github.com/go-asm/go@v1.21.1-0.20240213172139-40c5ead50c48/cmd/compile/walk/range.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package walk
     6  
     7  import (
     8  	"unicode/utf8"
     9  
    10  	"github.com/go-asm/go/cmd/compile/base"
    11  	"github.com/go-asm/go/cmd/compile/ir"
    12  	"github.com/go-asm/go/cmd/compile/reflectdata"
    13  	"github.com/go-asm/go/cmd/compile/ssagen"
    14  	"github.com/go-asm/go/cmd/compile/typecheck"
    15  	"github.com/go-asm/go/cmd/compile/types"
    16  	"github.com/go-asm/go/cmd/src"
    17  	"github.com/go-asm/go/cmd/sys"
    18  )
    19  
    20  func cheapComputableIndex(width int64) bool {
    21  	switch ssagen.Arch.LinkArch.Family {
    22  	// MIPS does not have R+R addressing
    23  	// Arm64 may lack ability to generate this code in our assembler,
    24  	// but the architecture supports it.
    25  	case sys.PPC64, sys.S390X:
    26  		return width == 1
    27  	case sys.AMD64, sys.I386, sys.ARM64, sys.ARM:
    28  		switch width {
    29  		case 1, 2, 4, 8:
    30  			return true
    31  		}
    32  	}
    33  	return false
    34  }
    35  
    36  // walkRange transforms various forms of ORANGE into
    37  // simpler forms.  The result must be assigned back to n.
    38  // Node n may also be modified in place, and may also be
    39  // the returned node.
    40  func walkRange(nrange *ir.RangeStmt) ir.Node {
    41  	base.Assert(!nrange.DistinctVars) // Should all be rewritten before escape analysis
    42  	if isMapClear(nrange) {
    43  		return mapRangeClear(nrange)
    44  	}
    45  
    46  	nfor := ir.NewForStmt(nrange.Pos(), nil, nil, nil, nil, nrange.DistinctVars)
    47  	nfor.SetInit(nrange.Init())
    48  	nfor.Label = nrange.Label
    49  
    50  	// variable name conventions:
    51  	//	ohv1, hv1, hv2: hidden (old) val 1, 2
    52  	//	ha, hit: hidden aggregate, iterator
    53  	//	hn, hp: hidden len, pointer
    54  	//	hb: hidden bool
    55  	//	a, v1, v2: not hidden aggregate, val 1, 2
    56  
    57  	a := nrange.X
    58  	t := a.Type()
    59  	lno := ir.SetPos(a)
    60  
    61  	v1, v2 := nrange.Key, nrange.Value
    62  
    63  	if ir.IsBlank(v2) {
    64  		v2 = nil
    65  	}
    66  
    67  	if ir.IsBlank(v1) && v2 == nil {
    68  		v1 = nil
    69  	}
    70  
    71  	if v1 == nil && v2 != nil {
    72  		base.Fatalf("walkRange: v2 != nil while v1 == nil")
    73  	}
    74  
    75  	var body []ir.Node
    76  	var init []ir.Node
    77  	switch k := t.Kind(); {
    78  	default:
    79  		base.Fatalf("walkRange")
    80  
    81  	case types.IsInt[k]:
    82  		hv1 := typecheck.TempAt(base.Pos, ir.CurFunc, t)
    83  		hn := typecheck.TempAt(base.Pos, ir.CurFunc, t)
    84  
    85  		init = append(init, ir.NewAssignStmt(base.Pos, hv1, nil))
    86  		init = append(init, ir.NewAssignStmt(base.Pos, hn, a))
    87  
    88  		nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, hv1, hn)
    89  		nfor.Post = ir.NewAssignStmt(base.Pos, hv1, ir.NewBinaryExpr(base.Pos, ir.OADD, hv1, ir.NewInt(base.Pos, 1)))
    90  
    91  		if v1 != nil {
    92  			body = []ir.Node{rangeAssign(nrange, hv1)}
    93  		}
    94  
    95  	case k == types.TARRAY, k == types.TSLICE, k == types.TPTR: // TPTR is pointer-to-array
    96  		if nn := arrayRangeClear(nrange, v1, v2, a); nn != nil {
    97  			base.Pos = lno
    98  			return nn
    99  		}
   100  
   101  		// Element type of the iteration
   102  		var elem *types.Type
   103  		switch t.Kind() {
   104  		case types.TSLICE, types.TARRAY:
   105  			elem = t.Elem()
   106  		case types.TPTR:
   107  			elem = t.Elem().Elem()
   108  		}
   109  
   110  		// order.stmt arranged for a copy of the array/slice variable if needed.
