github.com/go-asm/go@v1.21.1-0.20240213172139-40c5ead50c48/cmd/link/ld/deadcode.go (about)

     1  // Copyright 2019 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ld
     6  
     7  import (
     8  	"fmt"
     9  	"strings"
    10  	"unicode"
    11  
    12  	"github.com/go-asm/go/buildcfg"
    13  	"github.com/go-asm/go/cmd/goobj"
    14  	"github.com/go-asm/go/cmd/link/loader"
    15  	"github.com/go-asm/go/cmd/link/sym"
    16  	"github.com/go-asm/go/cmd/objabi"
    17  	"github.com/go-asm/go/cmd/sys"
    18  )
    19  
    20  var _ = fmt.Print
    21  
    22  type deadcodePass struct {
    23  	ctxt *Link
    24  	ldr  *loader.Loader
    25  	wq   heap // work queue, using min-heap for better locality
    26  
    27  	ifaceMethod        map[methodsig]bool // methods called from reached interface call sites
    28  	genericIfaceMethod map[string]bool    // names of methods called from reached generic interface call sites
    29  	markableMethods    []methodref        // methods of reached types
    30  	reflectSeen        bool               // whether we have seen a reflect method call
    31  	dynlink            bool
    32  
    33  	methodsigstmp []methodsig // scratch buffer for decoding method signatures
    34  	pkginits      []loader.Sym
    35  	mapinitnoop   loader.Sym
    36  }
    37  
    38  func (d *deadcodePass) init() {
    39  	d.ldr.InitReachable()
    40  	d.ifaceMethod = make(map[methodsig]bool)
    41  	d.genericIfaceMethod = make(map[string]bool)
    42  	if buildcfg.Experiment.FieldTrack {
    43  		d.ldr.Reachparent = make([]loader.Sym, d.ldr.NSym())
    44  	}
    45  	d.dynlink = d.ctxt.DynlinkingGo()
    46  
    47  	if d.ctxt.BuildMode == BuildModeShared {
    48  		// Mark all symbols defined in this library as reachable when
    49  		// building a shared library.
    50  		n := d.ldr.NDef()
    51  		for i := 1; i < n; i++ {
    52  			s := loader.Sym(i)
    53  			d.mark(s, 0)
    54  		}
    55  		d.mark(d.ctxt.mainInittasks, 0)
    56  		return
    57  	}
    58  
    59  	var names []string
    60  
    61  	// In a normal binary, start at main.main and the init
    62  	// functions and mark what is reachable from there.
    63  	if d.ctxt.linkShared && (d.ctxt.BuildMode == BuildModeExe || d.ctxt.BuildMode == BuildModePIE) {
    64  		names = append(names, "main.main", "main..inittask")
    65  	} else {
    66  		// The external linker refers main symbol directly.
    67  		if d.ctxt.LinkMode == LinkExternal && (d.ctxt.BuildMode == BuildModeExe || d.ctxt.BuildMode == BuildModePIE) {
    68  			if d.ctxt.HeadType == objabi.Hwindows && d.ctxt.Arch.Family == sys.I386 {
    69  				*flagEntrySymbol = "_main"
    70  			} else {
    71  				*flagEntrySymbol = "main"
    72  			}
    73  		}
    74  		names = append(names, *flagEntrySymbol)
    75  	}
    76  	// runtime.unreachableMethod is a function that will throw if called.
    77  	// We redirect unreachable methods to it.
    78  	names = append(names, "runtime.unreachableMethod")
    79  	if d.ctxt.BuildMode == BuildModePlugin {
    80  		names = append(names, objabi.PathToPrefix(*flagPluginPath)+"..inittask", objabi.PathToPrefix(*flagPluginPath)+".main", "go:plugin.tabs")
    81  
    82  		// We don't keep the go.plugin.exports symbol,
    83  		// but we do keep the symbols it refers to.
    84  		exportsIdx := d.ldr.Lookup("go:plugin.exports", 0)
    85  		if exportsIdx != 0 {
    86  			relocs := d.ldr.Relocs(exportsIdx)
    87  			for i := 0; i < relocs.Count(); i++ {
    88  				d.mark(relocs.At(i).Sym(), 0)
    89  			}
    90  		}
    91  	}
    92  
    93  	if d.ctxt.Debugvlog > 1 {
    94  		d.ctxt.Logf("deadcode start names: %v\n", names)
    95  	}
    96  
    97  	for _, name := range names {
    98  		// Mark symbol as a data/ABI0 symbol.
