github.com/go-asm/go@v1.21.1-0.20240213172139-40c5ead50c48/cmd/compile/ssa/value.go (about)

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ssa
     6  
     7  import (
     8  	"fmt"
     9  	"math"
    10  	"sort"
    11  	"strings"
    12  
    13  	"github.com/go-asm/go/cmd/compile/ir"
    14  	"github.com/go-asm/go/cmd/compile/types"
    15  	"github.com/go-asm/go/cmd/src"
    16  )
    17  
    18  // A Value represents a value in the SSA representation of the program.
    19  // The ID and Type fields must not be modified. The remainder may be modified
    20  // if they preserve the value of the Value (e.g. changing a (mul 2 x) to an (add x x)).
    21  type Value struct {
    22  	// A unique identifier for the value. For performance we allocate these IDs
    23  	// densely starting at 1.  There is no guarantee that there won't be occasional holes, though.
    24  	ID ID
    25  
    26  	// The operation that computes this value. See op.go.
    27  	Op Op
    28  
    29  	// The type of this value. Normally this will be a Go type, but there
    30  	// are a few other pseudo-types, see ../types/type.go.
    31  	Type *types.Type
    32  
    33  	// Auxiliary info for this value. The type of this information depends on the opcode and type.
    34  	// AuxInt is used for integer values, Aux is used for other values.
    35  	// Floats are stored in AuxInt using math.Float64bits(f).
    36  	// Unused portions of AuxInt are filled by sign-extending the used portion,
    37  	// even if the represented value is unsigned.
    38  	// Users of AuxInt which interpret AuxInt as unsigned (e.g. shifts) must be careful.
    39  	// Use Value.AuxUnsigned to get the zero-extended value of AuxInt.
    40  	AuxInt int64
    41  	Aux    Aux
    42  
    43  	// Arguments of this value
    44  	Args []*Value
    45  
    46  	// Containing basic block
    47  	Block *Block
    48  
    49  	// Source position
    50  	Pos src.XPos
    51  
    52  	// Use count. Each appearance in Value.Args and Block.Controls counts once.
    53  	Uses int32
    54  
    55  	// wasm: Value stays on the WebAssembly stack. This value will not get a "register" (WebAssembly variable)
    56  	// nor a slot on Go stack, and the generation of this value is delayed to its use time.
    57  	OnWasmStack bool
    58  
    59  	// Is this value in the per-function constant cache? If so, remove from cache before changing it or recycling it.
    60  	InCache bool
    61  
    62  	// Storage for the first three args
    63  	argstorage [3]*Value
    64  }
    65  
    66  // Examples:
    67  // Opcode          aux   args
    68  //  OpAdd          nil      2
    69  //  OpConst     string      0    string constant
    70  //  OpConst      int64      0    int64 constant
    71  //  OpAddcq      int64      1    amd64 op: v = arg[0] + constant
    72  
    73  // short form print. Just v#.
    74  func (v *Value) String() string {
    75  	if v == nil {
    76  		return "nil" // should never happen, but not panicking helps with debugging
    77  	}
    78  	return fmt.Sprintf("v%d", v.ID)
    79  }
    80  
    81  func (v *Value) AuxInt8() int8 {
    82  	if opcodeTable[v.Op].auxType != auxInt8 && opcodeTable[v.Op].auxType != auxNameOffsetInt8 {
    83  		v.Fatalf("op %s doesn't have an int8 aux field", v.Op)
    84  	}
    85  	return int8(v.AuxInt)
    86  }
    87  
    88  func (v *Value) AuxUInt8() uint8 {
    89  	if opcodeTable[v.Op].auxType != auxUInt8 {
    90  		v.Fatalf("op %s doesn't have a uint8 aux field", v.Op)
    91  	}
    92  	return uint8(v.AuxInt)
    93  }
    94  
    95  func (v *Value) AuxInt16() int16 {
    96  	if opcodeTable[v.Op].auxType != auxInt16 {
    97  		v.Fatalf("op %s doesn't have an int16 aux field", v.Op)
    98  	}
    99  	return int16(v.AuxInt)
   100  }
   101  
   102  func (v *Value) AuxInt32() int32 {
   103  	if opcodeTable[v.Op].auxType != auxInt32 {
   104  		v.Fatalf("op %s doesn't have an int32 aux field", v.Op)
   105  	}
   106  	return int32(v.AuxInt)
   107  }
   108  
   109  // AuxUnsigned returns v.AuxInt as an unsigned value for OpConst*.