   111  		ha := a
   112  
   113  		hv1 := typecheck.TempAt(base.Pos, ir.CurFunc, types.Types[types.TINT])
   114  		hn := typecheck.TempAt(base.Pos, ir.CurFunc, types.Types[types.TINT])
   115  
   116  		init = append(init, ir.NewAssignStmt(base.Pos, hv1, nil))
   117  		init = append(init, ir.NewAssignStmt(base.Pos, hn, ir.NewUnaryExpr(base.Pos, ir.OLEN, ha)))
   118  
   119  		nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, hv1, hn)
   120  		nfor.Post = ir.NewAssignStmt(base.Pos, hv1, ir.NewBinaryExpr(base.Pos, ir.OADD, hv1, ir.NewInt(base.Pos, 1)))
   121  
   122  		// for range ha { body }
   123  		if v1 == nil {
   124  			break
   125  		}
   126  
   127  		// for v1 := range ha { body }
   128  		if v2 == nil {
   129  			body = []ir.Node{rangeAssign(nrange, hv1)}
   130  			break
   131  		}
   132  
   133  		// for v1, v2 := range ha { body }
   134  		if cheapComputableIndex(elem.Size()) {
   135  			// v1, v2 = hv1, ha[hv1]
   136  			tmp := ir.NewIndexExpr(base.Pos, ha, hv1)
   137  			tmp.SetBounded(true)
   138  			body = []ir.Node{rangeAssign2(nrange, hv1, tmp)}
   139  			break
   140  		}
   141  
   142  		// Slice to iterate over
   143  		var hs ir.Node
   144  		if t.IsSlice() {
   145  			hs = ha
   146  		} else {
   147  			var arr ir.Node
   148  			if t.IsPtr() {
   149  				arr = ha
   150  			} else {
   151  				arr = typecheck.NodAddr(ha)
   152  				arr.SetType(t.PtrTo())
   153  				arr.SetTypecheck(1)
   154  			}
   155  			hs = ir.NewSliceExpr(base.Pos, ir.OSLICEARR, arr, nil, nil, nil)
   156  			// old typechecker doesn't know OSLICEARR, so we set types explicitly
   157  			hs.SetType(types.NewSlice(elem))
   158  			hs.SetTypecheck(1)
   159  		}
   160  
   161  		// We use a "pointer" to keep track of where we are in the backing array
   162  		// of the slice hs. This pointer starts at hs.ptr and gets incremented
   163  		// by the element size each time through the loop.
   164  		//
   165  		// It's tricky, though, as on the last iteration this pointer gets
   166  		// incremented to point past the end of the backing array. We can't
   167  		// let the garbage collector see that final out-of-bounds pointer.
   168  		//
   169  		// To avoid this, we keep the "pointer" alternately in 2 variables, one
   170  		// pointer typed and one uintptr typed. Most of the time it lives in the
   171  		// regular pointer variable, but when it might be out of bounds (after it
   172  		// has been incremented, but before the loop condition has been checked)
   173  		// it lives briefly in the uintptr variable.
   174  		//
   175  		// hp contains the pointer version (of type *T, where T is the element type).
   176  		// It is guaranteed to always be in range, keeps the backing store alive,
   177  		// and is updated on stack copies. If a GC occurs when this function is
   178  		// suspended at any safepoint, this variable ensures correct operation.
   179  		//
   180  		// hu contains the equivalent uintptr version. It may point past the
   181  		// end, but doesn't keep the backing store alive and doesn't get updated
   182  		// on a stack copy. If a GC occurs while this function is on the top of
   183  		// the stack, then the last frame is scanned conservatively and hu will
   184  		// act as a reference to the backing array to ensure it is not collected.
