github.com/go-asm/go@v1.21.1-0.20240213172139-40c5ead50c48/cmd/compile/ssa/func.go (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package ssa 6 7 import ( 8 "fmt" 9 "math" 10 "strings" 11 12 "github.com/go-asm/go/cmd/compile/abi" 13 "github.com/go-asm/go/cmd/compile/base" 14 "github.com/go-asm/go/cmd/compile/ir" 15 "github.com/go-asm/go/cmd/compile/typecheck" 16 "github.com/go-asm/go/cmd/compile/types" 17 "github.com/go-asm/go/cmd/obj" 18 "github.com/go-asm/go/cmd/src" 19 ) 20 21 // A Func represents a Go func declaration (or function literal) and its body. 22 // This package compiles each Func independently. 23 // Funcs are single-use; a new Func must be created for every compiled function. 24 type Func struct { 25 Config *Config // architecture information 26 Cache *Cache // re-usable cache 27 fe Frontend // frontend state associated with this Func, callbacks into compiler frontend 28 pass *pass // current pass information (name, options, etc.) 29 Name string // e.g. NewFunc or (*Func).NumBlocks (no package prefix) 30 Type *types.Type // type signature of the function. 31 Blocks []*Block // unordered set of all basic blocks (note: not indexable by ID) 32 Entry *Block // the entry basic block 33 34 bid idAlloc // block ID allocator 35 vid idAlloc // value ID allocator 36 37 HTMLWriter *HTMLWriter // html writer, for debugging 38 PrintOrHtmlSSA bool // true if GOSSAFUNC matches, true even if fe.Log() (spew phase results to stdout) is false. There's an odd dependence on this in debug.go for method logf. 39 ruleMatches map[string]int // number of times countRule was called during compilation for any given string 40 ABI0 *abi.ABIConfig // A copy, for no-sync access 41 ABI1 *abi.ABIConfig // A copy, for no-sync access 42 ABISelf *abi.ABIConfig // ABI for function being compiled 43 ABIDefault *abi.ABIConfig // ABI for rtcall and other no-parsed-signature/pragma functions. 44 45 scheduled bool // Values in Blocks are in final order 46 laidout bool // Blocks are ordered 47 NoSplit bool // true if function is marked as nosplit. Used by schedule check pass. 48 dumpFileSeq uint8 // the sequence numbers of dump file. (%s_%02d__%s.dump", funcname, dumpFileSeq, phaseName) 49 50 // when register allocation is done, maps value ids to locations 51 RegAlloc []Location 52 53 // temporary registers allocated to rare instructions 54 tempRegs map[ID]*Register 55 56 // map from LocalSlot to set of Values that we want to store in that slot. 57 NamedValues map[LocalSlot][]*Value 58 // Names is a copy of NamedValues.Keys. We keep a separate list 59 // of keys to make iteration order deterministic. 60 Names []*LocalSlot 61 // Canonicalize root/top-level local slots, and canonicalize their pieces. 62 // Because LocalSlot pieces refer to their parents with a pointer, this ensures that equivalent slots really are equal. 63 CanonicalLocalSlots map[LocalSlot]*LocalSlot 64 CanonicalLocalSplits map[LocalSlotSplitKey]*LocalSlot 65 66 // RegArgs is a slice of register-memory pairs that must be spilled and unspilled in the uncommon path of function entry. 67 RegArgs []Spill 68 // OwnAux describes parameters and results for this function. 