   110  // v.AuxInt is always sign-extended to 64 bits, even if the
   111  // represented value is unsigned. This undoes that sign extension.
   112  func (v *Value) AuxUnsigned() uint64 {
   113  	c := v.AuxInt
   114  	switch v.Op {
   115  	case OpConst64:
   116  		return uint64(c)
   117  	case OpConst32:
   118  		return uint64(uint32(c))
   119  	case OpConst16:
   120  		return uint64(uint16(c))
   121  	case OpConst8:
   122  		return uint64(uint8(c))
   123  	}
   124  	v.Fatalf("op %s isn't OpConst*", v.Op)
   125  	return 0
   126  }
   127  
   128  func (v *Value) AuxFloat() float64 {
   129  	if opcodeTable[v.Op].auxType != auxFloat32 && opcodeTable[v.Op].auxType != auxFloat64 {
   130  		v.Fatalf("op %s doesn't have a float aux field", v.Op)
   131  	}
   132  	return math.Float64frombits(uint64(v.AuxInt))
   133  }
   134  func (v *Value) AuxValAndOff() ValAndOff {
   135  	if opcodeTable[v.Op].auxType != auxSymValAndOff {
   136  		v.Fatalf("op %s doesn't have a ValAndOff aux field", v.Op)
   137  	}
   138  	return ValAndOff(v.AuxInt)
   139  }
   140  
   141  func (v *Value) AuxArm64BitField() arm64BitField {
   142  	if opcodeTable[v.Op].auxType != auxARM64BitField {
   143  		v.Fatalf("op %s doesn't have a ValAndOff aux field", v.Op)
   144  	}
   145  	return arm64BitField(v.AuxInt)
   146  }
   147  
   148  // long form print.  v# = opcode <type> [aux] args [: reg] (names)
   149  func (v *Value) LongString() string {
   150  	if v == nil {
   151  		return "<NIL VALUE>"
   152  	}
   153  	s := fmt.Sprintf("v%d = %s", v.ID, v.Op)
   154  	s += " <" + v.Type.String() + ">"
   155  	s += v.auxString()
   156  	for _, a := range v.Args {
   157  		s += fmt.Sprintf(" %v", a)
   158  	}
   159  	if v.Block == nil {
   160  		return s
   161  	}
   162  	r := v.Block.Func.RegAlloc
   163  	if int(v.ID) < len(r) && r[v.ID] != nil {
   164  		s += " : " + r[v.ID].String()
   165  	}
   166  	if reg := v.Block.Func.tempRegs[v.ID]; reg != nil {
   167  		s += " tmp=" + reg.String()
   168  	}
   169  	var names []string
   170  	for name, values := range v.Block.Func.NamedValues {
   171  		for _, value := range values {
   172  			if value == v {
   173  				names = append(names, name.String())
   174  				break // drop duplicates.
   175  			}
   176  		}
   177  	}
   178  	if len(names) != 0 {
   179  		sort.Strings(names) // Otherwise a source of variation in debugging output.