   185  		//
   186  		// The "pointer" we're moving across the backing array lives in one
   187  		// or the other of hp and hu as the loop proceeds.
   188  		//
   189  		// hp is live during most of the body of the loop. But it isn't live
   190  		// at the very top of the loop, when we haven't checked i<n yet, and
   191  		// it could point off the end of the backing store.
   192  		// hu is live only at the very top and very bottom of the loop.
   193  		// In particular, only when it cannot possibly be live across a call.
   194  		//
   195  		// So we do
   196  		//   hu = uintptr(unsafe.Pointer(hs.ptr))
   197  		//   for i := 0; i < hs.len; i++ {
   198  		//     hp = (*T)(unsafe.Pointer(hu))
   199  		//     v1, v2 = i, *hp
   200  		//     ... body of loop ...
   201  		//     hu = uintptr(unsafe.Pointer(hp)) + elemsize
   202  		//   }
   203  		//
   204  		// Between the assignments to hu and the assignment back to hp, there
   205  		// must not be any calls.
   206  
   207  		// Pointer to current iteration position. Start on entry to the loop
   208  		// with the pointer in hu.
   209  		ptr := ir.NewUnaryExpr(base.Pos, ir.OSPTR, hs)
   210  		ptr.SetBounded(true)
   211  		huVal := ir.NewConvExpr(base.Pos, ir.OCONVNOP, types.Types[types.TUNSAFEPTR], ptr)
   212  		huVal = ir.NewConvExpr(base.Pos, ir.OCONVNOP, types.Types[types.TUINTPTR], huVal)
   213  		hu := typecheck.TempAt(base.Pos, ir.CurFunc, types.Types[types.TUINTPTR])
   214  		init = append(init, ir.NewAssignStmt(base.Pos, hu, huVal))
   215  
   216  		// Convert hu to hp at the top of the loop (after the condition has been checked).
   217  		hpVal := ir.NewConvExpr(base.Pos, ir.OCONVNOP, types.Types[types.TUNSAFEPTR], hu)
   218  		hpVal.SetCheckPtr(true) // disable checkptr on this conversion
   219  		hpVal = ir.NewConvExpr(base.Pos, ir.OCONVNOP, elem.PtrTo(), hpVal)
   220  		hp := typecheck.TempAt(base.Pos, ir.CurFunc, elem.PtrTo())
   221  		body = append(body, ir.NewAssignStmt(base.Pos, hp, hpVal))
   222  
   223  		// Assign variables on the LHS of the range statement. Use *hp to get the element.
   224  		e := ir.NewStarExpr(base.Pos, hp)
   225  		e.SetBounded(true)
   226  		a := rangeAssign2(nrange, hv1, e)
   227  		body = append(body, a)
   228  
   229  		// Advance pointer for next iteration of the loop.
   230  		// This reads from hp and writes to hu.
   231  		huVal = ir.NewConvExpr(base.Pos, ir.OCONVNOP, types.Types[types.TUNSAFEPTR], hp)
   232  		huVal = ir.NewConvExpr(base.Pos, ir.OCONVNOP, types.Types[types.TUINTPTR], huVal)
   233  		as := ir.NewAssignStmt(base.Pos, hu, ir.NewBinaryExpr(base.Pos, ir.OADD, huVal, ir.NewInt(base.Pos, elem.Size())))
   234  		nfor.Post = ir.NewBlockStmt(base.Pos, []ir.Node{nfor.Post, as})
   235  
   236  	case k == types.TMAP:
   237  		// order.stmt allocated the iterator for us.
   238  		// we only use a once, so no copy needed.
   239  		ha := a
   240  
   241  		hit := nrange.Prealloc
   242  		th := hit.Type()
   243  		// depends on layout of iterator struct.