    99  		d.mark(d.ldr.Lookup(name, 0), 0)
   100  		if abiInternalVer != 0 {
   101  			// Also mark any Go functions (internal ABI).
   102  			d.mark(d.ldr.Lookup(name, abiInternalVer), 0)
   103  		}
   104  	}
   105  
   106  	// All dynamic exports are roots.
   107  	for _, s := range d.ctxt.dynexp {
   108  		if d.ctxt.Debugvlog > 1 {
   109  			d.ctxt.Logf("deadcode start dynexp: %s<%d>\n", d.ldr.SymName(s), d.ldr.SymVersion(s))
   110  		}
   111  		d.mark(s, 0)
   112  	}
   113  
   114  	d.mapinitnoop = d.ldr.Lookup("runtime.mapinitnoop", abiInternalVer)
   115  	if d.mapinitnoop == 0 {
   116  		panic("could not look up runtime.mapinitnoop")
   117  	}
   118  	if d.ctxt.mainInittasks != 0 {
   119  		d.mark(d.ctxt.mainInittasks, 0)
   120  	}
   121  }
   122  
   123  func (d *deadcodePass) flood() {
   124  	var methods []methodref
   125  	for !d.wq.empty() {
   126  		symIdx := d.wq.pop()
   127  
   128  		// Methods may be called via reflection. Give up on static analysis,
   129  		// and mark all exported methods of all reachable types as reachable.
   130  		d.reflectSeen = d.reflectSeen || d.ldr.IsReflectMethod(symIdx)
   131  
   132  		isgotype := d.ldr.IsGoType(symIdx)
   133  		relocs := d.ldr.Relocs(symIdx)
   134  		var usedInIface bool
   135  
   136  		if isgotype {
   137  			if d.dynlink {
   138  				// When dynamic linking, a type may be passed across DSO
   139  				// boundary and get converted to interface at the other side.
   140  				d.ldr.SetAttrUsedInIface(symIdx, true)
   141  			}
   142  			usedInIface = d.ldr.AttrUsedInIface(symIdx)
   143  		}
   144  
   145  		methods = methods[:0]
   146  		for i := 0; i < relocs.Count(); i++ {
   147  			r := relocs.At(i)
   148  			if r.Weak() {
   149  				convertWeakToStrong := false
   150  				// When build with "-linkshared", we can't tell if the
   151  				// interface method in itab will be used or not.
   152  				// Ignore the weak attribute.
   153  				if d.ctxt.linkShared && d.ldr.IsItab(symIdx) {
   154  					convertWeakToStrong = true
   155  				}
   156  				// If the program uses plugins, we can no longer treat
   157  				// relocs from pkg init functions to outlined map init
   158  				// fragments as weak, since doing so can cause package
   159  				// init clashes between the main program and the
   160  				// plugin. See #62430 for more details.
   161  				if d.ctxt.canUsePlugins && r.Type().IsDirectCall() {
   162  					convertWeakToStrong = true
   163  				}
   164  				if !convertWeakToStrong {
   165  					// skip this reloc
   166  					continue
   167  				}
   168  			}
   169  			t := r.Type()
   170  			switch t {
   171  			case objabi.R_METHODOFF:
   172  				if i+2 >= relocs.Count() {
   173  					panic("expect three consecutive R_METHODOFF relocs")
   174  				}
   175  				if usedInIface {
   176  					methods = append(methods, methodref{src: symIdx, r: i})
   177  					// The method descriptor is itself a type descriptor, and
   178  					// it can be used to reach other types, e.g. by using
   179  					// reflect.Type.Method(i).Type.In(j). We need to traverse
   180  					// its child types with UsedInIface set. (See also the
   181  					// comment below.)
   182  					rs := r.Sym()
   183  					if !d.ldr.AttrUsedInIface(rs) {
   184  						d.ldr.SetAttrUsedInIface(rs, true)
   185  						if d.ldr.AttrReachable(rs) {
   186  							d.ldr.SetAttrReachable(rs, false)
   187  							d.mark(rs, symIdx)
   188  						}
   189  					}
   190  				}
   191  				i += 2
   192  				continue
   193  			case objabi.R_USETYPE:
   194  				// type symbol used for DWARF. we need to load the symbol but it may not
   195  				// be otherwise reachable in the program.
   196  				// do nothing for now as we still load all type symbols.
   197  				continue
   198  			case objabi.R_USEIFACE:
   199  				// R_USEIFACE is a marker relocation that tells the linker the type is
   200  				// converted to an interface, i.e. should have UsedInIface set. See the
   201  				// comment below for why we need to unset the Reachable bit and re-mark it.
