github.com/go-asm/go@v1.21.1-0.20240213172139-40c5ead50c48/cmd/compile/ssa/_gen/generic.rules (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Simplifications that apply to all backend architectures. As an example, this 6 // Go source code 7 // 8 // y := 0 * x 9 // 10 // can be translated into y := 0 without losing any information, which saves a 11 // pointless multiplication instruction. Other .rules files in this directory 12 // (for example AMD64.rules) contain rules specific to the architecture in the 13 // filename. The rules here apply to every architecture. 14 // 15 // The code for parsing this file lives in rulegen.go; this file generates 16 // ssa/rewritegeneric.go. 17 18 // values are specified using the following format: 19 // (op <type> [auxint] {aux} arg0 arg1 ...) 20 // the type, aux, and auxint fields are optional 21 // on the matching side 22 // - the type, aux, and auxint fields must match if they are specified. 23 // - the first occurrence of a variable defines that variable. Subsequent 24 // uses must match (be == to) the first use. 25 // - v is defined to be the value matched. 26 // - an additional conditional can be provided after the match pattern with "&&". 27 // on the generated side 28 // - the type of the top-level expression is the same as the one on the left-hand side. 29 // - the type of any subexpressions must be specified explicitly (or 30 // be specified in the op's type field). 31 // - auxint will be 0 if not specified. 32 // - aux will be nil if not specified. 33 34 // blocks are specified using the following format: 35 // (kind controlvalue succ0 succ1 ...) 36 // controlvalue must be "nil" or a value expression 37 // succ* fields must be variables 38 // For now, the generated successors must be a permutation of the matched successors. 39 40 // constant folding 41 (Trunc16to8 (Const16 [c])) => (Const8 [int8(c)]) 42 (Trunc32to8 (Const32 [c])) => (Const8 [int8(c)]) 43 (Trunc32to16 (Const32 [c])) => (Const16 [int16(c)]) 44 (Trunc64to8 (Const64 [c])) => (Const8 [int8(c)]) 45 (Trunc64to16 (Const64 [c])) => (Const16 [int16(c)]) 46 (Trunc64to32 (Const64 [c])) => (Const32 [int32(c)]) 47 (Cvt64Fto32F (Const64F [c])) => (Const32F [float32(c)]) 48 (Cvt32Fto64F (Const32F [c])) => (Const64F [float64(c)]) 49 (Cvt32to32F (Const32 [c])) => (Const32F [float32(c)]) 50 (Cvt32to64F (Const32 [c])) => (Const64F [float64(c)]) 51 (Cvt64to32F (Const64 [c])) => (Const32F [float32(c)]) 52 (Cvt64to64F (Const64 [c])) => (Const64F [float64(c)]) 53 (Cvt32Fto32 (Const32F [c])) => (Const32 [int32(c)]) 54 (Cvt32Fto64 (Const32F [c])) => (Const64 [int64(c)]) 55 (Cvt64Fto32 (Const64F [c])) => (Const32 [int32(c)]) 56 (Cvt64Fto64 (Const64F [c])) => (Const64 [int64(c)]) 57 (Round32F x:(Const32F)) => x 58 (Round64F x:(Const64F)) => x 59 (CvtBoolToUint8 (ConstBool [false])) => (Const8 [0]) 60 (CvtBoolToUint8 (ConstBool [true])) => (Const8 [1]) 61 62 (Trunc16to8 (ZeroExt8to16 x)) => x 63 (Trunc32to8 (ZeroExt8to32 x)) => x 64 (Trunc32to16 (ZeroExt8to32 x)) => (ZeroExt8to16 x) 65 (Trunc32to16 (ZeroExt16to32 x)) => x 66 (Trunc64to8 (ZeroExt8to64 x)) => x 67 (Trunc64to16 (ZeroExt8to64 x)) => (ZeroExt8to16 x) 68 (Trunc64to16 (ZeroExt16to64 x)) => x 69 (Trunc64to32 (ZeroExt8to64 x)) => (ZeroExt8to32 x) 70 (Trunc64to32 (ZeroExt16to64 x)) => (ZeroExt16to32 x) 71 (Trunc64to32 (ZeroExt32to64 x)) => x 72 (Trunc16to8 (SignExt8to16 x)) => x 73 (Trunc32to8 (SignExt8to32 x)) => x 74 (Trunc32to16 (SignExt8to32 x)) => (SignExt8to16 x) 75 (Trunc32to16 (SignExt16to32 x)) => x 76 (Trunc64to8 (SignExt8to64 x)) => x 77 (Trunc64to16 (SignExt8to64 x)) => (SignExt8to16 x) 78 (Trunc64to16 (SignExt16to64 x)) => x 79 (Trunc64to32 (SignExt8to64 x)) => (SignExt8to32 x) 80 (Trunc64to32 (SignExt16to64 x)) => (SignExt16to32 x) 81 (Trunc64to32 (SignExt32to64 x)) => x 82 83 (ZeroExt8to16 (Const8 [c])) => (Const16 [int16( uint8(c))]) 84 (ZeroExt8to32 (Const8 [c])) => (Const32 [int32( uint8(c))]) 85 (ZeroExt8to64 (Const8 [c])) => (Const64 [int64( uint8(c))]) 86 (ZeroExt16to32 (Const16 [c])) => (Const32 [int32(uint16(c))]) 87 (ZeroExt16to64 (Const16 [c])) => (Const64 [int64(uint16(c))]) 88 (ZeroExt32to64 (Const32 [c])) => (Const64 [int64(uint32(c))]) 89 (SignExt8to16 (Const8 [c])) => (Const16 [int16(c)]) 90 (SignExt8to32 (Const8 [c])) => (Const32 [int32(c)]) 91 (SignExt8to64 (Const8 [c])) => (Const64 [int64(c)]) 92 (SignExt16to32 (Const16 [c])) => (Const32 [int32(c)]) 93 (SignExt16to64 (Const16 [c])) => (Const64 [int64(c)]) 94 (SignExt32to64 (Const32 [c])) => (Const64 [int64(c)]) 95 96 (Neg8 (Const8 [c])) => (Const8 [-c]) 97 (Neg16 (Const16 [c])) => (Const16 [-c]) 98 (Neg32 (Const32 [c])) => (Const32 [-c]) 99 (Neg64 (Const64 [c])) => (Const64 [-c]) 100 (Neg32F (Const32F [c])) && c != 0 => (Const32F [-c]) 101 (Neg64F (Const64F [c])) && c != 0 => (Const64F [-c]) 102 103 (Add8 (Const8 [c]) (Const8 [d])) => (Const8 [c+d]) 104 (Add16 (Const16 [c]) (Const16 [d])) => (Const16 [c+d]) 105 (Add32 (Const32 [c]) (Const32 [d])) => (Const32 [c+d]) 106 (Add64 (Const64 [c]) (Const64 [d])) => (Const64 [c+d]) 107 (Add32F (Const32F [c]) (Const32F [d])) && c+d == c+d => (Const32F [c+d]) 108 (Add64F (Const64F [c]) (Const64F [d])) && c+d == c+d => (Const64F [c+d]) 109 (AddPtr <t> x (Const64 [c])) => (OffPtr <t> x [c]) 110 (AddPtr <t> x (Const32 [c])) => (OffPtr <t> x [int64(c)]) 111 112 (Sub8 (Const8 [c]) (Const8 [d])) => (Const8 [c-d]) 113 (Sub16 (Const16 [c]) (Const16 [d])) => (Const16 [c-d]) 114 (Sub32 (Const32 [c]) (Const32 [d])) => (Const32 [c-d]) 115 (Sub64 (Const64 [c]) (Const64 [d])) => (Const64 [c-d]) 116 (Sub32F (Const32F [c]) (Const32F [d])) && c-d == c-d => (Const32F [c-d]) 117 (Sub64F (Const64F [c]) (Const64F [d])) && c-d == c-d => (Const64F [c-d]) 118 119 (Mul8 (Const8 [c]) (Const8 [d])) => (Const8 [c*d]) 120 (Mul16 (Const16 [c]) (Const16 [d])) => (Const16 [c*d]) 121 (Mul32 (Const32 [c]) (Const32 [d])) => (Const32 [c*d]) 122 (Mul64 (Const64 [c]) (Const64 [d])) => (Const64 [c*d]) 123 (Mul32F (Const32F [c]) (Const32F [d])) && c*d == c*d => (Const32F [c*d]) 124 (Mul64F (Const64F [c]) (Const64F [d])) && c*d == c*d => (Const64F [c*d]) 125 126 (And8 (Const8 [c]) (Const8 [d])) => (Const8 [c&d]) 127 (And16 (Const16 [c]) (Const16 [d])) => (Const16 [c&d]) 128 (And32 (Const32 [c]) (Const32 [d])) => (Const32 [c&d]) 129 (And64 (Const64 [c]) (Const64 [d])) => (Const64 [c&d]) 130 131 (Or8 (Const8 [c]) (Const8 [d])) => (Const8 [c|d]) 132 (Or16 (Const16 [c]) (Const16 [d])) => (Const16 [c|d]) 133 (Or32 (Const32 [c]) (Const32 [d])) => (Const32 [c|d]) 134 (Or64 (Const64 [c]) (Const64 [d])) => (Const64 [c|d]) 135 136 (Xor8 (Const8 [c]) (Const8 [d])) => (Const8 [c^d]) 137 (Xor16 (Const16 [c]) (Const16 [d])) => (Const16 [c^d]) 138 (Xor32 (Const32 [c]) (Const32 [d])) => (Const32 [c^d]) 139 (Xor64 (Const64 [c]) (Const64 [d])) => (Const64 [c^d]) 140 141 (Ctz64 (Const64 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz64(c))]) 142 (Ctz32 (Const32 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz32(c))]) 143 (Ctz16 (Const16 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz16(c))]) 144 (Ctz8 (Const8 [c])) && config.PtrSize == 4 => (Const32 [int32(ntz8(c))]) 145 146 (Ctz64 (Const64 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz64(c))]) 147 (Ctz32 (Const32 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz32(c))]) 148 (Ctz16 (Const16 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz16(c))]) 149 (Ctz8 (Const8 [c])) && config.PtrSize == 8 => (Const64 [int64(ntz8(c))]) 150 151 (Div8 (Const8 [c]) (Const8 [d])) && d != 0 => (Const8 [c/d]) 152 (Div16 (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [c/d]) 153 (Div32 (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [c/d]) 154 (Div64 (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [c/d]) 155 (Div8u (Const8 [c]) (Const8 [d])) && d != 0 => (Const8 [int8(uint8(c)/uint8(d))]) 156 (Div16u (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [int16(uint16(c)/uint16(d))]) 157 (Div32u (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [int32(uint32(c)/uint32(d))]) 158 (Div64u (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [int64(uint64(c)/uint64(d))]) 159 (Div32F (Const32F [c]) (Const32F [d])) && c/d == c/d => (Const32F [c/d]) 160 (Div64F (Const64F [c]) (Const64F [d])) && c/d == c/d => (Const64F [c/d]) 161 (Select0 (Div128u (Const64 [0]) lo y)) => (Div64u lo y) 162 (Select1 (Div128u (Const64 [0]) lo y)) => (Mod64u lo y) 163 164 (Not (ConstBool [c])) => (ConstBool [!c]) 165 166 (Floor (Const64F [c])) => (Const64F [math.Floor(c)]) 167 (Ceil (Const64F [c])) => (Const64F [math.Ceil(c)]) 168 (Trunc (Const64F [c])) => (Const64F [math.Trunc(c)]) 169 (RoundToEven (Const64F [c])) => (Const64F [math.RoundToEven(c)]) 170 171 // Convert x * 1 to x. 172 (Mul(8|16|32|64) (Const(8|16|32|64) [1]) x) => x 173 (Select0 (Mul(32|64)uover (Const(32|64) [1]) x)) => x 174 (Select1 (Mul(32|64)uover (Const(32|64) [1]) x)) => (ConstBool [false]) 175 176 // Convert x * -1 to -x. 177 (Mul(8|16|32|64) (Const(8|16|32|64) [-1]) x) => (Neg(8|16|32|64) x) 178 179 // DeMorgan's Laws 180 (And(8|16|32|64) <t> (Com(8|16|32|64) x) (Com(8|16|32|64) y)) => (Com(8|16|32|64) (Or(8|16|32|64) <t> x y)) 181 (Or(8|16|32|64) <t> (Com(8|16|32|64) x) (Com(8|16|32|64) y)) => (Com(8|16|32|64) (And(8|16|32|64) <t> x y)) 182 183 // Convert multiplication by a power of two to a shift. 184 (Mul8 <t> n (Const8 [c])) && isPowerOfTwo8(c) => (Lsh8x64 <t> n (Const64 <typ.UInt64> [log8(c)])) 185 (Mul16 <t> n (Const16 [c])) && isPowerOfTwo16(c) => (Lsh16x64 <t> n (Const64 <typ.UInt64> [log16(c)])) 186 (Mul32 <t> n (Const32 [c])) && isPowerOfTwo32(c) => (Lsh32x64 <t> n (Const64 <typ.UInt64> [log32(c)])) 187 (Mul64 <t> n (Const64 [c])) && isPowerOfTwo64(c) => (Lsh64x64 <t> n (Const64 <typ.UInt64> [log64(c)])) 188 (Mul8 <t> n (Const8 [c])) && t.IsSigned() && isPowerOfTwo8(-c) => (Neg8 (Lsh8x64 <t> n (Const64 <typ.UInt64> [log8(-c)]))) 189 (Mul16 <t> n (Const16 [c])) && t.IsSigned() && isPowerOfTwo16(-c) => (Neg16 (Lsh16x64 <t> n (Const64 <typ.UInt64> [log16(-c)]))) 190 (Mul32 <t> n (Const32 [c])) && t.IsSigned() && isPowerOfTwo32(-c) => (Neg32 (Lsh32x64 <t> n (Const64 <typ.UInt64> [log32(-c)]))) 191 (Mul64 <t> n (Const64 [c])) && t.IsSigned() && isPowerOfTwo64(-c) => (Neg64 (Lsh64x64 <t> n (Const64 <typ.UInt64> [log64(-c)]))) 192 193 (Mod8 (Const8 [c]) (Const8 [d])) && d != 0 => (Const8 [c % d]) 194 (Mod16 (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [c % d]) 195 (Mod32 (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [c % d]) 196 (Mod64 (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [c % d]) 197 198 (Mod8u (Const8 [c]) (Const8 [d])) && d != 0 => (Const8 [int8(uint8(c) % uint8(d))]) 199 (Mod16u (Const16 [c]) (Const16 [d])) && d != 0 => (Const16 [int16(uint16(c) % uint16(d))]) 200 (Mod32u (Const32 [c]) (Const32 [d])) && d != 0 => (Const32 [int32(uint32(c) % uint32(d))]) 201 (Mod64u (Const64 [c]) (Const64 [d])) && d != 0 => (Const64 [int64(uint64(c) % uint64(d))]) 202 203 (Lsh64x64 (Const64 [c]) (Const64 [d])) => (Const64 [c << uint64(d)]) 204 (Rsh64x64 (Const64 [c]) (Const64 [d])) => (Const64 [c >> uint64(d)]) 205 (Rsh64Ux64 (Const64 [c]) (Const64 [d])) => (Const64 [int64(uint64(c) >> uint64(d))]) 206 (Lsh32x64 (Const32 [c]) (Const64 [d])) => (Const32 [c << uint64(d)]) 207 (Rsh32x64 (Const32 [c]) (Const64 [d])) => (Const32 [c >> uint64(d)]) 208 (Rsh32Ux64 (Const32 [c]) (Const64 [d])) => (Const32 [int32(uint32(c) >> uint64(d))]) 209 (Lsh16x64 (Const16 [c]) (Const64 [d])) => (Const16 [c << uint64(d)]) 210 (Rsh16x64 (Const16 [c]) (Const64 [d])) => (Const16 [c >> uint64(d)]) 211 (Rsh16Ux64 (Const16 [c]) (Const64 [d])) => (Const16 [int16(uint16(c) >> uint64(d))]) 212 (Lsh8x64 (Const8 [c]) (Const64 [d])) => (Const8 [c << uint64(d)]) 213 (Rsh8x64 (Const8 [c]) (Const64 [d])) => (Const8 [c >> uint64(d)]) 214 (Rsh8Ux64 (Const8 [c]) (Const64 [d])) => (Const8 [int8(uint8(c) >> uint64(d))]) 215 216 // Fold IsInBounds when the range of the index cannot exceed the limit. 217 (IsInBounds (ZeroExt8to32 _) (Const32 [c])) && (1 << 8) <= c => (ConstBool [true]) 218 (IsInBounds (ZeroExt8to64 _) (Const64 [c])) && (1 << 8) <= c => (ConstBool [true]) 219 (IsInBounds (ZeroExt16to32 _) (Const32 [c])) && (1 << 16) <= c => (ConstBool [true]) 220 (IsInBounds (ZeroExt16to64 _) (Const64 [c])) && (1 << 16) <= c => (ConstBool [true]) 221 (IsInBounds x x) => (ConstBool [false]) 222 (IsInBounds (And8 (Const8 [c]) _) (Const8 [d])) && 0 <= c && c < d => (ConstBool [true]) 223 (IsInBounds (ZeroExt8to16 (And8 (Const8 [c]) _)) (Const16 [d])) && 0 <= c && int16(c) < d => (ConstBool [true]) 224 (IsInBounds (ZeroExt8to32 (And8 (Const8 [c]) _)) (Const32 [d])) && 0 <= c && int32(c) < d => (ConstBool [true]) 225 (IsInBounds (ZeroExt8to64 (And8 (Const8 [c]) _)) (Const64 [d])) && 0 <= c && int64(c) < d => (ConstBool [true]) 226 (IsInBounds (And16 (Const16 [c]) _) (Const16 [d])) && 0 <= c && c < d => (ConstBool [true]) 227 (IsInBounds (ZeroExt16to32 (And16 (Const16 [c]) _)) (Const32 [d])) && 0 <= c && int32(c) < d => (ConstBool [true]) 228 (IsInBounds (ZeroExt16to64 (And16 (Const16 [c]) _)) (Const64 [d])) && 0 <= c && int64(c) < d => (ConstBool [true]) 229 (IsInBounds (And32 (Const32 [c]) _) (Const32 [d])) && 0 <= c && c < d => (ConstBool [true]) 230 (IsInBounds (ZeroExt32to64 (And32 (Const32 [c]) _)) (Const64 [d])) && 0 <= c && int64(c) < d => (ConstBool [true]) 231 (IsInBounds (And64 (Const64 [c]) _) (Const64 [d])) && 0 <= c && c < d => (ConstBool [true]) 232 (IsInBounds (Const32 [c]) (Const32 [d])) => (ConstBool [0 <= c && c < d]) 233 (IsInBounds (Const64 [c]) (Const64 [d])) => (ConstBool [0 <= c && c < d]) 234 // (Mod64u x y) is always between 0 (inclusive) and y (exclusive). 235 (IsInBounds (Mod32u _ y) y) => (ConstBool [true]) 236 (IsInBounds (Mod64u _ y) y) => (ConstBool [true]) 237 // Right shifting an unsigned number limits its value. 238 (IsInBounds (ZeroExt8to64 (Rsh8Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d => (ConstBool [true]) 239 (IsInBounds (ZeroExt8to32 (Rsh8Ux64 _ (Const64 [c]))) (Const32 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d => (ConstBool [true]) 240 (IsInBounds (ZeroExt8to16 (Rsh8Ux64 _ (Const64 [c]))) (Const16 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d => (ConstBool [true]) 241 (IsInBounds (Rsh8Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 8 && 1<<uint( 8-c)-1 < d => (ConstBool [true]) 242 (IsInBounds (ZeroExt16to64 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d => (ConstBool [true]) 243 (IsInBounds (ZeroExt16to32 (Rsh16Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d => (ConstBool [true]) 244 (IsInBounds (Rsh16Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 16 && 1<<uint(16-c)-1 < d => (ConstBool [true]) 245 (IsInBounds (ZeroExt32to64 (Rsh32Ux64 _ (Const64 [c]))) (Const64 [d])) && 0 < c && c < 32 && 1<<uint(32-c)-1 < d => (ConstBool [true]) 246 (IsInBounds (Rsh32Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 32 && 1<<uint(32-c)-1 < d => (ConstBool [true]) 247 (IsInBounds (Rsh64Ux64 _ (Const64 [c])) (Const64 [d])) && 0 < c && c < 64 && 1<<uint(64-c)-1 < d => (ConstBool [true]) 248 249 (IsSliceInBounds x x) => (ConstBool [true]) 250 (IsSliceInBounds (And32 (Const32 [c]) _) (Const32 [d])) && 0 <= c && c <= d => (ConstBool [true]) 251 (IsSliceInBounds (And64 (Const64 [c]) _) (Const64 [d])) && 0 <= c && c <= d => (ConstBool [true]) 252 (IsSliceInBounds (Const32 [0]) _) => (ConstBool [true]) 253 (IsSliceInBounds (Const64 [0]) _) => (ConstBool [true]) 254 (IsSliceInBounds (Const32 [c]) (Const32 [d])) => (ConstBool [0 <= c && c <= d]) 255 (IsSliceInBounds (Const64 [c]) (Const64 [d])) => (ConstBool [0 <= c && c <= d]) 256 (IsSliceInBounds (SliceLen x) (SliceCap x)) => (ConstBool [true]) 257 258 (Eq(64|32|16|8) x x) => (ConstBool [true]) 259 (EqB (ConstBool [c]) (ConstBool [d])) => (ConstBool [c == d]) 260 (EqB (ConstBool [false]) x) => (Not x) 261 (EqB (ConstBool [true]) x) => x 262 263 (Neq(64|32|16|8) x x) => (ConstBool [false]) 264 (NeqB (ConstBool [c]) (ConstBool [d])) => (ConstBool [c != d]) 265 (NeqB (ConstBool [false]) x) => x 266 (NeqB (ConstBool [true]) x) => (Not x) 267 (NeqB (Not x) (Not y)) => (NeqB x y) 268 269 (Eq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Eq64 (Const64 <t> [c-d]) x) 270 (Eq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Eq32 (Const32 <t> [c-d]) x) 271 (Eq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Eq16 (Const16 <t> [c-d]) x) 272 (Eq8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) => (Eq8 (Const8 <t> [c-d]) x) 273 274 (Neq64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Neq64 (Const64 <t> [c-d]) x) 275 (Neq32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Neq32 (Const32 <t> [c-d]) x) 276 (Neq16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Neq16 (Const16 <t> [c-d]) x) 277 (Neq8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) => (Neq8 (Const8 <t> [c-d]) x) 278 279 // signed integer range: ( c <= x && x (<|<=) d ) -> ( unsigned(x-c) (<|<=) unsigned(d-c) ) 280 (AndB (Leq64 (Const64 [c]) x) ((Less|Leq)64 x (Const64 [d]))) && d >= c => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c])) (Const64 <x.Type> [d-c])) 281 (AndB (Leq32 (Const32 [c]) x) ((Less|Leq)32 x (Const32 [d]))) && d >= c => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c])) (Const32 <x.Type> [d-c])) 282 (AndB (Leq16 (Const16 [c]) x) ((Less|Leq)16 x (Const16 [d]))) && d >= c => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c])) (Const16 <x.Type> [d-c])) 283 (AndB (Leq8 (Const8 [c]) x) ((Less|Leq)8 x (Const8 [d]))) && d >= c => ((Less|Leq)8U (Sub8 <x.Type> x (Const8 <x.Type> [c])) (Const8 <x.Type> [d-c])) 284 285 // signed integer range: ( c < x && x (<|<=) d ) -> ( unsigned(x-(c+1)) (<|<=) unsigned(d-(c+1)) ) 286 (AndB (Less64 (Const64 [c]) x) ((Less|Leq)64 x (Const64 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c+1])) (Const64 <x.Type> [d-c-1])) 287 (AndB (Less32 (Const32 [c]) x) ((Less|Leq)32 x (Const32 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c+1])) (Const32 <x.Type> [d-c-1])) 288 (AndB (Less16 (Const16 [c]) x) ((Less|Leq)16 x (Const16 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c+1])) (Const16 <x.Type> [d-c-1])) 289 (AndB (Less8 (Const8 [c]) x) ((Less|Leq)8 x (Const8 [d]))) && d >= c+1 && c+1 > c => ((Less|Leq)8U (Sub8 <x.Type> x (Const8 <x.Type> [c+1])) (Const8 <x.Type> [d-c-1])) 290 291 // unsigned integer range: ( c <= x && x (<|<=) d ) -> ( x-c (<|<=) d-c ) 292 (AndB (Leq64U (Const64 [c]) x) ((Less|Leq)64U x (Const64 [d]))) && uint64(d) >= uint64(c) => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c])) (Const64 <x.Type> [d-c])) 293 (AndB (Leq32U (Const32 [c]) x) ((Less|Leq)32U x (Const32 [d]))) && uint32(d) >= uint32(c) => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c])) (Const32 <x.Type> [d-c])) 294 (AndB (Leq16U (Const16 [c]) x) ((Less|Leq)16U x (Const16 [d]))) && uint16(d) >= uint16(c) => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c])) (Const16 <x.Type> [d-c])) 295 (AndB (Leq8U (Const8 [c]) x) ((Less|Leq)8U x (Const8 [d]))) && uint8(d) >= uint8(c) => ((Less|Leq)8U (Sub8 <x.Type> x (Const8 <x.Type> [c])) (Const8 <x.Type> [d-c])) 296 297 // unsigned integer range: ( c < x && x (<|<=) d ) -> ( x-(c+1) (<|<=) d-(c+1) ) 298 (AndB (Less64U (Const64 [c]) x) ((Less|Leq)64U x (Const64 [d]))) && uint64(d) >= uint64(c+1) && uint64(c+1) > uint64(c) => ((Less|Leq)64U (Sub64 <x.Type> x (Const64 <x.Type> [c+1])) (Const64 <x.Type> [d-c-1])) 299 (AndB (Less32U (Const32 [c]) x) ((Less|Leq)32U x (Const32 [d]))) && uint32(d) >= uint32(c+1) && uint32(c+1) > uint32(c) => ((Less|Leq)32U (Sub32 <x.Type> x (Const32 <x.Type> [c+1])) (Const32 <x.Type> [d-c-1])) 300 (AndB (Less16U (Const16 [c]) x) ((Less|Leq)16U x (Const16 [d]))) && uint16(d) >= uint16(c+1) && uint16(c+1) > uint16(c) => ((Less|Leq)16U (Sub16 <x.Type> x (Const16 <x.Type> [c+1])) (Const16 <x.Type> [d-c-1])) 301 (AndB (Less8U (Const8 [c]) x) ((Less|Leq)8U x (Const8 [d]))) && uint8(d) >= uint8(c+1) && uint8(c+1) > uint8(c) => ((Less|Leq)8U (Sub8 <x.Type> x (Const8 <x.Type> [c+1])) (Const8 <x.Type> [d-c-1])) 302 303 // signed integer range: ( c (<|<=) x || x < d ) -> ( unsigned(c-d) (<|<=) unsigned(x-d) ) 304 (OrB ((Less|Leq)64 (Const64 [c]) x) (Less64 x (Const64 [d]))) && c >= d => ((Less|Leq)64U (Const64 <x.Type> [c-d]) (Sub64 <x.Type> x (Const64 <x.Type> [d]))) 305 (OrB ((Less|Leq)32 (Const32 [c]) x) (Less32 x (Const32 [d]))) && c >= d => ((Less|Leq)32U (Const32 <x.Type> [c-d]) (Sub32 <x.Type> x (Const32 <x.Type> [d]))) 306 (OrB ((Less|Leq)16 (Const16 [c]) x) (Less16 x (Const16 [d]))) && c >= d => ((Less|Leq)16U (Const16 <x.Type> [c-d]) (Sub16 <x.Type> x (Const16 <x.Type> [d]))) 307 (OrB ((Less|Leq)8 (Const8 [c]) x) (Less8 x (Const8 [d]))) && c >= d => ((Less|Leq)8U (Const8 <x.Type> [c-d]) (Sub8 <x.Type> x (Const8 <x.Type> [d]))) 308 309 // signed integer range: ( c (<|<=) x || x <= d ) -> ( unsigned(c-(d+1)) (<|<=) unsigned(x-(d+1)) ) 310 (OrB ((Less|Leq)64 (Const64 [c]) x) (Leq64 x (Const64 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)64U (Const64 <x.Type> [c-d-1]) (Sub64 <x.Type> x (Const64 <x.Type> [d+1]))) 311 (OrB ((Less|Leq)32 (Const32 [c]) x) (Leq32 x (Const32 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)32U (Const32 <x.Type> [c-d-1]) (Sub32 <x.Type> x (Const32 <x.Type> [d+1]))) 312 (OrB ((Less|Leq)16 (Const16 [c]) x) (Leq16 x (Const16 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)16U (Const16 <x.Type> [c-d-1]) (Sub16 <x.Type> x (Const16 <x.Type> [d+1]))) 313 (OrB ((Less|Leq)8 (Const8 [c]) x) (Leq8 x (Const8 [d]))) && c >= d+1 && d+1 > d => ((Less|Leq)8U (Const8 <x.Type> [c-d-1]) (Sub8 <x.Type> x (Const8 <x.Type> [d+1]))) 314 315 // unsigned integer range: ( c (<|<=) x || x < d ) -> ( c-d (<|<=) x-d ) 316 (OrB ((Less|Leq)64U (Const64 [c]) x) (Less64U x (Const64 [d]))) && uint64(c) >= uint64(d) => ((Less|Leq)64U (Const64 <x.Type> [c-d]) (Sub64 <x.Type> x (Const64 <x.Type> [d]))) 317 (OrB ((Less|Leq)32U (Const32 [c]) x) (Less32U x (Const32 [d]))) && uint32(c) >= uint32(d) => ((Less|Leq)32U (Const32 <x.Type> [c-d]) (Sub32 <x.Type> x (Const32 <x.Type> [d]))) 318 (OrB ((Less|Leq)16U (Const16 [c]) x) (Less16U x (Const16 [d]))) && uint16(c) >= uint16(d) => ((Less|Leq)16U (Const16 <x.Type> [c-d]) (Sub16 <x.Type> x (Const16 <x.Type> [d]))) 319 (OrB ((Less|Leq)8U (Const8 [c]) x) (Less8U x (Const8 [d]))) && uint8(c) >= uint8(d) => ((Less|Leq)8U (Const8 <x.Type> [c-d]) (Sub8 <x.Type> x (Const8 <x.Type> [d]))) 320 321 // unsigned integer range: ( c (<|<=) x || x <= d ) -> ( c-(d+1) (<|<=) x-(d+1) ) 322 (OrB ((Less|Leq)64U (Const64 [c]) x) (Leq64U x (Const64 [d]))) && uint64(c) >= uint64(d+1) && uint64(d+1) > uint64(d) => ((Less|Leq)64U (Const64 <x.Type> [c-d-1]) (Sub64 <x.Type> x (Const64 <x.Type> [d+1]))) 323 (OrB ((Less|Leq)32U (Const32 [c]) x) (Leq32U x (Const32 [d]))) && uint32(c) >= uint32(d+1) && uint32(d+1) > uint32(d) => ((Less|Leq)32U (Const32 <x.Type> [c-d-1]) (Sub32 <x.Type> x (Const32 <x.Type> [d+1]))) 324 (OrB ((Less|Leq)16U (Const16 [c]) x) (Leq16U x (Const16 [d]))) && uint16(c) >= uint16(d+1) && uint16(d+1) > uint16(d) => ((Less|Leq)16U (Const16 <x.Type> [c-d-1]) (Sub16 <x.Type> x (Const16 <x.Type> [d+1]))) 325 (OrB ((Less|Leq)8U (Const8 [c]) x) (Leq8U x (Const8 [d]))) && uint8(c) >= uint8(d+1) && uint8(d+1) > uint8(d) => ((Less|Leq)8U (Const8 <x.Type> [c-d-1]) (Sub8 <x.Type> x (Const8 <x.Type> [d+1]))) 326 327 // Canonicalize x-const to x+(-const) 328 (Sub64 x (Const64 <t> [c])) && x.Op != OpConst64 => (Add64 (Const64 <t> [-c]) x) 329 (Sub32 x (Const32 <t> [c])) && x.Op != OpConst32 => (Add32 (Const32 <t> [-c]) x) 330 (Sub16 x (Const16 <t> [c])) && x.Op != OpConst16 => (Add16 (Const16 <t> [-c]) x) 331 (Sub8 x (Const8 <t> [c])) && x.Op != OpConst8 => (Add8 (Const8 <t> [-c]) x) 332 333 // fold negation into comparison operators 334 (Not (Eq(64|32|16|8|B|Ptr|64F|32F) x y)) => (Neq(64|32|16|8|B|Ptr|64F|32F) x y) 335 (Not (Neq(64|32|16|8|B|Ptr|64F|32F) x y)) => (Eq(64|32|16|8|B|Ptr|64F|32F) x y) 336 337 (Not (Less(64|32|16|8) x y)) => (Leq(64|32|16|8) y x) 338 (Not (Less(64|32|16|8)U x y)) => (Leq(64|32|16|8)U y x) 339 (Not (Leq(64|32|16|8) x y)) => (Less(64|32|16|8) y x) 340 (Not (Leq(64|32|16|8)U x y)) => (Less(64|32|16|8)U y x) 341 342 // Distribute multiplication c * (d+x) -> c*d + c*x. Useful for: 343 // a[i].b = ...; a[i+1].b = ... 344 (Mul64 (Const64 <t> [c]) (Add64 <t> (Const64 <t> [d]) x)) => 345 (Add64 (Const64 <t> [c*d]) (Mul64 <t> (Const64 <t> [c]) x)) 346 (Mul32 (Const32 <t> [c]) (Add32 <t> (Const32 <t> [d]) x)) => 347 (Add32 (Const32 <t> [c*d]) (Mul32 <t> (Const32 <t> [c]) x)) 348 349 // Rewrite x*y ± x*z to x*(y±z) 350 (Add(64|32|16|8) <t> (Mul(64|32|16|8) x y) (Mul(64|32|16|8) x z)) 351 => (Mul(64|32|16|8) x (Add(64|32|16|8) <t> y z)) 352 (Sub(64|32|16|8) <t> (Mul(64|32|16|8) x y) (Mul(64|32|16|8) x z)) 353 => (Mul(64|32|16|8) x (Sub(64|32|16|8) <t> y z)) 354 355 // rewrite shifts of 8/16/32 bit consts into 64 bit consts to reduce 356 // the number of the other rewrite rules for const shifts 357 (Lsh64x32 <t> x (Const32 [c])) => (Lsh64x64 x (Const64 <t> [int64(uint32(c))])) 358 (Lsh64x16 <t> x (Const16 [c])) => (Lsh64x64 x (Const64 <t> [int64(uint16(c))])) 359 (Lsh64x8 <t> x (Const8 [c])) => (Lsh64x64 x (Const64 <t> [int64(uint8(c))])) 360 (Rsh64x32 <t> x (Const32 [c])) => (Rsh64x64 x (Const64 <t> [int64(uint32(c))])) 361 (Rsh64x16 <t> x (Const16 [c])) => (Rsh64x64 x (Const64 <t> [int64(uint16(c))])) 362 (Rsh64x8 <t> x (Const8 [c])) => (Rsh64x64 x (Const64 <t> [int64(uint8(c))])) 363 (Rsh64Ux32 <t> x (Const32 [c])) => (Rsh64Ux64 x (Const64 <t> [int64(uint32(c))])) 364 (Rsh64Ux16 <t> x (Const16 [c])) => (Rsh64Ux64 x (Const64 <t> [int64(uint16(c))])) 365 (Rsh64Ux8 <t> x (Const8 [c])) => (Rsh64Ux64 x (Const64 <t> [int64(uint8(c))])) 366 367 (Lsh32x32 <t> x (Const32 [c])) => (Lsh32x64 x (Const64 <t> [int64(uint32(c))])) 368 (Lsh32x16 <t> x (Const16 [c])) => (Lsh32x64 x (Const64 <t> [int64(uint16(c))])) 369 (Lsh32x8 <t> x (Const8 [c])) => (Lsh32x64 x (Const64 <t> [int64(uint8(c))])) 370 (Rsh32x32 <t> x (Const32 [c])) => (Rsh32x64 x (Const64 <t> [int64(uint32(c))])) 371 (Rsh32x16 <t> x (Const16 [c])) => (Rsh32x64 x (Const64 <t> [int64(uint16(c))])) 372 (Rsh32x8 <t> x (Const8 [c])) => (Rsh32x64 x (Const64 <t> [int64(uint8(c))])) 373 (Rsh32Ux32 <t> x (Const32 [c])) => (Rsh32Ux64 x (Const64 <t> [int64(uint32(c))])) 374 (Rsh32Ux16 <t> x (Const16 [c])) => (Rsh32Ux64 x (Const64 <t> [int64(uint16(c))])) 375 (Rsh32Ux8 <t> x (Const8 [c])) => (Rsh32Ux64 x (Const64 <t> [int64(uint8(c))])) 376 377 (Lsh16x32 <t> x (Const32 [c])) => (Lsh16x64 x (Const64 <t> [int64(uint32(c))])) 378 (Lsh16x16 <t> x (Const16 [c])) => (Lsh16x64 x (Const64 <t> [int64(uint16(c))])) 379 (Lsh16x8 <t> x (Const8 [c])) => (Lsh16x64 x (Const64 <t> [int64(uint8(c))])) 380 (Rsh16x32 <t> x (Const32 [c])) => (Rsh16x64 x (Const64 <t> [int64(uint32(c))])) 381 (Rsh16x16 <t> x (Const16 [c])) => (Rsh16x64 x (Const64 <t> [int64(uint16(c))])) 382 (Rsh16x8 <t> x (Const8 [c])) => (Rsh16x64 x (Const64 <t> [int64(uint8(c))])) 383 (Rsh16Ux32 <t> x (Const32 [c])) => (Rsh16Ux64 x (Const64 <t> [int64(uint32(c))])) 384 (Rsh16Ux16 <t> x (Const16 [c])) => (Rsh16Ux64 x (Const64 <t> [int64(uint16(c))])) 385 (Rsh16Ux8 <t> x (Const8 [c])) => (Rsh16Ux64 x (Const64 <t> [int64(uint8(c))])) 386 387 (Lsh8x32 <t> x (Const32 [c])) => (Lsh8x64 x (Const64 <t> [int64(uint32(c))])) 388 (Lsh8x16 <t> x (Const16 [c])) => (Lsh8x64 x (Const64 <t> [int64(uint16(c))])) 389 (Lsh8x8 <t> x (Const8 [c])) => (Lsh8x64 x (Const64 <t> [int64(uint8(c))])) 390 (Rsh8x32 <t> x (Const32 [c])) => (Rsh8x64 x (Const64 <t> [int64(uint32(c))])) 391 (Rsh8x16 <t> x (Const16 [c])) => (Rsh8x64 x (Const64 <t> [int64(uint16(c))])) 392 (Rsh8x8 <t> x (Const8 [c])) => (Rsh8x64 x (Const64 <t> [int64(uint8(c))])) 393 (Rsh8Ux32 <t> x (Const32 [c])) => (Rsh8Ux64 x (Const64 <t> [int64(uint32(c))])) 394 (Rsh8Ux16 <t> x (Const16 [c])) => (Rsh8Ux64 x (Const64 <t> [int64(uint16(c))])) 395 (Rsh8Ux8 <t> x (Const8 [c])) => (Rsh8Ux64 x (Const64 <t> [int64(uint8(c))])) 396 397 // shifts by zero 398 (Lsh(64|32|16|8)x64 x (Const64 [0])) => x 399 (Rsh(64|32|16|8)x64 x (Const64 [0])) => x 400 (Rsh(64|32|16|8)Ux64 x (Const64 [0])) => x 401 402 // rotates by multiples of register width 403 (RotateLeft64 x (Const64 [c])) && c%64 == 0 => x 404 (RotateLeft32 x (Const32 [c])) && c%32 == 0 => x 405 (RotateLeft16 x (Const16 [c])) && c%16 == 0 => x 406 (RotateLeft8 x (Const8 [c])) && c%8 == 0 => x 407 408 // zero shifted 409 (Lsh64x(64|32|16|8) (Const64 [0]) _) => (Const64 [0]) 410 (Rsh64x(64|32|16|8) (Const64 [0]) _) => (Const64 [0]) 411 (Rsh64Ux(64|32|16|8) (Const64 [0]) _) => (Const64 [0]) 412 (Lsh32x(64|32|16|8) (Const32 [0]) _) => (Const32 [0]) 413 (Rsh32x(64|32|16|8) (Const32 [0]) _) => (Const32 [0]) 414 (Rsh32Ux(64|32|16|8) (Const32 [0]) _) => (Const32 [0]) 415 (Lsh16x(64|32|16|8) (Const16 [0]) _) => (Const16 [0]) 416 (Rsh16x(64|32|16|8) (Const16 [0]) _) => (Const16 [0]) 417 (Rsh16Ux(64|32|16|8) (Const16 [0]) _) => (Const16 [0]) 418 (Lsh8x(64|32|16|8) (Const8 [0]) _) => (Const8 [0]) 419 (Rsh8x(64|32|16|8) (Const8 [0]) _) => (Const8 [0]) 420 (Rsh8Ux(64|32|16|8) (Const8 [0]) _) => (Const8 [0]) 421 422 // large left shifts of all values, and right shifts of unsigned values 423 ((Lsh64|Rsh64U)x64 _ (Const64 [c])) && uint64(c) >= 64 => (Const64 [0]) 424 ((Lsh32|Rsh32U)x64 _ (Const64 [c])) && uint64(c) >= 32 => (Const32 [0]) 425 ((Lsh16|Rsh16U)x64 _ (Const64 [c])) && uint64(c) >= 16 => (Const16 [0]) 426 ((Lsh8|Rsh8U)x64 _ (Const64 [c])) && uint64(c) >= 8 => (Const8 [0]) 427 428 // combine const shifts 429 (Lsh64x64 <t> (Lsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh64x64 x (Const64 <t> [c+d])) 430 (Lsh32x64 <t> (Lsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh32x64 x (Const64 <t> [c+d])) 431 (Lsh16x64 <t> (Lsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh16x64 x (Const64 <t> [c+d])) 432 (Lsh8x64 <t> (Lsh8x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Lsh8x64 x (Const64 <t> [c+d])) 433 434 (Rsh64x64 <t> (Rsh64x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh64x64 x (Const64 <t> [c+d])) 435 (Rsh32x64 <t> (Rsh32x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh32x64 x (Const64 <t> [c+d])) 436 (Rsh16x64 <t> (Rsh16x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh16x64 x (Const64 <t> [c+d])) 437 (Rsh8x64 <t> (Rsh8x64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh8x64 x (Const64 <t> [c+d])) 438 439 (Rsh64Ux64 <t> (Rsh64Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh64Ux64 x (Const64 <t> [c+d])) 440 (Rsh32Ux64 <t> (Rsh32Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh32Ux64 x (Const64 <t> [c+d])) 441 (Rsh16Ux64 <t> (Rsh16Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh16Ux64 x (Const64 <t> [c+d])) 442 (Rsh8Ux64 <t> (Rsh8Ux64 x (Const64 [c])) (Const64 [d])) && !uaddOvf(c,d) => (Rsh8Ux64 x (Const64 <t> [c+d])) 443 444 // Remove signed right shift before an unsigned right shift that extracts the sign bit. 445 (Rsh8Ux64 (Rsh8x64 x _) (Const64 <t> [7] )) => (Rsh8Ux64 x (Const64 <t> [7] )) 446 (Rsh16Ux64 (Rsh16x64 x _) (Const64 <t> [15])) => (Rsh16Ux64 x (Const64 <t> [15])) 447 (Rsh32Ux64 (Rsh32x64 x _) (Const64 <t> [31])) => (Rsh32Ux64 x (Const64 <t> [31])) 448 (Rsh64Ux64 (Rsh64x64 x _) (Const64 <t> [63])) => (Rsh64Ux64 x (Const64 <t> [63])) 449 450 // Convert x>>c<<c to x&^(1<<c-1) 451 (Lsh64x64 i:(Rsh(64|64U)x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 64 && i.Uses == 1 => (And64 x (Const64 <v.Type> [int64(-1) << c])) 452 (Lsh32x64 i:(Rsh(32|32U)x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 32 && i.Uses == 1 => (And32 x (Const32 <v.Type> [int32(-1) << c])) 453 (Lsh16x64 i:(Rsh(16|16U)x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 16 && i.Uses == 1 => (And16 x (Const16 <v.Type> [int16(-1) << c])) 454 (Lsh8x64 i:(Rsh(8|8U)x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 8 && i.Uses == 1 => (And8 x (Const8 <v.Type> [int8(-1) << c])) 455 // similarly for x<<c>>c 456 (Rsh64Ux64 i:(Lsh64x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 64 && i.Uses == 1 => (And64 x (Const64 <v.Type> [int64(^uint64(0)>>c)])) 457 (Rsh32Ux64 i:(Lsh32x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 32 && i.Uses == 1 => (And32 x (Const32 <v.Type> [int32(^uint32(0)>>c)])) 458 (Rsh16Ux64 i:(Lsh16x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 16 && i.Uses == 1 => (And16 x (Const16 <v.Type> [int16(^uint16(0)>>c)])) 459 (Rsh8Ux64 i:(Lsh8x64 x (Const64 [c])) (Const64 [c])) && c >= 0 && c < 8 && i.Uses == 1 => (And8 x (Const8 <v.Type> [int8 (^uint8 (0)>>c)])) 460 461 // ((x >> c1) << c2) >> c3 462 (Rsh(64|32|16|8)Ux64 (Lsh(64|32|16|8)x64 (Rsh(64|32|16|8)Ux64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) 463 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) 464 => (Rsh(64|32|16|8)Ux64 x (Const64 <typ.UInt64> [c1-c2+c3])) 465 466 // ((x << c1) >> c2) << c3 467 (Lsh(64|32|16|8)x64 (Rsh(64|32|16|8)Ux64 (Lsh(64|32|16|8)x64 x (Const64 [c1])) (Const64 [c2])) (Const64 [c3])) 468 && uint64(c1) >= uint64(c2) && uint64(c3) >= uint64(c2) && !uaddOvf(c1-c2, c3) 469 => (Lsh(64|32|16|8)x64 x (Const64 <typ.UInt64> [c1-c2+c3])) 470 471 // (x >> c) & uppermask = 0 472 (And64 (Const64 [m]) (Rsh64Ux64 _ (Const64 [c]))) && c >= int64(64-ntz64(m)) => (Const64 [0]) 473 (And32 (Const32 [m]) (Rsh32Ux64 _ (Const64 [c]))) && c >= int64(32-ntz32(m)) => (Const32 [0]) 474 (And16 (Const16 [m]) (Rsh16Ux64 _ (Const64 [c]))) && c >= int64(16-ntz16(m)) => (Const16 [0]) 475 (And8 (Const8 [m]) (Rsh8Ux64 _ (Const64 [c]))) && c >= int64(8-ntz8(m)) => (Const8 [0]) 476 477 // (x << c) & lowermask = 0 478 (And64 (Const64 [m]) (Lsh64x64 _ (Const64 [c]))) && c >= int64(64-nlz64(m)) => (Const64 [0]) 479 (And32 (Const32 [m]) (Lsh32x64 _ (Const64 [c]))) && c >= int64(32-nlz32(m)) => (Const32 [0]) 480 (And16 (Const16 [m]) (Lsh16x64 _ (Const64 [c]))) && c >= int64(16-nlz16(m)) => (Const16 [0]) 481 (And8 (Const8 [m]) (Lsh8x64 _ (Const64 [c]))) && c >= int64(8-nlz8(m)) => (Const8 [0]) 482 483 // replace shifts with zero extensions 484 (Rsh16Ux64 (Lsh16x64 x (Const64 [8])) (Const64 [8])) => (ZeroExt8to16 (Trunc16to8 <typ.UInt8> x)) 485 (Rsh32Ux64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) => (ZeroExt8to32 (Trunc32to8 <typ.UInt8> x)) 486 (Rsh64Ux64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) => (ZeroExt8to64 (Trunc64to8 <typ.UInt8> x)) 487 (Rsh32Ux64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) => (ZeroExt16to32 (Trunc32to16 <typ.UInt16> x)) 488 (Rsh64Ux64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) => (ZeroExt16to64 (Trunc64to16 <typ.UInt16> x)) 489 (Rsh64Ux64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) => (ZeroExt32to64 (Trunc64to32 <typ.UInt32> x)) 490 491 // replace shifts with sign extensions 492 (Rsh16x64 (Lsh16x64 x (Const64 [8])) (Const64 [8])) => (SignExt8to16 (Trunc16to8 <typ.Int8> x)) 493 (Rsh32x64 (Lsh32x64 x (Const64 [24])) (Const64 [24])) => (SignExt8to32 (Trunc32to8 <typ.Int8> x)) 494 (Rsh64x64 (Lsh64x64 x (Const64 [56])) (Const64 [56])) => (SignExt8to64 (Trunc64to8 <typ.Int8> x)) 495 (Rsh32x64 (Lsh32x64 x (Const64 [16])) (Const64 [16])) => (SignExt16to32 (Trunc32to16 <typ.Int16> x)) 496 (Rsh64x64 (Lsh64x64 x (Const64 [48])) (Const64 [48])) => (SignExt16to64 (Trunc64to16 <typ.Int16> x)) 497 (Rsh64x64 (Lsh64x64 x (Const64 [32])) (Const64 [32])) => (SignExt32to64 (Trunc64to32 <typ.Int32> x)) 498 499 // constant comparisons 500 (Eq(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c == d]) 501 (Neq(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c != d]) 502 (Less(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c < d]) 503 (Leq(64|32|16|8) (Const(64|32|16|8) [c]) (Const(64|32|16|8) [d])) => (ConstBool [c <= d]) 504 505 (Less64U (Const64 [c]) (Const64 [d])) => (ConstBool [uint64(c) < uint64(d)]) 506 (Less32U (Const32 [c]) (Const32 [d])) => (ConstBool [uint32(c) < uint32(d)]) 507 (Less16U (Const16 [c]) (Const16 [d])) => (ConstBool [uint16(c) < uint16(d)]) 508 (Less8U (Const8 [c]) (Const8 [d])) => (ConstBool [ uint8(c) < uint8(d)]) 509 510 (Leq64U (Const64 [c]) (Const64 [d])) => (ConstBool [uint64(c) <= uint64(d)]) 511 (Leq32U (Const32 [c]) (Const32 [d])) => (ConstBool [uint32(c) <= uint32(d)]) 512 (Leq16U (Const16 [c]) (Const16 [d])) => (ConstBool [uint16(c) <= uint16(d)]) 513 (Leq8U (Const8 [c]) (Const8 [d])) => (ConstBool [ uint8(c) <= uint8(d)]) 514 515 (Leq8 (Const8 [0]) (And8 _ (Const8 [c]))) && c >= 0 => (ConstBool [true]) 516 (Leq16 (Const16 [0]) (And16 _ (Const16 [c]))) && c >= 0 => (ConstBool [true]) 517 (Leq32 (Const32 [0]) (And32 _ (Const32 [c]))) && c >= 0 => (ConstBool [true]) 518 (Leq64 (Const64 [0]) (And64 _ (Const64 [c]))) && c >= 0 => (ConstBool [true]) 519 520 (Leq8 (Const8 [0]) (Rsh8Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true]) 521 (Leq16 (Const16 [0]) (Rsh16Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true]) 522 (Leq32 (Const32 [0]) (Rsh32Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true]) 523 (Leq64 (Const64 [0]) (Rsh64Ux64 _ (Const64 [c]))) && c > 0 => (ConstBool [true]) 524 525 // prefer equalities with zero 526 (Less(64|32|16|8) (Const(64|32|16|8) <t> [0]) x) && isNonNegative(x) => (Neq(64|32|16|8) (Const(64|32|16|8) <t> [0]) x) 527 (Less(64|32|16|8) x (Const(64|32|16|8) <t> [1])) && isNonNegative(x) => (Eq(64|32|16|8) (Const(64|32|16|8) <t> [0]) x) 528 (Less(64|32|16|8)U x (Const(64|32|16|8) <t> [1])) => (Eq(64|32|16|8) (Const(64|32|16|8) <t> [0]) x) 529 (Leq(64|32|16|8)U (Const(64|32|16|8) <t> [1]) x) => (Neq(64|32|16|8) (Const(64|32|16|8) <t> [0]) x) 530 531 // prefer comparisons with zero 532 (Less(64|32|16|8) x (Const(64|32|16|8) <t> [1])) => (Leq(64|32|16|8) x (Const(64|32|16|8) <t> [0])) 533 (Leq(64|32|16|8) x (Const(64|32|16|8) <t> [-1])) => (Less(64|32|16|8) x (Const(64|32|16|8) <t> [0])) 534 (Leq(64|32|16|8) (Const(64|32|16|8) <t> [1]) x) => (Less(64|32|16|8) (Const(64|32|16|8) <t> [0]) x) 535 (Less(64|32|16|8) (Const(64|32|16|8) <t> [-1]) x) => (Leq(64|32|16|8) (Const(64|32|16|8) <t> [0]) x) 536 537 // constant floating point comparisons 538 (Eq32F (Const32F [c]) (Const32F [d])) => (ConstBool [c == d]) 539 (Eq64F (Const64F [c]) (Const64F [d])) => (ConstBool [c == d]) 540 (Neq32F (Const32F [c]) (Const32F [d])) => (ConstBool [c != d]) 541 (Neq64F (Const64F [c]) (Const64F [d])) => (ConstBool [c != d]) 542 (Less32F (Const32F [c]) (Const32F [d])) => (ConstBool [c < d]) 543 (Less64F (Const64F [c]) (Const64F [d])) => (ConstBool [c < d]) 544 (Leq32F (Const32F [c]) (Const32F [d])) => (ConstBool [c <= d]) 545 (Leq64F (Const64F [c]) (Const64F [d])) => (ConstBool [c <= d]) 546 547 // simplifications 548 (Or(64|32|16|8) x x) => x 549 (Or(64|32|16|8) (Const(64|32|16|8) [0]) x) => x 550 (Or(64|32|16|8) (Const(64|32|16|8) [-1]) _) => (Const(64|32|16|8) [-1]) 551 (Or(64|32|16|8) (Com(64|32|16|8) x) x) => (Const(64|32|16|8) [-1]) 552 553 (And(64|32|16|8) x x) => x 554 (And(64|32|16|8) (Const(64|32|16|8) [-1]) x) => x 555 (And(64|32|16|8) (Const(64|32|16|8) [0]) _) => (Const(64|32|16|8) [0]) 556 (And(64|32|16|8) (Com(64|32|16|8) x) x) => (Const(64|32|16|8) [0]) 557 558 (Xor(64|32|16|8) x x) => (Const(64|32|16|8) [0]) 559 (Xor(64|32|16|8) (Const(64|32|16|8) [0]) x) => x 560 (Xor(64|32|16|8) (Com(64|32|16|8) x) x) => (Const(64|32|16|8) [-1]) 561 562 (Add(64|32|16|8) (Const(64|32|16|8) [0]) x) => x 563 (Sub(64|32|16|8) x x) => (Const(64|32|16|8) [0]) 564 (Mul(64|32|16|8) (Const(64|32|16|8) [0]) _) => (Const(64|32|16|8) [0]) 565 (Select0 (Mul(64|32)uover (Const(64|32) [0]) x)) => (Const(64|32) [0]) 566 (Select1 (Mul(64|32)uover (Const(64|32) [0]) x)) => (ConstBool [false]) 567 568 (Com(64|32|16|8) (Com(64|32|16|8) x)) => x 569 (Com(64|32|16|8) (Const(64|32|16|8) [c])) => (Const(64|32|16|8) [^c]) 570 571 (Neg(64|32|16|8) (Sub(64|32|16|8) x y)) => (Sub(64|32|16|8) y x) 572 (Add(64|32|16|8) x (Neg(64|32|16|8) y)) => (Sub(64|32|16|8) x y) 573 574 (Xor(64|32|16|8) (Const(64|32|16|8) [-1]) x) => (Com(64|32|16|8) x) 575 576 (Sub(64|32|16|8) (Neg(64|32|16|8) x) (Com(64|32|16|8) x)) => (Const(64|32|16|8) [1]) 577 (Sub(64|32|16|8) (Com(64|32|16|8) x) (Neg(64|32|16|8) x)) => (Const(64|32|16|8) [-1]) 578 (Add(64|32|16|8) (Com(64|32|16|8) x) x) => (Const(64|32|16|8) [-1]) 579 580 // Simplification when involving common integer 581 // (t + x) - (t + y) == x - y 582 // (t + x) - (y + t) == x - y 583 // (x + t) - (y + t) == x - y 584 // (x + t) - (t + y) == x - y 585 // (x - t) + (t + y) == x + y 586 // (x - t) + (y + t) == x + y 587 (Sub(64|32|16|8) (Add(64|32|16|8) t x) (Add(64|32|16|8) t y)) => (Sub(64|32|16|8) x y) 588 (Add(64|32|16|8) (Sub(64|32|16|8) x t) (Add(64|32|16|8) t y)) => (Add(64|32|16|8) x y) 589 590 // ^(x-1) == ^x+1 == -x 591 (Add(64|32|16|8) (Const(64|32|16|8) [1]) (Com(64|32|16|8) x)) => (Neg(64|32|16|8) x) 592 (Com(64|32|16|8) (Add(64|32|16|8) (Const(64|32|16|8) [-1]) x)) => (Neg(64|32|16|8) x) 593 594 // -(-x) == x 595 (Neg(64|32|16|8) (Neg(64|32|16|8) x)) => x 596 597 // -^x == x+1 598 (Neg(64|32|16|8) <t> (Com(64|32|16|8) x)) => (Add(64|32|16|8) (Const(64|32|16|8) <t> [1]) x) 599 600 (And(64|32|16|8) x (And(64|32|16|8) x y)) => (And(64|32|16|8) x y) 601 (Or(64|32|16|8) x (Or(64|32|16|8) x y)) => (Or(64|32|16|8) x y) 602 (Xor(64|32|16|8) x (Xor(64|32|16|8) x y)) => y 603 604 // Unsigned comparisons to zero. 605 (Less(64U|32U|16U|8U) _ (Const(64|32|16|8) [0])) => (ConstBool [false]) 606 (Leq(64U|32U|16U|8U) (Const(64|32|16|8) [0]) _) => (ConstBool [true]) 607 608 // Ands clear bits. Ors set bits. 609 // If a subsequent Or will set all the bits 610 // that an And cleared, we can skip the And. 611 // This happens in bitmasking code like: 612 // x &^= 3 << shift // clear two old bits 613 // x |= v << shift // set two new bits 614 // when shift is a small constant and v ends up a constant 3. 615 (Or8 (And8 x (Const8 [c2])) (Const8 <t> [c1])) && ^(c1 | c2) == 0 => (Or8 (Const8 <t> [c1]) x) 616 (Or16 (And16 x (Const16 [c2])) (Const16 <t> [c1])) && ^(c1 | c2) == 0 => (Or16 (Const16 <t> [c1]) x) 617 (Or32 (And32 x (Const32 [c2])) (Const32 <t> [c1])) && ^(c1 | c2) == 0 => (Or32 (Const32 <t> [c1]) x) 618 (Or64 (And64 x (Const64 [c2])) (Const64 <t> [c1])) && ^(c1 | c2) == 0 => (Or64 (Const64 <t> [c1]) x) 619 620 (Trunc64to8 (And64 (Const64 [y]) x)) && y&0xFF == 0xFF => (Trunc64to8 x) 621 (Trunc64to16 (And64 (Const64 [y]) x)) && y&0xFFFF == 0xFFFF => (Trunc64to16 x) 622 (Trunc64to32 (And64 (Const64 [y]) x)) && y&0xFFFFFFFF == 0xFFFFFFFF => (Trunc64to32 x) 623 (Trunc32to8 (And32 (Const32 [y]) x)) && y&0xFF == 0xFF => (Trunc32to8 x) 624 (Trunc32to16 (And32 (Const32 [y]) x)) && y&0xFFFF == 0xFFFF => (Trunc32to16 x) 625 (Trunc16to8 (And16 (Const16 [y]) x)) && y&0xFF == 0xFF => (Trunc16to8 x) 626 627 (ZeroExt8to64 (Trunc64to8 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 56 => x 628 (ZeroExt16to64 (Trunc64to16 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 48 => x 629 (ZeroExt32to64 (Trunc64to32 x:(Rsh64Ux64 _ (Const64 [s])))) && s >= 32 => x 630 (ZeroExt8to32 (Trunc32to8 x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 24 => x 631 (ZeroExt16to32 (Trunc32to16 x:(Rsh32Ux64 _ (Const64 [s])))) && s >= 16 => x 632 (ZeroExt8to16 (Trunc16to8 x:(Rsh16Ux64 _ (Const64 [s])))) && s >= 8 => x 633 634 (SignExt8to64 (Trunc64to8 x:(Rsh64x64 _ (Const64 [s])))) && s >= 56 => x 635 (SignExt16to64 (Trunc64to16 x:(Rsh64x64 _ (Const64 [s])))) && s >= 48 => x 636 (SignExt32to64 (Trunc64to32 x:(Rsh64x64 _ (Const64 [s])))) && s >= 32 => x 637 (SignExt8to32 (Trunc32to8 x:(Rsh32x64 _ (Const64 [s])))) && s >= 24 => x 638 (SignExt16to32 (Trunc32to16 x:(Rsh32x64 _ (Const64 [s])))) && s >= 16 => x 639 (SignExt8to16 (Trunc16to8 x:(Rsh16x64 _ (Const64 [s])))) && s >= 8 => x 640 641 (Slicemask (Const32 [x])) && x > 0 => (Const32 [-1]) 642 (Slicemask (Const32 [0])) => (Const32 [0]) 643 (Slicemask (Const64 [x])) && x > 0 => (Const64 [-1]) 644 (Slicemask (Const64 [0])) => (Const64 [0]) 645 646 // simplifications often used for lengths. e.g. len(s[i:i+5])==5 647 (Sub(64|32|16|8) (Add(64|32|16|8) x y) x) => y 648 (Sub(64|32|16|8) (Add(64|32|16|8) x y) y) => x 649 (Sub(64|32|16|8) (Sub(64|32|16|8) x y) x) => (Neg(64|32|16|8) y) 650 (Sub(64|32|16|8) x (Add(64|32|16|8) x y)) => (Neg(64|32|16|8) y) 651 (Add(64|32|16|8) x (Sub(64|32|16|8) y x)) => y 652 (Add(64|32|16|8) x (Add(64|32|16|8) y (Sub(64|32|16|8) z x))) => (Add(64|32|16|8) y z) 653 654 // basic phi simplifications 655 (Phi (Const8 [c]) (Const8 [c])) => (Const8 [c]) 656 (Phi (Const16 [c]) (Const16 [c])) => (Const16 [c]) 657 (Phi (Const32 [c]) (Const32 [c])) => (Const32 [c]) 658 (Phi (Const64 [c]) (Const64 [c])) => (Const64 [c]) 659 660 // slice and interface comparisons 661 // The frontend ensures that we can only compare against nil, 662 // so we need only compare the first word (interface type or slice ptr). 663 (EqInter x y) => (EqPtr (ITab x) (ITab y)) 664 (NeqInter x y) => (NeqPtr (ITab x) (ITab y)) 665 (EqSlice x y) => (EqPtr (SlicePtr x) (SlicePtr y)) 666 (NeqSlice x y) => (NeqPtr (SlicePtr x) (SlicePtr y)) 667 668 // Load of store of same address, with compatibly typed value and same size 669 (Load <t1> p1 (Store {t2} p2 x _)) 670 && isSamePtr(p1, p2) 671 && t1.Compare(x.Type) == types.CMPeq 672 && t1.Size() == t2.Size() 673 => x 674 (Load <t1> p1 (Store {t2} p2 _ (Store {t3} p3 x _))) 675 && isSamePtr(p1, p3) 676 && t1.Compare(x.Type) == types.CMPeq 677 && t1.Size() == t2.Size() 678 && disjoint(p3, t3.Size(), p2, t2.Size()) 679 => x 680 (Load <t1> p1 (Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 x _)))) 681 && isSamePtr(p1, p4) 682 && t1.Compare(x.Type) == types.CMPeq 683 && t1.Size() == t2.Size() 684 && disjoint(p4, t4.Size(), p2, t2.Size()) 685 && disjoint(p4, t4.Size(), p3, t3.Size()) 686 => x 687 (Load <t1> p1 (Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 _ (Store {t5} p5 x _))))) 688 && isSamePtr(p1, p5) 689 && t1.Compare(x.Type) == types.CMPeq 690 && t1.Size() == t2.Size() 691 && disjoint(p5, t5.Size(), p2, t2.Size()) 692 && disjoint(p5, t5.Size(), p3, t3.Size()) 693 && disjoint(p5, t5.Size(), p4, t4.Size()) 694 => x 695 696 // Pass constants through math.Float{32,64}bits and math.Float{32,64}frombits 697 (Load <t1> p1 (Store {t2} p2 (Const64 [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 8 && is64BitFloat(t1) && !math.IsNaN(math.Float64frombits(uint64(x))) => (Const64F [math.Float64frombits(uint64(x))]) 698 (Load <t1> p1 (Store {t2} p2 (Const32 [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 4 && is32BitFloat(t1) && !math.IsNaN(float64(math.Float32frombits(uint32(x)))) => (Const32F [math.Float32frombits(uint32(x))]) 699 (Load <t1> p1 (Store {t2} p2 (Const64F [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 8 && is64BitInt(t1) => (Const64 [int64(math.Float64bits(x))]) 700 (Load <t1> p1 (Store {t2} p2 (Const32F [x]) _)) && isSamePtr(p1,p2) && sizeof(t2) == 4 && is32BitInt(t1) => (Const32 [int32(math.Float32bits(x))]) 701 702 // Float Loads up to Zeros so they can be constant folded. 703 (Load <t1> op:(OffPtr [o1] p1) 704 (Store {t2} p2 _ 705 mem:(Zero [n] p3 _))) 706 && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p3) 707 && CanSSA(t1) 708 && disjoint(op, t1.Size(), p2, t2.Size()) 709 => @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p3) mem) 710 (Load <t1> op:(OffPtr [o1] p1) 711 (Store {t2} p2 _ 712 (Store {t3} p3 _ 713 mem:(Zero [n] p4 _)))) 714 && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p4) 715 && CanSSA(t1) 716 && disjoint(op, t1.Size(), p2, t2.Size()) 717 && disjoint(op, t1.Size(), p3, t3.Size()) 718 => @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p4) mem) 719 (Load <t1> op:(OffPtr [o1] p1) 720 (Store {t2} p2 _ 721 (Store {t3} p3 _ 722 (Store {t4} p4 _ 723 mem:(Zero [n] p5 _))))) 724 && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p5) 725 && CanSSA(t1) 726 && disjoint(op, t1.Size(), p2, t2.Size()) 727 && disjoint(op, t1.Size(), p3, t3.Size()) 728 && disjoint(op, t1.Size(), p4, t4.Size()) 729 => @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p5) mem) 730 (Load <t1> op:(OffPtr [o1] p1) 731 (Store {t2} p2 _ 732 (Store {t3} p3 _ 733 (Store {t4} p4 _ 734 (Store {t5} p5 _ 735 mem:(Zero [n] p6 _)))))) 736 && o1 >= 0 && o1+t1.Size() <= n && isSamePtr(p1, p6) 737 && CanSSA(t1) 738 && disjoint(op, t1.Size(), p2, t2.Size()) 739 && disjoint(op, t1.Size(), p3, t3.Size()) 740 && disjoint(op, t1.Size(), p4, t4.Size()) 741 && disjoint(op, t1.Size(), p5, t5.Size()) 742 => @mem.Block (Load <t1> (OffPtr <op.Type> [o1] p6) mem) 743 744 // Zero to Load forwarding. 745 (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _)) 746 && t1.IsBoolean() 747 && isSamePtr(p1, p2) 748 && n >= o + 1 749 => (ConstBool [false]) 750 (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _)) 751 && is8BitInt(t1) 752 && isSamePtr(p1, p2) 753 && n >= o + 1 754 => (Const8 [0]) 755 (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _)) 756 && is16BitInt(t1) 757 && isSamePtr(p1, p2) 758 && n >= o + 2 759 => (Const16 [0]) 760 (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _)) 761 && is32BitInt(t1) 762 && isSamePtr(p1, p2) 763 && n >= o + 4 764 => (Const32 [0]) 765 (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _)) 766 && is64BitInt(t1) 767 && isSamePtr(p1, p2) 768 && n >= o + 8 769 => (Const64 [0]) 770 (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _)) 771 && is32BitFloat(t1) 772 && isSamePtr(p1, p2) 773 && n >= o + 4 774 => (Const32F [0]) 775 (Load <t1> (OffPtr [o] p1) (Zero [n] p2 _)) 776 && is64BitFloat(t1) 777 && isSamePtr(p1, p2) 778 && n >= o + 8 779 => (Const64F [0]) 780 781 // Eliminate stores of values that have just been loaded from the same location. 782 // We also handle the common case where there are some intermediate stores. 783 (Store {t1} p1 (Load <t2> p2 mem) mem) 784 && isSamePtr(p1, p2) 785 && t2.Size() == t1.Size() 786 => mem 787 (Store {t1} p1 (Load <t2> p2 oldmem) mem:(Store {t3} p3 _ oldmem)) 788 && isSamePtr(p1, p2) 789 && t2.Size() == t1.Size() 790 && disjoint(p1, t1.Size(), p3, t3.Size()) 791 => mem 792 (Store {t1} p1 (Load <t2> p2 oldmem) mem:(Store {t3} p3 _ (Store {t4} p4 _ oldmem))) 793 && isSamePtr(p1, p2) 794 && t2.Size() == t1.Size() 795 && disjoint(p1, t1.Size(), p3, t3.Size()) 796 && disjoint(p1, t1.Size(), p4, t4.Size()) 797 => mem 798 (Store {t1} p1 (Load <t2> p2 oldmem) mem:(Store {t3} p3 _ (Store {t4} p4 _ (Store {t5} p5 _ oldmem)))) 799 && isSamePtr(p1, p2) 800 && t2.Size() == t1.Size() 801 && disjoint(p1, t1.Size(), p3, t3.Size()) 802 && disjoint(p1, t1.Size(), p4, t4.Size()) 803 && disjoint(p1, t1.Size(), p5, t5.Size()) 804 => mem 805 806 // Don't Store zeros to cleared variables. 