69 OwnAux *AuxCall 70 71 freeValues *Value // free Values linked by argstorage[0]. All other fields except ID are 0/nil. 72 freeBlocks *Block // free Blocks linked by succstorage[0].b. All other fields except ID are 0/nil. 73 74 cachedPostorder []*Block // cached postorder traversal 75 cachedIdom []*Block // cached immediate dominators 76 cachedSdom SparseTree // cached dominator tree 77 cachedLoopnest *loopnest // cached loop nest information 78 cachedLineStarts *xposmap // cached map/set of xpos to integers 79 80 auxmap auxmap // map from aux values to opaque ids used by CSE 81 constants map[int64][]*Value // constants cache, keyed by constant value; users must check value's Op and Type 82 } 83 84 type LocalSlotSplitKey struct { 85 parent *LocalSlot 86 Off int64 // offset of slot in N 87 Type *types.Type // type of slot 88 } 89 90 // NewFunc returns a new, empty function object. 91 // Caller must reset cache before calling NewFunc. 92 func (c *Config) NewFunc(fe Frontend, cache *Cache) *Func { 93 return &Func{ 94 fe: fe, 95 Config: c, 96 Cache: cache, 97 98 NamedValues: make(map[LocalSlot][]*Value), 99 CanonicalLocalSlots: make(map[LocalSlot]*LocalSlot), 100 CanonicalLocalSplits: make(map[LocalSlotSplitKey]*LocalSlot), 101 } 102 } 103 104 // NumBlocks returns an integer larger than the id of any Block in the Func. 105 func (f *Func) NumBlocks() int { 106 return f.bid.num() 107 } 108 109 // NumValues returns an integer larger than the id of any Value in the Func. 110 func (f *Func) NumValues() int { 111 return f.vid.num() 112 } 113 114 // NameABI returns the function name followed by comma and the ABI number. 115 // This is intended for use with GOSSAFUNC and HTML dumps, and differs from 116 // the linker's "<1>" convention because "<" and ">" require shell quoting 117 // and are not legal file names (for use with GOSSADIR) on Windows. 118 func (f *Func) NameABI() string { 119 return FuncNameABI(f.Name, f.ABISelf.Which()) 120 } 121 122 // FuncNameABI returns n followed by a comma and the value of a. 123 // This is a separate function to allow a single point encoding 124 // of the format, which is used in places where there's not a Func yet. 125 func FuncNameABI(n string, a obj.ABI) string { 126 return fmt.Sprintf("%s,%d", n, a) 127 } 128 129 // newSparseSet returns a sparse set that can store at least up to n integers. 130 func (f *Func) newSparseSet(n int) *sparseSet { 131 return f.Cache.allocSparseSet(n) 132 } 133 134 // retSparseSet returns a sparse set to the config's cache of sparse 135 // sets to be reused by f.newSparseSet. 136 func (f *Func) retSparseSet(ss *sparseSet) { 137 f.Cache.freeSparseSet(ss) 138 } 139 140 // newSparseMap returns a sparse map that can store at least up to n integers. 141 func (f *Func) newSparseMap(n int) *sparseMap { 142 return f.Cache.allocSparseMap(n) 143 } 144 145 // retSparseMap returns a sparse map to the config's cache of sparse 146 // sets to be reused by f.newSparseMap. 147 func (f *Func) retSparseMap(ss *sparseMap) { 148 f.Cache.freeSparseMap(ss) 149 } 150 151 // newSparseMapPos returns a sparse map that can store at least up to n integers. 152 func (f *Func) newSparseMapPos(n int) *sparseMapPos { 153 return f.Cache.allocSparseMapPos(n) 154 } 155 156 // retSparseMapPos returns a sparse map to the config's cache of sparse 157 // sets to be reused by f.newSparseMapPos. 