit compare-and-branch. 609 (CIJ {c} (MOV(W|WZ)reg x) [y] yes no) => (CIJ {c} x [y] yes no) 610 (CLIJ {c} (MOV(W|WZ)reg x) [y] yes no) => (CLIJ {c} x [y] yes no) 611 612 // Bring out-of-range signed immediates into range by varying branch condition. 613 (BRC {s390x.Less} (CMPconst x [ 128]) yes no) => (CGIJ {s390x.LessOrEqual} x [ 127] yes no) 614 (BRC {s390x.Less} (CMPWconst x [ 128]) yes no) => (CIJ {s390x.LessOrEqual} x [ 127] yes no) 615 (BRC {s390x.LessOrEqual} (CMPconst x [-129]) yes no) => (CGIJ {s390x.Less} x [-128] yes no) 616 (BRC {s390x.LessOrEqual} (CMPWconst x [-129]) yes no) => (CIJ {s390x.Less} x [-128] yes no) 617 (BRC {s390x.Greater} (CMPconst x [-129]) yes no) => (CGIJ {s390x.GreaterOrEqual} x [-128] yes no) 618 (BRC {s390x.Greater} (CMPWconst x [-129]) yes no) => (CIJ {s390x.GreaterOrEqual} x [-128] yes no) 619 (BRC {s390x.GreaterOrEqual} (CMPconst x [ 128]) yes no) => (CGIJ {s390x.Greater} x [ 127] yes no) 620 (BRC {s390x.GreaterOrEqual} (CMPWconst x [ 128]) yes no) => (CIJ {s390x.Greater} x [ 127] yes no) 621 622 // Bring out-of-range unsigned immediates into range by varying branch condition. 623 (BRC {s390x.Less} (CMP(WU|U)const x [256]) yes no) => (C(L|LG)IJ {s390x.LessOrEqual} x [255] yes no) 624 (BRC {s390x.GreaterOrEqual} (CMP(WU|U)const x [256]) yes no) => (C(L|LG)IJ {s390x.Greater} x [255] yes no) 625 626 // Bring out-of-range immediates into range by switching signedness (only == and !=). 627 (BRC {c} (CMPconst x [y]) yes no) && y == int32(uint8(y)) && (c == s390x.Equal || c == s390x.LessOrGreater) => (CLGIJ {c} x [uint8(y)] yes no) 628 (BRC {c} (CMPWconst x [y]) yes no) && y == int32(uint8(y)) && (c == s390x.Equal || c == s390x.LessOrGreater) => (CLIJ {c} x [uint8(y)] yes no) 629 (BRC {c} (CMPUconst x [y]) yes no) && y == int32( int8(y)) && (c == s390x.Equal || c == s390x.LessOrGreater) => (CGIJ {c} x [ int8(y)] yes no) 630 (BRC {c} (CMPWUconst x [y]) yes no) && y == int32( int8(y)) && (c == s390x.Equal || c == s390x.LessOrGreater) => (CIJ {c} x [ int8(y)] yes no) 631 632 // Fold constants into instructions. 633 (ADD x (MOVDconst <t> [c])) && is32Bit(c) && !t.IsPtr() => (ADDconst [int32(c)] x) 634 (ADDW x (MOVDconst [c])) => (ADDWconst [int32(c)] x) 635 636 (SUB x (MOVDconst [c])) && is32Bit(c) => (SUBconst x [int32(c)]) 637 (SUB (MOVDconst [c]) x) && is32Bit(c) => (NEG (SUBconst <v.Type> x [int32(c)])) 638 (SUBW x (MOVDconst [c])) => (SUBWconst x [int32(c)]) 639 (SUBW (MOVDconst [c]) x) => (NEGW (SUBWconst <v.Type> x [int32(c)])) 640 641 (MULLD x (MOVDconst [c])) && is32Bit(c) => (MULLDconst [int32(c)] x) 642 (MULLW x (MOVDconst [c])) => (MULLWconst [int32(c)] x) 643 644 // NILF instructions leave the high 32 bits unchanged which is 645 // equivalent to the leftmost 32 bits being set. 646 // TODO(mundaym): modify the assembler to accept 64-bit values 647 // and use isU32Bit(^c). 648 (AND x (MOVDconst [c])) 649 && s390x.NewRotateParams(0, 63, 0).OutMerge(uint64(c)) != nil 650 => (RISBGZ x {*s390x.NewRotateParams(0, 63, 0).OutMerge(uint64(c))}) 651 (AND x (MOVDconst [c])) 652 && is32Bit(c) 653 && c < 0 654 => (ANDconst [c] x) 655 (AND x (MOVDconst [c])) 656 && is32Bit(c) 657 && c >= 0 658 => (MOVWZreg (ANDWconst <typ.UInt32> [int32(c)] x)) 659 660 (ANDW x (MOVDconst [c])) => (ANDWconst [int32(c)] x) 661 662 ((AND|ANDW)const [c] ((AND|ANDW)const [d] x)) => ((AND|ANDW)const [c&d] x) 663 664 ((OR|XOR) x (MOVDconst [c])) && isU32Bit(c) => ((OR|XOR)const [c] x) 665 ((OR|XOR)W x (MOVDconst [c])) => ((OR|XOR)Wconst [int32(c)] x) 666 667 // Constant shifts. 668 (S(LD|RD|RAD) x (MOVDconst [c])) => (S(LD|RD|RAD)const x [uint8(c&63)]) 669 (S(LW|RW|RAW) x (MOVDconst [c])) && c&32 == 0 => (S(LW|RW|RAW)const x [uint8(c&31)]) 670 (S(LW|RW) _ (MOVDconst [c])) && c&32 != 0 => (MOVDconst [0]) 671 (SRAW x (MOVDconst [c])) && c&32 != 0 => (SRAWconst x [31]) 672 673 // Shifts only use the rightmost 6 bits of the shift value. 674 (S(LD|RD|RAD|LW|RW|RAW) x (RISBGZ y {r})) 675 && r.Amount == 0 676 && r.OutMask()&63 == 63 677 => (S(LD|RD|RAD|LW|RW|RAW) x y) 678 (S(LD|RD|RAD|LW|RW|RAW) x (AND (MOVDconst [c]) y)) 679 => (S(LD|RD|RAD|LW|RW|RAW) x (ANDWconst <typ.UInt32> [int32(c&63)] y)) 680 (S(LD|RD|RAD|LW|RW|RAW) x (ANDWconst [c] y)) && c&63 == 63 681 => (S(LD|RD|RAD|LW|RW|RAW) x y) 682 (SLD x (MOV(W|H|B|WZ|HZ|BZ)reg y)) => (SLD x y) 683 (SRD x (MOV(W|H|B|WZ|HZ|BZ)reg y)) => (SRD x y) 684 (SRAD x (MOV(W|H|B|WZ|HZ|BZ)reg y)) => (SRAD x y) 685 (SLW x (MOV(W|H|B|WZ|HZ|BZ)reg y)) => (SLW x y) 686 (SRW x (MOV(W|H|B|WZ|HZ|BZ)reg y)) => (SRW x y) 687 (SRAW x (MOV(W|H|B|WZ|HZ|BZ)reg y)) => (SRAW x y) 688 689 // Match rotate by constant. 690 (RLLG x (MOVDconst [c])) => (RISBGZ x {s390x.NewRotateParams(0, 63, uint8(c&63))}) 691 (RLL x (MOVDconst [c])) => (RLLconst x [uint8(c&31)]) 692 693 // Signed 64-bit comparison with immediate. 694 (CMP x (MOVDconst [c])) && is32Bit(c) => (CMPconst x [int32(c)]) 695 (CMP (MOVDconst [c]) x) && is32Bit(c) => (InvertFlags (CMPconst x [int32(c)])) 696 697 // Unsigned 64-bit comparison with immediate. 698 (CMPU x (MOVDconst [c])) && isU32Bit(c) => (CMPUconst x [int32(c)]) 699 (CMPU (MOVDconst [c]) x) && isU32Bit(c) => (InvertFlags (CMPUconst x [int32(c)])) 700 701 // Signed and unsigned 32-bit comparison with immediate. 702 (CMP(W|WU) x (MOVDconst [c])) => (CMP(W|WU)const x [int32(c)]) 703 (CMP(W|WU) (MOVDconst [c]) x) => (InvertFlags (CMP(W|WU)const x [int32(c)])) 704 705 // Match (x >> c) << d to 'rotate then insert selected bits [into zero]'. 706 (SLDconst (SRDconst x [c]) [d]) => (RISBGZ x {s390x.NewRotateParams(uint8(max8(0, int8(c-d))), 63-d, uint8(int8(d-c)&63))}) 707 708 // Match (x << c) >> d to 'rotate then insert selected bits [into zero]'. 709 (SRDconst (SLDconst x [c]) [d]) => (RISBGZ x {s390x.NewRotateParams(d, uint8(min8(63, int8(63-c+d))), uint8(int8(c-d)&63))}) 710 711 // Absorb input zero extension into 'rotate then insert selected bits [into zero]'. 