   244  		// See github.com/go-asm/go/cmd/compile/reflectdata/reflect.go:MapIterType
   245  		keysym := th.Field(0).Sym
   246  		elemsym := th.Field(1).Sym // ditto
   247  
   248  		fn := typecheck.LookupRuntime("mapiterinit", t.Key(), t.Elem(), th)
   249  		init = append(init, mkcallstmt1(fn, reflectdata.RangeMapRType(base.Pos, nrange), ha, typecheck.NodAddr(hit)))
   250  		nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.ONE, ir.NewSelectorExpr(base.Pos, ir.ODOT, hit, keysym), typecheck.NodNil())
   251  
   252  		fn = typecheck.LookupRuntime("mapiternext", th)
   253  		nfor.Post = mkcallstmt1(fn, typecheck.NodAddr(hit))
   254  
   255  		key := ir.NewStarExpr(base.Pos, typecheck.ConvNop(ir.NewSelectorExpr(base.Pos, ir.ODOT, hit, keysym), types.NewPtr(t.Key())))
   256  		if v1 == nil {
   257  			body = nil
   258  		} else if v2 == nil {
   259  			body = []ir.Node{rangeAssign(nrange, key)}
   260  		} else {
   261  			elem := ir.NewStarExpr(base.Pos, typecheck.ConvNop(ir.NewSelectorExpr(base.Pos, ir.ODOT, hit, elemsym), types.NewPtr(t.Elem())))
   262  			body = []ir.Node{rangeAssign2(nrange, key, elem)}
   263  		}
   264  
   265  	case k == types.TCHAN:
   266  		// order.stmt arranged for a copy of the channel variable.
   267  		ha := a
   268  
   269  		hv1 := typecheck.TempAt(base.Pos, ir.CurFunc, t.Elem())
   270  		hv1.SetTypecheck(1)
   271  		if t.Elem().HasPointers() {
   272  			init = append(init, ir.NewAssignStmt(base.Pos, hv1, nil))
   273  		}
   274  		hb := typecheck.TempAt(base.Pos, ir.CurFunc, types.Types[types.TBOOL])
   275  
   276  		nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.ONE, hb, ir.NewBool(base.Pos, false))
   277  		lhs := []ir.Node{hv1, hb}
   278  		rhs := []ir.Node{ir.NewUnaryExpr(base.Pos, ir.ORECV, ha)}
   279  		a := ir.NewAssignListStmt(base.Pos, ir.OAS2RECV, lhs, rhs)
   280  		a.SetTypecheck(1)
   281  		nfor.Cond = ir.InitExpr([]ir.Node{a}, nfor.Cond)
   282  		if v1 == nil {
   283  			body = nil
   284  		} else {
   285  			body = []ir.Node{rangeAssign(nrange, hv1)}
   286  		}
   287  		// Zero hv1. This prevents hv1 from being the sole, inaccessible
   288  		// reference to an otherwise GC-able value during the next channel receive.
   289  		// See issue 15281.
   290  		body = append(body, ir.NewAssignStmt(base.Pos, hv1, nil))
   291  
   292  	case k == types.TSTRING:
   293  		// Transform string range statements like "for v1, v2 = range a" into
   294  		//
   295  		// ha := a
   296  		// for hv1 := 0; hv1 < len(ha); {
   297  		//   hv1t := hv1
   298  		//   hv2 := rune(ha[hv1])
   299  		//   if hv2 < utf8.RuneSelf {
   300  		//      hv1++
   301  		//   } else {
   302  		//      hv2, hv1 = decoderune(ha, hv1)
   303  		//   }
   304  		//   v1, v2 = hv1t, hv2
   305  		//   // original body
   306  		// }
   307  
   308  		// order.stmt arranged for a copy of the string variable.