   202  				rs := r.Sym()
   203  				if d.ldr.IsItab(rs) {
   204  					// This relocation can also point at an itab, in which case it
   205  					// means "the _type field of that itab".
   206  					rs = decodeItabType(d.ldr, d.ctxt.Arch, rs)
   207  				}
   208  				if !d.ldr.IsGoType(rs) && !d.ctxt.linkShared {
   209  					panic(fmt.Sprintf("R_USEIFACE in %s references %s which is not a type or itab", d.ldr.SymName(symIdx), d.ldr.SymName(rs)))
   210  				}
   211  				if !d.ldr.AttrUsedInIface(rs) {
   212  					d.ldr.SetAttrUsedInIface(rs, true)
   213  					if d.ldr.AttrReachable(rs) {
   214  						d.ldr.SetAttrReachable(rs, false)
   215  						d.mark(rs, symIdx)
   216  					}
   217  				}
   218  				continue
   219  			case objabi.R_USEIFACEMETHOD:
   220  				// R_USEIFACEMETHOD is a marker relocation that marks an interface
   221  				// method as used.
   222  				rs := r.Sym()
   223  				if d.ctxt.linkShared && (d.ldr.SymType(rs) == sym.SDYNIMPORT || d.ldr.SymType(rs) == sym.Sxxx) {
   224  					// Don't decode symbol from shared library (we'll mark all exported methods anyway).
   225  					// We check for both SDYNIMPORT and Sxxx because name-mangled symbols haven't
   226  					// been resolved at this point.
   227  					continue
   228  				}
   229  				m := d.decodeIfaceMethod(d.ldr, d.ctxt.Arch, rs, r.Add())
   230  				if d.ctxt.Debugvlog > 1 {
   231  					d.ctxt.Logf("reached iface method: %v\n", m)
   232  				}
   233  				d.ifaceMethod[m] = true
   234  				continue
   235  			case objabi.R_USENAMEDMETHOD:
   236  				name := d.decodeGenericIfaceMethod(d.ldr, r.Sym())
   237  				if d.ctxt.Debugvlog > 1 {
   238  					d.ctxt.Logf("reached generic iface method: %s\n", name)
   239  				}
   240  				d.genericIfaceMethod[name] = true
   241  				continue // don't mark referenced symbol - it is not needed in the final binary.
   242  			case objabi.R_INITORDER:
   243  				// inittasks has already run, so any R_INITORDER links are now
   244  				// superfluous - the only live inittask records are those which are
   245  				// in a scheduled list somewhere (e.g. runtime.moduledata.inittasks).
   246  				continue
   247  			}
   248  			rs := r.Sym()
   249  			if isgotype && usedInIface && d.ldr.IsGoType(rs) && !d.ldr.AttrUsedInIface(rs) {
   250  				// If a type is converted to an interface, it is possible to obtain an
   251  				// interface with a "child" type of it using reflection (e.g. obtain an
   252  				// interface of T from []chan T). We need to traverse its "child" types
   253  				// with UsedInIface attribute set.
   254  				// When visiting the child type (chan T in the example above), it will
   255  				// have UsedInIface set, so it in turn will mark and (re)visit its children
   256  				// (e.g. T above).
   257  				// We unset the reachable bit here, so if the child type is already visited,
   258  				// it will be visited again.
   259  				// Note that a type symbol can be visited at most twice, one without
   260  				// UsedInIface and one with. So termination is still guaranteed.
   261  				d.ldr.SetAttrUsedInIface(rs, true)
   262  				d.ldr.SetAttrReachable(rs, false)
   263  			}
   264  			d.mark(rs, symIdx)
   265  		}
   266  		naux := d.ldr.NAux(symIdx)
   267  		for i := 0; i < naux; i++ {
   268  			a := d.ldr.Aux(symIdx, i)
   269  			if a.Type() == goobj.AuxGotype {
   270  				// A symbol being reachable doesn't imply we need its
   271  				// type descriptor. Don't mark it.
   272  				continue
   273  			}
   274  			d.mark(a.Sym(), symIdx)
   275  		}
   276  		// Record sym if package init func (here naux != 0 is a cheap way
   277  		// to check first if it is a function symbol).