712 (RISBGZ (MOVWZreg x) {r}) && r.InMerge(0xffffffff) != nil => (RISBGZ x {*r.InMerge(0xffffffff)}) 713 (RISBGZ (MOVHZreg x) {r}) && r.InMerge(0x0000ffff) != nil => (RISBGZ x {*r.InMerge(0x0000ffff)}) 714 (RISBGZ (MOVBZreg x) {r}) && r.InMerge(0x000000ff) != nil => (RISBGZ x {*r.InMerge(0x000000ff)}) 715 716 // Absorb 'rotate then insert selected bits [into zero]' into zero extension. 717 (MOVWZreg (RISBGZ x {r})) && r.OutMerge(0xffffffff) != nil => (RISBGZ x {*r.OutMerge(0xffffffff)}) 718 (MOVHZreg (RISBGZ x {r})) && r.OutMerge(0x0000ffff) != nil => (RISBGZ x {*r.OutMerge(0x0000ffff)}) 719 (MOVBZreg (RISBGZ x {r})) && r.OutMerge(0x000000ff) != nil => (RISBGZ x {*r.OutMerge(0x000000ff)}) 720 721 // Absorb shift into 'rotate then insert selected bits [into zero]'. 722 // 723 // Any unsigned shift can be represented as a rotate and mask operation: 724 // 725 // x << c => RotateLeft64(x, c) & (^uint64(0) << c) 726 // x >> c => RotateLeft64(x, -c) & (^uint64(0) >> c) 727 // 728 // Therefore when a shift is used as the input to a rotate then insert 729 // selected bits instruction we can merge the two together. We just have 730 // to be careful that the resultant mask is representable (non-zero and 731 // contiguous). For example, assuming that x is variable and c, y and m 732 // are constants, a shift followed by a rotate then insert selected bits 733 // could be represented as: 734 // 735 // RotateLeft64(RotateLeft64(x, c) & (^uint64(0) << c), y) & m 736 // 737 // We can split the rotation by y into two, one rotate for x and one for 738 // the mask: 739 // 740 // RotateLeft64(RotateLeft64(x, c), y) & (RotateLeft64(^uint64(0) << c, y)) & m 741 // 742 // The rotations of x by c followed by y can then be combined: 743 // 744 // RotateLeft64(x, c+y) & (RotateLeft64(^uint64(0) << c, y)) & m 745 // ^^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 746 // rotate mask 747 // 748 // To perform this optimization we therefore just need to check that it 749 // is valid to merge the shift mask (^(uint64(0)<<c)) into the selected 750 // bits mask (i.e. that the resultant mask is non-zero and contiguous). 751 // 752 (RISBGZ (SLDconst x [c]) {r}) && r.InMerge(^uint64(0)<<c) != nil => (RISBGZ x {(*r.InMerge(^uint64(0)<<c)).RotateLeft(c)}) 753 (RISBGZ (SRDconst x [c]) {r}) && r.InMerge(^uint64(0)>>c) != nil => (RISBGZ x {(*r.InMerge(^uint64(0)>>c)).RotateLeft(-c)}) 754 755 // Absorb 'rotate then insert selected bits [into zero]' into left shift. 756 (SLDconst (RISBGZ x {r}) [c]) 757 && s390x.NewRotateParams(0, 63-c, c).InMerge(r.OutMask()) != nil 758 => (RISBGZ x {(*s390x.NewRotateParams(0, 63-c, c).InMerge(r.OutMask())).RotateLeft(r.Amount)}) 759 760 // Absorb 'rotate then insert selected bits [into zero]' into right shift. 761 (SRDconst (RISBGZ x {r}) [c]) 762 && s390x.NewRotateParams(c, 63, -c&63).InMerge(r.OutMask()) != nil 763 => (RISBGZ x {(*s390x.NewRotateParams(c, 63, -c&63).InMerge(r.OutMask())).RotateLeft(r.Amount)}) 764 765 // Merge 'rotate then insert selected bits [into zero]' instructions together. 766 (RISBGZ (RISBGZ x {y}) {z}) 767 && z.InMerge(y.OutMask()) != nil 768 => (RISBGZ x {(*z.InMerge(y.OutMask())).RotateLeft(y.Amount)}) 769 770 // Convert RISBGZ into 64-bit shift (helps CSE). 771 (RISBGZ x {r}) && r.End == 63 && r.Start == -r.Amount&63 => (SRDconst x [-r.Amount&63]) 772 (RISBGZ x {r}) && r.Start == 0 && r.End == 63-r.Amount => (SLDconst x [r.Amount]) 773 774 // Optimize single bit isolation when it is known to be equivalent to 775 // the most significant bit due to mask produced by arithmetic shift. 776 // Simply isolate the most significant bit itself and place it in the 777 // correct position. 778 // 779 // Example: (int64(x) >> 63) & 0x8 -> RISBGZ $60, $60, $4, Rsrc, Rdst 780 (RISBGZ (SRADconst x [c]) {r}) 781 && r.Start == r.End // single bit selected 782 && (r.Start+r.Amount)&63 <= c // equivalent to most significant bit of x 783 => (RISBGZ x {s390x.NewRotateParams(r.Start, r.Start, -r.Start&63)}) 784 785 // Canonicalize the order of arguments to comparisons - helps with CSE. 786 ((CMP|CMPW|CMPU|CMPWU) x y) && canonLessThan(x,y) => (InvertFlags ((CMP|CMPW|CMPU|CMPWU) y x)) 787 788 // Use sign/zero extend instead of RISBGZ. 789 (RISBGZ x {r}) && r == s390x.NewRotateParams(56, 63, 0) => (MOVBZreg x) 790 (RISBGZ x {r}) && r == s390x.NewRotateParams(48, 63, 0) => (MOVHZreg x) 791 (RISBGZ x {r}) && r == s390x.NewRotateParams(32, 63, 0) => (MOVWZreg x) 792 793 // Use sign/zero extend instead of ANDW. 794 (ANDWconst [0x00ff] x) => (MOVBZreg x) 795 (ANDWconst [0xffff] x) => (MOVHZreg x) 796 797 // Strength reduce multiplication to the sum (or difference) of two powers of two. 798 // 799 // Examples: 800 // 5x -> 4x + 1x 801 // 10x -> 8x + 2x 802 // 120x -> 128x - 8x 803 // -120x -> 8x - 128x 804 // 805 // We know that the rightmost bit of any positive value, once isolated, must either 806 // be a power of 2 (because it is a single bit) or 0 (if the original value is 0). 807 // In all of these rules we use a rightmost bit calculation to determine one operand 808 // for the addition or subtraction. We then just need to calculate if the other 809 // operand is a valid power of 2 before we can match the rule. 810 // 811 // Notes: 812 // - the generic rules have already matched single powers of two so we ignore them here 813 // - isPowerOfTwo32 asserts that its argument is greater than 0 814 // - c&(c-1) = clear rightmost bit 815 // - c&^(c-1) = isolate rightmost bit 816 817 // c = 2ˣ + 2ʸ => c - 2ˣ = 2ʸ 818 (MULL(D|W)const <t> x [c]) && isPowerOfTwo32(c&(c-1)) 819 => ((ADD|ADDW) (SL(D|W)const <t> x [uint8(log32(c&(c-1)))]) 820 (SL(D|W)const <t> x [uint8(log32(c&^(c-1)))])) 821 822 // c = 2ʸ - 2ˣ => c + 2ˣ = 2ʸ 823 (MULL(D|W)const <t> x [c]) && isPowerOfTwo32(c+(c&^(c-1))) 824 => ((SUB|SUBW) (SL(D|W)const <t> x [uint8(log32(c+(c&^(c-1))))]) 825 (SL(D|W)const <t> x [uint8(log32(c&^(c-1)))])) 826 827 // c = 2ˣ - 2ʸ => -c + 2ˣ = 2ʸ 828 (MULL(D|W)const <t> x [c]) && isPowerOfTwo32(-c+(-c&^(-c-1))) 829 => ((SUB|SUBW) (SL(D|W)const <t> x [uint8(log32(-c&^(-c-1)))]) 830 (SL(D|W)const <t> x [uint8(log32(-c+(-c&^(-c-1))))])) 831 832 // Fold ADD into MOVDaddr. Odd offsets from SB shouldn't be folded (LARL can't handle them). 