158 func (f *Func) retSparseMapPos(ss *sparseMapPos) { 159 f.Cache.freeSparseMapPos(ss) 160 } 161 162 // newPoset returns a new poset from the internal cache 163 func (f *Func) newPoset() *poset { 164 if len(f.Cache.scrPoset) > 0 { 165 po := f.Cache.scrPoset[len(f.Cache.scrPoset)-1] 166 f.Cache.scrPoset = f.Cache.scrPoset[:len(f.Cache.scrPoset)-1] 167 return po 168 } 169 return newPoset() 170 } 171 172 // retPoset returns a poset to the internal cache 173 func (f *Func) retPoset(po *poset) { 174 f.Cache.scrPoset = append(f.Cache.scrPoset, po) 175 } 176 177 func (f *Func) localSlotAddr(slot LocalSlot) *LocalSlot { 178 a, ok := f.CanonicalLocalSlots[slot] 179 if !ok { 180 a = new(LocalSlot) 181 *a = slot // don't escape slot 182 f.CanonicalLocalSlots[slot] = a 183 } 184 return a 185 } 186 187 func (f *Func) SplitString(name *LocalSlot) (*LocalSlot, *LocalSlot) { 188 ptrType := types.NewPtr(types.Types[types.TUINT8]) 189 lenType := types.Types[types.TINT] 190 // Split this string up into two separate variables. 191 p := f.SplitSlot(name, ".ptr", 0, ptrType) 192 l := f.SplitSlot(name, ".len", ptrType.Size(), lenType) 193 return p, l 194 } 195 196 func (f *Func) SplitInterface(name *LocalSlot) (*LocalSlot, *LocalSlot) { 197 n := name.N 198 u := types.Types[types.TUINTPTR] 199 t := types.NewPtr(types.Types[types.TUINT8]) 200 // Split this interface up into two separate variables. 201 sfx := ".itab" 202 if n.Type().IsEmptyInterface() { 203 sfx = ".type" 204 } 205 c := f.SplitSlot(name, sfx, 0, u) // see comment in typebits.Set 206 d := f.SplitSlot(name, ".data", u.Size(), t) 207 return c, d 208 } 209 210 func (f *Func) SplitSlice(name *LocalSlot) (*LocalSlot, *LocalSlot, *LocalSlot) { 211 ptrType := types.NewPtr(name.Type.Elem()) 212 lenType := types.Types[types.TINT] 213 p := f.SplitSlot(name, ".ptr", 0, ptrType) 214 l := f.SplitSlot(name, ".len", ptrType.Size(), lenType) 215 c := f.SplitSlot(name, ".cap", ptrType.Size()+lenType.Size(), lenType) 216 return p, l, c 217 } 218 219 func (f *Func) SplitComplex(name *LocalSlot) (*LocalSlot, *LocalSlot) { 220 s := name.Type.Size() / 2 221 var t *types.Type 222 if s == 8 { 223 t = types.Types[types.TFLOAT64] 224 } else { 225 t = types.Types[types.TFLOAT32] 226 } 227 r := f.SplitSlot(name, ".real", 0, t) 228 i := f.SplitSlot(name, ".imag", t.Size(), t) 229 return r, i 230 } 231 232 func (f *Func) SplitInt64(name *LocalSlot) (*LocalSlot, *LocalSlot) { 233 var t *types.Type 234 if name.Type.IsSigned() { 235 t = types.Types[types.TINT32] 236 } else { 237 t = types.Types[types.TUINT32] 238 } 239 if f.Config.BigEndian { 240 return f.SplitSlot(name, ".hi", 0, t), f.SplitSlot(name, ".lo", t.Size(), types.Types[types.TUINT32]) 241 } 242 return f.SplitSlot(name, ".hi", t.Size(), t), f.SplitSlot(name, ".lo", 0, types.Types[types.TUINT32]) 243 } 244 245 func (f *Func) SplitStruct(name *LocalSlot, i int) *LocalSlot { 246 st := name.Type 247 return f.SplitSlot(name, st.FieldName(i), st.FieldOff(i), st.FieldType(i)) 248 } 249 func (f *Func) SplitArray(name *LocalSlot) *LocalSlot { 250 n := name.N 251 at := name.Type 252 if at.NumElem() != 1 { 253 base.FatalfAt(n.Pos(), "bad array size") 254 } 255 et := at.Elem() 256 return f.SplitSlot(name, "[0]", 0, et) 257 } 258 259 func (f *Func) SplitSlot(name *LocalSlot, sfx string, offset int64, t *types.Type) *LocalSlot { 260 lssk := LocalSlotSplitKey{name, offset, t} 261 if als, ok := f.CanonicalLocalSplits[lssk]; ok { 262 return als 263 } 264 // Note: the _ field may appear several times. But 265 // have no fear, identically-named but distinct Autos are 266 // ok, albeit maybe confusing for a debugger. 267 ls := f.fe.SplitSlot(name, sfx, offset, t) 268 f.CanonicalLocalSplits[lssk] = &ls 269 return &ls 270 } 271 272 // newValue allocates a new Value with the given fields and places it at the end of b.Values. 