   278  		if naux != 0 && d.ldr.IsPkgInit(symIdx) {
   279  
   280  			d.pkginits = append(d.pkginits, symIdx)
   281  		}
   282  		// Some host object symbols have an outer object, which acts like a
   283  		// "carrier" symbol, or it holds all the symbols for a particular
   284  		// section. We need to mark all "referenced" symbols from that carrier,
   285  		// so we make sure we're pulling in all outer symbols, and their sub
   286  		// symbols. This is not ideal, and these carrier/section symbols could
   287  		// be removed.
   288  		if d.ldr.IsExternal(symIdx) {
   289  			d.mark(d.ldr.OuterSym(symIdx), symIdx)
   290  			d.mark(d.ldr.SubSym(symIdx), symIdx)
   291  		}
   292  
   293  		if len(methods) != 0 {
   294  			if !isgotype {
   295  				panic("method found on non-type symbol")
   296  			}
   297  			// Decode runtime type information for type methods
   298  			// to help work out which methods can be called
   299  			// dynamically via interfaces.
   300  			methodsigs := d.decodetypeMethods(d.ldr, d.ctxt.Arch, symIdx, &relocs)
   301  			if len(methods) != len(methodsigs) {
   302  				panic(fmt.Sprintf("%q has %d method relocations for %d methods", d.ldr.SymName(symIdx), len(methods), len(methodsigs)))
   303  			}
   304  			for i, m := range methodsigs {
   305  				methods[i].m = m
   306  				if d.ctxt.Debugvlog > 1 {
   307  					d.ctxt.Logf("markable method: %v of sym %v %s\n", m, symIdx, d.ldr.SymName(symIdx))
   308  				}
   309  			}
   310  			d.markableMethods = append(d.markableMethods, methods...)
   311  		}
   312  	}
   313  }
   314  
   315  // mapinitcleanup walks all pkg init functions and looks for weak relocations
   316  // to mapinit symbols that are no longer reachable. It rewrites
   317  // the relocs to target a new no-op routine in the runtime.
   318  func (d *deadcodePass) mapinitcleanup() {
   319  	for _, idx := range d.pkginits {
   320  		relocs := d.ldr.Relocs(idx)
   321  		var su *loader.SymbolBuilder
   322  		for i := 0; i < relocs.Count(); i++ {
   323  			r := relocs.At(i)
   324  			rs := r.Sym()
   325  			if r.Weak() && r.Type().IsDirectCall() && !d.ldr.AttrReachable(rs) {
   326  				// double check to make sure target is indeed map.init
   327  				rsn := d.ldr.SymName(rs)
   328  				if !strings.Contains(rsn, "map.init") {
   329  					panic(fmt.Sprintf("internal error: expected map.init sym for weak call reloc, got %s -> %s", d.ldr.SymName(idx), rsn))
   330  				}
   331  				d.ldr.SetAttrReachable(d.mapinitnoop, true)
   332  				if d.ctxt.Debugvlog > 1 {
   333  					d.ctxt.Logf("deadcode: %s rewrite %s ref to %s\n",
   334  						d.ldr.SymName(idx), rsn,
   335  						d.ldr.SymName(d.mapinitnoop))
   336  				}
   337  				if su == nil {
   338  					su = d.ldr.MakeSymbolUpdater(idx)
   339  				}
   340  				su.SetRelocSym(i, d.mapinitnoop)
   341  			}
   342  		}
   343  	}
   344  }
   345  
   346  func (d *deadcodePass) mark(symIdx, parent loader.Sym) {
   347  	if symIdx != 0 && !d.ldr.AttrReachable(symIdx) {
   348  		d.wq.push(symIdx)
   349  		d.ldr.SetAttrReachable(symIdx, true)
   350  		if buildcfg.Experiment.FieldTrack && d.ldr.Reachparent[symIdx] == 0 {
   351  			d.ldr.Reachparent[symIdx] = parent
   352  		}
   353  		if *flagDumpDep {
   354  			to := d.ldr.SymName(symIdx)
   355  			if to != "" {
   356  				to = d.dumpDepAddFlags(to, symIdx)
   357  				from := "_"
   358  				if parent != 0 {
   359  					from = d.ldr.SymName(parent)
   360  					from = d.dumpDepAddFlags(from, parent)
   361  				}
   362  				fmt.Printf("%s -> %s\n", from, to)
   363  			}
   364  		}
   365  	}
   366  }
   367  
   368  func (d *deadcodePass) dumpDepAddFlags(name string, symIdx loader.Sym) string {
   369  	var flags strings.Builder
   370  	if d.ldr.AttrUsedInIface(symIdx) {
   371  		flags.WriteString("<UsedInIface>")
   372  	}
   373  	if d.ldr.IsReflectMethod(symIdx) {
   374  		flags.WriteString("<ReflectMethod>")
   375  	}
   376  	if flags.Len() > 0 {
   377  		return name + " " + flags.String()
   378  	}
   379  	return name
   380  }
   381  
   382  func (d *deadcodePass) markMethod(m methodref) {
   383  	relocs := d.ldr.Relocs(m.src)
   384  	d.mark(relocs.At(m.r).Sym(), m.src)
   385  	d.mark(relocs.At(m.r+1).Sym(), m.src)
   386  	d.mark(relocs.At(m.r+2).Sym(), m.src)
   387  }
   388  
   389  // deadcode marks all reachable symbols.
