github.com/go-asm/go@v1.21.1-0.20240213172139-40c5ead50c48/cmd/compile/ssa/schedule.go (about)

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ssa
     6  
     7  import (
     8  	"container/heap"
     9  	"sort"
    10  
    11  	"github.com/go-asm/go/cmd/compile/base"
    12  	"github.com/go-asm/go/cmd/compile/types"
    13  )
    14  
    15  const (
    16  	ScorePhi       = iota // towards top of block
    17  	ScoreArg              // must occur at the top of the entry block
    18  	ScoreInitMem          // after the args - used as mark by debug info generation
    19  	ScoreReadTuple        // must occur immediately after tuple-generating insn (or call)
    20  	ScoreNilCheck
    21  	ScoreMemory
    22  	ScoreReadFlags
    23  	ScoreDefault
    24  	ScoreFlags
    25  	ScoreControl // towards bottom of block
    26  )
    27  
    28  type ValHeap struct {
    29  	a           []*Value
    30  	score       []int8
    31  	inBlockUses []bool
    32  }
    33  
    34  func (h ValHeap) Len() int      { return len(h.a) }
    35  func (h ValHeap) Swap(i, j int) { a := h.a; a[i], a[j] = a[j], a[i] }
    36  
    37  func (h *ValHeap) Push(x interface{}) {
    38  	// Push and Pop use pointer receivers because they modify the slice's length,
    39  	// not just its contents.
    40  	v := x.(*Value)
    41  	h.a = append(h.a, v)
    42  }
    43  func (h *ValHeap) Pop() interface{} {
    44  	old := h.a
    45  	n := len(old)
    46  	x := old[n-1]
    47  	h.a = old[0 : n-1]
    48  	return x
    49  }
    50  func (h ValHeap) Less(i, j int) bool {
    51  	x := h.a[i]
    52  	y := h.a[j]
    53  	sx := h.score[x.ID]
    54  	sy := h.score[y.ID]
    55  	if c := sx - sy; c != 0 {
    56  		return c < 0 // lower scores come earlier.
    57  	}
    58  	// Note: only scores are required for correct scheduling.
    59  	// Everything else is just heuristics.
    60  
    61  	ix := h.inBlockUses[x.ID]
    62  	iy := h.inBlockUses[y.ID]
    63  	if ix != iy {
    64  		return ix // values with in-block uses come earlier
    65  	}
    66  
    67  	if x.Pos != y.Pos { // Favor in-order line stepping
    68  		return x.Pos.Before(y.Pos)
    69  	}
    70  	if x.Op != OpPhi {
    71  		if c := len(x.Args) - len(y.Args); c != 0 {
    72  			return c > 0 // smaller args come later
    73  		}
    74  	}
    75  	if c := x.Uses - y.Uses; c != 0 {
    76  		return c > 0 // smaller uses come later
    77  	}
    78  	// These comparisons are fairly arbitrary.
    79  	// The goal here is stability in the face
    80  	// of unrelated changes elsewhere in the compiler.
    81  	if c := x.AuxInt - y.AuxInt; c != 0 {
    82  		return c < 0
    83  	}
    84  	if cmp := x.Type.Compare(y.Type); cmp != types.CMPeq {
    85  		return cmp == types.CMPlt
    86  	}
    87  	return x.ID < y.ID
    88  }
    89  
    90  func (op Op) isLoweredGetClosurePtr() bool {
    91  	switch op {
    92  	case OpAMD64LoweredGetClosurePtr, OpPPC64LoweredGetClosurePtr, OpARMLoweredGetClosurePtr, OpARM64LoweredGetClosurePtr,
    93  		Op386LoweredGetClosurePtr, OpMIPS64LoweredGetClosurePtr, OpLOONG64LoweredGetClosurePtr, OpS390XLoweredGetClosurePtr, OpMIPSLoweredGetClosurePtr,
    94  		OpRISCV64LoweredGetClosurePtr, OpWasmLoweredGetClosurePtr:
    95  		return true
    96  	}
    97  	return false
    98  }
    99  
   100  // Schedule the Values in each Block. After this phase returns, the
   101  // order of b.Values matters and is the order in which those values
   102  // will appear in the assembly output. For now it generates a
   103  // reasonable valid schedule using a priority queue. TODO(khr):
   104  // schedule smarter.