   180  		s += " (" + strings.Join(names, ", ") + ")"
   181  	}
   182  	return s
   183  }
   184  
   185  func (v *Value) auxString() string {
   186  	switch opcodeTable[v.Op].auxType {
   187  	case auxBool:
   188  		if v.AuxInt == 0 {
   189  			return " [false]"
   190  		} else {
   191  			return " [true]"
   192  		}
   193  	case auxInt8:
   194  		return fmt.Sprintf(" [%d]", v.AuxInt8())
   195  	case auxInt16:
   196  		return fmt.Sprintf(" [%d]", v.AuxInt16())
   197  	case auxInt32:
   198  		return fmt.Sprintf(" [%d]", v.AuxInt32())
   199  	case auxInt64, auxInt128:
   200  		return fmt.Sprintf(" [%d]", v.AuxInt)
   201  	case auxUInt8:
   202  		return fmt.Sprintf(" [%d]", v.AuxUInt8())
   203  	case auxARM64BitField:
   204  		lsb := v.AuxArm64BitField().getARM64BFlsb()
   205  		width := v.AuxArm64BitField().getARM64BFwidth()
   206  		return fmt.Sprintf(" [lsb=%d,width=%d]", lsb, width)
   207  	case auxFloat32, auxFloat64:
   208  		return fmt.Sprintf(" [%g]", v.AuxFloat())
   209  	case auxString:
   210  		return fmt.Sprintf(" {%q}", v.Aux)
   211  	case auxSym, auxCall, auxTyp:
   212  		if v.Aux != nil {
   213  			return fmt.Sprintf(" {%v}", v.Aux)
   214  		}
   215  		return ""
   216  	case auxSymOff, auxCallOff, auxTypSize, auxNameOffsetInt8:
   217  		s := ""
   218  		if v.Aux != nil {
   219  			s = fmt.Sprintf(" {%v}", v.Aux)
   220  		}
   221  		if v.AuxInt != 0 || opcodeTable[v.Op].auxType == auxNameOffsetInt8 {
   222  			s += fmt.Sprintf(" [%v]", v.AuxInt)
   223  		}
   224  		return s
   225  	case auxSymValAndOff:
   226  		s := ""
   227  		if v.Aux != nil {
   228  			s = fmt.Sprintf(" {%v}", v.Aux)
   229  		}
   230  		return s + fmt.Sprintf(" [%s]", v.AuxValAndOff())
   231  	case auxCCop:
   232  		return fmt.Sprintf(" {%s}", Op(v.AuxInt))
   233  	case auxS390XCCMask, auxS390XRotateParams:
   234  		return fmt.Sprintf(" {%v}", v.Aux)
   235  	case auxFlagConstant:
   236  		return fmt.Sprintf("[%s]", flagConstant(v.AuxInt))
   237  	case auxNone:
   238  		return ""
   239  	default:
   240  		// If you see this, add a case above instead.
   241  		return fmt.Sprintf("[auxtype=%d AuxInt=%d Aux=%v]", opcodeTable[v.Op].auxType, v.AuxInt, v.Aux)
   242  	}
   243  }
   244  
   245  // If/when midstack inlining is enabled (-l=4), the compiler gets both larger and slower.
   246  // Not-inlining this method is a help (*Value.reset and *Block.NewValue0 are similar).
   247  //
   248  //go:noinline
   249  func (v *Value) AddArg(w *Value) {
   250  	if v.Args == nil {
   251  		v.resetArgs() // use argstorage
   252  	}
   253  	v.Args = append(v.Args, w)
   254  	w.Uses++
   255  }
   256  
   257  //go:noinline
   258  func (v *Value) AddArg2(w1, w2 *Value) {
   259  	if v.Args == nil {
   260  		v.resetArgs() // use argstorage
   261  	}
   262  	v.Args = append(v.Args, w1, w2)
   263  	w1.Uses++
   264  	w2.Uses++
   265  }
   266  
   267  //go:noinline
   268  func (v *Value) AddArg3(w1, w2, w3 *Value) {
   269  	if v.Args == nil {
   270  		v.resetArgs() // use argstorage
   271  	}
   272  	v.Args = append(v.Args, w1, w2, w3)
   273  	w1.Uses++
   274  	w2.Uses++
   275  	w3.Uses++
   276  }
   277  
   278  //go:noinline
   279  func (v *Value) AddArg4(w1, w2, w3, w4 *Value) {
   280  	v.Args = append(v.Args, w1, w2, w3, w4)
   281  	w1.Uses++
   282  	w2.Uses++
   283  	w3.Uses++
   284  	w4.Uses++
   285  }
   286  
   287  //go:noinline
   288  func (v *Value) AddArg5(w1, w2, w3, w4, w5 *Value) {
   289  	v.Args = append(v.Args, w1, w2, w3, w4, w5)
   290  	w1.Uses++
   291  	w2.Uses++
   292  	w3.Uses++
   293  	w4.Uses++
   294  	w5.Uses++
   295  }
   296  
   297  //go:noinline
   298  func (v *Value) AddArg6(w1, w2, w3, w4, w5, w6 *Value) {
   299  	v.Args = append(v.Args, w1, w2, w3, w4, w5, w6)
   300  	w1.Uses++
   301  	w2.Uses++
   302  	w3.Uses++
   303  	w4.Uses++
   304  	w5.Uses++
   305  	w6.Uses++
   306  }
   307  
   308  func (v *Value) AddArgs(a ...*Value) {
   309  	if v.Args == nil {
   310  		v.resetArgs() // use argstorage
   311  	}
   312  	v.Args = append(v.Args, a...)
