github.com/go-asm/go@v1.21.1-0.20240213172139-40c5ead50c48/cmd/compile/ssa/check.go (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package ssa 6 7 import ( 8 "math" 9 "math/bits" 10 11 "github.com/go-asm/go/cmd/compile/ir" 12 "github.com/go-asm/go/cmd/obj/s390x" 13 ) 14 15 // checkFunc checks invariants of f. 16 func checkFunc(f *Func) { 17 blockMark := make([]bool, f.NumBlocks()) 18 valueMark := make([]bool, f.NumValues()) 19 20 for _, b := range f.Blocks { 21 if blockMark[b.ID] { 22 f.Fatalf("block %s appears twice in %s!", b, f.Name) 23 } 24 blockMark[b.ID] = true 25 if b.Func != f { 26 f.Fatalf("%s.Func=%s, want %s", b, b.Func.Name, f.Name) 27 } 28 29 for i, e := range b.Preds { 30 if se := e.b.Succs[e.i]; se.b != b || se.i != i { 31 f.Fatalf("block pred/succ not crosslinked correctly %d:%s %d:%s", i, b, se.i, se.b) 32 } 33 } 34 for i, e := range b.Succs { 35 if pe := e.b.Preds[e.i]; pe.b != b || pe.i != i { 36 f.Fatalf("block succ/pred not crosslinked correctly %d:%s %d:%s", i, b, pe.i, pe.b) 37 } 38 } 39 40 switch b.Kind { 41 case BlockExit: 42 if len(b.Succs) != 0 { 43 f.Fatalf("exit block %s has successors", b) 44 } 45 if b.NumControls() != 1 { 46 f.Fatalf("exit block %s has no control value", b) 47 } 48 if !b.Controls[0].Type.IsMemory() { 49 f.Fatalf("exit block %s has non-memory control value %s", b, b.Controls[0].LongString()) 50 } 51 case BlockRet: 52 if len(b.Succs) != 0 { 53 f.Fatalf("ret block %s has successors", b) 54 } 55 if b.NumControls() != 1 { 56 f.Fatalf("ret block %s has nil control", b) 57 } 58 if !b.Controls[0].Type.IsMemory() { 59 f.Fatalf("ret block %s has non-memory control value %s", b, b.Controls[0].LongString()) 60 } 61 case BlockRetJmp: 62 if len(b.Succs) != 0 { 63 f.Fatalf("retjmp block %s len(Succs)==%d, want 0", b, len(b.Succs)) 64 } 65 if b.NumControls() != 1 { 66 f.Fatalf("retjmp block %s has nil control", b) 67 } 68 if !b.Controls[0].Type.IsMemory() { 69 f.Fatalf("retjmp block %s has non-memory control value %s", b, b.Controls[0].LongString()) 70 } 71 case BlockPlain: 72 if len(b.Succs) != 1 { 73 f.Fatalf("plain block %s len(Succs)==%d, want 1", b, len(b.Succs)) 74 } 75 if b.NumControls() != 0 { 76 f.Fatalf("plain block %s has non-nil control %s", b, b.Controls[0].LongString()) 77 } 78 case BlockIf: 79 if len(b.Succs) != 2 { 80 f.Fatalf("if block %s len(Succs)==%d, want 2", b, len(b.Succs)) 81 } 82 if b.NumControls() != 1 { 83 f.Fatalf("if block %s has no control value", b) 84 } 85 if !b.Controls[0].Type.IsBoolean() { 86 f.Fatalf("if block %s has non-bool control value %s", b, b.Controls[0].LongString()) 87 } 88 case BlockDefer: 89 if len(b.Succs) != 2 { 90 f.Fatalf("defer block %s len(Succs)==%d, want 2", b, len(b.Succs)) 91 } 92 if b.NumControls() != 1 { 93 f.Fatalf("defer block %s has no control value", b) 94 } 95 if !b.Controls[0].Type.IsMemory() { 96 f.Fatalf("defer block %s has non-memory control value %s", b, b.Controls[0].LongString()) 97 } 98 case BlockFirst: 99 if len(b.Succs) != 2 { 100 f.Fatalf("plain/dead block %s len(Succs)==%d, want 2", b, len(b.Succs)) 