833 (ADDconst [c] (MOVDaddr [d] {s} x:(SB))) && ((c+d)&1 == 0) && is32Bit(int64(c)+int64(d)) => (MOVDaddr [c+d] {s} x) 834 (ADDconst [c] (MOVDaddr [d] {s} x)) && x.Op != OpSB && is20Bit(int64(c)+int64(d)) => (MOVDaddr [c+d] {s} x) 835 (ADD idx (MOVDaddr [c] {s} ptr)) && ptr.Op != OpSB => (MOVDaddridx [c] {s} ptr idx) 836 837 // fold ADDconst into MOVDaddrx 838 (ADDconst [c] (MOVDaddridx [d] {s} x y)) && is20Bit(int64(c)+int64(d)) => (MOVDaddridx [c+d] {s} x y) 839 (MOVDaddridx [c] {s} (ADDconst [d] x) y) && is20Bit(int64(c)+int64(d)) => (MOVDaddridx [c+d] {s} x y) 840 (MOVDaddridx [c] {s} x (ADDconst [d] y)) && is20Bit(int64(c)+int64(d)) => (MOVDaddridx [c+d] {s} x y) 841 842 // reverse ordering of compare instruction 843 (LOCGR {c} x y (InvertFlags cmp)) => (LOCGR {c.ReverseComparison()} x y cmp) 844 845 // replace load from same location as preceding store with copy 846 (MOVDload [off] {sym} ptr1 (MOVDstore [off] {sym} ptr2 x _)) && isSamePtr(ptr1, ptr2) => x 847 (MOVWload [off] {sym} ptr1 (MOVWstore [off] {sym} ptr2 x _)) && isSamePtr(ptr1, ptr2) => (MOVWreg x) 848 (MOVHload [off] {sym} ptr1 (MOVHstore [off] {sym} ptr2 x _)) && isSamePtr(ptr1, ptr2) => (MOVHreg x) 849 (MOVBload [off] {sym} ptr1 (MOVBstore [off] {sym} ptr2 x _)) && isSamePtr(ptr1, ptr2) => (MOVBreg x) 850 (MOVWZload [off] {sym} ptr1 (MOVWstore [off] {sym} ptr2 x _)) && isSamePtr(ptr1, ptr2) => (MOVWZreg x) 851 (MOVHZload [off] {sym} ptr1 (MOVHstore [off] {sym} ptr2 x _)) && isSamePtr(ptr1, ptr2) => (MOVHZreg x) 852 (MOVBZload [off] {sym} ptr1 (MOVBstore [off] {sym} ptr2 x _)) && isSamePtr(ptr1, ptr2) => (MOVBZreg x) 853 (MOVDload [off] {sym} ptr1 (FMOVDstore [off] {sym} ptr2 x _)) && isSamePtr(ptr1, ptr2) => (LGDR x) 854 (FMOVDload [off] {sym} ptr1 (MOVDstore [off] {sym} ptr2 x _)) && isSamePtr(ptr1, ptr2) => (LDGR x) 855 (FMOVDload [off] {sym} ptr1 (FMOVDstore [off] {sym} ptr2 x _)) && isSamePtr(ptr1, ptr2) => x 856 (FMOVSload [off] {sym} ptr1 (FMOVSstore [off] {sym} ptr2 x _)) && isSamePtr(ptr1, ptr2) => x 857 858 // prefer FPR <-> GPR moves over combined load ops 859 (MULLDload <t> [off] {sym} x ptr1 (FMOVDstore [off] {sym} ptr2 y _)) && isSamePtr(ptr1, ptr2) => (MULLD x (LGDR <t> y)) 860 (ADDload <t> [off] {sym} x ptr1 (FMOVDstore [off] {sym} ptr2 y _)) && isSamePtr(ptr1, ptr2) => (ADD x (LGDR <t> y)) 861 (SUBload <t> [off] {sym} x ptr1 (FMOVDstore [off] {sym} ptr2 y _)) && isSamePtr(ptr1, ptr2) => (SUB x (LGDR <t> y)) 862 (ORload <t> [off] {sym} x ptr1 (FMOVDstore [off] {sym} ptr2 y _)) && isSamePtr(ptr1, ptr2) => (OR x (LGDR <t> y)) 863 (ANDload <t> [off] {sym} x ptr1 (FMOVDstore [off] {sym} ptr2 y _)) && isSamePtr(ptr1, ptr2) => (AND x (LGDR <t> y)) 864 (XORload <t> [off] {sym} x ptr1 (FMOVDstore [off] {sym} ptr2 y _)) && isSamePtr(ptr1, ptr2) => (XOR x (LGDR <t> y)) 865 866 // detect attempts to set/clear the sign bit 867 // may need to be reworked when NIHH/OIHH are added 868 (RISBGZ (LGDR <t> x) {r}) && r == s390x.NewRotateParams(1, 63, 0) => (LGDR <t> (LPDFR <x.Type> x)) 869 (LDGR <t> (RISBGZ x {r})) && r == s390x.NewRotateParams(1, 63, 0) => (LPDFR (LDGR <t> x)) 870 (OR (MOVDconst [-1<<63]) (LGDR <t> x)) => (LGDR <t> (LNDFR <x.Type> x)) 871 (LDGR <t> (OR (MOVDconst [-1<<63]) x)) => (LNDFR (LDGR <t> x)) 872 873 // detect attempts to set the sign bit with load 874 (LDGR <t> x:(ORload <t1> [off] {sym} (MOVDconst [-1<<63]) ptr mem)) && x.Uses == 1 && clobber(x) => @x.Block (LNDFR <t> (LDGR <t> (MOVDload <t1> [off] {sym} ptr mem))) 875 876 // detect copysign 877 (OR (RISBGZ (LGDR x) {r}) (LGDR (LPDFR <t> y))) 878 && r == s390x.NewRotateParams(0, 0, 0) 879 => (LGDR (CPSDR <t> y x)) 880 (OR (RISBGZ (LGDR x) {r}) (MOVDconst [c])) 881 && c >= 0 882 && r == s390x.NewRotateParams(0, 0, 0) 883 => (LGDR (CPSDR <x.Type> (FMOVDconst <x.Type> [math.Float64frombits(uint64(c))]) x)) 884 (CPSDR y (FMOVDconst [c])) && !math.Signbit(c) => (LPDFR y) 885 (CPSDR y (FMOVDconst [c])) && math.Signbit(c) => (LNDFR y) 886 887 // absorb negations into set/clear sign bit 888 (FNEG (LPDFR x)) => (LNDFR x) 889 (FNEG (LNDFR x)) => (LPDFR x) 890 (FNEGS (LPDFR x)) => (LNDFR x) 891 (FNEGS (LNDFR x)) => (LPDFR x) 892 893 // no need to convert float32 to float64 to set/clear sign bit 894 (LEDBR (LPDFR (LDEBR x))) => (LPDFR x) 895 (LEDBR (LNDFR (LDEBR x))) => (LNDFR x) 896 897 // remove unnecessary FPR <-> GPR moves 898 (LDGR (LGDR x)) => x 899 (LGDR (LDGR x)) => x 900 901 // Don't extend before storing 902 (MOVWstore [off] {sym} ptr (MOVWreg x) mem) => (MOVWstore [off] {sym} ptr x mem) 903 (MOVHstore [off] {sym} ptr (MOVHreg x) mem) => (MOVHstore [off] {sym} ptr x mem) 904 (MOVBstore [off] {sym} ptr (MOVBreg x) mem) => (MOVBstore [off] {sym} ptr x mem) 905 (MOVWstore [off] {sym} ptr (MOVWZreg x) mem) => (MOVWstore [off] {sym} ptr x mem) 906 (MOVHstore [off] {sym} ptr (MOVHZreg x) mem) => (MOVHstore [off] {sym} ptr x mem) 907 (MOVBstore [off] {sym} ptr (MOVBZreg x) mem) => (MOVBstore [off] {sym} ptr x mem) 908 909 // Fold constants into memory operations. 910 // Note that this is not always a good idea because if not all the uses of 911 // the ADDconst get eliminated, we still have to compute the ADDconst and we now 912 // have potentially two live values (ptr and (ADDconst [off] ptr)) instead of one. 913 // Nevertheless, let's do it! 914 (MOVDload [off1] {sym} (ADDconst [off2] ptr) mem) && is20Bit(int64(off1)+int64(off2)) => (MOVDload [off1+off2] {sym} ptr mem) 915 (MOVWload [off1] {sym} (ADDconst [off2] ptr) mem) && is20Bit(int64(off1)+int64(off2)) => (MOVWload [off1+off2] {sym} ptr mem) 916 (MOVHload [off1] {sym} (ADDconst [off2] ptr) mem) && is20Bit(int64(off1)+int64(off2)) => (MOVHload [off1+off2] {sym} ptr mem) 917 (MOVBload [off1] {sym} (ADDconst [off2] ptr) mem) && is20Bit(int64(off1)+int64(off2)) => (MOVBload [off1+off2] {sym} ptr mem) 918 (MOVWZload [off1] {sym} (ADDconst [off2] ptr) mem) && is20Bit(int64(off1)+int64(off2)) => (MOVWZload [off1+off2] {sym} ptr mem) 919 (MOVHZload [off1] {sym} (ADDconst [off2] ptr) mem) && is20Bit(int64(off1)+int64(off2)) => (MOVHZload [off1+off2] {sym} ptr mem) 920 (MOVBZload [off1] {sym} (ADDconst [off2] ptr) mem) && is20Bit(int64(off1)+int64(off2)) => (MOVBZload [off1+off2] {sym} ptr mem) 921 (FMOVSload [off1] {sym} (ADDconst [off2] ptr) mem) && is20Bit(int64(off1)+int64(off2)) => (FMOVSload [off1+off2] {sym} ptr mem) 922 (FMOVDload [off1] {sym} (ADDconst [off2] ptr) mem) && is20Bit(int64(off1)+int64(off2)) => (FMOVDload [off1+off2] {sym} ptr mem) 923 924 (MOVDstore [off1] {sym} (ADDconst [off2] ptr) val mem) && is20Bit(int64(off1)+int64(off2)) => (MOVDstore [off1+off2] {sym} ptr val mem) 925 (MOVWstore [off1] {sym} (ADDconst [off2] ptr) val mem) && is20Bit(int64(off1)+int64(off2)) => (MOVWstore [off1+off2] {sym} ptr val mem) 926 (MOVHstore [off1] {sym} (ADDconst [off2] ptr) val mem) && is20Bit(int64(off1)+int64(off2)) => (MOVHstore [off1+off2] {sym} ptr val mem) 927 (MOVBstore [off1] {sym} (ADDconst [off2] ptr) val mem) && is20Bit(int64(off1)+int64(off2)) => (MOVBstore [off1+off2] {sym} ptr val mem) 928 (FMOVSstore [off1] {sym} (ADDconst [off2] ptr) val mem) && is20Bit(int64(off1)+int64(off2)) => (FMOVSstore [off1+off2] {sym} ptr val mem) 929 (FMOVDstore [off1] {sym} (ADDconst [off2] ptr) val mem) && is20Bit(int64(off1)+int64(off2)) => (FMOVDstore [off1+off2] {sym} ptr val mem) 930 931 (ADDload [off1] {sym} x (ADDconst [off2] ptr) mem) && ptr.Op != OpSB && is20Bit(int64(off1)+int64(off2)) => (ADDload [off1+off2] {sym} x ptr mem) 932 (ADDWload [off1] {sym} x (ADDconst [off2] ptr) mem) && ptr.Op != OpSB && is20Bit(int64(off1)+int64(off2)) => (ADDWload [off1+off2] {sym} x ptr mem) 933 (MULLDload [off1] {sym} x (ADDconst [off2] ptr) mem) && ptr.Op != OpSB && is20Bit(int64(off1)+int64(off2)) => (MULLDload [off1+off2] {sym} x ptr mem) 934 (MULLWload [off1] {sym} x (ADDconst [off2] ptr) mem) && ptr.Op != OpSB && is20Bit(int64(off1)+int64(off2)) => (MULLWload [off1+off2] {sym} x ptr mem) 935 (SUBload [off1] {sym} x (ADDconst [off2] ptr) mem) && ptr.Op != OpSB && is20Bit(int64(off1)+int64(off2)) => (SUBload [off1+off2] {sym} x ptr mem) 936 (SUBWload [off1] {sym} x (ADDconst [off2] ptr) mem) && ptr.Op != OpSB && is20Bit(int64(off1)+int64(off2)) => (SUBWload [off1+off2] {sym} x ptr mem) 937 938 (ANDload [off1] {sym} x (ADDconst [off2] ptr) mem) && ptr.Op != OpSB && is20Bit(int64(off1)+int64(off2)) => (ANDload [off1+off2] {sym} x ptr mem) 939 (ANDWload [off1] {sym} x (ADDconst [off2] ptr) mem) && ptr.Op != OpSB && is20Bit(int64(off1)+int64(off2)) => (ANDWload [off1+off2] {sym} x ptr mem) 940 (ORload [off1] {sym} x (ADDconst [off2] ptr) mem) && ptr.Op != OpSB && is20Bit(int64(off1)+int64(off2)) => (ORload [off1+off2] {sym} x ptr mem) 941 (ORWload [off1] {sym} x (ADDconst [off2] ptr) mem) && ptr.Op != OpSB && is20Bit(int64(off1)+int64(off2)) => (ORWload [off1+off2] {sym} x ptr mem) 942 (XORload [off1] {sym} x (ADDconst [off2] ptr) mem) && ptr.Op != OpSB && is20Bit(int64(off1)+int64(off2)) => (XORload [off1+off2] {sym} x ptr mem) 943 (XORWload [off1] {sym} x (ADDconst [off2] ptr) mem) && ptr.Op != OpSB && is20Bit(int64(off1)+int64(off2)) => (XORWload [off1+off2] {sym} x ptr mem) 944 945 // Fold constants into stores. 946 (MOVDstore [off] {sym} ptr (MOVDconst [c]) mem) && is16Bit(c) && isU12Bit(int64(off)) && ptr.Op != OpSB => 947 (MOVDstoreconst [makeValAndOff(int32(c),off)] {sym} ptr mem) 948 (MOVWstore [off] {sym} ptr (MOVDconst [c]) mem) && is16Bit(c) && isU12Bit(int64(off)) && ptr.Op != OpSB => 949 (MOVWstoreconst [makeValAndOff(int32(c),off)] {sym} ptr mem) 950 (MOVHstore [off] {sym} ptr (MOVDconst [c]) mem) && isU12Bit(int64(off)) && ptr.Op != OpSB => 951 (MOVHstoreconst [makeValAndOff(int32(int16(c)),off)] {sym} ptr mem) 952 (MOVBstore [off] {sym} ptr (MOVDconst [c]) mem) && is20Bit(int64(off)) && ptr.Op != OpSB => 953 (MOVBstoreconst [makeValAndOff(int32(int8(c)),off)] {sym} ptr mem) 954 955 // Fold address offsets into constant stores. 956 (MOVDstoreconst [sc] {s} (ADDconst [off] ptr) mem) && isU12Bit(sc.Off64()+int64(off)) => 957 (MOVDstoreconst [sc.addOffset32(off)] {s} ptr mem) 958 (MOVWstoreconst [sc] {s} (ADDconst [off] ptr) mem) && isU12Bit(sc.Off64()+int64(off)) => 959 (MOVWstoreconst [sc.addOffset32(off)] {s} ptr mem) 960 (MOVHstoreconst [sc] {s} (ADDconst [off] ptr) mem) && isU12Bit(sc.Off64()+int64(off)) => 961 (MOVHstoreconst [sc.addOffset32(off)] {s} ptr mem) 962 (MOVBstoreconst [sc] {s} (ADDconst [off] ptr) mem) && is20Bit(sc.Off64()+int64(off)) => 963 (MOVBstoreconst [sc.addOffset32(off)] {s} ptr mem) 964 965 // Merge address calculations into loads and stores. 966 // Offsets from SB must not be merged into unaligned memory accesses because 967 // loads/stores using PC-relative addressing directly must be aligned to the 968 // size of the target. 969 (MOVDload [off1] {sym1} (MOVDaddr <t> [off2] {sym2} base) mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || (t.IsPtr() && t.Elem().Alignment()%8 == 0 && (off1+off2)%8 == 0)) => 970 (MOVDload [off1+off2] {mergeSym(sym1,sym2)} base mem) 971 (MOVWZload [off1] {sym1} (MOVDaddr <t> [off2] {sym2} base) mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || (t.IsPtr() && t.Elem().Alignment()%4 == 0 && (off1+off2)%4 == 0)) => 972 (MOVWZload [off1+off2] {mergeSym(sym1,sym2)} base mem) 973 (MOVHZload [off1] {sym1} (MOVDaddr <t> [off2] {sym2} base) mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || (t.IsPtr() && t.Elem().Alignment()%2 == 0 && (off1+off2)%2 == 0)) => 974 (MOVHZload [off1+off2] {mergeSym(sym1,sym2)} base mem) 975 (MOVBZload [off1] {sym1} (MOVDaddr [off2] {sym2} base) mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) => 976 (MOVBZload [off1+off2] {mergeSym(sym1,sym2)} base mem) 977 (FMOVSload [off1] {sym1} (MOVDaddr [off2] {sym2} base) mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) => 978 (FMOVSload [off1+off2] {mergeSym(sym1,sym2)} base mem) 979 (FMOVDload [off1] {sym1} (MOVDaddr [off2] {sym2} base) mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) => 980 (FMOVDload [off1+off2] {mergeSym(sym1,sym2)} base mem) 981 982 (MOVWload [off1] {sym1} (MOVDaddr <t> [off2] {sym2} base) mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || (t.IsPtr() && t.Elem().Alignment()%4 == 0 && (off1+off2)%4 == 0)) => 983 (MOVWload [off1+off2] {mergeSym(sym1,sym2)} base mem) 984 (MOVHload [off1] {sym1} (MOVDaddr <t> [off2] {sym2} base) mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || (t.IsPtr() && t.Elem().Alignment()%2 == 0 && (off1+off2)%2 == 0)) => 985 (MOVHload [off1+off2] {mergeSym(sym1,sym2)} base mem) 986 (MOVBload [off1] {sym1} (MOVDaddr [off2] {sym2} base) mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) => 987 (MOVBload [off1+off2] {mergeSym(sym1,sym2)} base mem) 988 989 (MOVDstore [off1] {sym1} (MOVDaddr <t> [off2] {sym2} base) val mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || (t.IsPtr() && t.Elem().Alignment()%8 == 0 && (off1+off2)%8 == 0)) => 990 (MOVDstore [off1+off2] {mergeSym(sym1,sym2)} base val mem) 991 (MOVWstore [off1] {sym1} (MOVDaddr <t> [off2] {sym2} base) val mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || (t.IsPtr() && t.Elem().Alignment()%4 == 0 && (off1+off2)%4 == 0)) => 992 (MOVWstore [off1+off2] {mergeSym(sym1,sym2)} base val mem) 993 (MOVHstore [off1] {sym1} (MOVDaddr <t> [off2] {sym2} base) val mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && (base.Op != OpSB || (t.IsPtr() && t.Elem().Alignment()%2 == 0 && (off1+off2)%2 == 0)) => 994 (MOVHstore [off1+off2] {mergeSym(sym1,sym2)} base val mem) 995 (MOVBstore [off1] {sym1} (MOVDaddr [off2] {sym2} base) val mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) => 996 (MOVBstore [off1+off2] {mergeSym(sym1,sym2)} base val mem) 997 (FMOVSstore [off1] {sym1} (MOVDaddr [off2] {sym2} base) val mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) => 998 (FMOVSstore [off1+off2] {mergeSym(sym1,sym2)} base val mem) 999 (FMOVDstore [off1] {sym1} (MOVDaddr [off2] {sym2} base) val mem) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) => 1000 (FMOVDstore [off1+off2] {mergeSym(sym1,sym2)} base val mem) 1001 1002 (ADDload [o1] {s1} x (MOVDaddr [o2] {s2} ptr) mem) && ptr.Op != OpSB && is20Bit(int64(o1)+int64(o2)) && canMergeSym(s1, s2) => (ADDload [o1+o2] {mergeSym(s1, s2)} x ptr mem) 1003 (ADDWload [o1] {s1} x (MOVDaddr [o2] {s2} ptr) mem) && ptr.Op != OpSB && is20Bit(int64(o1)+int64(o2)) && canMergeSym(s1, s2) => (ADDWload [o1+o2] {mergeSym(s1, s2)} x ptr mem) 1004 (MULLDload [o1] {s1} x (MOVDaddr [o2] {s2} ptr) mem) && ptr.Op != OpSB && is20Bit(int64(o1)+int64(o2)) && canMergeSym(s1, s2) => (MULLDload [o1+o2] {mergeSym(s1, s2)} x ptr mem) 1005 (MULLWload [o1] {s1} x (MOVDaddr [o2] {s2} ptr) mem) && ptr.Op != OpSB && is20Bit(int64(o1)+int64(o2)) && canMergeSym(s1, s2) => (MULLWload [o1+o2] {mergeSym(s1, s2)} x ptr mem) 1006 (SUBload [o1] {s1} x (MOVDaddr [o2] {s2} ptr) mem) && ptr.Op != OpSB && is20Bit(int64(o1)+int64(o2)) && canMergeSym(s1, s2) => (SUBload [o1+o2] {mergeSym(s1, s2)} x ptr mem) 1007 (SUBWload [o1] {s1} x (MOVDaddr [o2] {s2} ptr) mem) && ptr.Op != OpSB && is20Bit(int64(o1)+int64(o2)) && canMergeSym(s1, s2) => (SUBWload [o1+o2] {mergeSym(s1, s2)} x ptr mem) 1008 1009 (ANDload [o1] {s1} x (MOVDaddr [o2] {s2} ptr) mem) && ptr.Op != OpSB && is20Bit(int64(o1)+int64(o2)) && canMergeSym(s1, s2) => (ANDload [o1+o2] {mergeSym(s1, s2)} x ptr mem) 1010 (ANDWload [o1] {s1} x (MOVDaddr [o2] {s2} ptr) mem) && ptr.Op != OpSB && is20Bit(int64(o1)+int64(o2)) && canMergeSym(s1, s2) => (ANDWload [o1+o2] {mergeSym(s1, s2)} x ptr mem) 1011 (ORload [o1] {s1} x (MOVDaddr [o2] {s2} ptr) mem) && ptr.Op != OpSB && is20Bit(int64(o1)+int64(o2)) && canMergeSym(s1, s2) => (ORload [o1+o2] {mergeSym(s1, s2)} x ptr mem) 1012 (ORWload [o1] {s1} x (MOVDaddr [o2] {s2} ptr) mem) && ptr.Op != OpSB && is20Bit(int64(o1)+int64(o2)) && canMergeSym(s1, s2) => (ORWload [o1+o2] {mergeSym(s1, s2)} x ptr mem) 1013 (XORload [o1] {s1} x (MOVDaddr [o2] {s2} ptr) mem) && ptr.Op != OpSB && is20Bit(int64(o1)+int64(o2)) && canMergeSym(s1, s2) => (XORload [o1+o2] {mergeSym(s1, s2)} x ptr mem) 1014 (XORWload [o1] {s1} x (MOVDaddr [o2] {s2} ptr) mem) && ptr.Op != OpSB && is20Bit(int64(o1)+int64(o2)) && canMergeSym(s1, s2) => (XORWload [o1+o2] {mergeSym(s1, s2)} x ptr mem) 1015 1016 // Cannot store constant to SB directly (no 'move relative long immediate' instructions). 1017 (MOVDstoreconst [sc] {sym1} (MOVDaddr [off] {sym2} ptr) mem) && ptr.Op != OpSB && canMergeSym(sym1, sym2) && sc.canAdd32(off) => 1018 (MOVDstoreconst [sc.addOffset32(off)] {mergeSym(sym1, sym2)} ptr mem) 1019 (MOVWstoreconst [sc] {sym1} (MOVDaddr [off] {sym2} ptr) mem) && ptr.Op != OpSB && canMergeSym(sym1, sym2) && sc.canAdd32(off) => 1020 (MOVWstoreconst [sc.addOffset32(off)] {mergeSym(sym1, sym2)} ptr mem) 1021 (MOVHstoreconst [sc] {sym1} (MOVDaddr [off] {sym2} ptr) mem) && ptr.Op != OpSB && canMergeSym(sym1, sym2) && sc.canAdd32(off) => 1022 (MOVHstoreconst [sc.addOffset32(off)] {mergeSym(sym1, sym2)} ptr mem) 1023 (MOVBstoreconst [sc] {sym1} (MOVDaddr [off] {sym2} ptr) mem) && ptr.Op != OpSB && canMergeSym(sym1, sym2) && sc.canAdd32(off) => 1024 (MOVBstoreconst [sc.addOffset32(off)] {mergeSym(sym1, sym2)} ptr mem) 1025 1026 // MOVDaddr into MOVDaddridx 1027 (MOVDaddridx [off1] {sym1} (MOVDaddr [off2] {sym2} x) y) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && x.Op != OpSB => 1028 (MOVDaddridx [off1+off2] {mergeSym(sym1,sym2)} x y) 1029 (MOVDaddridx [off1] {sym1} x (MOVDaddr [off2] {sym2} y)) && is32Bit(int64(off1)+int64(off2)) && canMergeSym(sym1, sym2) && y.Op != OpSB => 1030 (MOVDaddridx [off1+off2] {mergeSym(sym1,sym2)} x y) 1031 1032 // Absorb InvertFlags into branches. 1033 (BRC {c} (InvertFlags cmp) yes no) => (BRC {c.ReverseComparison()} cmp yes no) 1034 1035 // Constant comparisons. 