273 func (f *Func) newValue(op Op, t *types.Type, b *Block, pos src.XPos) *Value { 274 var v *Value 275 if f.freeValues != nil { 276 v = f.freeValues 277 f.freeValues = v.argstorage[0] 278 v.argstorage[0] = nil 279 } else { 280 ID := f.vid.get() 281 if int(ID) < len(f.Cache.values) { 282 v = &f.Cache.values[ID] 283 v.ID = ID 284 } else { 285 v = &Value{ID: ID} 286 } 287 } 288 v.Op = op 289 v.Type = t 290 v.Block = b 291 if notStmtBoundary(op) { 292 pos = pos.WithNotStmt() 293 } 294 v.Pos = pos 295 b.Values = append(b.Values, v) 296 return v 297 } 298 299 // newValueNoBlock allocates a new Value with the given fields. 300 // The returned value is not placed in any block. Once the caller 301 // decides on a block b, it must set b.Block and append 302 // the returned value to b.Values. 303 func (f *Func) newValueNoBlock(op Op, t *types.Type, pos src.XPos) *Value { 304 var v *Value 305 if f.freeValues != nil { 306 v = f.freeValues 307 f.freeValues = v.argstorage[0] 308 v.argstorage[0] = nil 309 } else { 310 ID := f.vid.get() 311 if int(ID) < len(f.Cache.values) { 312 v = &f.Cache.values[ID] 313 v.ID = ID 314 } else { 315 v = &Value{ID: ID} 316 } 317 } 318 v.Op = op 319 v.Type = t 320 v.Block = nil // caller must fix this. 321 if notStmtBoundary(op) { 322 pos = pos.WithNotStmt() 323 } 324 v.Pos = pos 325 return v 326 } 327 328 // LogStat writes a string key and int value as a warning in a 329 // tab-separated format easily handled by spreadsheets or awk. 330 // file names, lines, and function names are included to provide enough (?) 331 // context to allow item-by-item comparisons across runs. 332 // For example: 333 // awk 'BEGIN {FS="\t"} $3~/TIME/{sum+=$4} END{print "t(ns)=",sum}' t.log 334 func (f *Func) LogStat(key string, args ...interface{}) { 335 value := "" 336 for _, a := range args { 337 value += fmt.Sprintf("\t%v", a) 338 } 339 n := "missing_pass" 340 if f.pass != nil { 341 n = strings.Replace(f.pass.name, " ", "_", -1) 342 } 343 f.Warnl(f.Entry.Pos, "\t%s\t%s%s\t%s", n, key, value, f.Name) 344 } 345 346 // unCacheLine removes v from f's constant cache "line" for aux, 347 // resets v.InCache when it is found (and removed), 348 // and returns whether v was found in that line. 349 func (f *Func) unCacheLine(v *Value, aux int64) bool { 350 vv := f.constants[aux] 351 for i, cv := range vv { 352 if v == cv { 353 vv[i] = vv[len(vv)-1] 354 vv[len(vv)-1] = nil 355 f.constants[aux] = vv[0 : len(vv)-1] 356 v.InCache = false 357 return true 358 } 359 } 360 return false 361 } 362 363 // unCache removes v from f's constant cache. 364 func (f *Func) unCache(v *Value) { 365 if v.InCache { 366 aux := v.AuxInt 367 if f.unCacheLine(v, aux) { 368 return 369 } 370 if aux == 0 { 371 switch v.Op { 372 case OpConstNil: 373 aux = constNilMagic 374 case OpConstSlice: 375 aux = constSliceMagic 376 case OpConstString: 377 aux = constEmptyStringMagic 378 case OpConstInterface: 379 aux = constInterfaceMagic 380 } 381 if aux != 0 && f.unCacheLine(v, aux) { 382 return 383 } 384 } 385 f.Fatalf("unCached value %s not found in cache, auxInt=0x%x, adjusted aux=0x%x", v.LongString(), v.AuxInt, aux) 386 } 387 } 388 389 // freeValue frees a value. It must no longer be referenced or have any args. 390 func (f *Func) freeValue(v *Value) { 391 if v.Block == nil { 392 f.Fatalf("trying to free an already freed value") 393 } 394 if v.Uses != 0 { 395 f.Fatalf("value %s still has %d uses", v, v.Uses) 396 } 397 if len(v.Args) != 0 { 398 f.Fatalf("value %s still has %d args", v, len(v.Args)) 399 } 400 // Clear everything but ID (which we reuse). 