101 } 102 if b.NumControls() != 0 { 103 f.Fatalf("plain/dead block %s has a control value", b) 104 } 105 case BlockJumpTable: 106 if b.NumControls() != 1 { 107 f.Fatalf("jumpTable block %s has no control value", b) 108 } 109 } 110 if len(b.Succs) != 2 && b.Likely != BranchUnknown { 111 f.Fatalf("likeliness prediction %d for block %s with %d successors", b.Likely, b, len(b.Succs)) 112 } 113 114 for _, v := range b.Values { 115 // Check to make sure argument count makes sense (argLen of -1 indicates 116 // variable length args) 117 nArgs := opcodeTable[v.Op].argLen 118 if nArgs != -1 && int32(len(v.Args)) != nArgs { 119 f.Fatalf("value %s has %d args, expected %d", v.LongString(), 120 len(v.Args), nArgs) 121 } 122 123 // Check to make sure aux values make sense. 124 canHaveAux := false 125 canHaveAuxInt := false 126 // TODO: enforce types of Aux in this switch (like auxString does below) 127 switch opcodeTable[v.Op].auxType { 128 case auxNone: 129 case auxBool: 130 if v.AuxInt < 0 || v.AuxInt > 1 { 131 f.Fatalf("bad bool AuxInt value for %v", v) 132 } 133 canHaveAuxInt = true 134 case auxInt8: 135 if v.AuxInt != int64(int8(v.AuxInt)) { 136 f.Fatalf("bad int8 AuxInt value for %v", v) 137 } 138 canHaveAuxInt = true 139 case auxInt16: 140 if v.AuxInt != int64(int16(v.AuxInt)) { 141 f.Fatalf("bad int16 AuxInt value for %v", v) 142 } 143 canHaveAuxInt = true 144 case auxInt32: 145 if v.AuxInt != int64(int32(v.AuxInt)) { 146 f.Fatalf("bad int32 AuxInt value for %v", v) 147 } 148 canHaveAuxInt = true 149 case auxInt64, auxARM64BitField: 150 canHaveAuxInt = true 151 case auxInt128: 152 // AuxInt must be zero, so leave canHaveAuxInt set to false. 153 case auxUInt8: 154 if v.AuxInt != int64(uint8(v.AuxInt)) { 155 f.Fatalf("bad uint8 AuxInt value for %v", v) 156 } 157 canHaveAuxInt = true 158 case auxFloat32: 159 canHaveAuxInt = true 160 if math.IsNaN(v.AuxFloat()) { 161 f.Fatalf("value %v has an AuxInt that encodes a NaN", v) 162 } 163 if !isExactFloat32(v.AuxFloat()) { 164 f.Fatalf("value %v has an AuxInt value that is not an exact float32", v) 165 } 166 case auxFloat64: 167 canHaveAuxInt = true 168 if math.IsNaN(v.AuxFloat()) { 169 f.Fatalf("value %v has an AuxInt that encodes a NaN", v) 170 } 171 case auxString: 172 if _, ok := v.Aux.(stringAux); !ok { 173 f.Fatalf("value %v has Aux type %T, want string", v, v.Aux) 174 } 175 canHaveAux = true 176 case auxCallOff: 177 canHaveAuxInt = true 178 fallthrough 179 case auxCall: 180 if ac, ok := v.Aux.(*AuxCall); ok { 181 if v.Op == OpStaticCall && ac.Fn == nil { 182 f.Fatalf("value %v has *AuxCall with nil Fn", v) 183 } 184 } else { 185 f.Fatalf("value %v has Aux type %T, want *AuxCall", v, v.Aux) 186 } 187 canHaveAux = true 188 case auxNameOffsetInt8: 189 if _, ok := v.Aux.(*AuxNameOffset); !ok { 190 f.Fatalf("value %v has Aux type %T, want *AuxNameOffset", v, v.Aux) 191 } 192 canHaveAux = true 193 canHaveAuxInt = true 194 case auxSym, auxTyp: 195 canHaveAux = true 196 case auxSymOff, auxSymValAndOff, auxTypSize: 197 canHaveAuxInt = true 198 canHaveAux = true 199 case auxCCop: 200 if opcodeTable[Op(v.AuxInt)].name == "OpInvalid" { 201 f.Fatalf("value %v has an AuxInt value that is a valid opcode", v) 202 } 203 canHaveAuxInt = true 204 case auxS390XCCMask: 205 if _, ok := v.Aux.