github.com/go-asm/go@v1.21.1-0.20240213172139-40c5ead50c48/cmd/compile/ssa/loopbce.go (about)

     1  // Copyright 2018 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ssa
     6  
     7  import (
     8  	"fmt"
     9  
    10  	"github.com/go-asm/go/cmd/compile/base"
    11  	"github.com/go-asm/go/cmd/compile/types"
    12  )
    13  
    14  type indVarFlags uint8
    15  
    16  const (
    17  	indVarMinExc    indVarFlags = 1 << iota // minimum value is exclusive (default: inclusive)
    18  	indVarMaxInc                            // maximum value is inclusive (default: exclusive)
    19  	indVarCountDown                         // if set the iteration starts at max and count towards min (default: min towards max)
    20  )
    21  
    22  type indVar struct {
    23  	ind   *Value // induction variable
    24  	nxt   *Value // the incremented variable
    25  	min   *Value // minimum value, inclusive/exclusive depends on flags
    26  	max   *Value // maximum value, inclusive/exclusive depends on flags
    27  	entry *Block // entry block in the loop.
    28  	flags indVarFlags
    29  	// Invariant: for all blocks strictly dominated by entry:
    30  	//	min <= ind <  max    [if flags == 0]
    31  	//	min <  ind <  max    [if flags == indVarMinExc]
    32  	//	min <= ind <= max    [if flags == indVarMaxInc]
    33  	//	min <  ind <= max    [if flags == indVarMinExc|indVarMaxInc]
    34  }
    35  
    36  // parseIndVar checks whether the SSA value passed as argument is a valid induction
    37  // variable, and, if so, extracts:
    38  //   - the minimum bound
    39  //   - the increment value
    40  //   - the "next" value (SSA value that is Phi'd into the induction variable every loop)
    41  //
    42  // Currently, we detect induction variables that match (Phi min nxt),
    43  // with nxt being (Add inc ind).
    44  // If it can't parse the induction variable correctly, it returns (nil, nil, nil).
    45  func parseIndVar(ind *Value) (min, inc, nxt *Value) {
    46  	if ind.Op != OpPhi {
    47  		return
    48  	}
    49  
    50  	if n := ind.Args[0]; (n.Op == OpAdd64 || n.Op == OpAdd32 || n.Op == OpAdd16 || n.Op == OpAdd8) && (n.Args[0] == ind || n.Args[1] == ind) {
    51  		min, nxt = ind.Args[1], n
    52  	} else if n := ind.Args[1]; (n.Op == OpAdd64 || n.Op == OpAdd32 || n.Op == OpAdd16 || n.Op == OpAdd8) && (n.Args[0] == ind || n.Args[1] == ind) {
    53  		min, nxt = ind.Args[0], n
    54  	} else {
    55  		// Not a recognized induction variable.
    56  		return
    57  	}
    58  
    59  	if nxt.Args[0] == ind { // nxt = ind + inc
    60  		inc = nxt.Args[1]
    61  	} else if nxt.Args[1] == ind { // nxt = inc + ind
    62  		inc = nxt.Args[0]
    63  	} else {
    64  		panic("unreachable") // one of the cases must be true from the above.
    65  	}
    66  
    67  	return
    68  }
    69  
    70  // findIndVar finds induction variables in a function.
    71  //
    72  // Look for variables and blocks that satisfy the following
    73  //
    74  //	 loop:
    75  //	   ind = (Phi min nxt),
    76  //	   if ind < max
    77  //	     then goto enter_loop
    78  //	     else goto exit_loop
    79  //
    80  //	   enter_loop:
    81  //		do something
    82  //	      nxt = inc + ind
    83  //		goto loop
    84  //
    85  //	 exit_loop:
    86  func findIndVar(f *Func) []indVar {
    87  	var iv []indVar
    88  	sdom := f.Sdom()
    89  
    90  	for _, b := range f.Blocks {
    91  		if b.Kind != BlockIf || len(b.Preds) != 2 {
    92  			continue
    93  		}
    94  
    95  		var ind *Value   // induction variable
    96  		var init *Value  // starting value
    97  		var limit *Value // ending value
    98  
    99  		// Check that the control if it either ind </<= limit or limit </<= ind.
   100  		// TODO: Handle unsigned comparisons?