   309  		ha := a
   310  
   311  		hv1 := typecheck.TempAt(base.Pos, ir.CurFunc, types.Types[types.TINT])
   312  		hv1t := typecheck.TempAt(base.Pos, ir.CurFunc, types.Types[types.TINT])
   313  		hv2 := typecheck.TempAt(base.Pos, ir.CurFunc, types.RuneType)
   314  
   315  		// hv1 := 0
   316  		init = append(init, ir.NewAssignStmt(base.Pos, hv1, nil))
   317  
   318  		// hv1 < len(ha)
   319  		nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, hv1, ir.NewUnaryExpr(base.Pos, ir.OLEN, ha))
   320  
   321  		if v1 != nil {
   322  			// hv1t = hv1
   323  			body = append(body, ir.NewAssignStmt(base.Pos, hv1t, hv1))
   324  		}
   325  
   326  		// hv2 := rune(ha[hv1])
   327  		nind := ir.NewIndexExpr(base.Pos, ha, hv1)
   328  		nind.SetBounded(true)
   329  		body = append(body, ir.NewAssignStmt(base.Pos, hv2, typecheck.Conv(nind, types.RuneType)))
   330  
   331  		// if hv2 < utf8.RuneSelf
   332  		nif := ir.NewIfStmt(base.Pos, nil, nil, nil)
   333  		nif.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, hv2, ir.NewInt(base.Pos, utf8.RuneSelf))
   334  
   335  		// hv1++
   336  		nif.Body = []ir.Node{ir.NewAssignStmt(base.Pos, hv1, ir.NewBinaryExpr(base.Pos, ir.OADD, hv1, ir.NewInt(base.Pos, 1)))}
   337  
   338  		// } else {
   339  		// hv2, hv1 = decoderune(ha, hv1)
   340  		fn := typecheck.LookupRuntime("decoderune")
   341  		call := mkcall1(fn, fn.Type().ResultsTuple(), &nif.Else, ha, hv1)
   342  		a := ir.NewAssignListStmt(base.Pos, ir.OAS2, []ir.Node{hv2, hv1}, []ir.Node{call})
   343  		nif.Else.Append(a)
   344  
   345  		body = append(body, nif)
   346  
   347  		if v1 != nil {
   348  			if v2 != nil {
   349  				// v1, v2 = hv1t, hv2
   350  				body = append(body, rangeAssign2(nrange, hv1t, hv2))
   351  			} else {
   352  				// v1 = hv1t
   353  				body = append(body, rangeAssign(nrange, hv1t))
   354  			}
   355  		}
   356  	}
   357  
   358  	typecheck.Stmts(init)
   359  
   360  	nfor.PtrInit().Append(init...)
   361  
   362  	typecheck.Stmts(nfor.Cond.Init())
   363  
   364  	nfor.Cond = typecheck.Expr(nfor.Cond)
   365  	nfor.Cond = typecheck.DefaultLit(nfor.Cond, nil)
   366  	nfor.Post = typecheck.Stmt(nfor.Post)
   367  	typecheck.Stmts(body)
   368  	nfor.Body.Append(body...)
   369  	nfor.Body.Append(nrange.Body...)
   370  
   371  	var n ir.Node = nfor
   372  
   373  	n = walkStmt(n)
   374  
   375  	base.Pos = lno
   376  	return n
   377  }
   378  
   379  // rangeAssign returns "n.Key = key".
   380  func rangeAssign(n *ir.RangeStmt, key ir.Node) ir.Node {
   381  	key = rangeConvert(n, n.Key.Type(), key, n.KeyTypeWord, n.KeySrcRType)
   382  	return ir.NewAssignStmt(n.Pos(), n.Key, key)
   383  }
   384  
   385  // rangeAssign2 returns "n.Key, n.Value = key, value".
   386  func rangeAssign2(n *ir.RangeStmt, key, value ir.Node) ir.Node {
   387  	// Use OAS2 to correctly handle assignments
   388  	// of the form "v1, a[v1] = range".
   389  	key = rangeConvert(n, n.Key.Type(), key, n.KeyTypeWord, n.KeySrcRType)
   390  	value = rangeConvert(n, n.Value.Type(), value, n.ValueTypeWord, n.ValueSrcRType)
   391  	return ir.NewAssignListStmt(n.Pos(), ir.OAS2, []ir.Node{n.Key, n.Value}, []ir.Node{key, value})
   392  }
   393  
   394  // rangeConvert returns src, converted to dst if necessary. If a
   395  // conversion is necessary, then typeWord and srcRType are copied to
   396  // their respective ConvExpr fields.