401 id := v.ID 402 if v.InCache { 403 f.unCache(v) 404 } 405 *v = Value{} 406 v.ID = id 407 v.argstorage[0] = f.freeValues 408 f.freeValues = v 409 } 410 411 // NewBlock allocates a new Block of the given kind and places it at the end of f.Blocks. 412 func (f *Func) NewBlock(kind BlockKind) *Block { 413 var b *Block 414 if f.freeBlocks != nil { 415 b = f.freeBlocks 416 f.freeBlocks = b.succstorage[0].b 417 b.succstorage[0].b = nil 418 } else { 419 ID := f.bid.get() 420 if int(ID) < len(f.Cache.blocks) { 421 b = &f.Cache.blocks[ID] 422 b.ID = ID 423 } else { 424 b = &Block{ID: ID} 425 } 426 } 427 b.Kind = kind 428 b.Func = f 429 b.Preds = b.predstorage[:0] 430 b.Succs = b.succstorage[:0] 431 b.Values = b.valstorage[:0] 432 f.Blocks = append(f.Blocks, b) 433 f.invalidateCFG() 434 return b 435 } 436 437 func (f *Func) freeBlock(b *Block) { 438 if b.Func == nil { 439 f.Fatalf("trying to free an already freed block") 440 } 441 // Clear everything but ID (which we reuse). 442 id := b.ID 443 *b = Block{} 444 b.ID = id 445 b.succstorage[0].b = f.freeBlocks 446 f.freeBlocks = b 447 } 448 449 // NewValue0 returns a new value in the block with no arguments and zero aux values. 450 func (b *Block) NewValue0(pos src.XPos, op Op, t *types.Type) *Value { 451 v := b.Func.newValue(op, t, b, pos) 452 v.AuxInt = 0 453 v.Args = v.argstorage[:0] 454 return v 455 } 456 457 // NewValue0I returns a new value in the block with no arguments and an auxint value. 458 func (b *Block) NewValue0I(pos src.XPos, op Op, t *types.Type, auxint int64) *Value { 459 v := b.Func.newValue(op, t, b, pos) 460 v.AuxInt = auxint 461 v.Args = v.argstorage[:0] 462 return v 463 } 464 465 // NewValue0A returns a new value in the block with no arguments and an aux value. 466 func (b *Block) NewValue0A(pos src.XPos, op Op, t *types.Type, aux Aux) *Value { 467 v := b.Func.newValue(op, t, b, pos) 468 v.AuxInt = 0 469 v.Aux = aux 470 v.Args = v.argstorage[:0] 471 return v 472 } 473 474 // NewValue0IA returns a new value in the block with no arguments and both an auxint and aux values. 475 func (b *Block) NewValue0IA(pos src.XPos, op Op, t *types.Type, auxint int64, aux Aux) *Value { 476 v := b.Func.newValue(op, t, b, pos) 477 v.AuxInt = auxint 478 v.Aux = aux 479 v.Args = v.argstorage[:0] 480 return v 481 } 482 483 // NewValue1 returns a new value in the block with one argument and zero aux values. 484 func (b *Block) NewValue1(pos src.XPos, op Op, t *types.Type, arg *Value) *Value { 485 v := b.Func.newValue(op, t, b, pos) 486 v.AuxInt = 0 487 v.Args = v.argstorage[:1] 488 v.argstorage[0] = arg 489 arg.Uses++ 490 return v 491 } 492 493 // NewValue1I returns a new value in the block with one argument and an auxint value. 494 func (b *Block) NewValue1I(pos src.XPos, op Op, t *types.Type, auxint int64, arg *Value) *Value { 495 v := b.Func.newValue(op, t, b, pos) 496 v.AuxInt = auxint 497 v.Args = v.argstorage[:1] 498 v.argstorage[0] = arg 499 arg.Uses++ 500 return v 501 } 502 503 // NewValue1A returns a new value in the block with one argument and an aux value. 504 func (b *Block) NewValue1A(pos src.XPos, op Op, t *types.Type, aux Aux, arg *Value) *Value { 505 v := b.Func.newValue(op, t, b, pos) 506 v.AuxInt = 0 507 v.Aux = aux 508 v.Args = v.argstorage[:1] 509 v.argstorage[0] = arg 510 arg.Uses++ 511 return v 512 } 513 514 // NewValue1IA returns a new value in the block with one argument and both an auxint and aux values. 