   313  	for _, x := range a {
   314  		x.Uses++
   315  	}
   316  }
   317  func (v *Value) SetArg(i int, w *Value) {
   318  	v.Args[i].Uses--
   319  	v.Args[i] = w
   320  	w.Uses++
   321  }
   322  func (v *Value) SetArgs1(a *Value) {
   323  	v.resetArgs()
   324  	v.AddArg(a)
   325  }
   326  func (v *Value) SetArgs2(a, b *Value) {
   327  	v.resetArgs()
   328  	v.AddArg(a)
   329  	v.AddArg(b)
   330  }
   331  func (v *Value) SetArgs3(a, b, c *Value) {
   332  	v.resetArgs()
   333  	v.AddArg(a)
   334  	v.AddArg(b)
   335  	v.AddArg(c)
   336  }
   337  
   338  func (v *Value) resetArgs() {
   339  	for _, a := range v.Args {
   340  		a.Uses--
   341  	}
   342  	v.argstorage[0] = nil
   343  	v.argstorage[1] = nil
   344  	v.argstorage[2] = nil
   345  	v.Args = v.argstorage[:0]
   346  }
   347  
   348  // reset is called from most rewrite rules.
   349  // Allowing it to be inlined increases the size
   350  // of cmd/compile by almost 10%, and slows it down.
   351  //
   352  //go:noinline
   353  func (v *Value) reset(op Op) {
   354  	if v.InCache {
   355  		v.Block.Func.unCache(v)
   356  	}
   357  	v.Op = op
   358  	v.resetArgs()
   359  	v.AuxInt = 0
   360  	v.Aux = nil
   361  }
   362  
   363  // invalidateRecursively marks a value as invalid (unused)
   364  // and after decrementing reference counts on its Args,
   365  // also recursively invalidates any of those whose use
   366  // count goes to zero.  It returns whether any of the
   367  // invalidated values was marked with IsStmt.
   368  //
   369  // BEWARE of doing this *before* you've applied intended
   370  // updates to SSA.
   371  func (v *Value) invalidateRecursively() bool {
   372  	lostStmt := v.Pos.IsStmt() == src.PosIsStmt
   373  	if v.InCache {
   374  		v.Block.Func.unCache(v)
   375  	}
   376  	v.Op = OpInvalid
   377  
   378  	for _, a := range v.Args {
   379  		a.Uses--
   380  		if a.Uses == 0 {
   381  			lost := a.invalidateRecursively()
   382  			lostStmt = lost || lostStmt
   383  		}
   384  	}
   385  
   386  	v.argstorage[0] = nil
   387  	v.argstorage[1] = nil
   388  	v.argstorage[2] = nil
   389  	v.Args = v.argstorage[:0]
   390  
   391  	v.AuxInt = 0
   392  	v.Aux = nil
   393  	return lostStmt
   394  }
   395  
   396  // copyOf is called from rewrite rules.
   397  // It modifies v to be (Copy a).
   398  //
   399  //go:noinline
   400  func (v *Value) copyOf(a *Value) {
   401  	if v == a {
   402  		return
   403  	}
   404  	if v.InCache {
   405  		v.Block.Func.unCache(v)
   406  	}
   407  	v.Op = OpCopy
   408  	v.resetArgs()
   409  	v.AddArg(a)
   410  	v.AuxInt = 0
   411  	v.Aux = nil
   412  	v.Type = a.Type
   413  }
   414  
   415  // copyInto makes a new value identical to v and adds it to the end of b.
   416  // unlike copyIntoWithXPos this does not check for v.Pos being a statement.
   417  func (v *Value) copyInto(b *Block) *Value {
   418  	c := b.NewValue0(v.Pos.WithNotStmt(), v.Op, v.Type) // Lose the position, this causes line number churn otherwise.
   419  	c.Aux = v.Aux
   420  	c.AuxInt = v.AuxInt
   421  	c.AddArgs(v.Args...)
   422  	for _, a := range v.Args {
   423  		if a.Type.IsMemory() {
   424  			v.Fatalf("can't move a value with a memory arg %s", v.LongString())
   425  		}
   426  	}
   427  	return c
   428  }
   429  
   430  // copyIntoWithXPos makes a new value identical to v and adds it to the end of b.
   431  // The supplied position is used as the position of the new value.