   397  func rangeConvert(nrange *ir.RangeStmt, dst *types.Type, src, typeWord, srcRType ir.Node) ir.Node {
   398  	src = typecheck.Expr(src)
   399  	if dst.Kind() == types.TBLANK || types.Identical(dst, src.Type()) {
   400  		return src
   401  	}
   402  
   403  	n := ir.NewConvExpr(nrange.Pos(), ir.OCONV, dst, src)
   404  	n.TypeWord = typeWord
   405  	n.SrcRType = srcRType
   406  	return typecheck.Expr(n)
   407  }
   408  
   409  // isMapClear checks if n is of the form:
   410  //
   411  //	for k := range m {
   412  //		delete(m, k)
   413  //	}
   414  //
   415  // where == for keys of map m is reflexive.
   416  func isMapClear(n *ir.RangeStmt) bool {
   417  	if base.Flag.N != 0 || base.Flag.Cfg.Instrumenting {
   418  		return false
   419  	}
   420  
   421  	t := n.X.Type()
   422  	if n.Op() != ir.ORANGE || t.Kind() != types.TMAP || n.Key == nil || n.Value != nil {
   423  		return false
   424  	}
   425  
   426  	k := n.Key
   427  	// Require k to be a new variable name.
   428  	if !ir.DeclaredBy(k, n) {
   429  		return false
   430  	}
   431  
   432  	if len(n.Body) != 1 {
   433  		return false
   434  	}
   435  
   436  	stmt := n.Body[0] // only stmt in body
   437  	if stmt == nil || stmt.Op() != ir.ODELETE {
   438  		return false
   439  	}
   440  
   441  	m := n.X
   442  	if delete := stmt.(*ir.CallExpr); !ir.SameSafeExpr(delete.Args[0], m) || !ir.SameSafeExpr(delete.Args[1], k) {
   443  		return false
   444  	}
   445  
   446  	// Keys where equality is not reflexive can not be deleted from maps.
   447  	if !types.IsReflexive(t.Key()) {
   448  		return false
   449  	}
   450  
   451  	return true
   452  }
   453  
   454  // mapRangeClear constructs a call to runtime.mapclear for the map range idiom.
   455  func mapRangeClear(nrange *ir.RangeStmt) ir.Node {
   456  	m := nrange.X
   457  	origPos := ir.SetPos(m)
   458  	defer func() { base.Pos = origPos }()
   459  
   460  	return mapClear(m, reflectdata.RangeMapRType(base.Pos, nrange))
   461  }
   462  
   463  // mapClear constructs a call to runtime.mapclear for the map m.
   464  func mapClear(m, rtyp ir.Node) ir.Node {
   465  	t := m.Type()
   466  
   467  	// instantiate mapclear(typ *type, hmap map[any]any)
   468  	fn := typecheck.LookupRuntime("mapclear", t.Key(), t.Elem())
   469  	n := mkcallstmt1(fn, rtyp, m)
   470  	return walkStmt(typecheck.Stmt(n))
   471  }
   472  
   473  // Lower n into runtime·memclr if possible, for
   474  // fast zeroing of slices and arrays (issue 5373).
   475  // Look for instances of
   476  //
   477  //	for i := range a {
   478  //		a[i] = zero
   479  //	}
   480  //
   481  // in which the evaluation of a is side-effect-free.
   482  //
   483  // Parameters are as in walkRange: "for v1, v2 = range a".