   105  func schedule(f *Func) {
   106  	// reusable priority queue
   107  	priq := new(ValHeap)
   108  
   109  	// "priority" for a value
   110  	score := f.Cache.allocInt8Slice(f.NumValues())
   111  	defer f.Cache.freeInt8Slice(score)
   112  
   113  	// maps mem values to the next live memory value
   114  	nextMem := f.Cache.allocValueSlice(f.NumValues())
   115  	defer f.Cache.freeValueSlice(nextMem)
   116  
   117  	// inBlockUses records whether a value is used in the block
   118  	// in which it lives. (block control values don't count as uses.)
   119  	inBlockUses := f.Cache.allocBoolSlice(f.NumValues())
   120  	defer f.Cache.freeBoolSlice(inBlockUses)
   121  	if f.Config.optimize {
   122  		for _, b := range f.Blocks {
   123  			for _, v := range b.Values {
   124  				for _, a := range v.Args {
   125  					if a.Block == b {
   126  						inBlockUses[a.ID] = true
   127  					}
   128  				}
   129  			}
   130  		}
   131  	}
   132  	priq.inBlockUses = inBlockUses
   133  
   134  	for _, b := range f.Blocks {
   135  		// Compute score. Larger numbers are scheduled closer to the end of the block.
   136  		for _, v := range b.Values {
   137  			switch {
   138  			case v.Op.isLoweredGetClosurePtr():
   139  				// We also score GetLoweredClosurePtr as early as possible to ensure that the
   140  				// context register is not stomped. GetLoweredClosurePtr should only appear
   141  				// in the entry block where there are no phi functions, so there is no
   142  				// conflict or ambiguity here.
   143  				if b != f.Entry {
   144  					f.Fatalf("LoweredGetClosurePtr appeared outside of entry block, b=%s", b.String())
   145  				}
   146  				score[v.ID] = ScorePhi
   147  			case opcodeTable[v.Op].nilCheck:
   148  				// Nil checks must come before loads from the same address.
   149  				score[v.ID] = ScoreNilCheck
   150  			case v.Op == OpPhi:
   151  				// We want all the phis first.
   152  				score[v.ID] = ScorePhi
   153  			case v.Op == OpArgIntReg || v.Op == OpArgFloatReg:
   154  				// In-register args must be scheduled as early as possible to ensure that they
   155  				// are not stomped (similar to the closure pointer above).
   156  				// In particular, they need to come before regular OpArg operations because
   157  				// of how regalloc places spill code (see regalloc.go:placeSpills:mustBeFirst).
   158  				if b != f.Entry {
   159  					f.Fatalf("%s appeared outside of entry block, b=%s", v.Op, b.String())
   160  				}
   161  				score[v.ID] = ScorePhi
   162  			case v.Op == OpArg || v.Op == OpSP || v.Op == OpSB:
   163  				// We want all the args as early as possible, for better debugging.
   164  				score[v.ID] = ScoreArg
   165  			case v.Op == OpInitMem:
   166  				// Early, but after args. See debug.go:buildLocationLists
   167  				score[v.ID] = ScoreInitMem
   168  			case v.Type.IsMemory():
   169  				// Schedule stores as early as possible. This tends to
   170  				// reduce register pressure.
   171  				score[v.ID] = ScoreMemory
   172  			case v.Op == OpSelect0 || v.Op == OpSelect1 || v.Op == OpSelectN:
   173  				// Tuple selectors need to appear immediately after the instruction
   174  				// that generates the tuple.