   390  //
   391  // The basis of the dead code elimination is a flood fill of symbols,
   392  // following their relocations, beginning at *flagEntrySymbol.
   393  //
   394  // This flood fill is wrapped in logic for pruning unused methods.
   395  // All methods are mentioned by relocations on their receiver's *rtype.
   396  // These relocations are specially defined as R_METHODOFF by the compiler
   397  // so we can detect and manipulated them here.
   398  //
   399  // There are three ways a method of a reachable type can be invoked:
   400  //
   401  //  1. direct call
   402  //  2. through a reachable interface type
   403  //  3. reflect.Value.Method (or MethodByName), or reflect.Type.Method
   404  //     (or MethodByName)
   405  //
   406  // The first case is handled by the flood fill, a directly called method
   407  // is marked as reachable.
   408  //
   409  // The second case is handled by decomposing all reachable interface
   410  // types into method signatures. Each encountered method is compared
   411  // against the interface method signatures, if it matches it is marked
   412  // as reachable. This is extremely conservative, but easy and correct.
   413  //
   414  // The third case is handled by looking for functions that compiler flagged
   415  // as REFLECTMETHOD. REFLECTMETHOD on a function F means that F does a method
   416  // lookup with reflection, but the compiler was not able to statically determine
   417  // the method name.
   418  //
   419  // All functions that call reflect.Value.Method or reflect.Type.Method are REFLECTMETHODs.
   420  // Functions that call reflect.Value.MethodByName or reflect.Type.MethodByName with
   421  // a non-constant argument are REFLECTMETHODs, too. If we find a REFLECTMETHOD,
   422  // we give up on static analysis, and mark all exported methods of all reachable
   423  // types as reachable.
   424  //
   425  // If the argument to MethodByName is a compile-time constant, the compiler
   426  // emits a relocation with the method name. Matching methods are kept in all
   427  // reachable types.
   428  //
   429  // Any unreached text symbols are removed from ctxt.Textp.
   430  func deadcode(ctxt *Link) {
   431  	ldr := ctxt.loader
   432  	d := deadcodePass{ctxt: ctxt, ldr: ldr}
   433  	d.init()
   434  	d.flood()
   435  
   436  	if ctxt.DynlinkingGo() {
   437  		// Exported methods may satisfy interfaces we don't know
   438  		// about yet when dynamically linking.
   439  		d.reflectSeen = true
   440  	}
   441  
   442  	for {
   443  		// Mark all methods that could satisfy a discovered
   444  		// interface as reachable. We recheck old marked interfaces
   445  		// as new types (with new methods) may have been discovered
   446  		// in the last pass.
   447  		rem := d.markableMethods[:0]
   448  		for _, m := range d.markableMethods {
   449  			if (d.reflectSeen && (m.isExported() || d.dynlink)) || d.ifaceMethod[m.m] || d.genericIfaceMethod[m.m.name] {
   450  				d.markMethod(m)
   451  			} else {
   452  				rem = append(rem, m)
   453  			}
   454  		}
   455  		d.markableMethods = rem
   456  
   457  		if d.wq.empty() {
   458  			// No new work was discovered. Done.
   459  			break
   460  		}
   461  		d.flood()
   462  	}
   463  	if *flagPruneWeakMap {
   464  		d.mapinitcleanup()
   465  	}
   466  }
   467  
   468  // methodsig is a typed method signature (name + type).
   469  type methodsig struct {
   470  	name string
   471  	typ  loader.Sym // type descriptor symbol of the function
   472  }
   473  
   474  // methodref holds the relocations from a receiver type symbol to its
   475  // method. There are three relocations, one for each of the fields in
   476  // the reflect.method struct: mtyp, ifn, and tfn.