807 (Store {t} (OffPtr [o] p1) x mem:(Zero [n] p2 _)) 808 && isConstZero(x) 809 && o >= 0 && t.Size() + o <= n && isSamePtr(p1, p2) 810 => mem 811 (Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Zero [n] p3 _))) 812 && isConstZero(x) 813 && o1 >= 0 && t1.Size() + o1 <= n && isSamePtr(p1, p3) 814 && disjoint(op, t1.Size(), p2, t2.Size()) 815 => mem 816 (Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Store {t3} p3 _ (Zero [n] p4 _)))) 817 && isConstZero(x) 818 && o1 >= 0 && t1.Size() + o1 <= n && isSamePtr(p1, p4) 819 && disjoint(op, t1.Size(), p2, t2.Size()) 820 && disjoint(op, t1.Size(), p3, t3.Size()) 821 => mem 822 (Store {t1} op:(OffPtr [o1] p1) x mem:(Store {t2} p2 _ (Store {t3} p3 _ (Store {t4} p4 _ (Zero [n] p5 _))))) 823 && isConstZero(x) 824 && o1 >= 0 && t1.Size() + o1 <= n && isSamePtr(p1, p5) 825 && disjoint(op, t1.Size(), p2, t2.Size()) 826 && disjoint(op, t1.Size(), p3, t3.Size()) 827 && disjoint(op, t1.Size(), p4, t4.Size()) 828 => mem 829 830 // Collapse OffPtr 831 (OffPtr (OffPtr p [y]) [x]) => (OffPtr p [x+y]) 832 (OffPtr p [0]) && v.Type.Compare(p.Type) == types.CMPeq => p 833 834 // indexing operations 835 // Note: bounds check has already been done 836 (PtrIndex <t> ptr idx) && config.PtrSize == 4 && is32Bit(t.Elem().Size()) => (AddPtr ptr (Mul32 <typ.Int> idx (Const32 <typ.Int> [int32(t.Elem().Size())]))) 837 (PtrIndex <t> ptr idx) && config.PtrSize == 8 => (AddPtr ptr (Mul64 <typ.Int> idx (Const64 <typ.Int> [t.Elem().Size()]))) 838 839 // struct operations 840 (StructSelect (StructMake1 x)) => x 841 (StructSelect [0] (StructMake2 x _)) => x 842 (StructSelect [1] (StructMake2 _ x)) => x 843 (StructSelect [0] (StructMake3 x _ _)) => x 844 (StructSelect [1] (StructMake3 _ x _)) => x 845 (StructSelect [2] (StructMake3 _ _ x)) => x 846 (StructSelect [0] (StructMake4 x _ _ _)) => x 847 (StructSelect [1] (StructMake4 _ x _ _)) => x 848 (StructSelect [2] (StructMake4 _ _ x _)) => x 849 (StructSelect [3] (StructMake4 _ _ _ x)) => x 850 851 (Load <t> _ _) && t.IsStruct() && t.NumFields() == 0 && CanSSA(t) => 852 (StructMake0) 853 (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 1 && CanSSA(t) => 854 (StructMake1 855 (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem)) 856 (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 2 && CanSSA(t) => 857 (StructMake2 858 (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem) 859 (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem)) 860 (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 3 && CanSSA(t) => 861 (StructMake3 862 (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem) 863 (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem) 864 (Load <t.FieldType(2)> (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] ptr) mem)) 865 (Load <t> ptr mem) && t.IsStruct() && t.NumFields() == 4 && CanSSA(t) => 866 (StructMake4 867 (Load <t.FieldType(0)> (OffPtr <t.FieldType(0).PtrTo()> [0] ptr) mem) 868 (Load <t.FieldType(1)> (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] ptr) mem) 869 (Load <t.FieldType(2)> (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] ptr) mem) 870 (Load <t.FieldType(3)> (OffPtr <t.FieldType(3).PtrTo()> [t.FieldOff(3)] ptr) mem)) 871 872 (StructSelect [i] x:(Load <t> ptr mem)) && !CanSSA(t) => 873 @x.Block (Load <v.Type> (OffPtr <v.Type.PtrTo()> [t.FieldOff(int(i))] ptr) mem) 874 875 (Store _ (StructMake0) mem) => mem 876 (Store dst (StructMake1 <t> f0) mem) => 877 (Store {t.FieldType(0)} (OffPtr <t.FieldType(0).PtrTo()> [0] dst) f0 mem) 878 (Store dst (StructMake2 <t> f0 f1) mem) => 879 (Store {t.FieldType(1)} 880 (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst) 881 f1 882 (Store {t.FieldType(0)} 883 (OffPtr <t.FieldType(0).PtrTo()> [0] dst) 884 f0 mem)) 885 (Store dst (StructMake3 <t> f0 f1 f2) mem) => 886 (Store {t.FieldType(2)} 887 (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] dst) 888 f2 889 (Store {t.FieldType(1)} 890 (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst) 891 f1 892 (Store {t.FieldType(0)} 893 (OffPtr <t.FieldType(0).PtrTo()> [0] dst) 894 f0 mem))) 895 (Store dst (StructMake4 <t> f0 f1 f2 f3) mem) => 896 (Store {t.FieldType(3)} 897 (OffPtr <t.FieldType(3).PtrTo()> [t.FieldOff(3)] dst) 898 f3 899 (Store {t.FieldType(2)} 900 (OffPtr <t.FieldType(2).PtrTo()> [t.FieldOff(2)] dst) 901 f2 902 (Store {t.FieldType(1)} 903 (OffPtr <t.FieldType(1).PtrTo()> [t.FieldOff(1)] dst) 904 f1 905 (Store {t.FieldType(0)} 906 (OffPtr <t.FieldType(0).PtrTo()> [0] dst) 907 f0 mem)))) 908 909 // Putting struct{*byte} and similar into direct interfaces. 910 (IMake _typ (StructMake1 val)) => (IMake _typ val) 911 (StructSelect [0] (IData x)) => (IData x) 912 913 // un-SSAable values use mem->mem copies 914 (Store {t} dst (Load src mem) mem) && !CanSSA(t) => 915 (Move {t} [t.Size()] dst src mem) 916 (Store {t} dst (Load src mem) (VarDef {x} mem)) && !CanSSA(t) => 917 (Move {t} [t.Size()] dst src (VarDef {x} mem)) 918 919 // array ops 920 (ArraySelect (ArrayMake1 x)) => x 921 922 (Load <t> _ _) && t.IsArray() && t.NumElem() == 0 => 923 (ArrayMake0) 924 925 (Load <t> ptr mem) && t.IsArray() && t.NumElem() == 1 && CanSSA(t) => 926 (ArrayMake1 (Load <t.Elem()> ptr mem)) 927 928 (Store _ (ArrayMake0) mem) => mem 929 (Store dst (ArrayMake1 e) mem) => (Store {e.Type} dst e mem) 930 931 // Putting [1]*byte and similar into direct interfaces. 932 (IMake _typ (ArrayMake1 val)) => (IMake _typ val) 933 (ArraySelect [0] (IData x)) => (IData x) 934 935 // string ops 936 // Decomposing StringMake and lowering of StringPtr and StringLen 937 // happens in a later pass, dec, so that these operations are available 938 // to other passes for optimizations. 939 (StringPtr (StringMake (Addr <t> {s} base) _)) => (Addr <t> {s} base) 940 (StringLen (StringMake _ (Const64 <t> [c]))) => (Const64 <t> [c]) 941 (ConstString {str}) && config.PtrSize == 4 && str == "" => 942 (StringMake (ConstNil) (Const32 <typ.Int> [0])) 943 (ConstString {str}) && config.PtrSize == 8 && str == "" => 944 (StringMake (ConstNil) (Const64 <typ.Int> [0])) 945 (ConstString {str}) && config.PtrSize == 4 && str != "" => 946 (StringMake 947 (Addr <typ.BytePtr> {fe.StringData(str)} 948 (SB)) 949 (Const32 <typ.Int> [int32(len(str))])) 950 (ConstString {str}) && config.PtrSize == 8 && str != "" => 951 (StringMake 952 (Addr <typ.BytePtr> {fe.StringData(str)} 953 (SB)) 954 (Const64 <typ.Int> [int64(len(str))])) 955 956 // slice ops 957 // Only a few slice rules are provided here. See dec.rules for 958 // a more comprehensive set. 959 (SliceLen (SliceMake _ (Const64 <t> [c]) _)) => (Const64 <t> [c]) 960 (SliceCap (SliceMake _ _ (Const64 <t> [c]))) => (Const64 <t> [c]) 961 (SliceLen (SliceMake _ (Const32 <t> [c]) _)) => (Const32 <t> [c]) 962 (SliceCap (SliceMake _ _ (Const32 <t> [c]))) => (Const32 <t> [c]) 963 (SlicePtr (SliceMake (SlicePtr x) _ _)) => (SlicePtr x) 964 (SliceLen (SliceMake _ (SliceLen x) _)) => (SliceLen x) 965 (SliceCap (SliceMake _ _ (SliceCap x))) => (SliceCap x) 966 (SliceCap (SliceMake _ _ (SliceLen x))) => (SliceLen x) 967 (ConstSlice) && config.PtrSize == 4 => 968 (SliceMake 969 (ConstNil <v.Type.Elem().PtrTo()>) 970 (Const32 <typ.Int> [0]) 971 (Const32 <typ.Int> [0])) 972 (ConstSlice) && config.PtrSize == 8 => 973 (SliceMake 974 (ConstNil <v.Type.Elem().PtrTo()>) 975 (Const64 <typ.Int> [0]) 976 (Const64 <typ.Int> [0])) 977 978 // interface ops 979 (ConstInterface) => 980 (IMake 981 (ConstNil <typ.Uintptr>) 982 (ConstNil <typ.BytePtr>)) 983 984 (NilCheck ptr:(GetG mem) mem) => ptr 985 986 (If (Not cond) yes no) => (If cond no yes) 987 (If (ConstBool [c]) yes no) && c => (First yes no) 988 (If (ConstBool [c]) yes no) && !c => (First no yes) 989 990 (Phi <t> nx:(Not x) ny:(Not y)) && nx.Uses == 1 && ny.Uses == 1 => (Not (Phi <t> x y)) 991 992 // Get rid of Convert ops for pointer arithmetic on unsafe.Pointer. 993 (Convert (Add(64|32) (Convert ptr mem) off) mem) => (AddPtr ptr off) 994 (Convert (Convert ptr mem) mem) => ptr 995 996 // strength reduction of divide by a constant. 997 // See ../magic.go for a detailed description of these algorithms. 998 999 // Unsigned divide by power of 2. Strength reduce to a shift. 1000 (Div8u n (Const8 [c])) && isPowerOfTwo8(c) => (Rsh8Ux64 n (Const64 <typ.UInt64> [log8(c)])) 1001 (Div16u n (Const16 [c])) && isPowerOfTwo16(c) => (Rsh16Ux64 n (Const64 <typ.UInt64> [log16(c)])) 1002 (Div32u n (Const32 [c])) && isPowerOfTwo32(c) => (Rsh32Ux64 n (Const64 <typ.UInt64> [log32(c)])) 1003 (Div64u n (Const64 [c])) && isPowerOfTwo64(c) => (Rsh64Ux64 n (Const64 <typ.UInt64> [log64(c)])) 1004 (Div64u n (Const64 [-1<<63])) => (Rsh64Ux64 n (Const64 <typ.UInt64> [63])) 1005 1006 // Signed non-negative divide by power of 2. 1007 (Div8 n (Const8 [c])) && isNonNegative(n) && isPowerOfTwo8(c) => (Rsh8Ux64 n (Const64 <typ.UInt64> [log8(c)])) 1008 (Div16 n (Const16 [c])) && isNonNegative(n) && isPowerOfTwo16(c) => (Rsh16Ux64 n (Const64 <typ.UInt64> [log16(c)])) 1009 (Div32 n (Const32 [c])) && isNonNegative(n) && isPowerOfTwo32(c) => (Rsh32Ux64 n (Const64 <typ.UInt64> [log32(c)])) 1010 (Div64 n (Const64 [c])) && isNonNegative(n) && isPowerOfTwo64(c) => (Rsh64Ux64 n (Const64 <typ.UInt64> [log64(c)])) 1011 (Div64 n (Const64 [-1<<63])) && isNonNegative(n) => (Const64 [0]) 1012 1013 // Unsigned divide, not a power of 2. Strength reduce to a multiply. 1014 // For 8-bit divides, we just do a direct 9-bit by 8-bit multiply. 1015 (Div8u x (Const8 [c])) && umagicOK8(c) => 1016 (Trunc32to8 1017 (Rsh32Ux64 <typ.UInt32> 1018 (Mul32 <typ.UInt32> 1019 (Const32 <typ.UInt32> [int32(1<<8+umagic8(c).m)]) 1020 (ZeroExt8to32 x)) 1021 (Const64 <typ.UInt64> [8+umagic8(c).s]))) 1022 1023 // For 16-bit divides on 64-bit machines, we do a direct 17-bit by 16-bit multiply. 1024 (Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 8 => 1025 (Trunc64to16 1026 (Rsh64Ux64 <typ.UInt64> 1027 (Mul64 <typ.UInt64> 1028 (Const64 <typ.UInt64> [int64(1<<16+umagic16(c).m)]) 1029 (ZeroExt16to64 x)) 1030 (Const64 <typ.UInt64> [16+umagic16(c).s]))) 1031 1032 // For 16-bit divides on 32-bit machines 1033 (Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 4 && umagic16(c).m&1 == 0 => 1034 (Trunc32to16 1035 (Rsh32Ux64 <typ.UInt32> 1036 (Mul32 <typ.UInt32> 1037 (Const32 <typ.UInt32> [int32(1<<15+umagic16(c).m/2)]) 1038 (ZeroExt16to32 x)) 1039 (Const64 <typ.UInt64> [16+umagic16(c).s-1]))) 1040 (Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 4 && c&1 == 0 => 1041 (Trunc32to16 1042 (Rsh32Ux64 <typ.UInt32> 1043 (Mul32 <typ.UInt32> 1044 (Const32 <typ.UInt32> [int32(1<<15+(umagic16(c).m+1)/2)]) 1045 (Rsh32Ux64 <typ.UInt32> (ZeroExt16to32 x) (Const64 <typ.UInt64> [1]))) 1046 (Const64 <typ.UInt64> [16+umagic16(c).s-2]))) 1047 (Div16u x (Const16 [c])) && umagicOK16(c) && config.RegSize == 4 && config.useAvg => 1048 (Trunc32to16 1049 (Rsh32Ux64 <typ.UInt32> 1050 (Avg32u 1051 (Lsh32x64 <typ.UInt32> (ZeroExt16to32 x) (Const64 <typ.UInt64> [16])) 1052 (Mul32 <typ.UInt32> 1053 (Const32 <typ.UInt32> [int32(umagic16(c).m)]) 1054 (ZeroExt16to32 x))) 1055 (Const64 <typ.UInt64> [16+umagic16(c).s-1]))) 1056 1057 // For 32-bit divides on 32-bit machines 1058 (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 4 && umagic32(c).m&1 == 0 && config.useHmul => 1059 (Rsh32Ux64 <typ.UInt32> 1060 (Hmul32u <typ.UInt32> 1061 (Const32 <typ.UInt32> [int32(1<<31+umagic32(c).m/2)]) 1062 x) 1063 (Const64 <typ.UInt64> [umagic32(c).s-1])) 1064 (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 4 && c&1 == 0 && config.useHmul => 1065 (Rsh32Ux64 <typ.UInt32> 1066 (Hmul32u <typ.UInt32> 1067 (Const32 <typ.UInt32> [int32(1<<31+(umagic32(c).m+1)/2)]) 1068 (Rsh32Ux64 <typ.UInt32> x (Const64 <typ.UInt64> [1]))) 1069 (Const64 <typ.UInt64> [umagic32(c).s-2])) 1070 (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 4 && config.useAvg && config.useHmul => 1071 (Rsh32Ux64 <typ.UInt32> 1072 (Avg32u 1073 x 1074 (Hmul32u <typ.UInt32> 1075 (Const32 <typ.UInt32> [int32(umagic32(c).m)]) 1076 x)) 1077 (Const64 <typ.UInt64> [umagic32(c).s-1])) 1078 1079 // For 32-bit divides on 64-bit machines 1080 // We'll use a regular (non-hi) multiply for this case. 1081 (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 8 && umagic32(c).m&1 == 0 => 1082 (Trunc64to32 1083 (Rsh64Ux64 <typ.UInt64> 1084 (Mul64 <typ.UInt64> 1085 (Const64 <typ.UInt64> [int64(1<<31+umagic32(c).m/2)]) 1086 (ZeroExt32to64 x)) 1087 (Const64 <typ.UInt64> [32+umagic32(c).s-1]))) 1088 (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 8 && c&1 == 0 => 1089 (Trunc64to32 1090 (Rsh64Ux64 <typ.UInt64> 1091 (Mul64 <typ.UInt64> 1092 (Const64 <typ.UInt64> [int64(1<<31+(umagic32(c).m+1)/2)]) 1093 (Rsh64Ux64 <typ.UInt64> (ZeroExt32to64 x) (Const64 <typ.UInt64> [1]))) 1094 (Const64 <typ.UInt64> [32+umagic32(c).s-2]))) 1095 (Div32u x (Const32 [c])) && umagicOK32(c) && config.RegSize == 8 && config.useAvg => 1096 (Trunc64to32 1097 (Rsh64Ux64 <typ.UInt64> 1098 (Avg64u 1099 (Lsh64x64 <typ.UInt64> (ZeroExt32to64 x) (Const64 <typ.UInt64> [32])) 1100 (Mul64 <typ.UInt64> 1101 (Const64 <typ.UInt32> [int64(umagic32(c).m)]) 1102 (ZeroExt32to64 x))) 1103 (Const64 <typ.UInt64> [32+umagic32(c).s-1]))) 1104 1105 // For unsigned 64-bit divides on 32-bit machines, 1106 // if the constant fits in 16 bits (so that the last term 1107 // fits in 32 bits), convert to three 32-bit divides by a constant. 1108 // 1109 // If 1<<32 = Q * c + R 1110 // and x = hi << 32 + lo 1111 // 1112 // Then x = (hi/c*c + hi%c) << 32 + lo 1113 // = hi/c*c<<32 + hi%c<<32 + lo 1114 // = hi/c*c<<32 + (hi%c)*(Q*c+R) + lo/c*c + lo%c 1115 // = hi/c*c<<32 + (hi%c)*Q*c + lo/c*c + (hi%c*R+lo%c) 1116 // and x / c = (hi/c)<<32 + (hi%c)*Q + lo/c + (hi%c*R+lo%c)/c 1117 (Div64u x (Const64 [c])) && c > 0 && c <= 0xFFFF && umagicOK32(int32(c)) && config.RegSize == 4 && config.useHmul => 1118 (Add64 1119 (Add64 <typ.UInt64> 1120 (Add64 <typ.UInt64> 1121 (Lsh64x64 <typ.UInt64> 1122 (ZeroExt32to64 1123 (Div32u <typ.UInt32> 1124 (Trunc64to32 <typ.UInt32> (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [32]))) 1125 (Const32 <typ.UInt32> [int32(c)]))) 1126 (Const64 <typ.UInt64> [32])) 1127 (ZeroExt32to64 (Div32u <typ.UInt32> (Trunc64to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(c)])))) 1128 (Mul64 <typ.UInt64> 1129 (ZeroExt32to64 <typ.UInt64> 1130 (Mod32u <typ.UInt32> 1131 (Trunc64to32 <typ.UInt32> (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [32]))) 1132 (Const32 <typ.UInt32> [int32(c)]))) 1133 (Const64 <typ.UInt64> [int64((1<<32)/c)]))) 1134 (ZeroExt32to64 1135 (Div32u <typ.UInt32> 1136 (Add32 <typ.UInt32> 1137 (Mod32u <typ.UInt32> (Trunc64to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(c)])) 1138 (Mul32 <typ.UInt32> 1139 (Mod32u <typ.UInt32> 1140 (Trunc64to32 <typ.UInt32> (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [32]))) 1141 (Const32 <typ.UInt32> [int32(c)])) 1142 (Const32 <typ.UInt32> [int32((1<<32)%c)]))) 1143 (Const32 <typ.UInt32> [int32(c)])))) 1144 1145 // For 64-bit divides on 64-bit machines 1146 // (64-bit divides on 32-bit machines are lowered to a runtime call by the walk pass.) 1147 (Div64u x (Const64 [c])) && umagicOK64(c) && config.RegSize == 8 && umagic64(c).m&1 == 0 && config.useHmul => 1148 (Rsh64Ux64 <typ.UInt64> 1149 (Hmul64u <typ.UInt64> 1150 (Const64 <typ.UInt64> [int64(1<<63+umagic64(c).m/2)]) 1151 x) 1152 (Const64 <typ.UInt64> [umagic64(c).s-1])) 1153 (Div64u x (Const64 [c])) && umagicOK64(c) && config.RegSize == 8 && c&1 == 0 && config.useHmul => 1154 (Rsh64Ux64 <typ.UInt64> 1155 (Hmul64u <typ.UInt64> 1156 (Const64 <typ.UInt64> [int64(1<<63+(umagic64(c).m+1)/2)]) 1157 (Rsh64Ux64 <typ.UInt64> x (Const64 <typ.UInt64> [1]))) 1158 (Const64 <typ.UInt64> [umagic64(c).s-2])) 1159 (Div64u x (Const64 [c])) && umagicOK64(c) && config.RegSize == 8 && config.useAvg && config.useHmul => 1160 (Rsh64Ux64 <typ.UInt64> 1161 (Avg64u 1162 x 1163 (Hmul64u <typ.UInt64> 1164 (Const64 <typ.UInt64> [int64(umagic64(c).m)]) 1165 x)) 1166 (Const64 <typ.UInt64> [umagic64(c).s-1])) 1167 1168 // Signed divide by a negative constant. Rewrite to divide by a positive constant. 1169 (Div8 <t> n (Const8 [c])) && c < 0 && c != -1<<7 => (Neg8 (Div8 <t> n (Const8 <t> [-c]))) 1170 (Div16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 => (Neg16 (Div16 <t> n (Const16 <t> [-c]))) 1171 (Div32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 => (Neg32 (Div32 <t> n (Const32 <t> [-c]))) 1172 (Div64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 => (Neg64 (Div64 <t> n (Const64 <t> [-c]))) 1173 1174 // Dividing by the most-negative number. Result is always 0 except 1175 // if the input is also the most-negative number. 1176 // We can detect that using the sign bit of x & -x. 1177 (Div8 <t> x (Const8 [-1<<7 ])) => (Rsh8Ux64 (And8 <t> x (Neg8 <t> x)) (Const64 <typ.UInt64> [7 ])) 1178 (Div16 <t> x (Const16 [-1<<15])) => (Rsh16Ux64 (And16 <t> x (Neg16 <t> x)) (Const64 <typ.UInt64> [15])) 1179 (Div32 <t> x (Const32 [-1<<31])) => (Rsh32Ux64 (And32 <t> x (Neg32 <t> x)) (Const64 <typ.UInt64> [31])) 1180 (Div64 <t> x (Const64 [-1<<63])) => (Rsh64Ux64 (And64 <t> x (Neg64 <t> x)) (Const64 <typ.UInt64> [63])) 1181 1182 // Signed divide by power of 2. 1183 // n / c = n >> log(c) if n >= 0 1184 // = (n+c-1) >> log(c) if n < 0 1185 // We conditionally add c-1 by adding n>>63>>(64-log(c)) (first shift signed, second shift unsigned). 1186 (Div8 <t> n (Const8 [c])) && isPowerOfTwo8(c) => 1187 (Rsh8x64 1188 (Add8 <t> n (Rsh8Ux64 <t> (Rsh8x64 <t> n (Const64 <typ.UInt64> [ 7])) (Const64 <typ.UInt64> [int64( 8-log8(c))]))) 1189 (Const64 <typ.UInt64> [int64(log8(c))])) 1190 (Div16 <t> n (Const16 [c])) && isPowerOfTwo16(c) => 1191 (Rsh16x64 1192 (Add16 <t> n (Rsh16Ux64 <t> (Rsh16x64 <t> n (Const64 <typ.UInt64> [15])) (Const64 <typ.UInt64> [int64(16-log16(c))]))) 1193 (Const64 <typ.UInt64> [int64(log16(c))])) 1194 (Div32 <t> n (Const32 [c])) && isPowerOfTwo32(c) => 1195 (Rsh32x64 1196 (Add32 <t> n (Rsh32Ux64 <t> (Rsh32x64 <t> n (Const64 <typ.UInt64> [31])) (Const64 <typ.UInt64> [int64(32-log32(c))]))) 1197 (Const64 <typ.UInt64> [int64(log32(c))])) 1198 (Div64 <t> n (Const64 [c])) && isPowerOfTwo64(c) => 1199 (Rsh64x64 1200 (Add64 <t> n (Rsh64Ux64 <t> (Rsh64x64 <t> n (Const64 <typ.UInt64> [63])) (Const64 <typ.UInt64> [int64(64-log64(c))]))) 1201 (Const64 <typ.UInt64> [int64(log64(c))])) 1202 1203 // Signed divide, not a power of 2. Strength reduce to a multiply. 1204 (Div8 <t> x (Const8 [c])) && smagicOK8(c) => 1205 (Sub8 <t> 1206 (Rsh32x64 <t> 1207 (Mul32 <typ.UInt32> 1208 (Const32 <typ.UInt32> [int32(smagic8(c).m)]) 1209 (SignExt8to32 x)) 1210 (Const64 <typ.UInt64> [8+smagic8(c).s])) 1211 (Rsh32x64 <t> 1212 (SignExt8to32 x) 1213 (Const64 <typ.UInt64> [31]))) 1214 (Div16 <t> x (Const16 [c])) && smagicOK16(c) => 1215 (Sub16 <t> 1216 (Rsh32x64 <t> 1217 (Mul32 <typ.UInt32> 1218 (Const32 <typ.UInt32> [int32(smagic16(c).m)]) 1219 (SignExt16to32 x)) 1220 (Const64 <typ.UInt64> [16+smagic16(c).s])) 1221 (Rsh32x64 <t> 1222 (SignExt16to32 x) 1223 (Const64 <typ.UInt64> [31]))) 1224 (Div32 <t> x (Const32 [c])) && smagicOK32(c) && config.RegSize == 8 => 1225 (Sub32 <t> 1226 (Rsh64x64 <t> 1227 (Mul64 <typ.UInt64> 1228 (Const64 <typ.UInt64> [int64(smagic32(c).m)]) 1229 (SignExt32to64 x)) 1230 (Const64 <typ.UInt64> [32+smagic32(c).s])) 1231 (Rsh64x64 <t> 1232 (SignExt32to64 x) 1233 (Const64 <typ.UInt64> [63]))) 1234 (Div32 <t> x (Const32 [c])) && smagicOK32(c) && config.RegSize == 4 && smagic32(c).m&1 == 0 && config.useHmul => 1235 (Sub32 <t> 1236 (Rsh32x64 <t> 1237 (Hmul32 <t> 1238 (Const32 <typ.UInt32> [int32(smagic32(c).m/2)]) 1239 x) 1240 (Const64 <typ.UInt64> [smagic32(c).s-1])) 1241 (Rsh32x64 <t> 1242 x 1243 (Const64 <typ.UInt64> [31]))) 1244 (Div32 <t> x (Const32 [c])) && smagicOK32(c) && config.RegSize == 4 && smagic32(c).m&1 != 0 && config.useHmul => 1245 (Sub32 <t> 1246 (Rsh32x64 <t> 1247 (Add32 <t> 1248 (Hmul32 <t> 1249 (Const32 <typ.UInt32> [int32(smagic32(c).m)]) 1250 x) 1251 x) 1252 (Const64 <typ.UInt64> [smagic32(c).s])) 1253 (Rsh32x64 <t> 1254 x 1255 (Const64 <typ.UInt64> [31]))) 1256 (Div64 <t> x (Const64 [c])) && smagicOK64(c) && smagic64(c).m&1 == 0 && config.useHmul => 1257 (Sub64 <t> 1258 (Rsh64x64 <t> 1259 (Hmul64 <t> 1260 (Const64 <typ.UInt64> [int64(smagic64(c).m/2)]) 1261 x) 1262 (Const64 <typ.UInt64> [smagic64(c).s-1])) 1263 (Rsh64x64 <t> 1264 x 1265 (Const64 <typ.UInt64> [63]))) 1266 (Div64 <t> x (Const64 [c])) && smagicOK64(c) && smagic64(c).m&1 != 0 && config.useHmul => 1267 (Sub64 <t> 1268 (Rsh64x64 <t> 1269 (Add64 <t> 1270 (Hmul64 <t> 1271 (Const64 <typ.UInt64> [int64(smagic64(c).m)]) 1272 x) 1273 x) 1274 (Const64 <typ.UInt64> [smagic64(c).s])) 1275 (Rsh64x64 <t> 1276 x 1277 (Const64 <typ.UInt64> [63]))) 1278 1279 // Unsigned mod by power of 2 constant. 