   175  				score[v.ID] = ScoreReadTuple
   176  			case v.hasFlagInput():
   177  				// Schedule flag-reading ops earlier, to minimize the lifetime
   178  				// of flag values.
   179  				score[v.ID] = ScoreReadFlags
   180  			case v.isFlagOp():
   181  				// Schedule flag register generation as late as possible.
   182  				// This makes sure that we only have one live flags
   183  				// value at a time.
   184  				// Note that this case is after the case above, so values
   185  				// which both read and generate flags are given ScoreReadFlags.
   186  				score[v.ID] = ScoreFlags
   187  			default:
   188  				score[v.ID] = ScoreDefault
   189  				// If we're reading flags, schedule earlier to keep flag lifetime short.
   190  				for _, a := range v.Args {
   191  					if a.isFlagOp() {
   192  						score[v.ID] = ScoreReadFlags
   193  					}
   194  				}
   195  			}
   196  		}
   197  		for _, c := range b.ControlValues() {
   198  			// Force the control values to be scheduled at the end,
   199  			// unless they have other special priority.
   200  			if c.Block != b || score[c.ID] < ScoreReadTuple {
   201  				continue
   202  			}
   203  			if score[c.ID] == ScoreReadTuple {
   204  				score[c.Args[0].ID] = ScoreControl
   205  				continue
   206  			}
   207  			score[c.ID] = ScoreControl
   208  		}
   209  	}
   210  	priq.score = score
   211  
   212  	// An edge represents a scheduling constraint that x must appear before y in the schedule.
   213  	type edge struct {
   214  		x, y *Value
   215  	}
   216  	edges := make([]edge, 0, 64)
   217  
   218  	// inEdges is the number of scheduling edges incoming from values that haven't been scheduled yet.
   219  	// i.e. inEdges[y.ID] = |e in edges where e.y == y and e.x is not in the schedule yet|.
   220  	inEdges := f.Cache.allocInt32Slice(f.NumValues())
   221  	defer f.Cache.freeInt32Slice(inEdges)
   222  
   223  	for _, b := range f.Blocks {
   224  		edges = edges[:0]
   225  		// Standard edges: from the argument of a value to that value.
   226  		for _, v := range b.Values {
   227  			if v.Op == OpPhi {
   228  				// If a value is used by a phi, it does not induce
   229  				// a scheduling edge because that use is from the
   230  				// previous iteration.
   231  				continue
   232  			}
   233  			for _, a := range v.Args {
   234  				if a.Block == b {
   235  					edges = append(edges, edge{a, v})
   236  				}
   237  			}
   238  		}
   239  
   240  		// Find store chain for block.
   241  		// Store chains for different blocks overwrite each other, so
   242  		// the calculated store chain is good only for this block.
   243  		for _, v := range b.Values {
   244  			if v.Op != OpPhi && v.Op != OpInitMem && v.Type.IsMemory() {
   245  				nextMem[v.MemoryArg().ID] = v
   246  			}
   247  		}
   248  
   249  		// Add edges to enforce that any load must come before the following store.
   250  		for _, v := range b.Values {
   251  			if v.Op == OpPhi || v.Type.IsMemory() {
   252  				continue
   253  			}
   254  			w := v.MemoryArg()
   255  			if w == nil {
   256  				continue
   257  			}
   258  			if s := nextMem[w.ID]; s != nil && s.Block == b {
   259  				edges = append(edges, edge{v, s})
   260  			}
   261  		}
   262  
   263  		// Sort all the edges by source Value ID.
   264  		sort.Slice(edges, func(i, j int) bool {
   265  			return edges[i].x.ID < edges[j].x.ID
   266  		})
   267  		// Compute inEdges for values in this block.
   268  		for _, e := range edges {
   269  			inEdges[e.y.ID]++
   270  		}
   271  
   272  		// Initialize priority queue with schedulable values.