   432  // Because this is used for rematerialization, check for case that (rematerialized)
   433  // input to value with position 'pos' carried a statement mark, and that the supplied
   434  // position (of the instruction using the rematerialized value) is not marked, and
   435  // preserve that mark if its line matches the supplied position.
   436  func (v *Value) copyIntoWithXPos(b *Block, pos src.XPos) *Value {
   437  	if v.Pos.IsStmt() == src.PosIsStmt && pos.IsStmt() != src.PosIsStmt && v.Pos.SameFileAndLine(pos) {
   438  		pos = pos.WithIsStmt()
   439  	}
   440  	c := b.NewValue0(pos, v.Op, v.Type)
   441  	c.Aux = v.Aux
   442  	c.AuxInt = v.AuxInt
   443  	c.AddArgs(v.Args...)
   444  	for _, a := range v.Args {
   445  		if a.Type.IsMemory() {
   446  			v.Fatalf("can't move a value with a memory arg %s", v.LongString())
   447  		}
   448  	}
   449  	return c
   450  }
   451  
   452  func (v *Value) Logf(msg string, args ...interface{}) { v.Block.Logf(msg, args...) }
   453  func (v *Value) Log() bool                            { return v.Block.Log() }
   454  func (v *Value) Fatalf(msg string, args ...interface{}) {
   455  	v.Block.Func.fe.Fatalf(v.Pos, msg, args...)
   456  }
   457  
   458  // isGenericIntConst reports whether v is a generic integer constant.
   459  func (v *Value) isGenericIntConst() bool {
   460  	return v != nil && (v.Op == OpConst64 || v.Op == OpConst32 || v.Op == OpConst16 || v.Op == OpConst8)
   461  }
   462  
   463  // ResultReg returns the result register assigned to v, in github.com/go-asm/go/cmd/obj/$ARCH numbering.
   464  // It is similar to Reg and Reg0, except that it is usable interchangeably for all Value Ops.
   465  // If you know v.Op, using Reg or Reg0 (as appropriate) will be more efficient.
   466  func (v *Value) ResultReg() int16 {
   467  	reg := v.Block.Func.RegAlloc[v.ID]
   468  	if reg == nil {
   469  		v.Fatalf("nil reg for value: %s\n%s\n", v.LongString(), v.Block.Func)
   470  	}
   471  	if pair, ok := reg.(LocPair); ok {
   472  		reg = pair[0]
   473  	}
   474  	if reg == nil {
   475  		v.Fatalf("nil reg0 for value: %s\n%s\n", v.LongString(), v.Block.Func)
   476  	}
   477  	return reg.(*Register).objNum
   478  }
   479  
   480  // Reg returns the register assigned to v, in github.com/go-asm/go/cmd/obj/$ARCH numbering.
   481  func (v *Value) Reg() int16 {
   482  	reg := v.Block.Func.RegAlloc[v.ID]
   483  	if reg == nil {
   484  		v.Fatalf("nil register for value: %s\n%s\n", v.LongString(), v.Block.Func)
   485  	}
   486  	return reg.(*Register).objNum
   487  }
   488  
   489  // Reg0 returns the register assigned to the first output of v, in github.com/go-asm/go/cmd/obj/$ARCH numbering.
   490  func (v *Value) Reg0() int16 {
   491  	reg := v.Block.Func.RegAlloc[v.ID].(LocPair)[0]
   492  	if reg == nil {
   493  		v.Fatalf("nil first register for value: %s\n%s\n", v.LongString(), v.Block.Func)
   494  	}
   495  	return reg.(*Register).objNum
   496  }
   497  
   498  // Reg1 returns the register assigned to the second output of v, in github.com/go-asm/go/cmd/obj/$ARCH numbering.
   499  func (v *Value) Reg1() int16 {
   500  	reg := v.Block.Func.RegAlloc[v.ID].(LocPair)[1]
   501  	if reg == nil {
   502  		v.Fatalf("nil second register for value: %s\n%s\n", v.LongString(), v.Block.Func)
   503  	}
   504  	return reg.(*Register).objNum
   505  }
   506  
   507  // RegTmp returns the temporary register assigned to v, in github.com/go-asm/go/cmd/obj/$ARCH numbering.