1280 (Mod8u <t> n (Const8 [c])) && isPowerOfTwo8(c) => (And8 n (Const8 <t> [c-1])) 1281 (Mod16u <t> n (Const16 [c])) && isPowerOfTwo16(c) => (And16 n (Const16 <t> [c-1])) 1282 (Mod32u <t> n (Const32 [c])) && isPowerOfTwo32(c) => (And32 n (Const32 <t> [c-1])) 1283 (Mod64u <t> n (Const64 [c])) && isPowerOfTwo64(c) => (And64 n (Const64 <t> [c-1])) 1284 (Mod64u <t> n (Const64 [-1<<63])) => (And64 n (Const64 <t> [1<<63-1])) 1285 1286 // Signed non-negative mod by power of 2 constant. 1287 (Mod8 <t> n (Const8 [c])) && isNonNegative(n) && isPowerOfTwo8(c) => (And8 n (Const8 <t> [c-1])) 1288 (Mod16 <t> n (Const16 [c])) && isNonNegative(n) && isPowerOfTwo16(c) => (And16 n (Const16 <t> [c-1])) 1289 (Mod32 <t> n (Const32 [c])) && isNonNegative(n) && isPowerOfTwo32(c) => (And32 n (Const32 <t> [c-1])) 1290 (Mod64 <t> n (Const64 [c])) && isNonNegative(n) && isPowerOfTwo64(c) => (And64 n (Const64 <t> [c-1])) 1291 (Mod64 n (Const64 [-1<<63])) && isNonNegative(n) => n 1292 1293 // Signed mod by negative constant. 1294 (Mod8 <t> n (Const8 [c])) && c < 0 && c != -1<<7 => (Mod8 <t> n (Const8 <t> [-c])) 1295 (Mod16 <t> n (Const16 [c])) && c < 0 && c != -1<<15 => (Mod16 <t> n (Const16 <t> [-c])) 1296 (Mod32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 => (Mod32 <t> n (Const32 <t> [-c])) 1297 (Mod64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 => (Mod64 <t> n (Const64 <t> [-c])) 1298 1299 // All other mods by constants, do A%B = A-(A/B*B). 1300 // This implements % with two * and a bunch of ancillary ops. 1301 // One of the * is free if the user's code also computes A/B. 1302 (Mod8 <t> x (Const8 [c])) && x.Op != OpConst8 && (c > 0 || c == -1<<7) 1303 => (Sub8 x (Mul8 <t> (Div8 <t> x (Const8 <t> [c])) (Const8 <t> [c]))) 1304 (Mod16 <t> x (Const16 [c])) && x.Op != OpConst16 && (c > 0 || c == -1<<15) 1305 => (Sub16 x (Mul16 <t> (Div16 <t> x (Const16 <t> [c])) (Const16 <t> [c]))) 1306 (Mod32 <t> x (Const32 [c])) && x.Op != OpConst32 && (c > 0 || c == -1<<31) 1307 => (Sub32 x (Mul32 <t> (Div32 <t> x (Const32 <t> [c])) (Const32 <t> [c]))) 1308 (Mod64 <t> x (Const64 [c])) && x.Op != OpConst64 && (c > 0 || c == -1<<63) 1309 => (Sub64 x (Mul64 <t> (Div64 <t> x (Const64 <t> [c])) (Const64 <t> [c]))) 1310 (Mod8u <t> x (Const8 [c])) && x.Op != OpConst8 && c > 0 && umagicOK8( c) 1311 => (Sub8 x (Mul8 <t> (Div8u <t> x (Const8 <t> [c])) (Const8 <t> [c]))) 1312 (Mod16u <t> x (Const16 [c])) && x.Op != OpConst16 && c > 0 && umagicOK16(c) 1313 => (Sub16 x (Mul16 <t> (Div16u <t> x (Const16 <t> [c])) (Const16 <t> [c]))) 1314 (Mod32u <t> x (Const32 [c])) && x.Op != OpConst32 && c > 0 && umagicOK32(c) 1315 => (Sub32 x (Mul32 <t> (Div32u <t> x (Const32 <t> [c])) (Const32 <t> [c]))) 1316 (Mod64u <t> x (Const64 [c])) && x.Op != OpConst64 && c > 0 && umagicOK64(c) 1317 => (Sub64 x (Mul64 <t> (Div64u <t> x (Const64 <t> [c])) (Const64 <t> [c]))) 1318 1319 // For architectures without rotates on less than 32-bits, promote these checks to 32-bit. 1320 (Eq8 (Mod8u x (Const8 [c])) (Const8 [0])) && x.Op != OpConst8 && udivisibleOK8(c) && !hasSmallRotate(config) => 1321 (Eq32 (Mod32u <typ.UInt32> (ZeroExt8to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(uint8(c))])) (Const32 <typ.UInt32> [0])) 1322 (Eq16 (Mod16u x (Const16 [c])) (Const16 [0])) && x.Op != OpConst16 && udivisibleOK16(c) && !hasSmallRotate(config) => 1323 (Eq32 (Mod32u <typ.UInt32> (ZeroExt16to32 <typ.UInt32> x) (Const32 <typ.UInt32> [int32(uint16(c))])) (Const32 <typ.UInt32> [0])) 1324 (Eq8 (Mod8 x (Const8 [c])) (Const8 [0])) && x.Op != OpConst8 && sdivisibleOK8(c) && !hasSmallRotate(config) => 1325 (Eq32 (Mod32 <typ.Int32> (SignExt8to32 <typ.Int32> x) (Const32 <typ.Int32> [int32(c)])) (Const32 <typ.Int32> [0])) 1326 (Eq16 (Mod16 x (Const16 [c])) (Const16 [0])) && x.Op != OpConst16 && sdivisibleOK16(c) && !hasSmallRotate(config) => 1327 (Eq32 (Mod32 <typ.Int32> (SignExt16to32 <typ.Int32> x) (Const32 <typ.Int32> [int32(c)])) (Const32 <typ.Int32> [0])) 1328 1329 // Divisibility checks x%c == 0 convert to multiply and rotate. 1330 // Note, x%c == 0 is rewritten as x == c*(x/c) during the opt pass 1331 // where (x/c) is performed using multiplication with magic constants. 1332 // To rewrite x%c == 0 requires pattern matching the rewritten expression 1333 // and checking that the division by the same constant wasn't already calculated. 1334 // This check is made by counting uses of the magic constant multiplication. 1335 // Note that if there were an intermediate opt pass, this rule could be applied 1336 // directly on the Div op and magic division rewrites could be delayed to late opt. 1337 1338 // Unsigned divisibility checks convert to multiply and rotate. 1339 (Eq8 x (Mul8 (Const8 [c]) 1340 (Trunc32to8 1341 (Rsh32Ux64 1342 mul:(Mul32 1343 (Const32 [m]) 1344 (ZeroExt8to32 x)) 1345 (Const64 [s]))) 1346 ) 1347 ) 1348 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1349 && m == int32(1<<8+umagic8(c).m) && s == 8+umagic8(c).s 1350 && x.Op != OpConst8 && udivisibleOK8(c) 1351 => (Leq8U 1352 (RotateLeft8 <typ.UInt8> 1353 (Mul8 <typ.UInt8> 1354 (Const8 <typ.UInt8> [int8(udivisible8(c).m)]) 1355 x) 1356 (Const8 <typ.UInt8> [int8(8-udivisible8(c).k)]) 1357 ) 1358 (Const8 <typ.UInt8> [int8(udivisible8(c).max)]) 1359 ) 1360 1361 (Eq16 x (Mul16 (Const16 [c]) 1362 (Trunc64to16 1363 (Rsh64Ux64 1364 mul:(Mul64 1365 (Const64 [m]) 1366 (ZeroExt16to64 x)) 1367 (Const64 [s]))) 1368 ) 1369 ) 1370 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1371 && m == int64(1<<16+umagic16(c).m) && s == 16+umagic16(c).s 1372 && x.Op != OpConst16 && udivisibleOK16(c) 1373 => (Leq16U 1374 (RotateLeft16 <typ.UInt16> 1375 (Mul16 <typ.UInt16> 1376 (Const16 <typ.UInt16> [int16(udivisible16(c).m)]) 1377 x) 1378 (Const16 <typ.UInt16> [int16(16-udivisible16(c).k)]) 1379 ) 1380 (Const16 <typ.UInt16> [int16(udivisible16(c).max)]) 1381 ) 1382 1383 (Eq16 x (Mul16 (Const16 [c]) 1384 (Trunc32to16 1385 (Rsh32Ux64 1386 mul:(Mul32 1387 (Const32 [m]) 1388 (ZeroExt16to32 x)) 1389 (Const64 [s]))) 1390 ) 1391 ) 1392 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1393 && m == int32(1<<15+umagic16(c).m/2) && s == 16+umagic16(c).s-1 1394 && x.Op != OpConst16 && udivisibleOK16(c) 1395 => (Leq16U 1396 (RotateLeft16 <typ.UInt16> 1397 (Mul16 <typ.UInt16> 1398 (Const16 <typ.UInt16> [int16(udivisible16(c).m)]) 1399 x) 1400 (Const16 <typ.UInt16> [int16(16-udivisible16(c).k)]) 1401 ) 1402 (Const16 <typ.UInt16> [int16(udivisible16(c).max)]) 1403 ) 1404 1405 (Eq16 x (Mul16 (Const16 [c]) 1406 (Trunc32to16 1407 (Rsh32Ux64 1408 mul:(Mul32 1409 (Const32 [m]) 1410 (Rsh32Ux64 (ZeroExt16to32 x) (Const64 [1]))) 1411 (Const64 [s]))) 1412 ) 1413 ) 1414 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1415 && m == int32(1<<15+(umagic16(c).m+1)/2) && s == 16+umagic16(c).s-2 1416 && x.Op != OpConst16 && udivisibleOK16(c) 1417 => (Leq16U 1418 (RotateLeft16 <typ.UInt16> 1419 (Mul16 <typ.UInt16> 1420 (Const16 <typ.UInt16> [int16(udivisible16(c).m)]) 1421 x) 1422 (Const16 <typ.UInt16> [int16(16-udivisible16(c).k)]) 1423 ) 1424 (Const16 <typ.UInt16> [int16(udivisible16(c).max)]) 1425 ) 1426 1427 (Eq16 x (Mul16 (Const16 [c]) 1428 (Trunc32to16 1429 (Rsh32Ux64 1430 (Avg32u 1431 (Lsh32x64 (ZeroExt16to32 x) (Const64 [16])) 1432 mul:(Mul32 1433 (Const32 [m]) 1434 (ZeroExt16to32 x))) 1435 (Const64 [s]))) 1436 ) 1437 ) 1438 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1439 && m == int32(umagic16(c).m) && s == 16+umagic16(c).s-1 1440 && x.Op != OpConst16 && udivisibleOK16(c) 1441 => (Leq16U 1442 (RotateLeft16 <typ.UInt16> 1443 (Mul16 <typ.UInt16> 1444 (Const16 <typ.UInt16> [int16(udivisible16(c).m)]) 1445 x) 1446 (Const16 <typ.UInt16> [int16(16-udivisible16(c).k)]) 1447 ) 1448 (Const16 <typ.UInt16> [int16(udivisible16(c).max)]) 1449 ) 1450 1451 (Eq32 x (Mul32 (Const32 [c]) 1452 (Rsh32Ux64 1453 mul:(Hmul32u 1454 (Const32 [m]) 1455 x) 1456 (Const64 [s])) 1457 ) 1458 ) 1459 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1460 && m == int32(1<<31+umagic32(c).m/2) && s == umagic32(c).s-1 1461 && x.Op != OpConst32 && udivisibleOK32(c) 1462 => (Leq32U 1463 (RotateLeft32 <typ.UInt32> 1464 (Mul32 <typ.UInt32> 1465 (Const32 <typ.UInt32> [int32(udivisible32(c).m)]) 1466 x) 1467 (Const32 <typ.UInt32> [int32(32-udivisible32(c).k)]) 1468 ) 1469 (Const32 <typ.UInt32> [int32(udivisible32(c).max)]) 1470 ) 1471 1472 (Eq32 x (Mul32 (Const32 [c]) 1473 (Rsh32Ux64 1474 mul:(Hmul32u 1475 (Const32 <typ.UInt32> [m]) 1476 (Rsh32Ux64 x (Const64 [1]))) 1477 (Const64 [s])) 1478 ) 1479 ) 1480 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1481 && m == int32(1<<31+(umagic32(c).m+1)/2) && s == umagic32(c).s-2 1482 && x.Op != OpConst32 && udivisibleOK32(c) 1483 => (Leq32U 1484 (RotateLeft32 <typ.UInt32> 1485 (Mul32 <typ.UInt32> 1486 (Const32 <typ.UInt32> [int32(udivisible32(c).m)]) 1487 x) 1488 (Const32 <typ.UInt32> [int32(32-udivisible32(c).k)]) 1489 ) 1490 (Const32 <typ.UInt32> [int32(udivisible32(c).max)]) 1491 ) 1492 1493 (Eq32 x (Mul32 (Const32 [c]) 1494 (Rsh32Ux64 1495 (Avg32u 1496 x 1497 mul:(Hmul32u 1498 (Const32 [m]) 1499 x)) 1500 (Const64 [s])) 1501 ) 1502 ) 1503 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1504 && m == int32(umagic32(c).m) && s == umagic32(c).s-1 1505 && x.Op != OpConst32 && udivisibleOK32(c) 1506 => (Leq32U 1507 (RotateLeft32 <typ.UInt32> 1508 (Mul32 <typ.UInt32> 1509 (Const32 <typ.UInt32> [int32(udivisible32(c).m)]) 1510 x) 1511 (Const32 <typ.UInt32> [int32(32-udivisible32(c).k)]) 1512 ) 1513 (Const32 <typ.UInt32> [int32(udivisible32(c).max)]) 1514 ) 1515 1516 (Eq32 x (Mul32 (Const32 [c]) 1517 (Trunc64to32 1518 (Rsh64Ux64 1519 mul:(Mul64 1520 (Const64 [m]) 1521 (ZeroExt32to64 x)) 1522 (Const64 [s]))) 1523 ) 1524 ) 1525 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1526 && m == int64(1<<31+umagic32(c).m/2) && s == 32+umagic32(c).s-1 1527 && x.Op != OpConst32 && udivisibleOK32(c) 1528 => (Leq32U 1529 (RotateLeft32 <typ.UInt32> 1530 (Mul32 <typ.UInt32> 1531 (Const32 <typ.UInt32> [int32(udivisible32(c).m)]) 1532 x) 1533 (Const32 <typ.UInt32> [int32(32-udivisible32(c).k)]) 1534 ) 1535 (Const32 <typ.UInt32> [int32(udivisible32(c).max)]) 1536 ) 1537 1538 (Eq32 x (Mul32 (Const32 [c]) 1539 (Trunc64to32 1540 (Rsh64Ux64 1541 mul:(Mul64 1542 (Const64 [m]) 1543 (Rsh64Ux64 (ZeroExt32to64 x) (Const64 [1]))) 1544 (Const64 [s]))) 1545 ) 1546 ) 1547 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1548 && m == int64(1<<31+(umagic32(c).m+1)/2) && s == 32+umagic32(c).s-2 1549 && x.Op != OpConst32 && udivisibleOK32(c) 1550 => (Leq32U 1551 (RotateLeft32 <typ.UInt32> 1552 (Mul32 <typ.UInt32> 1553 (Const32 <typ.UInt32> [int32(udivisible32(c).m)]) 1554 x) 1555 (Const32 <typ.UInt32> [int32(32-udivisible32(c).k)]) 1556 ) 1557 (Const32 <typ.UInt32> [int32(udivisible32(c).max)]) 1558 ) 1559 1560 (Eq32 x (Mul32 (Const32 [c]) 1561 (Trunc64to32 1562 (Rsh64Ux64 1563 (Avg64u 1564 (Lsh64x64 (ZeroExt32to64 x) (Const64 [32])) 1565 mul:(Mul64 1566 (Const64 [m]) 1567 (ZeroExt32to64 x))) 1568 (Const64 [s]))) 1569 ) 1570 ) 1571 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1572 && m == int64(umagic32(c).m) && s == 32+umagic32(c).s-1 1573 && x.Op != OpConst32 && udivisibleOK32(c) 1574 => (Leq32U 1575 (RotateLeft32 <typ.UInt32> 1576 (Mul32 <typ.UInt32> 1577 (Const32 <typ.UInt32> [int32(udivisible32(c).m)]) 1578 x) 1579 (Const32 <typ.UInt32> [int32(32-udivisible32(c).k)]) 1580 ) 1581 (Const32 <typ.UInt32> [int32(udivisible32(c).max)]) 1582 ) 1583 1584 (Eq64 x (Mul64 (Const64 [c]) 1585 (Rsh64Ux64 1586 mul:(Hmul64u 1587 (Const64 [m]) 1588 x) 1589 (Const64 [s])) 1590 ) 1591 ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1592 && m == int64(1<<63+umagic64(c).m/2) && s == umagic64(c).s-1 1593 && x.Op != OpConst64 && udivisibleOK64(c) 1594 => (Leq64U 1595 (RotateLeft64 <typ.UInt64> 1596 (Mul64 <typ.UInt64> 1597 (Const64 <typ.UInt64> [int64(udivisible64(c).m)]) 1598 x) 1599 (Const64 <typ.UInt64> [64-udivisible64(c).k]) 1600 ) 1601 (Const64 <typ.UInt64> [int64(udivisible64(c).max)]) 1602 ) 1603 (Eq64 x (Mul64 (Const64 [c]) 1604 (Rsh64Ux64 1605 mul:(Hmul64u 1606 (Const64 [m]) 1607 (Rsh64Ux64 x (Const64 [1]))) 1608 (Const64 [s])) 1609 ) 1610 ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1611 && m == int64(1<<63+(umagic64(c).m+1)/2) && s == umagic64(c).s-2 1612 && x.Op != OpConst64 && udivisibleOK64(c) 1613 => (Leq64U 1614 (RotateLeft64 <typ.UInt64> 1615 (Mul64 <typ.UInt64> 1616 (Const64 <typ.UInt64> [int64(udivisible64(c).m)]) 1617 x) 1618 (Const64 <typ.UInt64> [64-udivisible64(c).k]) 1619 ) 1620 (Const64 <typ.UInt64> [int64(udivisible64(c).max)]) 1621 ) 1622 (Eq64 x (Mul64 (Const64 [c]) 1623 (Rsh64Ux64 1624 (Avg64u 1625 x 1626 mul:(Hmul64u 1627 (Const64 [m]) 1628 x)) 1629 (Const64 [s])) 1630 ) 1631 ) && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1632 && m == int64(umagic64(c).m) && s == umagic64(c).s-1 1633 && x.Op != OpConst64 && udivisibleOK64(c) 1634 => (Leq64U 1635 (RotateLeft64 <typ.UInt64> 1636 (Mul64 <typ.UInt64> 1637 (Const64 <typ.UInt64> [int64(udivisible64(c).m)]) 1638 x) 1639 (Const64 <typ.UInt64> [64-udivisible64(c).k]) 1640 ) 1641 (Const64 <typ.UInt64> [int64(udivisible64(c).max)]) 1642 ) 1643 1644 // Signed divisibility checks convert to multiply, add and rotate. 1645 (Eq8 x (Mul8 (Const8 [c]) 1646 (Sub8 1647 (Rsh32x64 1648 mul:(Mul32 1649 (Const32 [m]) 1650 (SignExt8to32 x)) 1651 (Const64 [s])) 1652 (Rsh32x64 1653 (SignExt8to32 x) 1654 (Const64 [31]))) 1655 ) 1656 ) 1657 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1658 && m == int32(smagic8(c).m) && s == 8+smagic8(c).s 1659 && x.Op != OpConst8 && sdivisibleOK8(c) 1660 => (Leq8U 1661 (RotateLeft8 <typ.UInt8> 1662 (Add8 <typ.UInt8> 1663 (Mul8 <typ.UInt8> 1664 (Const8 <typ.UInt8> [int8(sdivisible8(c).m)]) 1665 x) 1666 (Const8 <typ.UInt8> [int8(sdivisible8(c).a)]) 1667 ) 1668 (Const8 <typ.UInt8> [int8(8-sdivisible8(c).k)]) 1669 ) 1670 (Const8 <typ.UInt8> [int8(sdivisible8(c).max)]) 1671 ) 1672 1673 (Eq16 x (Mul16 (Const16 [c]) 1674 (Sub16 1675 (Rsh32x64 1676 mul:(Mul32 1677 (Const32 [m]) 1678 (SignExt16to32 x)) 1679 (Const64 [s])) 1680 (Rsh32x64 1681 (SignExt16to32 x) 1682 (Const64 [31]))) 1683 ) 1684 ) 1685 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1686 && m == int32(smagic16(c).m) && s == 16+smagic16(c).s 1687 && x.Op != OpConst16 && sdivisibleOK16(c) 1688 => (Leq16U 1689 (RotateLeft16 <typ.UInt16> 1690 (Add16 <typ.UInt16> 1691 (Mul16 <typ.UInt16> 1692 (Const16 <typ.UInt16> [int16(sdivisible16(c).m)]) 1693 x) 1694 (Const16 <typ.UInt16> [int16(sdivisible16(c).a)]) 1695 ) 1696 (Const16 <typ.UInt16> [int16(16-sdivisible16(c).k)]) 1697 ) 1698 (Const16 <typ.UInt16> [int16(sdivisible16(c).max)]) 1699 ) 1700 1701 (Eq32 x (Mul32 (Const32 [c]) 1702 (Sub32 1703 (Rsh64x64 1704 mul:(Mul64 1705 (Const64 [m]) 1706 (SignExt32to64 x)) 1707 (Const64 [s])) 1708 (Rsh64x64 1709 (SignExt32to64 x) 1710 (Const64 [63]))) 1711 ) 1712 ) 1713 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1714 && m == int64(smagic32(c).m) && s == 32+smagic32(c).s 1715 && x.Op != OpConst32 && sdivisibleOK32(c) 1716 => (Leq32U 1717 (RotateLeft32 <typ.UInt32> 1718 (Add32 <typ.UInt32> 1719 (Mul32 <typ.UInt32> 1720 (Const32 <typ.UInt32> [int32(sdivisible32(c).m)]) 1721 x) 1722 (Const32 <typ.UInt32> [int32(sdivisible32(c).a)]) 1723 ) 1724 (Const32 <typ.UInt32> [int32(32-sdivisible32(c).k)]) 1725 ) 1726 (Const32 <typ.UInt32> [int32(sdivisible32(c).max)]) 1727 ) 1728 1729 (Eq32 x (Mul32 (Const32 [c]) 1730 (Sub32 1731 (Rsh32x64 1732 mul:(Hmul32 1733 (Const32 [m]) 1734 x) 1735 (Const64 [s])) 1736 (Rsh32x64 1737 x 1738 (Const64 [31]))) 1739 ) 1740 ) 1741 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1742 && m == int32(smagic32(c).m/2) && s == smagic32(c).s-1 1743 && x.Op != OpConst32 && sdivisibleOK32(c) 1744 => (Leq32U 1745 (RotateLeft32 <typ.UInt32> 1746 (Add32 <typ.UInt32> 1747 (Mul32 <typ.UInt32> 1748 (Const32 <typ.UInt32> [int32(sdivisible32(c).m)]) 1749 x) 1750 (Const32 <typ.UInt32> [int32(sdivisible32(c).a)]) 1751 ) 1752 (Const32 <typ.UInt32> [int32(32-sdivisible32(c).k)]) 1753 ) 1754 (Const32 <typ.UInt32> [int32(sdivisible32(c).max)]) 1755 ) 1756 1757 (Eq32 x (Mul32 (Const32 [c]) 1758 (Sub32 1759 (Rsh32x64 1760 (Add32 1761 mul:(Hmul32 1762 (Const32 [m]) 1763 x) 1764 x) 1765 (Const64 [s])) 1766 (Rsh32x64 1767 x 1768 (Const64 [31]))) 1769 ) 1770 ) 1771 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1772 && m == int32(smagic32(c).m) && s == smagic32(c).s 1773 && x.Op != OpConst32 && sdivisibleOK32(c) 1774 => (Leq32U 1775 (RotateLeft32 <typ.UInt32> 1776 (Add32 <typ.UInt32> 1777 (Mul32 <typ.UInt32> 1778 (Const32 <typ.UInt32> [int32(sdivisible32(c).m)]) 1779 x) 1780 (Const32 <typ.UInt32> [int32(sdivisible32(c).a)]) 1781 ) 1782 (Const32 <typ.UInt32> [int32(32-sdivisible32(c).k)]) 1783 ) 1784 (Const32 <typ.UInt32> [int32(sdivisible32(c).max)]) 1785 ) 1786 1787 (Eq64 x (Mul64 (Const64 [c]) 1788 (Sub64 1789 (Rsh64x64 1790 mul:(Hmul64 1791 (Const64 [m]) 1792 x) 1793 (Const64 [s])) 1794 (Rsh64x64 1795 x 1796 (Const64 [63]))) 1797 ) 1798 ) 1799 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1800 && m == int64(smagic64(c).m/2) && s == smagic64(c).s-1 1801 && x.Op != OpConst64 && sdivisibleOK64(c) 1802 => (Leq64U 1803 (RotateLeft64 <typ.UInt64> 1804 (Add64 <typ.UInt64> 1805 (Mul64 <typ.UInt64> 1806 (Const64 <typ.UInt64> [int64(sdivisible64(c).m)]) 1807 x) 1808 (Const64 <typ.UInt64> [int64(sdivisible64(c).a)]) 1809 ) 1810 (Const64 <typ.UInt64> [64-sdivisible64(c).k]) 1811 ) 1812 (Const64 <typ.UInt64> [int64(sdivisible64(c).max)]) 1813 ) 1814 1815 (Eq64 x (Mul64 (Const64 [c]) 1816 (Sub64 1817 (Rsh64x64 1818 (Add64 1819 mul:(Hmul64 1820 (Const64 [m]) 1821 x) 1822 x) 1823 (Const64 [s])) 1824 (Rsh64x64 1825 x 1826 (Const64 [63]))) 1827 ) 1828 ) 1829 && v.Block.Func.pass.name != "opt" && mul.Uses == 1 1830 && m == int64(smagic64(c).m) && s == smagic64(c).s 1831 && x.Op != OpConst64 && sdivisibleOK64(c) 1832 => (Leq64U 1833 (RotateLeft64 <typ.UInt64> 1834 (Add64 <typ.UInt64> 1835 (Mul64 <typ.UInt64> 1836 (Const64 <typ.UInt64> [int64(sdivisible64(c).m)]) 1837 x) 1838 (Const64 <typ.UInt64> [int64(sdivisible64(c).a)]) 1839 ) 1840 (Const64 <typ.UInt64> [64-sdivisible64(c).k]) 1841 ) 1842 (Const64 <typ.UInt64> [int64(sdivisible64(c).max)]) 1843 ) 1844 1845 // Divisibility check for signed integers for power of two constant are simple mask. 1846 // However, we must match against the rewritten n%c == 0 -> n - c*(n/c) == 0 -> n == c*(n/c) 1847 // where n/c contains fixup code to handle signed n. 1848 ((Eq8|Neq8) n (Lsh8x64 1849 (Rsh8x64 1850 (Add8 <t> n (Rsh8Ux64 <t> (Rsh8x64 <t> n (Const64 <typ.UInt64> [ 7])) (Const64 <typ.UInt64> [kbar]))) 1851 (Const64 <typ.UInt64> [k])) 1852 (Const64 <typ.UInt64> [k])) 1853 ) && k > 0 && k < 7 && kbar == 8 - k 1854 => ((Eq8|Neq8) (And8 <t> n (Const8 <t> [1<<uint(k)-1])) (Const8 <t> [0])) 1855 1856 ((Eq16|Neq16) n (Lsh16x64 1857 (Rsh16x64 1858 (Add16 <t> n (Rsh16Ux64 <t> (Rsh16x64 <t> n (Const64 <typ.UInt64> [15])) (Const64 <typ.UInt64> [kbar]))) 1859 (Const64 <typ.UInt64> [k])) 1860 (Const64 <typ.UInt64> [k])) 1861 ) && k > 0 && k < 15 && kbar == 16 - k 1862 => ((Eq16|Neq16) (And16 <t> n (Const16 <t> [1<<uint(k)-1])) (Const16 <t> [0])) 1863 1864 ((Eq32|Neq32) n (Lsh32x64 1865 (Rsh32x64 1866 (Add32 <t> n (Rsh32Ux64 <t> (Rsh32x64 <t> n (Const64 <typ.UInt64> [31])) (Const64 <typ.UInt64> [kbar]))) 1867 (Const64 <typ.UInt64> [k])) 1868 (Const64 <typ.UInt64> [k])) 1869 ) && k > 0 && k < 31 && kbar == 32 - k 1870 => ((Eq32|Neq32) (And32 <t> n (Const32 <t> [1<<uint(k)-1])) (Const32 <t> [0])) 1871 1872 ((Eq64|Neq64) n (Lsh64x64 1873 (Rsh64x64 1874 (Add64 <t> n (Rsh64Ux64 <t> (Rsh64x64 <t> n (Const64 <typ.UInt64> [63])) (Const64 <typ.UInt64> [kbar]))) 1875 (Const64 <typ.UInt64> [k])) 1876 (Const64 <typ.UInt64> [k])) 1877 ) && k > 0 && k < 63 && kbar == 64 - k 1878 => ((Eq64|Neq64) (And64 <t> n (Const64 <t> [1<<uint(k)-1])) (Const64 <t> [0])) 1879 1880 (Eq(8|16|32|64) s:(Sub(8|16|32|64) x y) (Const(8|16|32|64) [0])) && s.Uses == 1 => (Eq(8|16|32|64) x y) 1881 (Neq(8|16|32|64) s:(Sub(8|16|32|64) x y) (Const(8|16|32|64) [0])) && s.Uses == 1 => (Neq(8|16|32|64) x y) 1882 1883 // Optimize bitsets 1884 (Eq8 (And8 <t> x (Const8 <t> [y])) (Const8 <t> [y])) && oneBit8(y) 1885 => (Neq8 (And8 <t> x (Const8 <t> [y])) (Const8 <t> [0])) 1886 (Eq16 (And16 <t> x (Const16 <t> [y])) (Const16 <t> [y])) && oneBit16(y) 1887 => (Neq16 (And16 <t> x (Const16 <t> [y])) (Const16 <t> [0])) 1888 (Eq32 (And32 <t> x (Const32 <t> [y])) (Const32 <t> [y])) && oneBit32(y) 1889 => (Neq32 (And32 <t> x (Const32 <t> [y])) (Const32 <t> [0])) 1890 (Eq64 (And64 <t> x (Const64 <t> [y])) (Const64 <t> [y])) && oneBit64(y) 1891 => (Neq64 (And64 <t> x (Const64 <t> [y])) (Const64 <t> [0])) 1892 (Neq8 (And8 <t> x (Const8 <t> [y])) (Const8 <t> [y])) && oneBit8(y) 1893 => (Eq8 (And8 <t> x (Const8 <t> [y])) (Const8 <t> [0])) 1894 (Neq16 (And16 <t> x (Const16 <t> [y])) (Const16 <t> [y])) && oneBit16(y) 1895 => (Eq16 (And16 <t> x (Const16 <t> [y])) (Const16 <t> [0])) 1896 (Neq32 (And32 <t> x (Const32 <t> [y])) (Const32 <t> [y])) && oneBit32(y) 1897 => (Eq32 (And32 <t> x (Const32 <t> [y])) (Const32 <t> [0])) 1898 (Neq64 (And64 <t> x (Const64 <t> [y])) (Const64 <t> [y])) && oneBit64(y) 1899 => (Eq64 (And64 <t> x (Const64 <t> [y])) (Const64 <t> [0])) 1900 1901 // Reassociate expressions involving 1902 // constants such that constants come first, 1903 // exposing obvious constant-folding opportunities. 1904 // Reassociate (op (op y C) x) to (op C (op x y)) or similar, where C 1905 // is constant, which pushes constants to the outside 1906 // of the expression. At that point, any constant-folding 1907 // opportunities should be obvious. 1908 // Note: don't include AddPtr here! In order to maintain the 1909 // invariant that pointers must stay within the pointed-to object, 1910 // we can't pull part of a pointer computation above the AddPtr. 1911 // See issue 37881. 1912 // Note: we don't need to handle any (x-C) cases because we already rewrite 1913 // (x-C) to (x+(-C)). 1914 1915 // x + (C + z) -> C + (x + z) 1916 (Add64 (Add64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Add64 i (Add64 <t> z x)) 1917 (Add32 (Add32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Add32 i (Add32 <t> z x)) 1918 (Add16 (Add16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Add16 i (Add16 <t> z x)) 1919 (Add8 (Add8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Add8 i (Add8 <t> z x)) 1920 1921 // x + (C - z) -> C + (x - z) 1922 (Add64 (Sub64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Add64 i (Sub64 <t> x z)) 1923 (Add32 (Sub32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Add32 i (Sub32 <t> x z)) 1924 (Add16 (Sub16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Add16 i (Sub16 <t> x z)) 1925 (Add8 (Sub8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Add8 i (Sub8 <t> x z)) 1926 1927 // x - (C - z) -> x + (z - C) -> (x + z) - C 1928 (Sub64 x (Sub64 i:(Const64 <t>) z)) && (z.Op != OpConst64 && x.Op != OpConst64) => (Sub64 (Add64 <t> x z) i) 1929 (Sub32 x (Sub32 i:(Const32 <t>) z)) && (z.Op != OpConst32 && x.Op != OpConst32) => (Sub32 (Add32 <t> x z) i) 1930 (Sub16 x (Sub16 i:(Const16 <t>) z)) && (z.Op != OpConst16 && x.Op != OpConst16) => (Sub16 (Add16 <t> x z) i) 1931 (Sub8 x (Sub8 i:(Const8 <t>) z)) && (z.Op != OpConst8 && x.Op != OpConst8) => (Sub8 (Add8 <t> x z) i) 1932 1933 // x - (z + C) -> x + (-z - C) -> (x - z) - C 1934 (Sub64 x (Add64 z i:(Const64 <t>))) && (z.Op != OpConst64 && x.Op != OpConst64) => (Sub64 (Sub64 <t> x z) i) 1935 (Sub32 x (Add32 z i:(Const32 <t>))) && (z.Op != OpConst32 && x.Op != OpConst32) => (Sub32 (Sub32 <t> x z) i) 1936 (Sub16 x (Add16 z i:(Const16 <t>))) && (z.Op != OpConst16 && x.Op != OpConst16) => (Sub16 (Sub16 <t> x z) i) 1937 (Sub8 x (Add8 z i:(Const8 <t>))) && (z.Op != OpConst8 && x.Op != OpConst8) => (Sub8 (Sub8 <t> x z) i) 1938 1939 // (C - z) - x -> C - (z + x) 1940 (Sub64 (Sub64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Sub64 i (Add64 <t> z x)) 1941 (Sub32 (Sub32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Sub32 i (Add32 <t> z x)) 1942 (Sub16 (Sub16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Sub16 i (Add16 <t> z x)) 1943 (Sub8 (Sub8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Sub8 i (Add8 <t> z x)) 1944 1945 // (z + C) -x -> C + (z - x) 1946 (Sub64 (Add64 z i:(Const64 <t>)) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Add64 i (Sub64 <t> z x)) 1947 (Sub32 (Add32 z i:(Const32 <t>)) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Add32 i (Sub32 <t> z x)) 1948 (Sub16 (Add16 z i:(Const16 <t>)) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Add16 i (Sub16 <t> z x)) 1949 (Sub8 (Add8 z i:(Const8 <t>)) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Add8 i (Sub8 <t> z x)) 1950 1951 // x & (C & z) -> C & (x & z) 1952 (And64 (And64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (And64 i (And64 <t> z x)) 1953 (And32 (And32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (And32 i (And32 <t> z x)) 1954 (And16 (And16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (And16 i (And16 <t> z x)) 1955 (And8 (And8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (And8 i (And8 <t> z x)) 1956 1957 // x | (C | z) -> C | (x | z) 1958 (Or64 (Or64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Or64 i (Or64 <t> z x)) 1959 (Or32 (Or32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Or32 i (Or32 <t> z x)) 1960 (Or16 (Or16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Or16 i (Or16 <t> z x)) 1961 (Or8 (Or8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Or8 i (Or8 <t> z x)) 1962 1963 // x ^ (C ^ z) -> C ^ (x ^ z) 1964 (Xor64 (Xor64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Xor64 i (Xor64 <t> z x)) 1965 (Xor32 (Xor32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Xor32 i (Xor32 <t> z x)) 1966 (Xor16 (Xor16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Xor16 i (Xor16 <t> z x)) 1967 (Xor8 (Xor8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Xor8 i (Xor8 <t> z x)) 1968 1969 // x * (D * z) = D * (x * z) 1970 (Mul64 (Mul64 i:(Const64 <t>) z) x) && (z.Op != OpConst64 && x.Op != OpConst64) => (Mul64 i (Mul64 <t> x z)) 1971 (Mul32 (Mul32 i:(Const32 <t>) z) x) && (z.Op != OpConst32 && x.Op != OpConst32) => (Mul32 i (Mul32 <t> x z)) 1972 (Mul16 (Mul16 i:(Const16 <t>) z) x) && (z.Op != OpConst16 && x.Op != OpConst16) => (Mul16 i (Mul16 <t> x z)) 1973 (Mul8 (Mul8 i:(Const8 <t>) z) x) && (z.Op != OpConst8 && x.Op != OpConst8) => (Mul8 i (Mul8 <t> x z)) 1974 1975 // C + (D + x) -> (C + D) + x 1976 (Add64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Add64 (Const64 <t> [c+d]) x) 1977 (Add32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Add32 (Const32 <t> [c+d]) x) 1978 (Add16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Add16 (Const16 <t> [c+d]) x) 1979 (Add8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) => (Add8 (Const8 <t> [c+d]) x) 1980 1981 // C + (D - x) -> (C + D) - x 1982 (Add64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) => (Sub64 (Const64 <t> [c+d]) x) 1983 (Add32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) => (Sub32 (Const32 <t> [c+d]) x) 1984 (Add16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) => (Sub16 (Const16 <t> [c+d]) x) 1985 (Add8 (Const8 <t> [c]) (Sub8 (Const8 <t> [d]) x)) => (Sub8 (Const8 <t> [c+d]) x) 1986 1987 // C - (D - x) -> (C - D) + x 1988 (Sub64 (Const64 <t> [c]) (Sub64 (Const64 <t> [d]) x)) => (Add64 (Const64 <t> [c-d]) x) 1989 (Sub32 (Const32 <t> [c]) (Sub32 (Const32 <t> [d]) x)) => (Add32 (Const32 <t> [c-d]) x) 1990 (Sub16 (Const16 <t> [c]) (Sub16 (Const16 <t> [d]) x)) => (Add16 (Const16 <t> [c-d]) x) 1991 (Sub8 (Const8 <t> [c]) (Sub8 (Const8 <t> [d]) x)) => (Add8 (Const8 <t> [c-d]) x) 1992 1993 // C - (D + x) -> (C - D) - x 1994 (Sub64 (Const64 <t> [c]) (Add64 (Const64 <t> [d]) x)) => (Sub64 (Const64 <t> [c-d]) x) 1995 (Sub32 (Const32 <t> [c]) (Add32 (Const32 <t> [d]) x)) => (Sub32 (Const32 <t> [c-d]) x) 1996 (Sub16 (Const16 <t> [c]) (Add16 (Const16 <t> [d]) x)) => (Sub16 (Const16 <t> [c-d]) x) 1997 (Sub8 (Const8 <t> [c]) (Add8 (Const8 <t> [d]) x)) => (Sub8 (Const8 <t> [c-d]) x) 1998 1999 // C & (D & x) -> (C & D) & x 2000 (And64 (Const64 <t> [c]) (And64 (Const64 <t> [d]) x)) => (And64 (Const64 <t> [c&d]) x) 2001 (And32 (Const32 <t> [c]) (And32 (Const32 <t> [d]) x)) => (And32 (Const32 <t> [c&d]) x) 2002 (And16 (Const16 <t> [c]) (And16 (Const16 <t> [d]) x)) => (And16 (Const16 <t> [c&d]) x) 2003 (And8 (Const8 <t> [c]) (And8 (Const8 <t> [d]) x)) => (And8 (Const8 <t> [c&d]) x) 2004 2005 // C | (D | x) -> (C | D) | x 2006 (Or64 (Const64 <t> [c]) (Or64 (Const64 <t> [d]) x)) => (Or64 (Const64 <t> [c|d]) x) 2007 (Or32 (Const32 <t> [c]) (Or32 (Const32 <t> [d]) x)) => (Or32 (Const32 <t> [c|d]) x) 2008 (Or16 (Const16 <t> [c]) (Or16 (Const16 <t> [d]) x)) => (Or16 (Const16 <t> [c|d]) x) 2009 (Or8 (Const8 <t> [c]) (Or8 (Const8 <t> [d]) x)) => (Or8 (Const8 <t> [c|d]) x) 2010 2011 // C ^ (D ^ x) -> (C ^ D) ^ x 2012 (Xor64 (Const64 <t> [c]) (Xor64 (Const64 <t> [d]) x)) => (Xor64 (Const64 <t> [c^d]) x) 2013 (Xor32 (Const32 <t> [c]) (Xor32 (Const32 <t> [d]) x)) => (Xor32 (Const32 <t> [c^d]) x) 2014 (Xor16 (Const16 <t> [c]) (Xor16 (Const16 <t> [d]) x)) => (Xor16 (Const16 <t> [c^d]) x) 2015 (Xor8 (Const8 <t> [c]) (Xor8 (Const8 <t> [d]) x)) => (Xor8 (Const8 <t> [c^d]) x) 2016 2017 // C * (D * x) = (C * D) * x 2018 (Mul64 (Const64 <t> [c]) (Mul64 (Const64 <t> [d]) x)) => (Mul64 (Const64 <t> [c*d]) x) 2019 (Mul32 (Const32 <t> [c]) (Mul32 (Const32 <t> [d]) x)) => (Mul32 (Const32 <t> [c*d]) x) 2020 (Mul16 (Const16 <t> [c]) (Mul16 (Const16 <t> [d]) x)) => (Mul16 (Const16 <t> [c*d]) x) 2021 (Mul8 (Const8 <t> [c]) (Mul8 (Const8 <t> [d]) x)) => (Mul8 (Const8 <t> [c*d]) x) 2022 2023 // floating point optimizations 2024 (Mul(32|64)F x (Const(32|64)F [1])) => x 2025 (Mul32F x (Const32F [-1])) => (Neg32F x) 2026 (Mul64F x (Const64F [-1])) => (Neg64F x) 2027 (Mul32F x (Const32F [2])) => (Add32F x x) 2028 (Mul64F x (Const64F [2])) => (Add64F x x) 2029 2030 (Div32F x (Const32F <t> [c])) && reciprocalExact32(c) => (Mul32F x (Const32F <t> [1/c])) 2031 (Div64F x (Const64F <t> [c])) && reciprocalExact64(c) => (Mul64F x (Const64F <t> [1/c])) 2032 2033 // rewrite single-precision sqrt expression "float32(math.Sqrt(float64(x)))" 2034 (Cvt64Fto32F sqrt0:(Sqrt (Cvt32Fto64F x))) && sqrt0.Uses==1 => (Sqrt32 x) 2035 2036 (Sqrt (Const64F [c])) && !math.IsNaN(math.Sqrt(c)) => (Const64F [math.Sqrt(c)]) 2037 2038 // for rewriting results of some late-expanded rewrites (below) 2039 (SelectN [0] (MakeResult x ___)) => x 2040 (SelectN [1] (MakeResult x y ___)) => y 2041 (SelectN [2] (MakeResult x y z ___)) => z 2042 2043 // for late-expanded calls, recognize newobject and remove zeroing and nilchecks 2044 (Zero (SelectN [0] call:(StaticLECall _ _)) mem:(SelectN [1] call)) 2045 && isSameCall(call.Aux, "runtime.newobject") 2046 => mem 2047 2048 (Store (SelectN [0] call:(StaticLECall _ _)) x mem:(SelectN [1] call)) 2049 && isConstZero(x) 2050 && isSameCall(call.Aux, "runtime.newobject") 2051 => mem 2052 2053 (Store (OffPtr (SelectN [0] call:(StaticLECall _ _))) x mem:(SelectN [1] call)) 2054 && isConstZero(x) 2055 && isSameCall(call.Aux, "runtime.newobject") 2056 => mem 2057 2058 (NilCheck ptr:(SelectN [0] call:(StaticLECall _ _)) _) 2059 && isSameCall(call.Aux, "runtime.newobject") 2060 && warnRule(fe.Debug_checknil(), v, "removed nil check") 2061 => ptr 2062 2063 (NilCheck ptr:(OffPtr (SelectN [0] call:(StaticLECall _ _))) _) 2064 && isSameCall(call.Aux, "runtime.newobject") 2065 && warnRule(fe.Debug_checknil(), v, "removed nil check") 2066 => ptr 2067 2068 // Addresses of globals are always non-nil. 2069 (NilCheck ptr:(Addr {_} (SB)) _) => ptr 2070 (NilCheck ptr:(Convert (Addr {_} (SB)) _) _) => ptr 2071 2072 // for late-expanded calls, recognize memequal applied to a single constant byte 2073 // Support is limited by 1, 2, 4, 8 byte sizes 2074 (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [1]) mem) 2075 && isSameCall(callAux, "runtime.memequal") 2076 && symIsRO(scon) 2077 => (MakeResult (Eq8 (Load <typ.Int8> sptr mem) (Const8 <typ.Int8> [int8(read8(scon,0))])) mem) 2078 2079 (StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [1]) mem) 2080 && isSameCall(callAux, "runtime.memequal") 2081 && symIsRO(scon) 2082 => (MakeResult (Eq8 (Load <typ.Int8> sptr mem) (Const8 <typ.Int8> [int8(read8(scon,0))])) mem) 2083 2084 (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [2]) mem) 2085 && isSameCall(callAux, "runtime.memequal") 2086 && symIsRO(scon) 2087 && canLoadUnaligned(config) 2088 => (MakeResult (Eq16 (Load <typ.Int16> sptr mem) (Const16 <typ.Int16> [int16(read16(scon,0,config.ctxt.Arch.ByteOrder))])) mem) 2089 2090 (StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [2]) mem) 2091 && isSameCall(callAux, "runtime.memequal") 2092 && symIsRO(scon) 2093 && canLoadUnaligned(config) 2094 => (MakeResult (Eq16 (Load <typ.Int16> sptr mem) (Const16 <typ.Int16> [int16(read16(scon,0,config.ctxt.Arch.ByteOrder))])) mem) 2095 2096 (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [4]) mem) 2097 && isSameCall(callAux, "runtime.memequal") 2098 && symIsRO(scon) 2099 && canLoadUnaligned(config) 2100 => (MakeResult (Eq32 (Load <typ.Int32> sptr mem) (Const32 <typ.Int32> [int32(read32(scon,0,config.ctxt.Arch.ByteOrder))])) mem) 2101 2102 (StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [4]) mem) 2103 && isSameCall(callAux, "runtime.memequal") 2104 && symIsRO(scon) 2105 && canLoadUnaligned(config) 2106 => (MakeResult (Eq32 (Load <typ.Int32> sptr mem) (Const32 <typ.Int32> [int32(read32(scon,0,config.ctxt.Arch.ByteOrder))])) mem) 2107 2108 (StaticLECall {callAux} sptr (Addr {scon} (SB)) (Const64 [8]) mem) 2109 && isSameCall(callAux, "runtime.memequal") 2110 && symIsRO(scon) 2111 && canLoadUnaligned(config) && config.PtrSize == 8 2112 => (MakeResult (Eq64 (Load <typ.Int64> sptr mem) (Const64 <typ.Int64> [int64(read64(scon,0,config.ctxt.Arch.ByteOrder))])) mem) 2113 2114 (StaticLECall {callAux} (Addr {scon} (SB)) sptr (Const64 [8]) mem) 2115 && isSameCall(callAux, "runtime.memequal") 2116 && symIsRO(scon) 2117 && canLoadUnaligned(config) && config.PtrSize == 8 2118 => (MakeResult (Eq64 (Load <typ.Int64> sptr mem) (Const64 <typ.Int64> [int64(read64(scon,0,config.ctxt.Arch.ByteOrder))])) mem) 2119 2120 (StaticLECall {callAux} _ _ (Const64 [0]) mem) 2121 && isSameCall(callAux, "runtime.memequal") 2122 => (MakeResult (ConstBool <typ.Bool> [true]) mem) 2123 2124 (Static(Call|LECall) {callAux} p q _ mem) 2125 && isSameCall(callAux, "runtime.memequal") 2126 && isSamePtr(p, q) 2127 => (MakeResult (ConstBool <typ.Bool> [true]) mem) 2128 2129 // Turn known-size calls to memclrNoHeapPointers into a Zero. 2130 // Note that we are using types.Types[types.TUINT8] instead of sptr.Type.Elem() - see issue 55122 and CL 431496 for more details. 