   273  		priq.a = priq.a[:0]
   274  		for _, v := range b.Values {
   275  			if inEdges[v.ID] == 0 {
   276  				heap.Push(priq, v)
   277  			}
   278  		}
   279  
   280  		// Produce the schedule. Pick the highest priority scheduleable value,
   281  		// add it to the schedule, add any of its uses that are now scheduleable
   282  		// to the queue, and repeat.
   283  		nv := len(b.Values)
   284  		b.Values = b.Values[:0]
   285  		for priq.Len() > 0 {
   286  			// Schedule the next schedulable value in priority order.
   287  			v := heap.Pop(priq).(*Value)
   288  			b.Values = append(b.Values, v)
   289  
   290  			// Find all the scheduling edges out from this value.
   291  			i := sort.Search(len(edges), func(i int) bool {
   292  				return edges[i].x.ID >= v.ID
   293  			})
   294  			j := sort.Search(len(edges), func(i int) bool {
   295  				return edges[i].x.ID > v.ID
   296  			})
   297  			// Decrement inEdges for each target of edges from v.
   298  			for _, e := range edges[i:j] {
   299  				inEdges[e.y.ID]--
   300  				if inEdges[e.y.ID] == 0 {
   301  					heap.Push(priq, e.y)
   302  				}
   303  			}
   304  		}
   305  		if len(b.Values) != nv {
   306  			f.Fatalf("schedule does not include all values in block %s", b)
   307  		}
   308  	}
   309  
   310  	// Remove SPanchored now that we've scheduled.
   311  	// Also unlink nil checks now that ordering is assured
   312  	// between the nil check and the uses of the nil-checked pointer.
   313  	for _, b := range f.Blocks {
   314  		for _, v := range b.Values {
   315  			for i, a := range v.Args {
   316  				if a.Op == OpSPanchored || opcodeTable[a.Op].nilCheck {
   317  					v.SetArg(i, a.Args[0])
   318  				}
   319  			}
   320  		}
   321  		for i, c := range b.ControlValues() {
   322  			if c.Op == OpSPanchored || opcodeTable[c.Op].nilCheck {
   323  				b.ReplaceControl(i, c.Args[0])
   324  			}
   325  		}
   326  	}
   327  	for _, b := range f.Blocks {
   328  		i := 0
   329  		for _, v := range b.Values {
   330  			if v.Op == OpSPanchored {
   331  				// Free this value
   332  				if v.Uses != 0 {
   333  					base.Fatalf("SPAnchored still has %d uses", v.Uses)
   334  				}
   335  				v.resetArgs()
   336  				f.freeValue(v)
   337  			} else {
   338  				if opcodeTable[v.Op].nilCheck {
   339  					if v.Uses != 0 {
   340  						base.Fatalf("nilcheck still has %d uses", v.Uses)
   341  					}
   342  					// We can't delete the nil check, but we mark
   343  					// it as having void type so regalloc won't
   344  					// try to allocate a register for it.
   345  					v.Type = types.TypeVoid
   346  				}
   347  				b.Values[i] = v
   348  				i++
   349  			}
   350  		}
   351  		b.truncateValues(i)
   352  	}
   353  
   354  	f.scheduled = true
   355  }
   356  
   357  // storeOrder orders values with respect to stores. That is,
   358  // if v transitively depends on store s, v is ordered after s,
   359  // otherwise v is ordered before s.
   360  // Specifically, values are ordered like
   361  //
   362  //	store1
   363  //	NilCheck that depends on store1
   364  //	other values that depends on store1
   365  //	store2
   366  //	NilCheck that depends on store2
   367  //	other values that depends on store2
   368  //	...
   369  //
   370  // The order of non-store and non-NilCheck values are undefined
   371  // (not necessarily dependency order). This should be cheaper
   372  // than a full scheduling as done above.