(s390x.CCMask); !ok { 206 f.Fatalf("bad type %T for S390XCCMask in %v", v.Aux, v) 207 } 208 canHaveAux = true 209 case auxS390XRotateParams: 210 if _, ok := v.Aux.(s390x.RotateParams); !ok { 211 f.Fatalf("bad type %T for S390XRotateParams in %v", v.Aux, v) 212 } 213 canHaveAux = true 214 case auxFlagConstant: 215 if v.AuxInt < 0 || v.AuxInt > 15 { 216 f.Fatalf("bad FlagConstant AuxInt value for %v", v) 217 } 218 canHaveAuxInt = true 219 default: 220 f.Fatalf("unknown aux type for %s", v.Op) 221 } 222 if !canHaveAux && v.Aux != nil { 223 f.Fatalf("value %s has an Aux value %v but shouldn't", v.LongString(), v.Aux) 224 } 225 if !canHaveAuxInt && v.AuxInt != 0 { 226 f.Fatalf("value %s has an AuxInt value %d but shouldn't", v.LongString(), v.AuxInt) 227 } 228 229 for i, arg := range v.Args { 230 if arg == nil { 231 f.Fatalf("value %s has nil arg", v.LongString()) 232 } 233 if v.Op != OpPhi { 234 // For non-Phi ops, memory args must be last, if present 235 if arg.Type.IsMemory() && i != len(v.Args)-1 { 236 f.Fatalf("value %s has non-final memory arg (%d < %d)", v.LongString(), i, len(v.Args)-1) 237 } 238 } 239 } 240 241 if valueMark[v.ID] { 242 f.Fatalf("value %s appears twice!", v.LongString()) 243 } 244 valueMark[v.ID] = true 245 246 if v.Block != b { 247 f.Fatalf("%s.block != %s", v, b) 248 } 249 if v.Op == OpPhi && len(v.Args) != len(b.Preds) { 250 f.Fatalf("phi length %s does not match pred length %d for block %s", v.LongString(), len(b.Preds), b) 251 } 252 253 if v.Op == OpAddr { 254 if len(v.Args) == 0 { 255 f.Fatalf("no args for OpAddr %s", v.LongString()) 256 } 257 if v.Args[0].Op != OpSB { 258 f.Fatalf("bad arg to OpAddr %v", v) 259 } 260 } 261 262 if v.Op == OpLocalAddr { 263 if len(v.Args) != 2 { 264 f.Fatalf("wrong # of args for OpLocalAddr %s", v.LongString()) 265 } 266 if v.Args[0].Op != OpSP { 267 f.Fatalf("bad arg 0 to OpLocalAddr %v", v) 268 } 269 if !v.Args[1].Type.IsMemory() { 270 f.Fatalf("bad arg 1 to OpLocalAddr %v", v) 271 } 272 } 273 274 if f.RegAlloc != nil && f.Config.SoftFloat && v.Type.IsFloat() { 275 f.Fatalf("unexpected floating-point type %v", v.LongString()) 276 } 277 278 // Check types. 279 // TODO: more type checks? 280 switch c := f.Config; v.Op { 281 case OpSP, OpSB: 282 if v.Type != c.Types.Uintptr { 283 f.Fatalf("bad %s type: want uintptr, have %s", 284 v.Op, v.Type.String()) 285 } 286 case OpStringLen: 287 if v.Type != c.Types.Int { 288 f.Fatalf("bad %s type: want int, have %s", 289 v.Op, v.Type.String()) 290 } 291 case OpLoad: 292 if !v.Args[1].Type.IsMemory() { 293 f.Fatalf("bad arg 1 type to %s: want mem, have %s", 294 v.Op, v.Args[1].Type.String()) 295 } 296 case OpStore: 297 if !v.Type.IsMemory() { 298 f.Fatalf("bad %s type: want mem, have %s", 299 v.Op, v.Type.String()) 300 } 301 if !v.Args[2].Type.IsMemory() { 302 f.Fatalf("bad arg 2 type to %s: want mem, have %s", 303 