515 func (b *Block) NewValue1IA(pos src.XPos, op Op, t *types.Type, auxint int64, aux Aux, arg *Value) *Value { 516 v := b.Func.newValue(op, t, b, pos) 517 v.AuxInt = auxint 518 v.Aux = aux 519 v.Args = v.argstorage[:1] 520 v.argstorage[0] = arg 521 arg.Uses++ 522 return v 523 } 524 525 // NewValue2 returns a new value in the block with two arguments and zero aux values. 526 func (b *Block) NewValue2(pos src.XPos, op Op, t *types.Type, arg0, arg1 *Value) *Value { 527 v := b.Func.newValue(op, t, b, pos) 528 v.AuxInt = 0 529 v.Args = v.argstorage[:2] 530 v.argstorage[0] = arg0 531 v.argstorage[1] = arg1 532 arg0.Uses++ 533 arg1.Uses++ 534 return v 535 } 536 537 // NewValue2A returns a new value in the block with two arguments and one aux values. 538 func (b *Block) NewValue2A(pos src.XPos, op Op, t *types.Type, aux Aux, arg0, arg1 *Value) *Value { 539 v := b.Func.newValue(op, t, b, pos) 540 v.AuxInt = 0 541 v.Aux = aux 542 v.Args = v.argstorage[:2] 543 v.argstorage[0] = arg0 544 v.argstorage[1] = arg1 545 arg0.Uses++ 546 arg1.Uses++ 547 return v 548 } 549 550 // NewValue2I returns a new value in the block with two arguments and an auxint value. 551 func (b *Block) NewValue2I(pos src.XPos, op Op, t *types.Type, auxint int64, arg0, arg1 *Value) *Value { 552 v := b.Func.newValue(op, t, b, pos) 553 v.AuxInt = auxint 554 v.Args = v.argstorage[:2] 555 v.argstorage[0] = arg0 556 v.argstorage[1] = arg1 557 arg0.Uses++ 558 arg1.Uses++ 559 return v 560 } 561 562 // NewValue2IA returns a new value in the block with two arguments and both an auxint and aux values. 563 func (b *Block) NewValue2IA(pos src.XPos, op Op, t *types.Type, auxint int64, aux Aux, arg0, arg1 *Value) *Value { 564 v := b.Func.newValue(op, t, b, pos) 565 v.AuxInt = auxint 566 v.Aux = aux 567 v.Args = v.argstorage[:2] 568 v.argstorage[0] = arg0 569 v.argstorage[1] = arg1 570 arg0.Uses++ 571 arg1.Uses++ 572 return v 573 } 574 575 // NewValue3 returns a new value in the block with three arguments and zero aux values. 576 func (b *Block) NewValue3(pos src.XPos, op Op, t *types.Type, arg0, arg1, arg2 *Value) *Value { 577 v := b.Func.newValue(op, t, b, pos) 578 v.AuxInt = 0 579 v.Args = v.argstorage[:3] 580 v.argstorage[0] = arg0 581 v.argstorage[1] = arg1 582 v.argstorage[2] = arg2 583 arg0.Uses++ 584 arg1.Uses++ 585 arg2.Uses++ 586 return v 587 } 588 589 // NewValue3I returns a new value in the block with three arguments and an auxint value. 590 func (b *Block) NewValue3I(pos src.XPos, op Op, t *types.Type, auxint int64, arg0, arg1, arg2 *Value) *Value { 591 v := b.Func.newValue(op, t, b, pos) 592 v.AuxInt = auxint 593 v.Args = v.argstorage[:3] 594 v.argstorage[0] = arg0 595 v.argstorage[1] = arg1 596 v.argstorage[2] = arg2 597 arg0.Uses++ 598 arg1.Uses++ 599 arg2.Uses++ 600 return v 601 } 602 603 // NewValue3A returns a new value in the block with three argument and an aux value. 604 func (b *Block) NewValue3A(pos src.XPos, op Op, t *types.Type, aux Aux, arg0, arg1, arg2 *Value) *Value { 605 v := b.Func.newValue(op, t, b, pos) 606 v.AuxInt = 0 607 v.Aux = aux 608 v.Args = v.argstorage[:3] 609 v.argstorage[0] = arg0 610 v.argstorage[1] = arg1 611 v.argstorage[2] = arg2 612 arg0.Uses++ 613 arg1.Uses++ 614 arg2.Uses++ 615 return v 616 } 617 618 // NewValue4 returns a new value in the block with four arguments and zero aux values. 619 func (b *Block) NewValue4(pos src.XPos, op Op, t *types.Type, arg0, arg1, arg2, arg3 *Value) *Value { 620 v := b.Func.newValue(op, t, b, pos) 621 v.AuxInt = 0 622 v.Args = []*Value{arg0, arg1, arg2, arg3} 623 arg0.Uses++ 624 arg1.Uses++ 625 arg2.Uses++ 626 arg3.Uses++ 627 return v 628 } 629 630 // NewValue4I returns a new value in the block with four arguments and auxint value. 