   101  		c := b.Controls[0]
   102  		inclusive := false
   103  		switch c.Op {
   104  		case OpLeq64, OpLeq32, OpLeq16, OpLeq8:
   105  			inclusive = true
   106  			fallthrough
   107  		case OpLess64, OpLess32, OpLess16, OpLess8:
   108  			ind, limit = c.Args[0], c.Args[1]
   109  		default:
   110  			continue
   111  		}
   112  
   113  		// See if this is really an induction variable
   114  		less := true
   115  		init, inc, nxt := parseIndVar(ind)
   116  		if init == nil {
   117  			// We failed to parse the induction variable. Before punting, we want to check
   118  			// whether the control op was written with the induction variable on the RHS
   119  			// instead of the LHS. This happens for the downwards case, like:
   120  			//     for i := len(n)-1; i >= 0; i--
   121  			init, inc, nxt = parseIndVar(limit)
   122  			if init == nil {
   123  				// No recognized induction variable on either operand
   124  				continue
   125  			}
   126  
   127  			// Ok, the arguments were reversed. Swap them, and remember that we're
   128  			// looking at an ind >/>= loop (so the induction must be decrementing).
   129  			ind, limit = limit, ind
   130  			less = false
   131  		}
   132  
   133  		if ind.Block != b {
   134  			// TODO: Could be extended to include disjointed loop headers.
   135  			// I don't think this is causing missed optimizations in real world code often.
   136  			// See https://go.dev/issue/63955
   137  			continue
   138  		}
   139  
   140  		// Expect the increment to be a nonzero constant.
   141  		if !inc.isGenericIntConst() {
   142  			continue
   143  		}
   144  		step := inc.AuxInt
   145  		if step == 0 {
   146  			continue
   147  		}
   148  
   149  		// Increment sign must match comparison direction.
   150  		// When incrementing, the termination comparison must be ind </<= limit.
   151  		// When decrementing, the termination comparison must be ind >/>= limit.
   152  		// See issue 26116.
   153  		if step > 0 && !less {
   154  			continue
   155  		}
   156  		if step < 0 && less {
   157  			continue
   158  		}
   159  
   160  		// Up to now we extracted the induction variable (ind),
   161  		// the increment delta (inc), the temporary sum (nxt),
   162  		// the initial value (init) and the limiting value (limit).
   163  		//
   164  		// We also know that ind has the form (Phi init nxt) where
   165  		// nxt is (Add inc nxt) which means: 1) inc dominates nxt
   166  		// and 2) there is a loop starting at inc and containing nxt.
   167  		//
   168  		// We need to prove that the induction variable is incremented
   169  		// only when it's smaller than the limiting value.
   170  		// Two conditions must happen listed below to accept ind
   171  		// as an induction variable.
   172  
   173  		// First condition: loop entry has a single predecessor, which
   174  		// is the header block.  This implies that b.Succs[0] is
   175  		// reached iff ind < limit.
   176  		if len(b.Succs[0].b.Preds) != 1 {
   177  			// b.Succs[1] must exit the loop.
   178  			continue
   179  		}
   180  
   181  		// Second condition: b.Succs[0] dominates nxt so that
   182  		// nxt is computed when inc < limit.
   183  		if !sdom.IsAncestorEq(b.Succs[0].b, nxt.Block) {
   184  			// inc+ind can only be reached through the branch that enters the loop.
   185  			continue
   186  		}
   187  
   188  		// Check for overflow/underflow. We need to make sure that inc never causes
   189  		// the induction variable to wrap around.
   190  		// We use a function wrapper here for easy return true / return false / keep going logic.
   191  		// This function returns true if the increment will never overflow/underflow.
   192  		ok := func() bool {
   193  			if step > 0 {
   194  				if limit.isGenericIntConst() {
   195  					// Figure out the actual largest value.
   196  					v := limit.AuxInt
   197  					if !inclusive {
   198  						if v == minSignedValue(limit.Type) {
   199  							return false // < minint is never satisfiable.
   200  						}
   201  						v--
   202  					}
   203  					if init.isGenericIntConst() {
   204  						// Use stride to compute a better lower limit.