v.Op, v.Args[2].Type.String()) 304 } 305 case OpCondSelect: 306 if !v.Args[2].Type.IsBoolean() { 307 f.Fatalf("bad arg 2 type to %s: want boolean, have %s", 308 v.Op, v.Args[2].Type.String()) 309 } 310 case OpAddPtr: 311 if !v.Args[0].Type.IsPtrShaped() && v.Args[0].Type != c.Types.Uintptr { 312 f.Fatalf("bad arg 0 type to %s: want ptr, have %s", v.Op, v.Args[0].LongString()) 313 } 314 if !v.Args[1].Type.IsInteger() { 315 f.Fatalf("bad arg 1 type to %s: want integer, have %s", v.Op, v.Args[1].LongString()) 316 } 317 case OpVarDef: 318 if !v.Aux.(*ir.Name).Type().HasPointers() { 319 f.Fatalf("vardef must have pointer type %s", v.Aux.(*ir.Name).Type().String()) 320 } 321 case OpNilCheck: 322 // nil checks have pointer type before scheduling, and 323 // void type after scheduling. 324 if f.scheduled { 325 if v.Uses != 0 { 326 f.Fatalf("nilcheck must have 0 uses %s", v.Uses) 327 } 328 if !v.Type.IsVoid() { 329 f.Fatalf("nilcheck must have void type %s", v.Type.String()) 330 } 331 } else { 332 if !v.Type.IsPtrShaped() && !v.Type.IsUintptr() { 333 f.Fatalf("nilcheck must have pointer type %s", v.Type.String()) 334 } 335 } 336 if !v.Args[0].Type.IsPtrShaped() && !v.Args[0].Type.IsUintptr() { 337 f.Fatalf("nilcheck must have argument of pointer type %s", v.Args[0].Type.String()) 338 } 339 if !v.Args[1].Type.IsMemory() { 340 f.Fatalf("bad arg 1 type to %s: want mem, have %s", 341 v.Op, v.Args[1].Type.String()) 342 } 343 } 344 345 // TODO: check for cycles in values 346 } 347 } 348 349 // Check to make sure all Blocks referenced are in the function. 350 if !blockMark[f.Entry.ID] { 351 f.Fatalf("entry block %v is missing", f.Entry) 352 } 353 for _, b := range f.Blocks { 354 for _, c := range b.Preds { 355 if !blockMark[c.b.ID] { 356 f.Fatalf("predecessor block %v for %v is missing", c, b) 357 } 358 } 359 for _, c := range b.Succs { 360 if !blockMark[c.b.ID] { 361 f.Fatalf("successor block %v for %v is missing", c, b) 362 } 363 } 364 } 365 366 if len(f.Entry.Preds) > 0 { 367 f.Fatalf("entry block %s of %s has predecessor(s) %v", f.Entry, f.Name, f.Entry.Preds) 368 } 369 370 // Check to make sure all Values referenced are in the function. 371 for _, b := range f.Blocks { 372 for _, v := range b.Values { 373 for i, a := range v.Args { 374 if !valueMark[a.ID] { 375 f.Fatalf("%v, arg %d of %s, is missing", a, i, v.LongString()) 376 } 377 } 378 } 379 for _, c := range b.ControlValues() { 380 if !valueMark[c.ID] { 381 f.Fatalf("control value for %s is missing: %v", b, c) 382 } 383 } 384 } 385 for b := f.freeBlocks; b != nil; b = b.succstorage[0].b { 386 if blockMark[b.ID] { 387 f.Fatalf("used block b%d in free list", b.ID) 388 } 389 } 390 for v := f.freeValues; v != nil; v = v.argstorage[0] { 391 if valueMark[v.ID] { 392 f.Fatalf("used value v%d in free list", v.ID) 393 } 394 } 395 396 // Check to make sure all args dominate uses. 397 if f.RegAlloc == nil { 398 // Note: regalloc introduces non-dominating args. 399 // See TODO in regalloc.go. 400 sdom := f.Sdom() 401 for _, b := range f.Blocks { 402 for _, v := range b.Values { 403 for