631 func (b *Block) NewValue4I(pos src.XPos, op Op, t *types.Type, auxint int64, arg0, arg1, arg2, arg3 *Value) *Value { 632 v := b.Func.newValue(op, t, b, pos) 633 v.AuxInt = auxint 634 v.Args = []*Value{arg0, arg1, arg2, arg3} 635 arg0.Uses++ 636 arg1.Uses++ 637 arg2.Uses++ 638 arg3.Uses++ 639 return v 640 } 641 642 // constVal returns a constant value for c. 643 func (f *Func) constVal(op Op, t *types.Type, c int64, setAuxInt bool) *Value { 644 if f.constants == nil { 645 f.constants = make(map[int64][]*Value) 646 } 647 vv := f.constants[c] 648 for _, v := range vv { 649 if v.Op == op && v.Type.Compare(t) == types.CMPeq { 650 if setAuxInt && v.AuxInt != c { 651 panic(fmt.Sprintf("cached const %s should have AuxInt of %d", v.LongString(), c)) 652 } 653 return v 654 } 655 } 656 var v *Value 657 if setAuxInt { 658 v = f.Entry.NewValue0I(src.NoXPos, op, t, c) 659 } else { 660 v = f.Entry.NewValue0(src.NoXPos, op, t) 661 } 662 f.constants[c] = append(vv, v) 663 v.InCache = true 664 return v 665 } 666 667 // These magic auxint values let us easily cache non-numeric constants 668 // using the same constants map while making collisions unlikely. 669 // These values are unlikely to occur in regular code and 670 // are easy to grep for in case of bugs. 671 const ( 672 constSliceMagic = 1122334455 673 constInterfaceMagic = 2233445566 674 constNilMagic = 3344556677 675 constEmptyStringMagic = 4455667788 676 ) 677 678 // ConstBool returns an int constant representing its argument. 679 func (f *Func) ConstBool(t *types.Type, c bool) *Value { 680 i := int64(0) 681 if c { 682 i = 1 683 } 684 return f.constVal(OpConstBool, t, i, true) 685 } 686 func (f *Func) ConstInt8(t *types.Type, c int8) *Value { 687 return f.constVal(OpConst8, t, int64(c), true) 688 } 689 func (f *Func) ConstInt16(t *types.Type, c int16) *Value { 690 return f.constVal(OpConst16, t, int64(c), true) 691 } 692 func (f *Func) ConstInt32(t *types.Type, c int32) *Value { 693 return f.constVal(OpConst32, t, int64(c), true) 694 } 695 func (f *Func) ConstInt64(t *types.Type, c int64) *Value { 696 return f.constVal(OpConst64, t, c, true) 697 } 698 func (f *Func) ConstFloat32(t *types.Type, c float64) *Value { 699 return f.constVal(OpConst32F, t, int64(math.Float64bits(float64(float32(c)))), true) 700 } 701 func (f *Func) ConstFloat64(t *types.Type, c float64) *Value { 702 return f.constVal(OpConst64F, t, int64(math.Float64bits(c)), true) 703 } 704 705 func (f *Func) ConstSlice(t *types.Type) *Value { 706 return f.constVal(OpConstSlice, t, constSliceMagic, false) 707 } 708 func (f *Func) ConstInterface(t *types.Type) *Value { 709 return f.constVal(OpConstInterface, t, constInterfaceMagic, false) 710 } 711 func (f *Func) ConstNil(t *types.Type) *Value { 712 return f.constVal(OpConstNil, t, constNilMagic, false) 713 } 714 func (f *Func) ConstEmptyString(t *types.Type) *Value { 715 v := f.constVal(OpConstString, t, constEmptyStringMagic, false) 716 v.Aux = StringToAux("") 717 return v 718 } 719 func (f *Func) ConstOffPtrSP(t *types.Type, c int64, sp *Value) *Value { 720 v := f.constVal(OpOffPtr, t, c, true) 721 if len(v.Args) == 0 { 722 v.AddArg(sp) 723 } 724 return v 725 } 726 727 func (f *Func) Frontend() Frontend { return f.fe } 728 func (f *Func) Warnl(pos src.XPos, msg string, args ...interface{}) { f.fe.Warnl(pos, msg, args...) } 