1036 (CMPconst (MOVDconst [x]) [y]) && x==int64(y) => (FlagEQ) 1037 (CMPconst (MOVDconst [x]) [y]) && x<int64(y) => (FlagLT) 1038 (CMPconst (MOVDconst [x]) [y]) && x>int64(y) => (FlagGT) 1039 (CMPUconst (MOVDconst [x]) [y]) && uint64(x)==uint64(y) => (FlagEQ) 1040 (CMPUconst (MOVDconst [x]) [y]) && uint64(x)<uint64(y) => (FlagLT) 1041 (CMPUconst (MOVDconst [x]) [y]) && uint64(x)>uint64(y) => (FlagGT) 1042 1043 (CMPWconst (MOVDconst [x]) [y]) && int32(x)==int32(y) => (FlagEQ) 1044 (CMPWconst (MOVDconst [x]) [y]) && int32(x)<int32(y) => (FlagLT) 1045 (CMPWconst (MOVDconst [x]) [y]) && int32(x)>int32(y) => (FlagGT) 1046 (CMPWUconst (MOVDconst [x]) [y]) && uint32(x)==uint32(y) => (FlagEQ) 1047 (CMPWUconst (MOVDconst [x]) [y]) && uint32(x)<uint32(y) => (FlagLT) 1048 (CMPWUconst (MOVDconst [x]) [y]) && uint32(x)>uint32(y) => (FlagGT) 1049 1050 (CMP(W|WU)const (MOVBZreg _) [c]) && 0xff < c => (FlagLT) 1051 (CMP(W|WU)const (MOVHZreg _) [c]) && 0xffff < c => (FlagLT) 1052 1053 (CMPconst (SRDconst _ [c]) [n]) && c > 0 && n < 0 => (FlagGT) 1054 (CMPWconst (SRWconst _ [c]) [n]) && c > 0 && n < 0 => (FlagGT) 1055 1056 (CMPUconst (SRDconst _ [c]) [n]) && c > 0 && c < 64 && (1<<uint(64-c)) <= uint64(n) => (FlagLT) 1057 (CMPWUconst (SRWconst _ [c]) [n]) && c > 0 && c < 32 && (1<<uint(32-c)) <= uint32(n) => (FlagLT) 1058 1059 (CMPWconst (ANDWconst _ [m]) [n]) && int32(m) >= 0 && int32(m) < int32(n) => (FlagLT) 1060 (CMPWUconst (ANDWconst _ [m]) [n]) && uint32(m) < uint32(n) => (FlagLT) 1061 1062 (CMPconst (RISBGZ x {r}) [c]) && c > 0 && r.OutMask() < uint64(c) => (FlagLT) 1063 (CMPUconst (RISBGZ x {r}) [c]) && r.OutMask() < uint64(uint32(c)) => (FlagLT) 1064 1065 // Constant compare-and-branch with immediate. 1066 (CGIJ {c} (MOVDconst [x]) [y] yes no) && c&s390x.Equal != 0 && int64(x) == int64(y) => (First yes no) 1067 (CGIJ {c} (MOVDconst [x]) [y] yes no) && c&s390x.Less != 0 && int64(x) < int64(y) => (First yes no) 1068 (CGIJ {c} (MOVDconst [x]) [y] yes no) && c&s390x.Greater != 0 && int64(x) > int64(y) => (First yes no) 1069 (CIJ {c} (MOVDconst [x]) [y] yes no) && c&s390x.Equal != 0 && int32(x) == int32(y) => (First yes no) 1070 (CIJ {c} (MOVDconst [x]) [y] yes no) && c&s390x.Less != 0 && int32(x) < int32(y) => (First yes no) 1071 (CIJ {c} (MOVDconst [x]) [y] yes no) && c&s390x.Greater != 0 && int32(x) > int32(y) => (First yes no) 1072 (CLGIJ {c} (MOVDconst [x]) [y] yes no) && c&s390x.Equal != 0 && uint64(x) == uint64(y) => (First yes no) 1073 (CLGIJ {c} (MOVDconst [x]) [y] yes no) && c&s390x.Less != 0 && uint64(x) < uint64(y) => (First yes no) 1074 (CLGIJ {c} (MOVDconst [x]) [y] yes no) && c&s390x.Greater != 0 && uint64(x) > uint64(y) => (First yes no) 1075 (CLIJ {c} (MOVDconst [x]) [y] yes no) && c&s390x.Equal != 0 && uint32(x) == uint32(y) => (First yes no) 1076 (CLIJ {c} (MOVDconst [x]) [y] yes no) && c&s390x.Less != 0 && uint32(x) < uint32(y) => (First yes no) 1077 (CLIJ {c} (MOVDconst [x]) [y] yes no) && c&s390x.Greater != 0 && uint32(x) > uint32(y) => (First yes no) 1078 (CGIJ {c} (MOVDconst [x]) [y] yes no) && c&s390x.Equal == 0 && int64(x) == int64(y) => (First no yes) 1079 (CGIJ {c} (MOVDconst [x]) [y] yes no) && c&s390x.Less == 0 && int64(x) < int64(y) => (First no yes) 1080 (CGIJ {c} (MOVDconst [x]) [y] yes no) && c&s390x.Greater == 0 && int64(x) > int64(y) => (First no yes) 1081 (CIJ {c} (MOVDconst [x]) [y] yes no) && c&s390x.Equal == 0 && int32(x) == int32(y) => (First no yes) 1082 (CIJ {c} (MOVDconst [x]) [y] yes no) && c&s390x.Less == 0 && int32(x) < int32(y) => (First no yes) 1083 (CIJ {c} (MOVDconst [x]) [y] yes no) && c&s390x.Greater == 0 && int32(x) > int32(y) => (First no yes) 1084 (CLGIJ {c} (MOVDconst [x]) [y] yes no) && c&s390x.Equal == 0 && uint64(x) == uint64(y) => (First no yes) 1085 (CLGIJ {c} (MOVDconst [x]) [y] yes no) && c&s390x.Less == 0 && uint64(x) < uint64(y) => (First no yes) 1086 (CLGIJ {c} (MOVDconst [x]) [y] yes no) && c&s390x.Greater == 0 && uint64(x) > uint64(y) => (First no yes) 1087 (CLIJ {c} (MOVDconst [x]) [y] yes no) && c&s390x.Equal == 0 && uint32(x) == uint32(y) => (First no yes) 1088 (CLIJ {c} (MOVDconst [x]) [y] yes no) && c&s390x.Less == 0 && uint32(x) < uint32(y) => (First no yes) 1089 (CLIJ {c} (MOVDconst [x]) [y] yes no) && c&s390x.Greater == 0 && uint32(x) > uint32(y) => (First no yes) 1090 1091 // Constant compare-and-branch with immediate when unsigned comparison with zero. 1092 (C(L|LG)IJ {s390x.GreaterOrEqual} _ [0] yes no) => (First yes no) 1093 (C(L|LG)IJ {s390x.Less} _ [0] yes no) => (First no yes) 1094 1095 // Constant compare-and-branch when operands match. 1096 (C(GR|R|LGR|LR)J {c} x y yes no) && x == y && c&s390x.Equal != 0 => (First yes no) 1097 (C(GR|R|LGR|LR)J {c} x y yes no) && x == y && c&s390x.Equal == 0 => (First no yes) 1098 1099 // Convert 64-bit comparisons to 32-bit comparisons and signed comparisons 1100 // to unsigned comparisons. 1101 // Helps simplify constant comparison detection. 1102 (CM(P|PU)const (MOV(W|WZ)reg x) [c]) => (CMP(W|WU)const x [c]) 1103 (CM(P|P|PU|PU)const x:(MOV(H|HZ|H|HZ)reg _) [c]) => (CMP(W|W|WU|WU)const x [c]) 1104 (CM(P|P|PU|PU)const x:(MOV(B|BZ|B|BZ)reg _) [c]) => (CMP(W|W|WU|WU)const x [c]) 1105 (CMPconst (MOV(WZ|W)reg x:(ANDWconst [m] _)) [c]) && int32(m) >= 0 && c >= 0 => (CMPWUconst x [c]) 1106 (CMPUconst (MOV(WZ|W)reg x:(ANDWconst [m] _)) [c]) && int32(m) >= 0 => (CMPWUconst x [c]) 1107 (CMPconst x:(SRDconst _ [c]) [n]) && c > 0 && n >= 0 => (CMPUconst x [n]) 1108 (CMPWconst x:(SRWconst _ [c]) [n]) && c > 0 && n >= 0 => (CMPWUconst x [n]) 1109 1110 // Absorb sign and zero extensions into 32-bit comparisons. 1111 (CMP(W|W|WU|WU) x (MOV(W|WZ|W|WZ)reg y)) => (CMP(W|W|WU|WU) x y) 1112 (CMP(W|W|WU|WU) (MOV(W|WZ|W|WZ)reg x) y) => (CMP(W|W|WU|WU) x y) 1113 (CMP(W|W|WU|WU)const (MOV(W|WZ|W|WZ)reg x) [c]) => (CMP(W|W|WU|WU)const x [c]) 1114 1115 // Absorb flag constants into branches. 