i, arg := range v.Args { 404 x := arg.Block 405 y := b 406 if v.Op == OpPhi { 407 y = b.Preds[i].b 408 } 409 if !domCheck(f, sdom, x, y) { 410 f.Fatalf("arg %d of value %s does not dominate, arg=%s", i, v.LongString(), arg.LongString()) 411 } 412 } 413 } 414 for _, c := range b.ControlValues() { 415 if !domCheck(f, sdom, c.Block, b) { 416 f.Fatalf("control value %s for %s doesn't dominate", c, b) 417 } 418 } 419 } 420 } 421 422 // Check loop construction 423 if f.RegAlloc == nil && f.pass != nil { // non-nil pass allows better-targeted debug printing 424 ln := f.loopnest() 425 if !ln.hasIrreducible { 426 po := f.postorder() // use po to avoid unreachable blocks. 427 for _, b := range po { 428 for _, s := range b.Succs { 429 bb := s.Block() 430 if ln.b2l[b.ID] == nil && ln.b2l[bb.ID] != nil && bb != ln.b2l[bb.ID].header { 431 f.Fatalf("block %s not in loop branches to non-header block %s in loop", b.String(), bb.String()) 432 } 433 if ln.b2l[b.ID] != nil && ln.b2l[bb.ID] != nil && bb != ln.b2l[bb.ID].header && !ln.b2l[b.ID].isWithinOrEq(ln.b2l[bb.ID]) { 434 f.Fatalf("block %s in loop branches to non-header block %s in non-containing loop", b.String(), bb.String()) 435 } 436 } 437 } 438 } 439 } 440 441 // Check use counts 442 uses := make([]int32, f.NumValues()) 443 for _, b := range f.Blocks { 444 for _, v := range b.Values { 445 for _, a := range v.Args { 446 uses[a.ID]++ 447 } 448 } 449 for _, c := range b.ControlValues() { 450 uses[c.ID]++ 451 } 452 } 453 for _, b := range f.Blocks { 454 for _, v := range b.Values { 455 if v.Uses != uses[v.ID] { 456 f.Fatalf("%s has %d uses, but has Uses=%d", v, uses[v.ID], v.Uses) 457 } 458 } 459 } 460 461 memCheck(f) 462 } 463 464 func memCheck(f *Func) { 465 // Check that if a tuple has a memory type, it is second. 466 for _, b := range f.Blocks { 467 for _, v := range b.Values { 468 if v.Type.IsTuple() && v.Type.FieldType(0).IsMemory() { 469 f.Fatalf("memory is first in a tuple: %s\n", v.LongString()) 470 } 471 } 472 } 473 474 // Single live memory checks. 475 // These checks only work if there are no memory copies. 476 // (Memory copies introduce ambiguity about which mem value is really live. 477 // probably fixable, but it's easier to avoid the problem.) 478 // For the same reason, disable this check if some memory ops are unused. 479 for _, b := range f.Blocks { 480 for _, v := range b.Values { 481 if (v.Op == OpCopy || v.Uses == 0) && v.Type.IsMemory() { 482 return 483 } 484 } 485 if b != f.Entry && len(b.Preds) == 0 { 486 return 487 } 488 } 489 490 // Compute live memory at the end of each block. 491 lastmem := make([]*Value, f.NumBlocks()) 492 ss := newSparseSet(f.NumValues()) 493 for _, b := range f.Blocks { 494 // Mark overwritten memory values. Those are args of other 495 // ops that generate memory values. 496 ss.clear() 497 for _, v := range b.Values { 498 if v.Op == OpPhi || !v.Type.IsMemory() { 499 continue 500 } 501 if m := v.MemoryArg(); m != nil { 502 ss.add(m.ID) 503 } 504 } 505 // There should be at most one remaining unoverwritten memory value. 