2131 (SelectN [0] call:(StaticCall {sym} sptr (Const(64|32) [c]) mem)) 2132 && isInlinableMemclr(config, int64(c)) 2133 && isSameCall(sym, "runtime.memclrNoHeapPointers") 2134 && call.Uses == 1 2135 && clobber(call) 2136 => (Zero {types.Types[types.TUINT8]} [int64(c)] sptr mem) 2137 2138 // Recognise make([]T, 0) and replace it with a pointer to the zerobase 2139 (StaticLECall {callAux} _ (Const(64|32) [0]) (Const(64|32) [0]) mem) 2140 && isSameCall(callAux, "runtime.makeslice") 2141 => (MakeResult (Addr <v.Type.FieldType(0)> {ir.Syms.Zerobase} (SB)) mem) 2142 2143 // Evaluate constant address comparisons. 2144 (EqPtr x x) => (ConstBool [true]) 2145 (NeqPtr x x) => (ConstBool [false]) 2146 (EqPtr (Addr {x} _) (Addr {y} _)) => (ConstBool [x == y]) 2147 (EqPtr (Addr {x} _) (OffPtr [o] (Addr {y} _))) => (ConstBool [x == y && o == 0]) 2148 (EqPtr (OffPtr [o1] (Addr {x} _)) (OffPtr [o2] (Addr {y} _))) => (ConstBool [x == y && o1 == o2]) 2149 (NeqPtr (Addr {x} _) (Addr {y} _)) => (ConstBool [x != y]) 2150 (NeqPtr (Addr {x} _) (OffPtr [o] (Addr {y} _))) => (ConstBool [x != y || o != 0]) 2151 (NeqPtr (OffPtr [o1] (Addr {x} _)) (OffPtr [o2] (Addr {y} _))) => (ConstBool [x != y || o1 != o2]) 2152 (EqPtr (LocalAddr {x} _ _) (LocalAddr {y} _ _)) => (ConstBool [x == y]) 2153 (EqPtr (LocalAddr {x} _ _) (OffPtr [o] (LocalAddr {y} _ _))) => (ConstBool [x == y && o == 0]) 2154 (EqPtr (OffPtr [o1] (LocalAddr {x} _ _)) (OffPtr [o2] (LocalAddr {y} _ _))) => (ConstBool [x == y && o1 == o2]) 2155 (NeqPtr (LocalAddr {x} _ _) (LocalAddr {y} _ _)) => (ConstBool [x != y]) 2156 (NeqPtr (LocalAddr {x} _ _) (OffPtr [o] (LocalAddr {y} _ _))) => (ConstBool [x != y || o != 0]) 2157 (NeqPtr (OffPtr [o1] (LocalAddr {x} _ _)) (OffPtr [o2] (LocalAddr {y} _ _))) => (ConstBool [x != y || o1 != o2]) 2158 (EqPtr (OffPtr [o1] p1) p2) && isSamePtr(p1, p2) => (ConstBool [o1 == 0]) 2159 (NeqPtr (OffPtr [o1] p1) p2) && isSamePtr(p1, p2) => (ConstBool [o1 != 0]) 2160 (EqPtr (OffPtr [o1] p1) (OffPtr [o2] p2)) && isSamePtr(p1, p2) => (ConstBool [o1 == o2]) 2161 (NeqPtr (OffPtr [o1] p1) (OffPtr [o2] p2)) && isSamePtr(p1, p2) => (ConstBool [o1 != o2]) 2162 (EqPtr (Const(32|64) [c]) (Const(32|64) [d])) => (ConstBool [c == d]) 2163 (NeqPtr (Const(32|64) [c]) (Const(32|64) [d])) => (ConstBool [c != d]) 2164 (EqPtr (Convert (Addr {x} _) _) (Addr {y} _)) => (ConstBool [x==y]) 2165 (NeqPtr (Convert (Addr {x} _) _) (Addr {y} _)) => (ConstBool [x!=y]) 2166 2167 (EqPtr (LocalAddr _ _) (Addr _)) => (ConstBool [false]) 2168 (EqPtr (OffPtr (LocalAddr _ _)) (Addr _)) => (ConstBool [false]) 2169 (EqPtr (LocalAddr _ _) (OffPtr (Addr _))) => (ConstBool [false]) 2170 (EqPtr (OffPtr (LocalAddr _ _)) (OffPtr (Addr _))) => (ConstBool [false]) 2171 (NeqPtr (LocalAddr _ _) (Addr _)) => (ConstBool [true]) 2172 (NeqPtr (OffPtr (LocalAddr _ _)) (Addr _)) => (ConstBool [true]) 2173 (NeqPtr (LocalAddr _ _) (OffPtr (Addr _))) => (ConstBool [true]) 2174 (NeqPtr (OffPtr (LocalAddr _ _)) (OffPtr (Addr _))) => (ConstBool [true]) 2175 2176 // Simplify address comparisons. 2177 (EqPtr (AddPtr p1 o1) p2) && isSamePtr(p1, p2) => (Not (IsNonNil o1)) 2178 (NeqPtr (AddPtr p1 o1) p2) && isSamePtr(p1, p2) => (IsNonNil o1) 2179 (EqPtr (Const(32|64) [0]) p) => (Not (IsNonNil p)) 2180 (NeqPtr (Const(32|64) [0]) p) => (IsNonNil p) 2181 (EqPtr (ConstNil) p) => (Not (IsNonNil p)) 2182 (NeqPtr (ConstNil) p) => (IsNonNil p) 2183 2184 // Evaluate constant user nil checks. 2185 (IsNonNil (ConstNil)) => (ConstBool [false]) 2186 (IsNonNil (Const(32|64) [c])) => (ConstBool [c != 0]) 2187 (IsNonNil (Addr _) ) => (ConstBool [true]) 2188 (IsNonNil (Convert (Addr _) _)) => (ConstBool [true]) 2189 (IsNonNil (LocalAddr _ _)) => (ConstBool [true]) 2190 2191 // Inline small or disjoint runtime.memmove calls with constant length. 2192 // See the comment in op Move in genericOps.go for discussion of the type. 2193 // 2194 // Note that we've lost any knowledge of the type and alignment requirements 2195 // of the source and destination. We only know the size, and that the type 2196 // contains no pointers. 2197 // The type of the move is not necessarily v.Args[0].Type().Elem()! 2198 // See issue 55122 for details. 2199 // 2200 // Because expand calls runs after prove, constants useful to this pattern may not appear. 2201 // Both versions need to exist; the memory and register variants. 2202 // 2203 // Match post-expansion calls, memory version. 2204 (SelectN [0] call:(StaticCall {sym} s1:(Store _ (Const(64|32) [sz]) s2:(Store _ src s3:(Store {t} _ dst mem))))) 2205 && sz >= 0 2206 && isSameCall(sym, "runtime.memmove") 2207 && s1.Uses == 1 && s2.Uses == 1 && s3.Uses == 1 2208 && isInlinableMemmove(dst, src, int64(sz), config) 2209 && clobber(s1, s2, s3, call) 2210 => (Move {types.Types[types.TUINT8]} [int64(sz)] dst src mem) 2211 2212 // Match post-expansion calls, register version. 2213 (SelectN [0] call:(StaticCall {sym} dst src (Const(64|32) [sz]) mem)) 2214 && sz >= 0 2215 && call.Uses == 1 // this will exclude all calls with results 2216 && isSameCall(sym, "runtime.memmove") 2217 && isInlinableMemmove(dst, src, int64(sz), config) 2218 && clobber(call) 2219 => (Move {types.Types[types.TUINT8]} [int64(sz)] dst src mem) 2220 2221 // Match pre-expansion calls. 2222 (SelectN [0] call:(StaticLECall {sym} dst src (Const(64|32) [sz]) mem)) 2223 && sz >= 0 2224 && call.Uses == 1 // this will exclude all calls with results 2225 && isSameCall(sym, "runtime.memmove") 2226 && isInlinableMemmove(dst, src, int64(sz), config) 2227 && clobber(call) 2228 => (Move {types.Types[types.TUINT8]} [int64(sz)] dst src mem) 2229 2230 // De-virtualize late-expanded interface calls into late-expanded static calls. 2231 (InterLECall [argsize] {auxCall} (Addr {fn} (SB)) ___) => devirtLECall(v, fn.(*obj.LSym)) 2232 2233 // Move and Zero optimizations. 2234 // Move source and destination may overlap. 2235 2236 // Convert Moves into Zeros when the source is known to be zeros. 2237 (Move {t} [n] dst1 src mem:(Zero {t} [n] dst2 _)) && isSamePtr(src, dst2) 2238 => (Zero {t} [n] dst1 mem) 2239 (Move {t} [n] dst1 src mem:(VarDef (Zero {t} [n] dst0 _))) && isSamePtr(src, dst0) 2240 => (Zero {t} [n] dst1 mem) 2241 (Move {t} [n] dst (Addr {sym} (SB)) mem) && symIsROZero(sym) => (Zero {t} [n] dst mem) 2242 2243 // Don't Store to variables that are about to be overwritten by Move/Zero. 2244 (Zero {t1} [n] p1 store:(Store {t2} (OffPtr [o2] p2) _ mem)) 2245 && isSamePtr(p1, p2) && store.Uses == 1 2246 && n >= o2 + t2.Size() 2247 && clobber(store) 2248 => (Zero {t1} [n] p1 mem) 2249 (Move {t1} [n] dst1 src1 store:(Store {t2} op:(OffPtr [o2] dst2) _ mem)) 2250 && isSamePtr(dst1, dst2) && store.Uses == 1 2251 && n >= o2 + t2.Size() 2252 && disjoint(src1, n, op, t2.Size()) 2253 && clobber(store) 2254 => (Move {t1} [n] dst1 src1 mem) 2255 2256 // Don't Move to variables that are immediately completely overwritten. 2257 (Zero {t} [n] dst1 move:(Move {t} [n] dst2 _ mem)) 2258 && move.Uses == 1 2259 && isSamePtr(dst1, dst2) 2260 && clobber(move) 2261 => (Zero {t} [n] dst1 mem) 2262 (Move {t} [n] dst1 src1 move:(Move {t} [n] dst2 _ mem)) 2263 && move.Uses == 1 2264 && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n) 2265 && clobber(move) 2266 => (Move {t} [n] dst1 src1 mem) 2267 (Zero {t} [n] dst1 vardef:(VarDef {x} move:(Move {t} [n] dst2 _ mem))) 2268 && move.Uses == 1 && vardef.Uses == 1 2269 && isSamePtr(dst1, dst2) 2270 && clobber(move, vardef) 2271 => (Zero {t} [n] dst1 (VarDef {x} mem)) 2272 (Move {t} [n] dst1 src1 vardef:(VarDef {x} move:(Move {t} [n] dst2 _ mem))) 2273 && move.Uses == 1 && vardef.Uses == 1 2274 && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n) 2275 && clobber(move, vardef) 2276 => (Move {t} [n] dst1 src1 (VarDef {x} mem)) 2277 (Store {t1} op1:(OffPtr [o1] p1) d1 2278 m2:(Store {t2} op2:(OffPtr [0] p2) d2 2279 m3:(Move [n] p3 _ mem))) 2280 && m2.Uses == 1 && m3.Uses == 1 2281 && o1 == t2.Size() 2282 && n == t2.Size() + t1.Size() 2283 && isSamePtr(p1, p2) && isSamePtr(p2, p3) 2284 && clobber(m2, m3) 2285 => (Store {t1} op1 d1 (Store {t2} op2 d2 mem)) 2286 (Store {t1} op1:(OffPtr [o1] p1) d1 2287 m2:(Store {t2} op2:(OffPtr [o2] p2) d2 2288 m3:(Store {t3} op3:(OffPtr [0] p3) d3 2289 m4:(Move [n] p4 _ mem)))) 2290 && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 2291 && o2 == t3.Size() 2292 && o1-o2 == t2.Size() 2293 && n == t3.Size() + t2.Size() + t1.Size() 2294 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) 2295 && clobber(m2, m3, m4) 2296 => (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 mem))) 2297 (Store {t1} op1:(OffPtr [o1] p1) d1 2298 m2:(Store {t2} op2:(OffPtr [o2] p2) d2 2299 m3:(Store {t3} op3:(OffPtr [o3] p3) d3 2300 m4:(Store {t4} op4:(OffPtr [0] p4) d4 2301 m5:(Move [n] p5 _ mem))))) 2302 && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 && m5.Uses == 1 2303 && o3 == t4.Size() 2304 && o2-o3 == t3.Size() 2305 && o1-o2 == t2.Size() 2306 && n == t4.Size() + t3.Size() + t2.Size() + t1.Size() 2307 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) 2308 && clobber(m2, m3, m4, m5) 2309 => (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 (Store {t4} op4 d4 mem)))) 2310 2311 // Don't Zero variables that are immediately completely overwritten 2312 // before being accessed. 2313 (Move {t} [n] dst1 src1 zero:(Zero {t} [n] dst2 mem)) 2314 && zero.Uses == 1 2315 && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n) 2316 && clobber(zero) 2317 => (Move {t} [n] dst1 src1 mem) 2318 (Move {t} [n] dst1 src1 vardef:(VarDef {x} zero:(Zero {t} [n] dst2 mem))) 2319 && zero.Uses == 1 && vardef.Uses == 1 2320 && isSamePtr(dst1, dst2) && disjoint(src1, n, dst2, n) 2321 && clobber(zero, vardef) 2322 => (Move {t} [n] dst1 src1 (VarDef {x} mem)) 2323 (Store {t1} op1:(OffPtr [o1] p1) d1 2324 m2:(Store {t2} op2:(OffPtr [0] p2) d2 2325 m3:(Zero [n] p3 mem))) 2326 && m2.Uses == 1 && m3.Uses == 1 2327 && o1 == t2.Size() 2328 && n == t2.Size() + t1.Size() 2329 && isSamePtr(p1, p2) && isSamePtr(p2, p3) 2330 && clobber(m2, m3) 2331 => (Store {t1} op1 d1 (Store {t2} op2 d2 mem)) 2332 (Store {t1} op1:(OffPtr [o1] p1) d1 2333 m2:(Store {t2} op2:(OffPtr [o2] p2) d2 2334 m3:(Store {t3} op3:(OffPtr [0] p3) d3 2335 m4:(Zero [n] p4 mem)))) 2336 && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 2337 && o2 == t3.Size() 2338 && o1-o2 == t2.Size() 2339 && n == t3.Size() + t2.Size() + t1.Size() 2340 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) 2341 && clobber(m2, m3, m4) 2342 => (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 mem))) 2343 (Store {t1} op1:(OffPtr [o1] p1) d1 2344 m2:(Store {t2} op2:(OffPtr [o2] p2) d2 2345 m3:(Store {t3} op3:(OffPtr [o3] p3) d3 2346 m4:(Store {t4} op4:(OffPtr [0] p4) d4 2347 m5:(Zero [n] p5 mem))))) 2348 && m2.Uses == 1 && m3.Uses == 1 && m4.Uses == 1 && m5.Uses == 1 2349 && o3 == t4.Size() 2350 && o2-o3 == t3.Size() 2351 && o1-o2 == t2.Size() 2352 && n == t4.Size() + t3.Size() + t2.Size() + t1.Size() 2353 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) 2354 && clobber(m2, m3, m4, m5) 2355 => (Store {t1} op1 d1 (Store {t2} op2 d2 (Store {t3} op3 d3 (Store {t4} op4 d4 mem)))) 2356 2357 // Don't Move from memory if the values are likely to already be 2358 // in registers. 2359 (Move {t1} [n] dst p1 2360 mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1 2361 (Store {t3} op3:(OffPtr <tt3> [0] p3) d2 _))) 2362 && isSamePtr(p1, p2) && isSamePtr(p2, p3) 2363 && t2.Alignment() <= t1.Alignment() 2364 && t3.Alignment() <= t1.Alignment() 2365 && registerizable(b, t2) 2366 && registerizable(b, t3) 2367 && o2 == t3.Size() 2368 && n == t2.Size() + t3.Size() 2369 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2370 (Store {t3} (OffPtr <tt3> [0] dst) d2 mem)) 2371 (Move {t1} [n] dst p1 2372 mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1 2373 (Store {t3} op3:(OffPtr <tt3> [o3] p3) d2 2374 (Store {t4} op4:(OffPtr <tt4> [0] p4) d3 _)))) 2375 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) 2376 && t2.Alignment() <= t1.Alignment() 2377 && t3.Alignment() <= t1.Alignment() 2378 && t4.Alignment() <= t1.Alignment() 2379 && registerizable(b, t2) 2380 && registerizable(b, t3) 2381 && registerizable(b, t4) 2382 && o3 == t4.Size() 2383 && o2-o3 == t3.Size() 2384 && n == t2.Size() + t3.Size() + t4.Size() 2385 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2386 (Store {t3} (OffPtr <tt3> [o3] dst) d2 2387 (Store {t4} (OffPtr <tt4> [0] dst) d3 mem))) 2388 (Move {t1} [n] dst p1 2389 mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1 2390 (Store {t3} op3:(OffPtr <tt3> [o3] p3) d2 2391 (Store {t4} op4:(OffPtr <tt4> [o4] p4) d3 2392 (Store {t5} op5:(OffPtr <tt5> [0] p5) d4 _))))) 2393 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) 2394 && t2.Alignment() <= t1.Alignment() 2395 && t3.Alignment() <= t1.Alignment() 2396 && t4.Alignment() <= t1.Alignment() 2397 && t5.Alignment() <= t1.Alignment() 2398 && registerizable(b, t2) 2399 && registerizable(b, t3) 2400 && registerizable(b, t4) 2401 && registerizable(b, t5) 2402 && o4 == t5.Size() 2403 && o3-o4 == t4.Size() 2404 && o2-o3 == t3.Size() 2405 && n == t2.Size() + t3.Size() + t4.Size() + t5.Size() 2406 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2407 (Store {t3} (OffPtr <tt3> [o3] dst) d2 2408 (Store {t4} (OffPtr <tt4> [o4] dst) d3 2409 (Store {t5} (OffPtr <tt5> [0] dst) d4 mem)))) 2410 2411 // Same thing but with VarDef in the middle. 2412 (Move {t1} [n] dst p1 2413 mem:(VarDef 2414 (Store {t2} op2:(OffPtr <tt2> [o2] p2) d1 2415 (Store {t3} op3:(OffPtr <tt3> [0] p3) d2 _)))) 2416 && isSamePtr(p1, p2) && isSamePtr(p2, p3) 2417 && t2.Alignment() <= t1.Alignment() 2418 && t3.Alignment() <= t1.Alignment() 2419 && registerizable(b, t2) 2420 && registerizable(b, t3) 2421 && o2 == t3.Size() 2422 && n == t2.Size() + t3.Size() 2423 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2424 (Store {t3} (OffPtr <tt3> [0] dst) d2 mem)) 2425 (Move {t1} [n] dst p1 2426 mem:(VarDef 2427 (Store {t2} op2:(OffPtr <tt2> [o2] p2) d1 2428 (Store {t3} op3:(OffPtr <tt3> [o3] p3) d2 2429 (Store {t4} op4:(OffPtr <tt4> [0] p4) d3 _))))) 2430 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) 2431 && t2.Alignment() <= t1.Alignment() 2432 && t3.Alignment() <= t1.Alignment() 2433 && t4.Alignment() <= t1.Alignment() 2434 && registerizable(b, t2) 2435 && registerizable(b, t3) 2436 && registerizable(b, t4) 2437 && o3 == t4.Size() 2438 && o2-o3 == t3.Size() 2439 && n == t2.Size() + t3.Size() + t4.Size() 2440 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2441 (Store {t3} (OffPtr <tt3> [o3] dst) d2 2442 (Store {t4} (OffPtr <tt4> [0] dst) d3 mem))) 2443 (Move {t1} [n] dst p1 2444 mem:(VarDef 2445 (Store {t2} op2:(OffPtr <tt2> [o2] p2) d1 2446 (Store {t3} op3:(OffPtr <tt3> [o3] p3) d2 2447 (Store {t4} op4:(OffPtr <tt4> [o4] p4) d3 2448 (Store {t5} op5:(OffPtr <tt5> [0] p5) d4 _)))))) 2449 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) 2450 && t2.Alignment() <= t1.Alignment() 2451 && t3.Alignment() <= t1.Alignment() 2452 && t4.Alignment() <= t1.Alignment() 2453 && t5.Alignment() <= t1.Alignment() 2454 && registerizable(b, t2) 2455 && registerizable(b, t3) 2456 && registerizable(b, t4) 2457 && registerizable(b, t5) 2458 && o4 == t5.Size() 2459 && o3-o4 == t4.Size() 2460 && o2-o3 == t3.Size() 2461 && n == t2.Size() + t3.Size() + t4.Size() + t5.Size() 2462 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2463 (Store {t3} (OffPtr <tt3> [o3] dst) d2 2464 (Store {t4} (OffPtr <tt4> [o4] dst) d3 2465 (Store {t5} (OffPtr <tt5> [0] dst) d4 mem)))) 2466 2467 // Prefer to Zero and Store than to Move. 2468 (Move {t1} [n] dst p1 2469 mem:(Store {t2} op2:(OffPtr <tt2> [o2] p2) d1 2470 (Zero {t3} [n] p3 _))) 2471 && isSamePtr(p1, p2) && isSamePtr(p2, p3) 2472 && t2.Alignment() <= t1.Alignment() 2473 && t3.Alignment() <= t1.Alignment() 2474 && registerizable(b, t2) 2475 && n >= o2 + t2.Size() 2476 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2477 (Zero {t1} [n] dst mem)) 2478 (Move {t1} [n] dst p1 2479 mem:(Store {t2} (OffPtr <tt2> [o2] p2) d1 2480 (Store {t3} (OffPtr <tt3> [o3] p3) d2 2481 (Zero {t4} [n] p4 _)))) 2482 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) 2483 && t2.Alignment() <= t1.Alignment() 2484 && t3.Alignment() <= t1.Alignment() 2485 && t4.Alignment() <= t1.Alignment() 2486 && registerizable(b, t2) 2487 && registerizable(b, t3) 2488 && n >= o2 + t2.Size() 2489 && n >= o3 + t3.Size() 2490 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2491 (Store {t3} (OffPtr <tt3> [o3] dst) d2 2492 (Zero {t1} [n] dst mem))) 2493 (Move {t1} [n] dst p1 2494 mem:(Store {t2} (OffPtr <tt2> [o2] p2) d1 2495 (Store {t3} (OffPtr <tt3> [o3] p3) d2 2496 (Store {t4} (OffPtr <tt4> [o4] p4) d3 2497 (Zero {t5} [n] p5 _))))) 2498 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) 2499 && t2.Alignment() <= t1.Alignment() 2500 && t3.Alignment() <= t1.Alignment() 