1116 (BRC {c} (FlagEQ) yes no) && c&s390x.Equal != 0 => (First yes no) 1117 (BRC {c} (FlagLT) yes no) && c&s390x.Less != 0 => (First yes no) 1118 (BRC {c} (FlagGT) yes no) && c&s390x.Greater != 0 => (First yes no) 1119 (BRC {c} (FlagOV) yes no) && c&s390x.Unordered != 0 => (First yes no) 1120 1121 (BRC {c} (FlagEQ) yes no) && c&s390x.Equal == 0 => (First no yes) 1122 (BRC {c} (FlagLT) yes no) && c&s390x.Less == 0 => (First no yes) 1123 (BRC {c} (FlagGT) yes no) && c&s390x.Greater == 0 => (First no yes) 1124 (BRC {c} (FlagOV) yes no) && c&s390x.Unordered == 0 => (First no yes) 1125 1126 // Absorb flag constants into SETxx ops. 1127 (LOCGR {c} _ x (FlagEQ)) && c&s390x.Equal != 0 => x 1128 (LOCGR {c} _ x (FlagLT)) && c&s390x.Less != 0 => x 1129 (LOCGR {c} _ x (FlagGT)) && c&s390x.Greater != 0 => x 1130 (LOCGR {c} _ x (FlagOV)) && c&s390x.Unordered != 0 => x 1131 1132 (LOCGR {c} x _ (FlagEQ)) && c&s390x.Equal == 0 => x 1133 (LOCGR {c} x _ (FlagLT)) && c&s390x.Less == 0 => x 1134 (LOCGR {c} x _ (FlagGT)) && c&s390x.Greater == 0 => x 1135 (LOCGR {c} x _ (FlagOV)) && c&s390x.Unordered == 0 => x 1136 1137 // Remove redundant *const ops 1138 (ADDconst [0] x) => x 1139 (ADDWconst [c] x) && int32(c)==0 => x 1140 (SUBconst [0] x) => x 1141 (SUBWconst [c] x) && int32(c) == 0 => x 1142 (ANDconst [0] _) => (MOVDconst [0]) 1143 (ANDWconst [c] _) && int32(c)==0 => (MOVDconst [0]) 1144 (ANDconst [-1] x) => x 1145 (ANDWconst [c] x) && int32(c)==-1 => x 1146 (ORconst [0] x) => x 1147 (ORWconst [c] x) && int32(c)==0 => x 1148 (ORconst [-1] _) => (MOVDconst [-1]) 1149 (ORWconst [c] _) && int32(c)==-1 => (MOVDconst [-1]) 1150 (XORconst [0] x) => x 1151 (XORWconst [c] x) && int32(c)==0 => x 1152 1153 // Shifts by zero (may be inserted during multiplication strength reduction). 1154 ((SLD|SLW|SRD|SRW|SRAD|SRAW)const x [0]) => x 1155 1156 // Convert constant subtracts to constant adds. 1157 (SUBconst [c] x) && c != -(1<<31) => (ADDconst [-c] x) 1158 (SUBWconst [c] x) => (ADDWconst [-int32(c)] x) 1159 1160 // generic constant folding 1161 // TODO: more of this 1162 (ADDconst [c] (MOVDconst [d])) => (MOVDconst [int64(c)+d]) 1163 (ADDWconst [c] (MOVDconst [d])) => (MOVDconst [int64(c)+d]) 1164 (ADDconst [c] (ADDconst [d] x)) && is32Bit(int64(c)+int64(d)) => (ADDconst [c+d] x) 1165 (ADDWconst [c] (ADDWconst [d] x)) => (ADDWconst [int32(c+d)] x) 1166 (SUBconst (MOVDconst [d]) [c]) => (MOVDconst [d-int64(c)]) 1167 (SUBconst (SUBconst x [d]) [c]) && is32Bit(-int64(c)-int64(d)) => (ADDconst [-c-d] x) 1168 (SRADconst [c] (MOVDconst [d])) => (MOVDconst [d>>uint64(c)]) 1169 (SRAWconst [c] (MOVDconst [d])) => (MOVDconst [int64(int32(d))>>uint64(c)]) 1170 (NEG (MOVDconst [c])) => (MOVDconst [-c]) 1171 (NEGW (MOVDconst [c])) => (MOVDconst [int64(int32(-c))]) 1172 (MULLDconst [c] (MOVDconst [d])) => (MOVDconst [int64(c)*d]) 1173 (MULLWconst [c] (MOVDconst [d])) => (MOVDconst [int64(c*int32(d))]) 1174 (AND (MOVDconst [c]) (MOVDconst [d])) => (MOVDconst [c&d]) 1175 (ANDconst [c] (MOVDconst [d])) => (MOVDconst [c&d]) 1176 (ANDWconst [c] (MOVDconst [d])) => (MOVDconst [int64(c)&d]) 1177 (OR (MOVDconst [c]) (MOVDconst [d])) => (MOVDconst [c|d]) 1178 (ORconst [c] (MOVDconst [d])) => (MOVDconst [c|d]) 1179 (ORWconst [c] (MOVDconst [d])) => (MOVDconst [int64(c)|d]) 1180 (XOR (MOVDconst [c]) (MOVDconst [d])) => (MOVDconst [c^d]) 1181 (XORconst [c] (MOVDconst [d])) => (MOVDconst [c^d]) 1182 (XORWconst [c] (MOVDconst [d])) => (MOVDconst [int64(c)^d]) 1183 (LoweredRound32F x:(FMOVSconst)) => x 1184 (LoweredRound64F x:(FMOVDconst)) => x 1185 1186 // generic simplifications 1187 // TODO: more of this 1188 (ADD x (NEG y)) => (SUB x y) 1189 (ADDW x (NEGW y)) => (SUBW x y) 1190 (SUB x x) => (MOVDconst [0]) 1191 (SUBW x x) => (MOVDconst [0]) 1192 (AND x x) => x 1193 (ANDW x x) => x 1194 (OR x x) => x 1195 (ORW x x) => x 1196 (XOR x x) => (MOVDconst [0]) 1197 (XORW x x) => (MOVDconst [0]) 1198 (NEG (ADDconst [c] (NEG x))) && c != -(1<<31) => (ADDconst [-c] x) 1199 (MOVBZreg (ANDWconst [m] x)) => (MOVWZreg (ANDWconst <typ.UInt32> [int32( uint8(m))] x)) 1200 (MOVHZreg (ANDWconst [m] x)) => (MOVWZreg (ANDWconst <typ.UInt32> [int32(uint16(m))] x)) 1201 (MOVBreg (ANDWconst [m] x)) && int8(m) >= 0 => (MOVWZreg (ANDWconst <typ.UInt32> [int32( uint8(m))] x)) 1202 (MOVHreg (ANDWconst [m] x)) && int16(m) >= 0 => (MOVWZreg (ANDWconst <typ.UInt32> [int32(uint16(m))] x)) 1203 1204 // carry flag generation 1205 // (only constant fold carry of zero) 1206 (Select1 (ADDCconst (MOVDconst [c]) [d])) 1207 && uint64(c+int64(d)) >= uint64(c) && c+int64(d) == 0 1208 => (FlagEQ) 1209 (Select1 (ADDCconst (MOVDconst [c]) [d])) 1210 && uint64(c+int64(d)) >= uint64(c) && c+int64(d) != 0 1211 => (FlagLT) 1212 1213 // borrow flag generation 1214 // (only constant fold borrow of zero) 1215 (Select1 (SUBC (MOVDconst [c]) (MOVDconst [d]))) 1216 && uint64(d) <= uint64(c) && c-d == 0 1217 => (FlagGT) 1218 (Select1 (SUBC (MOVDconst [c]) (MOVDconst [d]))) 1219 && uint64(d) <= uint64(c) && c-d != 0 1220 => (FlagOV) 1221 1222 // add with carry 1223 (ADDE x y (FlagEQ)) => (ADDC x y) 1224 (ADDE x y (FlagLT)) => (ADDC x y) 1225 (ADDC x (MOVDconst [c])) && is16Bit(c) => (ADDCconst x [int16(c)]) 1226 (Select0 (ADDCconst (MOVDconst [c]) [d])) => (MOVDconst [c+int64(d)]) 1227 1228 // subtract with borrow 1229 (SUBE x y (FlagGT)) => (SUBC x y) 1230 (SUBE x y (FlagOV)) => (SUBC x y) 1231 (Select0 (SUBC (MOVDconst [c]) (MOVDconst [d]))) => (MOVDconst [c-d]) 1232 1233 // collapse carry chain 1234 (ADDE x y (Select1 (ADDCconst [-1] (Select0 (ADDE (MOVDconst [0]) (MOVDconst [0]) c))))) 1235 => (ADDE x y c) 1236 1237 // collapse borrow chain 1238 (SUBE x y (Select1 (SUBC (MOVDconst [0]) (NEG (Select0 (SUBE (MOVDconst [0]) (MOVDconst [0]) c)))))) 1239 => (SUBE x y c) 1240 1241 // branch on carry 1242 (C(G|LG)IJ {s390x.Equal} (Select0 (ADDE (MOVDconst [0]) (MOVDconst [0]) carry)) [0]) => (BRC {s390x.NoCarry} carry) 1243 (C(G|LG)IJ {s390x.Equal} (Select0 (ADDE (MOVDconst [0]) (MOVDconst [0]) carry)) [1]) => (BRC {s390x.Carry} carry) 1244 (C(G|LG)IJ {s390x.LessOrGreater} (Select0 (ADDE (MOVDconst [0]) (MOVDconst [0]) carry)) [0]) => (BRC {s390x.Carry} carry) 1245 (C(G|LG)IJ {s390x.LessOrGreater} (Select0 (ADDE (MOVDconst [0]) (MOVDconst [0]) carry)) [1]) => (BRC {s390x.NoCarry} carry) 1246 (C(G|LG)IJ {s390x.Greater} (Select0 (ADDE (MOVDconst [0]) (MOVDconst [0]) carry)) [0]) => (BRC {s390x.Carry} carry) 1247 1248 // branch