   373  // Note that simple dependency order won't work: there is no
   374  // dependency between NilChecks and values like IsNonNil.
   375  // Auxiliary data structures are passed in as arguments, so
   376  // that they can be allocated in the caller and be reused.
   377  // This function takes care of reset them.
   378  func storeOrder(values []*Value, sset *sparseSet, storeNumber []int32) []*Value {
   379  	if len(values) == 0 {
   380  		return values
   381  	}
   382  
   383  	f := values[0].Block.Func
   384  
   385  	// find all stores
   386  
   387  	// Members of values that are store values.
   388  	// A constant bound allows this to be stack-allocated. 64 is
   389  	// enough to cover almost every storeOrder call.
   390  	stores := make([]*Value, 0, 64)
   391  	hasNilCheck := false
   392  	sset.clear() // sset is the set of stores that are used in other values
   393  	for _, v := range values {
   394  		if v.Type.IsMemory() {
   395  			stores = append(stores, v)
   396  			if v.Op == OpInitMem || v.Op == OpPhi {
   397  				continue
   398  			}
   399  			sset.add(v.MemoryArg().ID) // record that v's memory arg is used
   400  		}
   401  		if v.Op == OpNilCheck {
   402  			hasNilCheck = true
   403  		}
   404  	}
   405  	if len(stores) == 0 || !hasNilCheck && f.pass.name == "nilcheckelim" {
   406  		// there is no store, the order does not matter
   407  		return values
   408  	}
   409  
   410  	// find last store, which is the one that is not used by other stores
   411  	var last *Value
   412  	for _, v := range stores {
   413  		if !sset.contains(v.ID) {
   414  			if last != nil {
   415  				f.Fatalf("two stores live simultaneously: %v and %v", v, last)
   416  			}
   417  			last = v
   418  		}
   419  	}
   420  
   421  	// We assign a store number to each value. Store number is the
   422  	// index of the latest store that this value transitively depends.
   423  	// The i-th store in the current block gets store number 3*i. A nil
   424  	// check that depends on the i-th store gets store number 3*i+1.
   425  	// Other values that depends on the i-th store gets store number 3*i+2.
   426  	// Special case: 0 -- unassigned, 1 or 2 -- the latest store it depends
   427  	// is in the previous block (or no store at all, e.g. value is Const).
   428  	// First we assign the number to all stores by walking back the store chain,
   429  	// then assign the number to other values in DFS order.
   430  	count := make([]int32, 3*(len(stores)+1))
   431  	sset.clear() // reuse sparse set to ensure that a value is pushed to stack only once
   432  	for n, w := len(stores), last; n > 0; n-- {
   433  		storeNumber[w.ID] = int32(3 * n)
   434  		count[3*n]++
   435  		sset.add(w.ID)
   436  		if w.Op == OpInitMem || w.Op == OpPhi {
   437  			if n != 1 {
   438  				f.Fatalf("store order is wrong: there are stores before %v", w)
   439  			}
   440  			break
   441  		}
   442  		w = w.MemoryArg()
   443  	}
   444  	var stack []*Value
   445  	for _, v := range values {
   446  		if sset.contains(v.ID) {
   447  			// in sset means v is a store, or already pushed to stack, or already assigned a store number
   448  			continue
   449  		}
   450  		stack = append(stack, v)
   451  		sset.add(v.ID)
   452  
   453  		for len(stack) > 0 {
   454  			w := stack[len(stack)-1]
   455  			if storeNumber[w.ID] != 0 {
   456  				stack = stack[:len(stack)-1]
   457  				continue
   458  			}
   459  			if w.Op == OpPhi {
   460  				// Phi value doesn't depend on store in the current block.
   461  				// Do this early to avoid dependency cycle.