   508  func (v *Value) RegTmp() int16 {
   509  	reg := v.Block.Func.tempRegs[v.ID]
   510  	if reg == nil {
   511  		v.Fatalf("nil tmp register for value: %s\n%s\n", v.LongString(), v.Block.Func)
   512  	}
   513  	return reg.objNum
   514  }
   515  
   516  func (v *Value) RegName() string {
   517  	reg := v.Block.Func.RegAlloc[v.ID]
   518  	if reg == nil {
   519  		v.Fatalf("nil register for value: %s\n%s\n", v.LongString(), v.Block.Func)
   520  	}
   521  	return reg.(*Register).name
   522  }
   523  
   524  // MemoryArg returns the memory argument for the Value.
   525  // The returned value, if non-nil, will be memory-typed (or a tuple with a memory-typed second part).
   526  // Otherwise, nil is returned.
   527  func (v *Value) MemoryArg() *Value {
   528  	if v.Op == OpPhi {
   529  		v.Fatalf("MemoryArg on Phi")
   530  	}
   531  	na := len(v.Args)
   532  	if na == 0 {
   533  		return nil
   534  	}
   535  	if m := v.Args[na-1]; m.Type.IsMemory() {
   536  		return m
   537  	}
   538  	return nil
   539  }
   540  
   541  // LackingPos indicates whether v is a value that is unlikely to have a correct
   542  // position assigned to it.  Ignoring such values leads to more user-friendly positions
   543  // assigned to nearby values and the blocks containing them.
   544  func (v *Value) LackingPos() bool {
   545  	// The exact definition of LackingPos is somewhat heuristically defined and may change
   546  	// in the future, for example if some of these operations are generated more carefully
   547  	// with respect to their source position.
   548  	return v.Op == OpVarDef || v.Op == OpVarLive || v.Op == OpPhi ||
   549  		(v.Op == OpFwdRef || v.Op == OpCopy) && v.Type == types.TypeMem
   550  }
   551  
   552  // removeable reports whether the value v can be removed from the SSA graph entirely
   553  // if its use count drops to 0.
   554  func (v *Value) removeable() bool {
   555  	if v.Type.IsVoid() {
   556  		// Void ops (inline marks), must stay.
   557  		return false
   558  	}
   559  	if opcodeTable[v.Op].nilCheck {
   560  		// Nil pointer checks must stay.
   561  		return false
   562  	}
   563  	if v.Type.IsMemory() {
   564  		// We don't need to preserve all memory ops, but we do need
   565  		// to keep calls at least (because they might have
   566  		// synchronization operations we can't see).
   567  		return false
   568  	}
   569  	if v.Op.HasSideEffects() {
   570  		// These are mostly synchronization operations.
   571  		return false
   572  	}
   573  	return true
   574  }
   575  
   576  // AutoVar returns a *Name and int64 representing the auto variable and offset within it
   577  // where v should be spilled.
   578  func AutoVar(v *Value) (*ir.Name, int64) {
   579  	if loc, ok := v.Block.Func.RegAlloc[v.ID].(LocalSlot); ok {
   580  		if v.Type.Size() > loc.Type.Size() {
   581  			v.Fatalf("spill/restore type %s doesn't fit in slot type %s", v.Type, loc.Type)
   582  		}
   583  		return loc.N, loc.Off
   584  	}
   585  	// Assume it is a register, return its spill slot, which needs to be live
   586  	nameOff := v.Aux.(*AuxNameOffset)
   587  	return nameOff.Name, nameOff.Offset
   588  }
   589  
   590  // CanSSA reports whether values of type t can be represented as a Value.
   591  func CanSSA(t *types.Type) bool {
   592  	types.CalcSize(t)
   593  	if t.Size() > int64(4*types.PtrSize) {
   594  		// 4*Widthptr is an arbitrary constant. We want it
   595  		// to be at least 3*Widthptr so slices can be registerized.
   596  		// Too big and we'll introduce too much register pressure.
   597  		return false
   598  	}
   599  	switch t.Kind() {
   600  	case types.TARRAY:
   601  		// We can't do larger arrays because dynamic indexing is
   602  		// not supported on SSA variables.
   603  		// TODO: allow if all indexes are constant.
   604  		if t.NumElem() <= 1 {
   605  			return CanSSA(t.Elem())
   606  		}
   607  		return false
   608  	case types.TSTRUCT:
   609  		if t.NumFields() > MaxStruct {
   610  			return false
   611  		}
   612  		for _, t1 := range t.Fields() {
   613  			if !CanSSA(t1.Type) {
   614  				return false
   615  			}
   616  		}
   617  		return true
   618  	default:
   619  		return true
   620  	}
   621  }