on borrow 1249 (C(G|LG)IJ {s390x.Equal} (NEG (Select0 (SUBE (MOVDconst [0]) (MOVDconst [0]) borrow))) [0]) => (BRC {s390x.NoBorrow} borrow) 1250 (C(G|LG)IJ {s390x.Equal} (NEG (Select0 (SUBE (MOVDconst [0]) (MOVDconst [0]) borrow))) [1]) => (BRC {s390x.Borrow} borrow) 1251 (C(G|LG)IJ {s390x.LessOrGreater} (NEG (Select0 (SUBE (MOVDconst [0]) (MOVDconst [0]) borrow))) [0]) => (BRC {s390x.Borrow} borrow) 1252 (C(G|LG)IJ {s390x.LessOrGreater} (NEG (Select0 (SUBE (MOVDconst [0]) (MOVDconst [0]) borrow))) [1]) => (BRC {s390x.NoBorrow} borrow) 1253 (C(G|LG)IJ {s390x.Greater} (NEG (Select0 (SUBE (MOVDconst [0]) (MOVDconst [0]) borrow))) [0]) => (BRC {s390x.Borrow} borrow) 1254 1255 // fused multiply-add 1256 (Select0 (F(ADD|SUB) (FMUL y z) x)) && x.Block.Func.useFMA(v) => (FM(ADD|SUB) x y z) 1257 (Select0 (F(ADDS|SUBS) (FMULS y z) x)) && x.Block.Func.useFMA(v) => (FM(ADDS|SUBS) x y z) 1258 1259 // Convert floating point comparisons against zero into 'load and test' instructions. 1260 (F(CMP|CMPS) x (FMOV(D|S)const [0.0])) => (LT(D|E)BR x) 1261 (F(CMP|CMPS) (FMOV(D|S)const [0.0]) x) => (InvertFlags (LT(D|E)BR <v.Type> x)) 1262 1263 // FSUB, FSUBS, FADD, FADDS now produce a condition code representing the 1264 // comparison of the result with 0.0. If a compare with zero instruction 1265 // (e.g. LTDBR) is following one of those instructions, we can use the 1266 // generated flag and remove the comparison instruction. 1267 // Note: when inserting Select1 ops we need to ensure they are in the 1268 // same block as their argument. We could also use @x.Block for this 1269 // but moving the flag generating value to a different block seems to 1270 // increase the likelihood that the flags value will have to be regenerated 1271 // by flagalloc which is not what we want. 1272 (LTDBR (Select0 x:(F(ADD|SUB) _ _))) && b == x.Block => (Select1 x) 1273 (LTEBR (Select0 x:(F(ADDS|SUBS) _ _))) && b == x.Block => (Select1 x) 1274 1275 // Fold memory operations into operations. 1276 // Exclude global data (SB) because these instructions cannot handle relative addresses. 1277 // TODO(mundaym): indexed versions of these? 1278 ((ADD|SUB|MULLD|AND|OR|XOR) <t> x g:(MOVDload [off] {sym} ptr mem)) 1279 && ptr.Op != OpSB 1280 && is20Bit(int64(off)) 1281 && canMergeLoadClobber(v, g, x) 1282 && clobber(g) 1283 => ((ADD|SUB|MULLD|AND|OR|XOR)load <t> [off] {sym} x ptr mem) 1284 ((ADD|SUB|MULL|AND|OR|XOR)W <t> x g:(MOVWload [off] {sym} ptr mem)) 1285 && ptr.Op != OpSB 1286 && is20Bit(int64(off)) 1287 && canMergeLoadClobber(v, g, x) 1288 && clobber(g) 1289 => ((ADD|SUB|MULL|AND|OR|XOR)Wload <t> [off] {sym} x ptr mem) 1290 ((ADD|SUB|MULL|AND|OR|XOR)W <t> x g:(MOVWZload [off] {sym} ptr mem)) 1291 && ptr.Op != OpSB 1292 && is20Bit(int64(off)) 1293 && canMergeLoadClobber(v, g, x) 1294 && clobber(g) 1295 => ((ADD|SUB|MULL|AND|OR|XOR)Wload <t> [off] {sym} x ptr mem) 1296 1297 // Combine stores into store multiples. 1298 // 32-bit 1299 (MOVWstore [i] {s} p w1 x:(MOVWstore [i-4] {s} p w0 mem)) 1300 && p.Op != OpSB 1301 && x.Uses == 1 1302 && is20Bit(int64(i)-4) 1303 && setPos(v, x.Pos) 1304 && clobber(x) 1305 => (STM2 [i-4] {s} p w0 w1 mem) 1306 (MOVWstore [i] {s} p w2 x:(STM2 [i-8] {s} p w0 w1 mem)) 1307 && x.Uses == 1 1308 && is20Bit(int64(i)-8) 1309 && setPos(v, x.Pos) 1310 && clobber(x) 1311 => (STM3 [i-8] {s} p w0 w1 w2 mem) 1312 (MOVWstore [i] {s} p w3 x:(STM3 [i-12] {s} p w0 w1 w2 mem)) 1313 && x.Uses == 1 1314 && is20Bit(int64(i)-12) 1315 && setPos(v, x.Pos) 1316 && clobber(x) 1317 => (STM4 [i-12] {s} p w0 w1 w2 w3 mem) 1318 (STM2 [i] {s} p w2 w3 x:(STM2 [i-8] {s} p w0 w1 mem)) 1319 && x.Uses == 1 1320 && is20Bit(int64(i)-8) 1321 && setPos(v, x.Pos) 1322 && clobber(x) 1323 => (STM4 [i-8] {s} p w0 w1 w2 w3 mem) 1324 // 64-bit 1325 (MOVDstore [i] {s} p w1 x:(MOVDstore [i-8] {s} p w0 mem)) 1326 && p.Op != OpSB 1327 && x.Uses == 1 1328 && is20Bit(int64(i)-8) 1329 && setPos(v, x.Pos) 1330 && clobber(x) 1331 => (STMG2 [i-8] {s} p w0 w1 mem) 1332 (MOVDstore [i] {s} p w2 x:(STMG2 [i-16] {s} p w0 w1 mem)) 1333 && x.Uses == 1 1334 && is20Bit(int64(i)-16) 1335 && setPos(v, x.Pos) 1336 && clobber(x) 1337 => (STMG3 [i-16] {s} p w0 w1 w2 mem) 1338 (MOVDstore [i] {s} p w3 x:(STMG3 [i-24] {s} p w0 w1 w2 mem)) 1339 && x.Uses == 1 1340 && is20Bit(int64(i)-24) 1341 && setPos(v, x.Pos) 1342 && clobber(x) 1343 => (STMG4 [i-24] {s} p w0 w1 w2 w3 mem) 1344 (STMG2 [i] {s} p w2 w3 x:(STMG2 [i-16] {s} p w0 w1 mem)) 1345 && x.Uses == 1 1346 && is20Bit(int64(i)-16) 1347 && setPos(v, x.Pos) 1348 && clobber(x) 1349 => (STMG4 [i-16] {s} p w0 w1 w2 w3 mem) 1350 1351 // Convert 32-bit store multiples into 64-bit stores. 1352 (STM2 [i] {s} p (SRDconst [32] x) x mem) => (MOVDstore [i] {s} p x mem) 1353 1354 // Fold bit reversal into loads. 1355 (MOVWBR x:(MOVWZload [off] {sym} ptr mem)) && x.Uses == 1 => @x.Block (MOVWZreg (MOVWBRload [off] {sym} ptr mem)) // need zero extension? 1356 (MOVWBR x:(MOVWZloadidx [off] {sym} ptr idx mem)) && x.Uses == 1 => @x.Block (MOVWZreg (MOVWBRloadidx [off] {sym} ptr idx mem)) // need zero extension? 1357 (MOVDBR x:(MOVDload [off] {sym} ptr mem)) && x.Uses == 1 => @x.Block (MOVDBRload [off] {sym} ptr mem) 1358 (MOVDBR x:(MOVDloadidx [off] {sym} ptr idx mem)) && x.Uses == 1 => @x.Block (MOVDBRloadidx [off] {sym} ptr idx mem) 1359 1360 // Fold bit reversal into stores. 1361 (MOV(D|W)store [off] {sym} ptr r:(MOV(D|W)BR x) mem) && r.Uses == 1 => (MOV(D|W)BRstore [off] {sym} ptr x mem) 1362 (MOV(D|W)storeidx [off] {sym} ptr idx r:(MOV(D|W)BR x) mem) && r.Uses == 1 => (MOV(D|W)BRstoreidx [off] {sym} ptr idx x mem) 1363 1364 // Special bswap16 rules 1365 (Bswap16 x:(MOVHZload [off] {sym} ptr mem)) => @x.Block (MOVHZreg (MOVHBRload [off] {sym} ptr mem)) 1366 (Bswap16 x:(MOVHZloadidx [off] {sym} ptr idx mem)) => @x.Block (MOVHZreg (MOVHBRloadidx [off] {sym} ptr idx mem)) 1367 (MOVHstore [off] {sym} ptr (Bswap16 val) mem) => (MOVHBRstore [off] {sym} ptr val mem) 1368 (MOVHstoreidx [off] {sym} ptr idx (Bswap16 val) mem) => (MOVHBRstoreidx [off] {sym} ptr idx val mem)