github.com/go-xe2/third@v1.0.3/golang.org/x/sys/unix/syscall_linux.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Linux system calls.
     6  // This file is compiled as ordinary Go code,
     7  // but it is also input to mksyscall,
     8  // which parses the //sys lines and generates system call stubs.
     9  // Note that sometimes we use a lowercase //sys name and
    10  // wrap it in our own nicer implementation.
    11  
    12  package unix
    13  
    14  import (
    15  	"encoding/binary"
    16  	"net"
    17  	"syscall"
    18  	"unsafe"
    19  )
    20  
    21  /*
    22   * Wrapped
    23   */
    24  
    25  func Access(path string, mode uint32) (err error) {
    26  	return Faccessat(AT_FDCWD, path, mode, 0)
    27  }
    28  
    29  func Chmod(path string, mode uint32) (err error) {
    30  	return Fchmodat(AT_FDCWD, path, mode, 0)
    31  }
    32  
    33  func Chown(path string, uid int, gid int) (err error) {
    34  	return Fchownat(AT_FDCWD, path, uid, gid, 0)
    35  }
    36  
    37  func Creat(path string, mode uint32) (fd int, err error) {
    38  	return Open(path, O_CREAT|O_WRONLY|O_TRUNC, mode)
    39  }
    40  
    41  //sys	fchmodat(dirfd int, path string, mode uint32) (err error)
    42  
    43  func Fchmodat(dirfd int, path string, mode uint32, flags int) (err error) {
    44  	// Linux fchmodat doesn't support the flags parameter. Mimick glibc's behavior
    45  	// and check the flags. Otherwise the mode would be applied to the symlink
    46  	// destination which is not what the user expects.
    47  	if flags&^AT_SYMLINK_NOFOLLOW != 0 {
    48  		return EINVAL
    49  	} else if flags&AT_SYMLINK_NOFOLLOW != 0 {
    50  		return EOPNOTSUPP
    51  	}
    52  	return fchmodat(dirfd, path, mode)
    53  }
    54  
    55  //sys	ioctl(fd int, req uint, arg uintptr) (err error)
    56  
    57  // ioctl itself should not be exposed directly, but additional get/set
    58  // functions for specific types are permissible.
    59  
    60  // IoctlSetPointerInt performs an ioctl operation which sets an
    61  // integer value on fd, using the specified request number. The ioctl
    62  // argument is called with a pointer to the integer value, rather than
    63  // passing the integer value directly.
    64  func IoctlSetPointerInt(fd int, req uint, value int) error {
    65  	v := int32(value)
    66  	return ioctl(fd, req, uintptr(unsafe.Pointer(&v)))
    67  }
    68  
    69  // IoctlSetInt performs an ioctl operation which sets an integer value
    70  // on fd, using the specified request number.
    71  func IoctlSetInt(fd int, req uint, value int) error {
    72  	return ioctl(fd, req, uintptr(value))
    73  }
    74  
    75  func ioctlSetWinsize(fd int, req uint, value *Winsize) error {
    76  	return ioctl(fd, req, uintptr(unsafe.Pointer(value)))
    77  }
    78  
    79  func ioctlSetTermios(fd int, req uint, value *Termios) error {
    80  	return ioctl(fd, req, uintptr(unsafe.Pointer(value)))
    81  }
    82  
    83  // IoctlGetInt performs an ioctl operation which gets an integer value
    84  // from fd, using the specified request number.