729 func (f *Func) Logf(msg string, args ...interface{}) { f.fe.Logf(msg, args...) } 730 func (f *Func) Log() bool { return f.fe.Log() } 731 732 func (f *Func) Fatalf(msg string, args ...interface{}) { 733 stats := "crashed" 734 if f.Log() { 735 f.Logf(" pass %s end %s\n", f.pass.name, stats) 736 printFunc(f) 737 } 738 if f.HTMLWriter != nil { 739 f.HTMLWriter.WritePhase(f.pass.name, fmt.Sprintf("%s <span class=\"stats\">%s</span>", f.pass.name, stats)) 740 f.HTMLWriter.flushPhases() 741 } 742 f.fe.Fatalf(f.Entry.Pos, msg, args...) 743 } 744 745 // postorder returns the reachable blocks in f in a postorder traversal. 746 func (f *Func) postorder() []*Block { 747 if f.cachedPostorder == nil { 748 f.cachedPostorder = postorder(f) 749 } 750 return f.cachedPostorder 751 } 752 753 func (f *Func) Postorder() []*Block { 754 return f.postorder() 755 } 756 757 // Idom returns a map from block ID to the immediate dominator of that block. 758 // f.Entry.ID maps to nil. Unreachable blocks map to nil as well. 759 func (f *Func) Idom() []*Block { 760 if f.cachedIdom == nil { 761 f.cachedIdom = dominators(f) 762 } 763 return f.cachedIdom 764 } 765 766 // Sdom returns a sparse tree representing the dominator relationships 767 // among the blocks of f. 768 func (f *Func) Sdom() SparseTree { 769 if f.cachedSdom == nil { 770 f.cachedSdom = newSparseTree(f, f.Idom()) 771 } 772 return f.cachedSdom 773 } 774 775 // loopnest returns the loop nest information for f. 776 func (f *Func) loopnest() *loopnest { 777 if f.cachedLoopnest == nil { 778 f.cachedLoopnest = loopnestfor(f) 779 } 780 return f.cachedLoopnest 781 } 782 783 // invalidateCFG tells f that its CFG has changed. 784 func (f *Func) invalidateCFG() { 785 f.cachedPostorder = nil 786 f.cachedIdom = nil 787 f.cachedSdom = nil 788 f.cachedLoopnest = nil 789 } 790 791 // DebugHashMatch returns 792 // 793 // base.DebugHashMatch(this function's package.name) 794 // 795 // for use in bug isolation. The return value is true unless 796 // environment variable GOSSAHASH is set, in which case "it depends". 797 // See [base.DebugHashMatch] for more information. 798 func (f *Func) DebugHashMatch() bool { 799 if !base.HasDebugHash() { 800 return true 801 } 802 sym := f.fe.Func().Sym() 803 return base.DebugHashMatchPkgFunc(sym.Pkg.Path, sym.Name) 804 } 805 806 func (f *Func) spSb() (sp, sb *Value) { 807 initpos := src.NoXPos // These are originally created with no position in ssa.go; if they are optimized out then recreated, should be the same. 808 for _, v := range f.Entry.Values { 809 if v.Op == OpSB { 810 sb = v 811 } 812 if v.Op == OpSP { 813 sp = v 814 } 815 if sb != nil && sp != nil { 816 return 817 } 818 } 819 if sb == nil { 820 sb = f.Entry.NewValue0(initpos.WithNotStmt(), OpSB, f.Config.Types.Uintptr) 821 } 822 if sp == nil { 823 sp = f.Entry.NewValue0(initpos.WithNotStmt(), OpSP, f.Config.Types.Uintptr) 824 } 825 return 826 } 827 828 // useFMA allows targeted debugging w/ GOFMAHASH 829 // If you have an architecture-dependent FP glitch, this will help you find it. 830 func (f *Func) useFMA(v *Value) bool { 831 if !f.Config.UseFMA { 832 return false 833 } 834 if base.FmaHash == nil { 835 return true 836 } 837 return base.FmaHash.MatchPos(v.Pos, nil) 838 } 839 840 // NewLocal returns a new anonymous local variable of the given type. 841 func (f *Func) NewLocal(pos src.XPos, typ *types.Type) *ir.Name { 842 return typecheck.TempAt(pos, f.fe.Func(), typ) // Note: adds new auto to fn.Dcl list 843 }