   484  func arrayRangeClear(loop *ir.RangeStmt, v1, v2, a ir.Node) ir.Node {
   485  	if base.Flag.N != 0 || base.Flag.Cfg.Instrumenting {
   486  		return nil
   487  	}
   488  
   489  	if v1 == nil || v2 != nil {
   490  		return nil
   491  	}
   492  
   493  	if len(loop.Body) != 1 || loop.Body[0] == nil {
   494  		return nil
   495  	}
   496  
   497  	stmt1 := loop.Body[0] // only stmt in body
   498  	if stmt1.Op() != ir.OAS {
   499  		return nil
   500  	}
   501  	stmt := stmt1.(*ir.AssignStmt)
   502  	if stmt.X.Op() != ir.OINDEX {
   503  		return nil
   504  	}
   505  	lhs := stmt.X.(*ir.IndexExpr)
   506  	x := lhs.X
   507  	if a.Type().IsPtr() && a.Type().Elem().IsArray() {
   508  		if s, ok := x.(*ir.StarExpr); ok && s.Op() == ir.ODEREF {
   509  			x = s.X
   510  		}
   511  	}
   512  
   513  	if !ir.SameSafeExpr(x, a) || !ir.SameSafeExpr(lhs.Index, v1) {
   514  		return nil
   515  	}
   516  
   517  	if !ir.IsZero(stmt.Y) {
   518  		return nil
   519  	}
   520  
   521  	return arrayClear(stmt.Pos(), a, loop)
   522  }
   523  
   524  // arrayClear constructs a call to runtime.memclr for fast zeroing of slices and arrays.
   525  func arrayClear(wbPos src.XPos, a ir.Node, nrange *ir.RangeStmt) ir.Node {
   526  	elemsize := typecheck.RangeExprType(a.Type()).Elem().Size()
   527  	if elemsize <= 0 {
   528  		return nil
   529  	}
   530  
   531  	// Convert to
   532  	// if len(a) != 0 {
   533  	// 	hp = &a[0]
   534  	// 	hn = len(a)*sizeof(elem(a))
   535  	// 	memclr{NoHeap,Has}Pointers(hp, hn)
   536  	// 	i = len(a) - 1
   537  	// }
   538  	n := ir.NewIfStmt(base.Pos, nil, nil, nil)
   539  	n.Cond = ir.NewBinaryExpr(base.Pos, ir.ONE, ir.NewUnaryExpr(base.Pos, ir.OLEN, a), ir.NewInt(base.Pos, 0))
   540  
   541  	// hp = &a[0]
   542  	hp := typecheck.TempAt(base.Pos, ir.CurFunc, types.Types[types.TUNSAFEPTR])
   543  
   544  	ix := ir.NewIndexExpr(base.Pos, a, ir.NewInt(base.Pos, 0))
   545  	ix.SetBounded(true)
   546  	addr := typecheck.ConvNop(typecheck.NodAddr(ix), types.Types[types.TUNSAFEPTR])
   547  	n.Body.Append(ir.NewAssignStmt(base.Pos, hp, addr))
   548  
   549  	// hn = len(a) * sizeof(elem(a))
   550  	hn := typecheck.TempAt(base.Pos, ir.CurFunc, types.Types[types.TUINTPTR])
   551  	mul := typecheck.Conv(ir.NewBinaryExpr(base.Pos, ir.OMUL, ir.NewUnaryExpr(base.Pos, ir.OLEN, a), ir.NewInt(base.Pos, elemsize)), types.Types[types.TUINTPTR])
   552  	n.Body.Append(ir.NewAssignStmt(base.Pos, hn, mul))
   553  
   554  	var fn ir.Node
   555  	if a.Type().Elem().HasPointers() {
   556  		// memclrHasPointers(hp, hn)
   557  		ir.CurFunc.SetWBPos(wbPos)
   558  		fn = mkcallstmt("memclrHasPointers", hp, hn)
   559  	} else {
   560  		// memclrNoHeapPointers(hp, hn)
   561  		fn = mkcallstmt("memclrNoHeapPointers", hp, hn)
   562  	}
   563  
   564  	n.Body.Append(fn)
   565  
   566  	// For array range clear, also set "i = len(a) - 1"
   567  	if nrange != nil {
   568  		idx := ir.NewAssignStmt(base.Pos, nrange.Key, ir.NewBinaryExpr(base.Pos, ir.OSUB, ir.NewUnaryExpr(base.Pos, ir.OLEN, a), ir.NewInt(base.Pos, 1)))
   569  		n.Body.Append(idx)
   570  	}
   571  
   572  	n.Cond = typecheck.Expr(n.Cond)
   573  	n.Cond = typecheck.DefaultLit(n.Cond, nil)
   574  	typecheck.Stmts(n.Body)
   575  	return walkStmt(n)
   576  }