   205  						if init.AuxInt > v {
   206  							return false
   207  						}
   208  						v = addU(init.AuxInt, diff(v, init.AuxInt)/uint64(step)*uint64(step))
   209  					}
   210  					if addWillOverflow(v, step) {
   211  						return false
   212  					}
   213  					if inclusive && v != limit.AuxInt || !inclusive && v+1 != limit.AuxInt {
   214  						// We know a better limit than the programmer did. Use our limit instead.
   215  						limit = f.constVal(limit.Op, limit.Type, v, true)
   216  						inclusive = true
   217  					}
   218  					return true
   219  				}
   220  				if step == 1 && !inclusive {
   221  					// Can't overflow because maxint is never a possible value.
   222  					return true
   223  				}
   224  				// If the limit is not a constant, check to see if it is a
   225  				// negative offset from a known non-negative value.
   226  				knn, k := findKNN(limit)
   227  				if knn == nil || k < 0 {
   228  					return false
   229  				}
   230  				// limit == (something nonnegative) - k. That subtraction can't underflow, so
   231  				// we can trust it.
   232  				if inclusive {
   233  					// ind <= knn - k cannot overflow if step is at most k
   234  					return step <= k
   235  				}
   236  				// ind < knn - k cannot overflow if step is at most k+1
   237  				return step <= k+1 && k != maxSignedValue(limit.Type)
   238  			} else { // step < 0
   239  				if limit.Op == OpConst64 {
   240  					// Figure out the actual smallest value.
   241  					v := limit.AuxInt
   242  					if !inclusive {
   243  						if v == maxSignedValue(limit.Type) {
   244  							return false // > maxint is never satisfiable.
   245  						}
   246  						v++
   247  					}
   248  					if init.isGenericIntConst() {
   249  						// Use stride to compute a better lower limit.
   250  						if init.AuxInt < v {
   251  							return false
   252  						}
   253  						v = subU(init.AuxInt, diff(init.AuxInt, v)/uint64(-step)*uint64(-step))
   254  					}
   255  					if subWillUnderflow(v, -step) {
   256  						return false
   257  					}
   258  					if inclusive && v != limit.AuxInt || !inclusive && v-1 != limit.AuxInt {
   259  						// We know a better limit than the programmer did. Use our limit instead.
   260  						limit = f.constVal(limit.Op, limit.Type, v, true)
   261  						inclusive = true
   262  					}
   263  					return true
   264  				}
   265  				if step == -1 && !inclusive {
   266  					// Can't underflow because minint is never a possible value.
   267  					return true
   268  				}
   269  			}
   270  			return false
   271  
   272  		}
   273  
   274  		if ok() {
   275  			flags := indVarFlags(0)
   276  			var min, max *Value
   277  			if step > 0 {
   278  				min = init
   279  				max = limit
   280  				if inclusive {
   281  					flags |= indVarMaxInc
   282  				}
   283  			} else {
   284  				min = limit
   285  				max = init
   286  				flags |= indVarMaxInc
   287  				if !inclusive {
   288  					flags |= indVarMinExc
   289  				}
   290  				flags |= indVarCountDown
   291  				step = -step
   292  			}
   293  			if f.pass.debug >= 1 {
   294  				printIndVar(b, ind, min, max, step, flags)
   295  			}
   296  
   297  			iv = append(iv, indVar{
   298  				ind:   ind,
   299  				nxt:   nxt,
   300  				min:   min,
   301  				max:   max,
   302  				entry: b.Succs[0].b,
   303  				flags: flags,
   304  			})
   305  			b.Logf("found induction variable %v (inc = %v, min = %v, max = %v)\n", ind, inc, min, max)
   306  		}
   307  
   308  		// TODO: other unrolling idioms
   309  		// for i := 0; i < KNN - KNN % k ; i += k
   310  		// for i := 0; i < KNN&^(k-1) ; i += k // k a power of 2
   311  		// for i := 0; i < KNN&(-k) ; i += k // k a power of 2
   312  	}
   313  
   314  	return iv
   315  }
   316  
   317  // addWillOverflow reports whether x+y would result in a value more than maxint.
   318  func addWillOverflow(x, y int64) bool {
   319  	return x+y < x
   320  }
   321  
   322  // subWillUnderflow reports whether x-y would result in a value less than minint.
   323  func subWillUnderflow(x, y int64) bool {
   324  	return x-y > x
   325  }
   326  
   327  // diff returns x-y as a uint64. Requires x>=y.