   477  type methodref struct {
   478  	m   methodsig
   479  	src loader.Sym // receiver type symbol
   480  	r   int        // the index of R_METHODOFF relocations
   481  }
   482  
   483  func (m methodref) isExported() bool {
   484  	for _, r := range m.m.name {
   485  		return unicode.IsUpper(r)
   486  	}
   487  	panic("methodref has no signature")
   488  }
   489  
   490  // decodeMethodSig decodes an array of method signature information.
   491  // Each element of the array is size bytes. The first 4 bytes is a
   492  // nameOff for the method name, and the next 4 bytes is a typeOff for
   493  // the function type.
   494  //
   495  // Conveniently this is the layout of both runtime.method and runtime.imethod.
   496  func (d *deadcodePass) decodeMethodSig(ldr *loader.Loader, arch *sys.Arch, symIdx loader.Sym, relocs *loader.Relocs, off, size, count int) []methodsig {
   497  	if cap(d.methodsigstmp) < count {
   498  		d.methodsigstmp = append(d.methodsigstmp[:0], make([]methodsig, count)...)
   499  	}
   500  	var methods = d.methodsigstmp[:count]
   501  	for i := 0; i < count; i++ {
   502  		methods[i].name = decodetypeName(ldr, symIdx, relocs, off)
   503  		methods[i].typ = decodeRelocSym(ldr, symIdx, relocs, int32(off+4))
   504  		off += size
   505  	}
   506  	return methods
   507  }
   508  
   509  // Decode the method of interface type symbol symIdx at offset off.
   510  func (d *deadcodePass) decodeIfaceMethod(ldr *loader.Loader, arch *sys.Arch, symIdx loader.Sym, off int64) methodsig {
   511  	p := ldr.Data(symIdx)
   512  	if p == nil {
   513  		panic(fmt.Sprintf("missing symbol %q", ldr.SymName(symIdx)))
   514  	}
   515  	if decodetypeKind(arch, p)&kindMask != kindInterface {
   516  		panic(fmt.Sprintf("symbol %q is not an interface", ldr.SymName(symIdx)))
   517  	}
   518  	relocs := ldr.Relocs(symIdx)
   519  	var m methodsig
   520  	m.name = decodetypeName(ldr, symIdx, &relocs, int(off))
   521  	m.typ = decodeRelocSym(ldr, symIdx, &relocs, int32(off+4))
   522  	return m
   523  }
   524  
   525  // Decode the method name stored in symbol symIdx. The symbol should contain just the bytes of a method name.
   526  func (d *deadcodePass) decodeGenericIfaceMethod(ldr *loader.Loader, symIdx loader.Sym) string {
   527  	return ldr.DataString(symIdx)
   528  }
   529  
   530  func (d *deadcodePass) decodetypeMethods(ldr *loader.Loader, arch *sys.Arch, symIdx loader.Sym, relocs *loader.Relocs) []methodsig {
   531  	p := ldr.Data(symIdx)
   532  	if !decodetypeHasUncommon(arch, p) {
   533  		panic(fmt.Sprintf("no methods on %q", ldr.SymName(symIdx)))
   534  	}
   535  	off := commonsize(arch) // reflect.rtype
   536  	switch decodetypeKind(arch, p) & kindMask {
   537  	case kindStruct: // reflect.structType
   538  		off += 4 * arch.PtrSize
   539  	case kindPtr: // reflect.ptrType
   540  		off += arch.PtrSize
   541  	case kindFunc: // reflect.funcType
   542  		off += arch.PtrSize // 4 bytes, pointer aligned
   543  	case kindSlice: // reflect.sliceType
   544  		off += arch.PtrSize
   545  	case kindArray: // reflect.arrayType
   546  		off += 3 * arch.PtrSize
   547  	case kindChan: // reflect.chanType
   548  		off += 2 * arch.PtrSize
   549  	case kindMap: // reflect.mapType
   550  		off += 4*arch.PtrSize + 8
   551  	case kindInterface: // reflect.interfaceType
   552  		off += 3 * arch.PtrSize
   553  	default:
   554  		// just Sizeof(rtype)
   555  	}
   556  
   557  	mcount := int(decodeInuxi(arch, p[off+4:], 2))
   558  	moff := int(decodeInuxi(arch, p[off+4+2+2:], 4))
   559  	off += moff                // offset to array of reflect.method values
   560  	const sizeofMethod = 4 * 4 // sizeof reflect.method in program
   561  	return d.decodeMethodSig(ldr, arch, symIdx, relocs, off, sizeofMethod, mcount)
   562  }