506 for _, v := range b.Values { 507 if !v.Type.IsMemory() { 508 continue 509 } 510 if ss.contains(v.ID) { 511 continue 512 } 513 if lastmem[b.ID] != nil { 514 f.Fatalf("two live memory values in %s: %s and %s", b, lastmem[b.ID], v) 515 } 516 lastmem[b.ID] = v 517 } 518 // If there is no remaining memory value, that means there was no memory update. 519 // Take any memory arg. 520 if lastmem[b.ID] == nil { 521 for _, v := range b.Values { 522 if v.Op == OpPhi { 523 continue 524 } 525 m := v.MemoryArg() 526 if m == nil { 527 continue 528 } 529 if lastmem[b.ID] != nil && lastmem[b.ID] != m { 530 f.Fatalf("two live memory values in %s: %s and %s", b, lastmem[b.ID], m) 531 } 532 lastmem[b.ID] = m 533 } 534 } 535 } 536 // Propagate last live memory through storeless blocks. 537 for { 538 changed := false 539 for _, b := range f.Blocks { 540 if lastmem[b.ID] != nil { 541 continue 542 } 543 for _, e := range b.Preds { 544 p := e.b 545 if lastmem[p.ID] != nil { 546 lastmem[b.ID] = lastmem[p.ID] 547 changed = true 548 break 549 } 550 } 551 } 552 if !changed { 553 break 554 } 555 } 556 // Check merge points. 557 for _, b := range f.Blocks { 558 for _, v := range b.Values { 559 if v.Op == OpPhi && v.Type.IsMemory() { 560 for i, a := range v.Args { 561 if a != lastmem[b.Preds[i].b.ID] { 562 f.Fatalf("inconsistent memory phi %s %d %s %s", v.LongString(), i, a, lastmem[b.Preds[i].b.ID]) 563 } 564 } 565 } 566 } 567 } 568 569 // Check that only one memory is live at any point. 570 if f.scheduled { 571 for _, b := range f.Blocks { 572 var mem *Value // the current live memory in the block 573 for _, v := range b.Values { 574 if v.Op == OpPhi { 575 if v.Type.IsMemory() { 576 mem = v 577 } 578 continue 579 } 580 if mem == nil && len(b.Preds) > 0 { 581 // If no mem phi, take mem of any predecessor. 582 mem = lastmem[b.Preds[0].b.ID] 583 } 584 for _, a := range v.Args { 585 if a.Type.IsMemory() && a != mem { 586 f.Fatalf("two live mems @ %s: %s and %s", v, mem, a) 587 } 588 } 589 if v.Type.IsMemory() { 590 mem = v 591 } 592 } 593 } 594 } 595 596 // Check that after scheduling, phis are always first in the block. 597 if f.scheduled { 598 for _, b := range f.Blocks { 599 seenNonPhi := false 600 for _, v := range b.Values { 601 switch v.Op { 602 case OpPhi: 603 if seenNonPhi { 604 f.Fatalf("phi after non-phi @ %s: %s", b, v) 605 } 606 default: 607 seenNonPhi = true 608 } 609 } 610 } 611 } 612 } 613 614 // domCheck reports whether x dominates y (including x==y). 615 func domCheck(f *Func, sdom SparseTree, x, y *Block) bool { 616 if !sdom.IsAncestorEq(f.Entry, y) { 617 // unreachable - ignore 618 return true 619 } 620 return sdom.IsAncestorEq(x, y) 621 } 622 623 // isExactFloat32 reports whether x can be exactly represented as a float32. 624 func isExactFloat32(x float64) bool { 625 // Check the mantissa is in range. 626 if bits.TrailingZeros64(math.Float64bits(x)) < 52-23 { 627 return false 628 } 629 // Check the exponent is in range. The mantissa check above is sufficient for NaN values. 630 return math.IsNaN(x) || x == float64(float32(x)) 631 }