   328  func diff(x, y int64) uint64 {
   329  	if x < y {
   330  		base.Fatalf("diff %d - %d underflowed", x, y)
   331  	}
   332  	return uint64(x - y)
   333  }
   334  
   335  // addU returns x+y. Requires that x+y does not overflow an int64.
   336  func addU(x int64, y uint64) int64 {
   337  	if y >= 1<<63 {
   338  		if x >= 0 {
   339  			base.Fatalf("addU overflowed %d + %d", x, y)
   340  		}
   341  		x += 1<<63 - 1
   342  		x += 1
   343  		y -= 1 << 63
   344  	}
   345  	if addWillOverflow(x, int64(y)) {
   346  		base.Fatalf("addU overflowed %d + %d", x, y)
   347  	}
   348  	return x + int64(y)
   349  }
   350  
   351  // subU returns x-y. Requires that x-y does not underflow an int64.
   352  func subU(x int64, y uint64) int64 {
   353  	if y >= 1<<63 {
   354  		if x < 0 {
   355  			base.Fatalf("subU underflowed %d - %d", x, y)
   356  		}
   357  		x -= 1<<63 - 1
   358  		x -= 1
   359  		y -= 1 << 63
   360  	}
   361  	if subWillUnderflow(x, int64(y)) {
   362  		base.Fatalf("subU underflowed %d - %d", x, y)
   363  	}
   364  	return x - int64(y)
   365  }
   366  
   367  // if v is known to be x - c, where x is known to be nonnegative and c is a
   368  // constant, return x, c. Otherwise return nil, 0.
   369  func findKNN(v *Value) (*Value, int64) {
   370  	var x, y *Value
   371  	x = v
   372  	switch v.Op {
   373  	case OpSub64, OpSub32, OpSub16, OpSub8:
   374  		x = v.Args[0]
   375  		y = v.Args[1]
   376  
   377  	case OpAdd64, OpAdd32, OpAdd16, OpAdd8:
   378  		x = v.Args[0]
   379  		y = v.Args[1]
   380  		if x.isGenericIntConst() {
   381  			x, y = y, x
   382  		}
   383  	}
   384  	switch x.Op {
   385  	case OpSliceLen, OpStringLen, OpSliceCap:
   386  	default:
   387  		return nil, 0
   388  	}
   389  	if y == nil {
   390  		return x, 0
   391  	}
   392  	if !y.isGenericIntConst() {
   393  		return nil, 0
   394  	}
   395  	if v.Op == OpAdd64 || v.Op == OpAdd32 || v.Op == OpAdd16 || v.Op == OpAdd8 {
   396  		return x, -y.AuxInt
   397  	}
   398  	return x, y.AuxInt
   399  }
   400  
   401  func printIndVar(b *Block, i, min, max *Value, inc int64, flags indVarFlags) {
   402  	mb1, mb2 := "[", "]"
   403  	if flags&indVarMinExc != 0 {
   404  		mb1 = "("
   405  	}
   406  	if flags&indVarMaxInc == 0 {
   407  		mb2 = ")"
   408  	}
   409  
   410  	mlim1, mlim2 := fmt.Sprint(min.AuxInt), fmt.Sprint(max.AuxInt)
   411  	if !min.isGenericIntConst() {
   412  		if b.Func.pass.debug >= 2 {
   413  			mlim1 = fmt.Sprint(min)
   414  		} else {
   415  			mlim1 = "?"
   416  		}
   417  	}
   418  	if !max.isGenericIntConst() {
   419  		if b.Func.pass.debug >= 2 {
   420  			mlim2 = fmt.Sprint(max)
   421  		} else {
   422  			mlim2 = "?"
   423  		}
   424  	}
   425  	extra := ""
   426  	if b.Func.pass.debug >= 2 {
   427  		extra = fmt.Sprintf(" (%s)", i)
   428  	}
   429  	b.Func.Warnl(b.Pos, "Induction variable: limits %v%v,%v%v, increment %d%s", mb1, mlim1, mlim2, mb2, inc, extra)
   430  }
   431  
   432  func minSignedValue(t *types.Type) int64 {
   433  	return -1 << (t.Size()*8 - 1)
   434  }
   435  
   436  func maxSignedValue(t *types.Type) int64 {
   437  	return 1<<((t.Size()*8)-1) - 1
   438  }