2501 && t4.Alignment() <= t1.Alignment() 2502 && t5.Alignment() <= t1.Alignment() 2503 && registerizable(b, t2) 2504 && registerizable(b, t3) 2505 && registerizable(b, t4) 2506 && n >= o2 + t2.Size() 2507 && n >= o3 + t3.Size() 2508 && n >= o4 + t4.Size() 2509 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2510 (Store {t3} (OffPtr <tt3> [o3] dst) d2 2511 (Store {t4} (OffPtr <tt4> [o4] dst) d3 2512 (Zero {t1} [n] dst mem)))) 2513 (Move {t1} [n] dst p1 2514 mem:(Store {t2} (OffPtr <tt2> [o2] p2) d1 2515 (Store {t3} (OffPtr <tt3> [o3] p3) d2 2516 (Store {t4} (OffPtr <tt4> [o4] p4) d3 2517 (Store {t5} (OffPtr <tt5> [o5] p5) d4 2518 (Zero {t6} [n] p6 _)))))) 2519 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && isSamePtr(p5, p6) 2520 && t2.Alignment() <= t1.Alignment() 2521 && t3.Alignment() <= t1.Alignment() 2522 && t4.Alignment() <= t1.Alignment() 2523 && t5.Alignment() <= t1.Alignment() 2524 && t6.Alignment() <= t1.Alignment() 2525 && registerizable(b, t2) 2526 && registerizable(b, t3) 2527 && registerizable(b, t4) 2528 && registerizable(b, t5) 2529 && n >= o2 + t2.Size() 2530 && n >= o3 + t3.Size() 2531 && n >= o4 + t4.Size() 2532 && n >= o5 + t5.Size() 2533 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2534 (Store {t3} (OffPtr <tt3> [o3] dst) d2 2535 (Store {t4} (OffPtr <tt4> [o4] dst) d3 2536 (Store {t5} (OffPtr <tt5> [o5] dst) d4 2537 (Zero {t1} [n] dst mem))))) 2538 (Move {t1} [n] dst p1 2539 mem:(VarDef 2540 (Store {t2} op2:(OffPtr <tt2> [o2] p2) d1 2541 (Zero {t3} [n] p3 _)))) 2542 && isSamePtr(p1, p2) && isSamePtr(p2, p3) 2543 && t2.Alignment() <= t1.Alignment() 2544 && t3.Alignment() <= t1.Alignment() 2545 && registerizable(b, t2) 2546 && n >= o2 + t2.Size() 2547 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2548 (Zero {t1} [n] dst mem)) 2549 (Move {t1} [n] dst p1 2550 mem:(VarDef 2551 (Store {t2} (OffPtr <tt2> [o2] p2) d1 2552 (Store {t3} (OffPtr <tt3> [o3] p3) d2 2553 (Zero {t4} [n] p4 _))))) 2554 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) 2555 && t2.Alignment() <= t1.Alignment() 2556 && t3.Alignment() <= t1.Alignment() 2557 && t4.Alignment() <= t1.Alignment() 2558 && registerizable(b, t2) 2559 && registerizable(b, t3) 2560 && n >= o2 + t2.Size() 2561 && n >= o3 + t3.Size() 2562 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2563 (Store {t3} (OffPtr <tt3> [o3] dst) d2 2564 (Zero {t1} [n] dst mem))) 2565 (Move {t1} [n] dst p1 2566 mem:(VarDef 2567 (Store {t2} (OffPtr <tt2> [o2] p2) d1 2568 (Store {t3} (OffPtr <tt3> [o3] p3) d2 2569 (Store {t4} (OffPtr <tt4> [o4] p4) d3 2570 (Zero {t5} [n] p5 _)))))) 2571 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) 2572 && t2.Alignment() <= t1.Alignment() 2573 && t3.Alignment() <= t1.Alignment() 2574 && t4.Alignment() <= t1.Alignment() 2575 && t5.Alignment() <= t1.Alignment() 2576 && registerizable(b, t2) 2577 && registerizable(b, t3) 2578 && registerizable(b, t4) 2579 && n >= o2 + t2.Size() 2580 && n >= o3 + t3.Size() 2581 && n >= o4 + t4.Size() 2582 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2583 (Store {t3} (OffPtr <tt3> [o3] dst) d2 2584 (Store {t4} (OffPtr <tt4> [o4] dst) d3 2585 (Zero {t1} [n] dst mem)))) 2586 (Move {t1} [n] dst p1 2587 mem:(VarDef 2588 (Store {t2} (OffPtr <tt2> [o2] p2) d1 2589 (Store {t3} (OffPtr <tt3> [o3] p3) d2 2590 (Store {t4} (OffPtr <tt4> [o4] p4) d3 2591 (Store {t5} (OffPtr <tt5> [o5] p5) d4 2592 (Zero {t6} [n] p6 _))))))) 2593 && isSamePtr(p1, p2) && isSamePtr(p2, p3) && isSamePtr(p3, p4) && isSamePtr(p4, p5) && isSamePtr(p5, p6) 2594 && t2.Alignment() <= t1.Alignment() 2595 && t3.Alignment() <= t1.Alignment() 2596 && t4.Alignment() <= t1.Alignment() 2597 && t5.Alignment() <= t1.Alignment() 2598 && t6.Alignment() <= t1.Alignment() 2599 && registerizable(b, t2) 2600 && registerizable(b, t3) 2601 && registerizable(b, t4) 2602 && registerizable(b, t5) 2603 && n >= o2 + t2.Size() 2604 && n >= o3 + t3.Size() 2605 && n >= o4 + t4.Size() 2606 && n >= o5 + t5.Size() 2607 => (Store {t2} (OffPtr <tt2> [o2] dst) d1 2608 (Store {t3} (OffPtr <tt3> [o3] dst) d2 2609 (Store {t4} (OffPtr <tt4> [o4] dst) d3 2610 (Store {t5} (OffPtr <tt5> [o5] dst) d4 2611 (Zero {t1} [n] dst mem))))) 2612 2613 (SelectN [0] call:(StaticLECall {sym} a x)) && needRaceCleanup(sym, call) && clobber(call) => x 2614 (SelectN [0] call:(StaticLECall {sym} x)) && needRaceCleanup(sym, call) && clobber(call) => x 2615 2616 // When rewriting append to growslice, we use as the new length the result of 2617 // growslice so that we don't have to spill/restore the new length around the growslice call. 2618 // The exception here is that if the new length is a constant, avoiding spilling it 2619 // is pointless and its constantness is sometimes useful for subsequent optimizations. 2620 // See issue 56440. 2621 // Note there are 2 rules here, one for the pre-decomposed []T result and one for 2622 // the post-decomposed (*T,int,int) result. (The latter is generated after call expansion.) 2623 (SliceLen (SelectN [0] (StaticLECall {sym} _ newLen:(Const(64|32)) _ _ _ _))) && isSameCall(sym, "runtime.growslice") => newLen 2624 (SelectN [1] (StaticCall {sym} _ newLen:(Const(64|32)) _ _ _ _)) && v.Type.IsInteger() && isSameCall(sym, "runtime.growslice") => newLen 2625 2626 // Collapse moving A -> B -> C into just A -> C. 2627 // Later passes (deadstore, elim unread auto) will remove the A -> B move, if possible. 2628 // This happens most commonly when B is an autotmp inserted earlier 2629 // during compilation to ensure correctness. 2630 // Take care that overlapping moves are preserved. 2631 // Restrict this optimization to the stack, to avoid duplicating loads from the heap; 2632 // see CL 145208 for discussion. 2633 (Move {t1} [s] dst tmp1 midmem:(Move {t2} [s] tmp2 src _)) 2634 && t1.Compare(t2) == types.CMPeq 2635 && isSamePtr(tmp1, tmp2) 2636 && isStackPtr(src) && !isVolatile(src) 2637 && disjoint(src, s, tmp2, s) 2638 && (disjoint(src, s, dst, s) || isInlinableMemmove(dst, src, s, config)) 2639 => (Move {t1} [s] dst src midmem) 2640 2641 // Same, but for large types that require VarDefs. 2642 (Move {t1} [s] dst tmp1 midmem:(VarDef (Move {t2} [s] tmp2 src _))) 2643 && t1.Compare(t2) == types.CMPeq 2644 && isSamePtr(tmp1, tmp2) 2645 && isStackPtr(src) && !isVolatile(src) 2646 && disjoint(src, s, tmp2, s) 2647 && (disjoint(src, s, dst, s) || isInlinableMemmove(dst, src, s, config)) 2648 => (Move {t1} [s] dst src midmem) 2649 2650 // Don't zero the same bits twice. 2651 (Zero {t} [s] dst1 zero:(Zero {t} [s] dst2 _)) && isSamePtr(dst1, dst2) => zero 2652 (Zero {t} [s] dst1 vardef:(VarDef (Zero {t} [s] dst2 _))) && isSamePtr(dst1, dst2) => vardef 2653 2654 // Elide self-moves. This only happens rarely (e.g test/fixedbugs/bug277.go). 2655 // However, this rule is needed to prevent the previous rule from looping forever in such cases. 2656 (Move dst src mem) && isSamePtr(dst, src) => mem 2657 2658 // Constant rotate detection. 2659 ((Add64|Or64|Xor64) (Lsh64x64 x z:(Const64 <t> [c])) (Rsh64Ux64 x (Const64 [d]))) && c < 64 && d == 64-c && canRotate(config, 64) => (RotateLeft64 x z) 2660 ((Add32|Or32|Xor32) (Lsh32x64 x z:(Const64 <t> [c])) (Rsh32Ux64 x (Const64 [d]))) && c < 32 && d == 32-c && canRotate(config, 32) => (RotateLeft32 x z) 2661 ((Add16|Or16|Xor16) (Lsh16x64 x z:(Const64 <t> [c])) (Rsh16Ux64 x (Const64 [d]))) && c < 16 && d == 16-c && canRotate(config, 16) => (RotateLeft16 x z) 2662 ((Add8|Or8|Xor8) (Lsh8x64 x z:(Const64 <t> [c])) (Rsh8Ux64 x (Const64 [d]))) && c < 8 && d == 8-c && canRotate(config, 8) => (RotateLeft8 x z) 2663 2664 // Non-constant rotate detection. 2665 // We use shiftIsBounded to make sure that neither of the shifts are >64. 2666 // Note: these rules are subtle when the shift amounts are 0/64, as Go shifts 2667 // are different from most native shifts. But it works out. 2668 ((Add64|Or64|Xor64) left:(Lsh64x64 x y) right:(Rsh64Ux64 x (Sub64 (Const64 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x y) 2669 ((Add64|Or64|Xor64) left:(Lsh64x32 x y) right:(Rsh64Ux32 x (Sub32 (Const32 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x y) 2670 ((Add64|Or64|Xor64) left:(Lsh64x16 x y) right:(Rsh64Ux16 x (Sub16 (Const16 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x y) 2671 ((Add64|Or64|Xor64) left:(Lsh64x8 x y) right:(Rsh64Ux8 x (Sub8 (Const8 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x y) 2672 2673 ((Add64|Or64|Xor64) right:(Rsh64Ux64 x y) left:(Lsh64x64 x z:(Sub64 (Const64 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x z) 2674 ((Add64|Or64|Xor64) right:(Rsh64Ux32 x y) left:(Lsh64x32 x z:(Sub32 (Const32 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x z) 2675 ((Add64|Or64|Xor64) right:(Rsh64Ux16 x y) left:(Lsh64x16 x z:(Sub16 (Const16 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x z) 2676 ((Add64|Or64|Xor64) right:(Rsh64Ux8 x y) left:(Lsh64x8 x z:(Sub8 (Const8 [64]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 64) => (RotateLeft64 x z) 2677 2678 ((Add32|Or32|Xor32) left:(Lsh32x64 x y) right:(Rsh32Ux64 x (Sub64 (Const64 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x y) 2679 ((Add32|Or32|Xor32) left:(Lsh32x32 x y) right:(Rsh32Ux32 x (Sub32 (Const32 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x y) 2680 ((Add32|Or32|Xor32) left:(Lsh32x16 x y) right:(Rsh32Ux16 x (Sub16 (Const16 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x y) 2681 ((Add32|Or32|Xor32) left:(Lsh32x8 x y) right:(Rsh32Ux8 x (Sub8 (Const8 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x y) 2682 2683 ((Add32|Or32|Xor32) right:(Rsh32Ux64 x y) left:(Lsh32x64 x z:(Sub64 (Const64 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x z) 2684 ((Add32|Or32|Xor32) right:(Rsh32Ux32 x y) left:(Lsh32x32 x z:(Sub32 (Const32 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x z) 2685 ((Add32|Or32|Xor32) right:(Rsh32Ux16 x y) left:(Lsh32x16 x z:(Sub16 (Const16 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x z) 2686 ((Add32|Or32|Xor32) right:(Rsh32Ux8 x y) left:(Lsh32x8 x z:(Sub8 (Const8 [32]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 32) => (RotateLeft32 x z) 2687 2688 ((Add16|Or16|Xor16) left:(Lsh16x64 x y) right:(Rsh16Ux64 x (Sub64 (Const64 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x y) 2689 ((Add16|Or16|Xor16) left:(Lsh16x32 x y) right:(Rsh16Ux32 x (Sub32 (Const32 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x y) 2690 ((Add16|Or16|Xor16) left:(Lsh16x16 x y) right:(Rsh16Ux16 x (Sub16 (Const16 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x y) 2691 ((Add16|Or16|Xor16) left:(Lsh16x8 x y) right:(Rsh16Ux8 x (Sub8 (Const8 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x y) 2692 2693 ((Add16|Or16|Xor16) right:(Rsh16Ux64 x y) left:(Lsh16x64 x z:(Sub64 (Const64 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x z) 2694 ((Add16|Or16|Xor16) right:(Rsh16Ux32 x y) left:(Lsh16x32 x z:(Sub32 (Const32 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x z) 2695 ((Add16|Or16|Xor16) right:(Rsh16Ux16 x y) left:(Lsh16x16 x z:(Sub16 (Const16 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x z) 2696 ((Add16|Or16|Xor16) right:(Rsh16Ux8 x y) left:(Lsh16x8 x z:(Sub8 (Const8 [16]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 16) => (RotateLeft16 x z) 2697 2698 ((Add8|Or8|Xor8) left:(Lsh8x64 x y) right:(Rsh8Ux64 x (Sub64 (Const64 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x y) 2699 ((Add8|Or8|Xor8) left:(Lsh8x32 x y) right:(Rsh8Ux32 x (Sub32 (Const32 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x y) 2700 ((Add8|Or8|Xor8) left:(Lsh8x16 x y) right:(Rsh8Ux16 x (Sub16 (Const16 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x y) 2701 ((Add8|Or8|Xor8) left:(Lsh8x8 x y) right:(Rsh8Ux8 x (Sub8 (Const8 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x y) 2702 2703 ((Add8|Or8|Xor8) right:(Rsh8Ux64 x y) left:(Lsh8x64 x z:(Sub64 (Const64 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x z) 2704 ((Add8|Or8|Xor8) right:(Rsh8Ux32 x y) left:(Lsh8x32 x z:(Sub32 (Const32 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x z) 2705 ((Add8|Or8|Xor8) right:(Rsh8Ux16 x y) left:(Lsh8x16 x z:(Sub16 (Const16 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x z) 2706 ((Add8|Or8|Xor8) right:(Rsh8Ux8 x y) left:(Lsh8x8 x z:(Sub8 (Const8 [8]) y))) && (shiftIsBounded(left) || shiftIsBounded(right)) && canRotate(config, 8) => (RotateLeft8 x z) 2707 2708 // Rotating by y&c, with c a mask that doesn't change the bottom bits, is the same as rotating by y. 2709 (RotateLeft64 x (And(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&63 == 63 => (RotateLeft64 x y) 2710 (RotateLeft32 x (And(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&31 == 31 => (RotateLeft32 x y) 2711 (RotateLeft16 x (And(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&15 == 15 => (RotateLeft16 x y) 2712 (RotateLeft8 x (And(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&7 == 7 => (RotateLeft8 x y) 2713 2714 // Rotating by -(y&c), with c a mask that doesn't change the bottom bits, is the same as rotating by -y. 2715 (RotateLeft64 x (Neg(64|32|16|8) (And(64|32|16|8) y (Const(64|32|16|8) [c])))) && c&63 == 63 => (RotateLeft64 x (Neg(64|32|16|8) <y.Type> y)) 2716 (RotateLeft32 x (Neg(64|32|16|8) (And(64|32|16|8) y (Const(64|32|16|8) [c])))) && c&31 == 31 => (RotateLeft32 x (Neg(64|32|16|8) <y.Type> y)) 2717 (RotateLeft16 x (Neg(64|32|16|8) (And(64|32|16|8) y (Const(64|32|16|8) [c])))) && c&15 == 15 => (RotateLeft16 x (Neg(64|32|16|8) <y.Type> y)) 2718 (RotateLeft8 x (Neg(64|32|16|8) (And(64|32|16|8) y (Const(64|32|16|8) [c])))) && c&7 == 7 => (RotateLeft8 x (Neg(64|32|16|8) <y.Type> y)) 2719 2720 // Rotating by y+c, with c a multiple of the value width, is the same as rotating by y. 2721 (RotateLeft64 x (Add(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&63 == 0 => (RotateLeft64 x y) 2722 (RotateLeft32 x (Add(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&31 == 0 => (RotateLeft32 x y) 2723 (RotateLeft16 x (Add(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&15 == 0 => (RotateLeft16 x y) 2724 (RotateLeft8 x (Add(64|32|16|8) y (Const(64|32|16|8) [c]))) && c&7 == 0 => (RotateLeft8 x y) 2725 2726 // Rotating by c-y, with c a multiple of the value width, is the same as rotating by -y. 2727 (RotateLeft64 x (Sub(64|32|16|8) (Const(64|32|16|8) [c]) y)) && c&63 == 0 => (RotateLeft64 x (Neg(64|32|16|8) <y.Type> y)) 2728 (RotateLeft32 x (Sub(64|32|16|8) (Const(64|32|16|8) [c]) y)) && c&31 == 0 => (RotateLeft32 x (Neg(64|32|16|8) <y.Type> y)) 2729 (RotateLeft16 x (Sub(64|32|16|8) (Const(64|32|16|8) [c]) y)) && c&15 == 0 => (RotateLeft16 x (Neg(64|32|16|8) <y.Type> y)) 2730 (RotateLeft8 x (Sub(64|32|16|8) (Const(64|32|16|8) [c]) y)) && c&7 == 0 => (RotateLeft8 x (Neg(64|32|16|8) <y.Type> y)) 2731 2732 // Ensure we don't do Const64 rotates in a 32-bit system. 2733 (RotateLeft64 x (Const64 <t> [c])) && config.PtrSize == 4 => (RotateLeft64 x (Const32 <t> [int32(c)])) 2734 (RotateLeft32 x (Const64 <t> [c])) && config.PtrSize == 4 => (RotateLeft32 x (Const32 <t> [int32(c)])) 2735 (RotateLeft16 x (Const64 <t> [c])) && config.PtrSize == 4 => (RotateLeft16 x (Const32 <t> [int32(c)])) 2736 (RotateLeft8 x (Const64 <t> [c])) && config.PtrSize == 4 => (RotateLeft8 x (Const32 <t> [int32(c)])) 2737 2738 // Rotating by c, then by d, is the same as rotating by c+d. 2739 // We're trading a rotate for an add, which seems generally a good choice. It is especially good when c and d are constants. 2740 // This rule is a bit tricky as c and d might be different widths. We handle only cases where they are the same width. 2741 (RotateLeft(64|32|16|8) (RotateLeft(64|32|16|8) x c) d) && c.Type.Size() == 8 && d.Type.Size() == 8 => (RotateLeft(64|32|16|8) x (Add64 <c.Type> c d)) 2742 (RotateLeft(64|32|16|8) (RotateLeft(64|32|16|8) x c) d) && c.Type.Size() == 4 && d.Type.Size() == 4 => (RotateLeft(64|32|16|8) x (Add32 <c.Type> c d)) 2743 (RotateLeft(64|32|16|8) (RotateLeft(64|32|16|8) x c) d) && c.Type.Size() == 2 && d.Type.Size() == 2 => (RotateLeft(64|32|16|8) x (Add16 <c.Type> c d)) 2744 (RotateLeft(64|32|16|8) (RotateLeft(64|32|16|8) x c) d) && c.Type.Size() == 1 && d.Type.Size() == 1 => (RotateLeft(64|32|16|8) x (Add8 <c.Type> c d)) 2745 2746 // Loading constant values from dictionaries and itabs. 2747 (Load <t> (OffPtr [off] (Addr {s} sb) ) _) && t.IsUintptr() && isFixedSym(s, off) => (Addr {fixedSym(b.Func, s, off)} sb) 2748 (Load <t> (OffPtr [off] (Convert (Addr {s} sb) _) ) _) && t.IsUintptr() && isFixedSym(s, off) => (Addr {fixedSym(b.Func, s, off)} sb) 2749 (Load <t> (OffPtr [off] (ITab (IMake (Addr {s} sb) _))) _) && t.IsUintptr() && isFixedSym(s, off) => (Addr {fixedSym(b.Func, s, off)} sb) 2750 (Load <t> (OffPtr [off] (ITab (IMake (Convert (Addr {s} sb) _) _))) _) && t.IsUintptr() && isFixedSym(s, off) => (Addr {fixedSym(b.Func, s, off)} sb) 2751 2752 // Loading constant values from runtime._type.hash. 2753 (Load <t> (OffPtr [off] (Addr {sym} _) ) _) && t.IsInteger() && t.Size() == 4 && isFixed32(config, sym, off) => (Const32 [fixed32(config, sym, off)]) 2754 (Load <t> (OffPtr [off] (Convert (Addr {sym} _) _) ) _) && t.IsInteger() && t.Size() == 4 && isFixed32(config, sym, off) => (Const32 [fixed32(config, sym, off)]) 2755 (Load <t> (OffPtr [off] (ITab (IMake (Addr {sym} _) _))) _) && t.IsInteger() && t.Size() == 4 && isFixed32(config, sym, off) => (Const32 [fixed32(config, sym, off)]) 2756 (Load <t> (OffPtr [off] (ITab (IMake (Convert (Addr {sym} _) _) _))) _) && t.IsInteger() && t.Size() == 4 && isFixed32(config, sym, off) => (Const32 [fixed32(config, sym, off)])