   462  				storeNumber[w.ID] = 2
   463  				count[2]++
   464  				stack = stack[:len(stack)-1]
   465  				continue
   466  			}
   467  
   468  			max := int32(0) // latest store dependency
   469  			argsdone := true
   470  			for _, a := range w.Args {
   471  				if a.Block != w.Block {
   472  					continue
   473  				}
   474  				if !sset.contains(a.ID) {
   475  					stack = append(stack, a)
   476  					sset.add(a.ID)
   477  					argsdone = false
   478  					break
   479  				}
   480  				if storeNumber[a.ID]/3 > max {
   481  					max = storeNumber[a.ID] / 3
   482  				}
   483  			}
   484  			if !argsdone {
   485  				continue
   486  			}
   487  
   488  			n := 3*max + 2
   489  			if w.Op == OpNilCheck {
   490  				n = 3*max + 1
   491  			}
   492  			storeNumber[w.ID] = n
   493  			count[n]++
   494  			stack = stack[:len(stack)-1]
   495  		}
   496  	}
   497  
   498  	// convert count to prefix sum of counts: count'[i] = sum_{j<=i} count[i]
   499  	for i := range count {
   500  		if i == 0 {
   501  			continue
   502  		}
   503  		count[i] += count[i-1]
   504  	}
   505  	if count[len(count)-1] != int32(len(values)) {
   506  		f.Fatalf("storeOrder: value is missing, total count = %d, values = %v", count[len(count)-1], values)
   507  	}
   508  
   509  	// place values in count-indexed bins, which are in the desired store order
   510  	order := make([]*Value, len(values))
   511  	for _, v := range values {
   512  		s := storeNumber[v.ID]
   513  		order[count[s-1]] = v
   514  		count[s-1]++
   515  	}
   516  
   517  	// Order nil checks in source order. We want the first in source order to trigger.
   518  	// If two are on the same line, we don't really care which happens first.
   519  	// See issue 18169.
   520  	if hasNilCheck {
   521  		start := -1
   522  		for i, v := range order {
   523  			if v.Op == OpNilCheck {
   524  				if start == -1 {
   525  					start = i
   526  				}
   527  			} else {
   528  				if start != -1 {
   529  					sort.Sort(bySourcePos(order[start:i]))
   530  					start = -1
   531  				}
   532  			}
   533  		}
   534  		if start != -1 {
   535  			sort.Sort(bySourcePos(order[start:]))
   536  		}
   537  	}
   538  
   539  	return order
   540  }
   541  
   542  // isFlagOp reports if v is an OP with the flag type.
   543  func (v *Value) isFlagOp() bool {
   544  	if v.Type.IsFlags() || v.Type.IsTuple() && v.Type.FieldType(1).IsFlags() {
   545  		return true
   546  	}
   547  	// PPC64 carry generators put their carry in a non-flag-typed register
   548  	// in their output.
   549  	switch v.Op {
   550  	case OpPPC64SUBC, OpPPC64ADDC, OpPPC64SUBCconst, OpPPC64ADDCconst:
   551  		return true
   552  	}
   553  	return false
   554  }
   555  
   556  // hasFlagInput reports whether v has a flag value as any of its inputs.
   557  func (v *Value) hasFlagInput() bool {
   558  	for _, a := range v.Args {
   559  		if a.isFlagOp() {
   560  			return true
   561  		}
   562  	}
   563  	// PPC64 carry dependencies are conveyed through their final argument,
   564  	// so we treat those operations as taking flags as well.
   565  	switch v.Op {
   566  	case OpPPC64SUBE, OpPPC64ADDE, OpPPC64SUBZEzero, OpPPC64ADDZEzero:
   567  		return true
   568  	}
   569  	return false
   570  }
   571  
   572  type bySourcePos []*Value
   573  
   574  func (s bySourcePos) Len() int           { return len(s) }
   575  func (s bySourcePos) Swap(i, j int)      { s[i], s[j] = s[j], s[i] }
   576  func (s bySourcePos) Less(i, j int) bool { return s[i].Pos.Before(s[j].Pos) }