    85  func IoctlGetInt(fd int, req uint) (int, error) {
    86  	var value int
    87  	err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
    88  	return value, err
    89  }
    90  
    91  func IoctlGetWinsize(fd int, req uint) (*Winsize, error) {
    92  	var value Winsize
    93  	err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
    94  	return &value, err
    95  }
    96  
    97  func IoctlGetTermios(fd int, req uint) (*Termios, error) {
    98  	var value Termios
    99  	err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
   100  	return &value, err
   101  }
   102  
   103  //sys	Linkat(olddirfd int, oldpath string, newdirfd int, newpath string, flags int) (err error)
   104  
   105  func Link(oldpath string, newpath string) (err error) {
   106  	return Linkat(AT_FDCWD, oldpath, AT_FDCWD, newpath, 0)
   107  }
   108  
   109  func Mkdir(path string, mode uint32) (err error) {
   110  	return Mkdirat(AT_FDCWD, path, mode)
   111  }
   112  
   113  func Mknod(path string, mode uint32, dev int) (err error) {
   114  	return Mknodat(AT_FDCWD, path, mode, dev)
   115  }
   116  
   117  func Open(path string, mode int, perm uint32) (fd int, err error) {
   118  	return openat(AT_FDCWD, path, mode|O_LARGEFILE, perm)
   119  }
   120  
   121  //sys	openat(dirfd int, path string, flags int, mode uint32) (fd int, err error)
   122  
   123  func Openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) {
   124  	return openat(dirfd, path, flags|O_LARGEFILE, mode)
   125  }
   126  
   127  //sys	ppoll(fds *PollFd, nfds int, timeout *Timespec, sigmask *Sigset_t) (n int, err error)
   128  
   129  func Ppoll(fds []PollFd, timeout *Timespec, sigmask *Sigset_t) (n int, err error) {
   130  	if len(fds) == 0 {
   131  		return ppoll(nil, 0, timeout, sigmask)
   132  	}
   133  	return ppoll(&fds[0], len(fds), timeout, sigmask)
   134  }
   135  
   136  //sys	Readlinkat(dirfd int, path string, buf []byte) (n int, err error)
   137  
   138  func Readlink(path string, buf []byte) (n int, err error) {
   139  	return Readlinkat(AT_FDCWD, path, buf)
   140  }
   141  
   142  func Rename(oldpath string, newpath string) (err error) {
   143  	return Renameat(AT_FDCWD, oldpath, AT_FDCWD, newpath)
   144  }
   145  
   146  func Rmdir(path string) error {
   147  	return Unlinkat(AT_FDCWD, path, AT_REMOVEDIR)
   148  }
   149  
   150  //sys	Symlinkat(oldpath string, newdirfd int, newpath string) (err error)
   151  
   152  func Symlink(oldpath string, newpath string) (err error) {
   153  	return Symlinkat(oldpath, AT_FDCWD, newpath)
   154  }
   155  
   156  func Unlink(path string) error {
   157  	return Unlinkat(AT_FDCWD, path, 0)
   158  }
   159  
   160  //sys	Unlinkat(dirfd int, path string, flags int) (err error)
   161  
   162  func Utimes(path string, tv []Timeval) error {
   163  	if tv == nil {
   164  		err := utimensat(AT_FDCWD, path, nil, 0)
   165  		if err != ENOSYS {
   166  			return err
   167  		}
   168  		return utimes(path, nil)
   169  	}
   170  	if len(tv) != 2 {
   171  		return EINVAL
   172  	}
   173  	var ts [2]Timespec
   174  	ts[0] = NsecToTimespec(TimevalToNsec(tv[0]))
   175  	ts[1] = NsecToTimespec(TimevalToNsec(tv[1]))
   176  	err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
   177  	if err != ENOSYS {
   178  		return err
   179  	}
   180  	return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
   181  }
   182  
   183  //sys	utimensat(dirfd int, path string, times *[2]Timespec, flags int) (err error)
   184  
   185  func UtimesNano(path string, ts []Timespec) error {
   186  	if ts == nil {
   187  		err := utimensat(AT_FDCWD, path, nil, 0)
   188  		if err != ENOSYS {
   189  			return err
   190  		}
   191  		return utimes(path, nil)
   192  	}
   193  	if len(ts) != 2 {
   194  		return EINVAL
   195  	}
   196  	err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
   197  	if err != ENOSYS {
   198  		return err
   199  	}
   200  	// If the utimensat syscall isn't available (utimensat was added to Linux
   201  	// in 2.6.22, Released, 8 July 2007) then fall back to utimes
   202  	var tv [2]Timeval
   203  	for i := 0; i < 2; i++ {
   204  		tv[i] = NsecToTimeval(TimespecToNsec(ts[i]))
   205  	}
   206  	return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
   207  }
   208  
   209  func UtimesNanoAt(dirfd int, path string, ts []Timespec, flags int) error {
   210  	if ts == nil {
   211  		return utimensat(dirfd, path, nil, flags)
   212  	}
   213  	if len(ts) != 2 {
   214  		return EINVAL
   215  	}
   216  	return utimensat(dirfd, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), flags)
   217  }
   218  
   219  func Futimesat(dirfd int, path string, tv []Timeval) error {
   220  	if tv == nil {
   221  		return futimesat(dirfd, path, nil)
   222  	}
   223  	if len(tv) != 2 {
   224  		return EINVAL
   225  	}
   226  	return futimesat(dirfd, path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
   227  }
   228  
   229  func Futimes(fd int, tv []Timeval) (err error) {
   230  	// Believe it or not, this is the best we can do on Linux
   231  	// (and is what glibc does).
   232  	return Utimes("/proc/self/fd/"+itoa(fd), tv)
   233  }
   234  
   235  const ImplementsGetwd = true
   236  
   237  //sys	Getcwd(buf []byte) (n int, err error)
   238  
   239  func Getwd() (wd string, err error) {
   240  	var buf [PathMax]byte
   241  	n, err := Getcwd(buf[0:])
   242  	if err != nil {
   243  		return "", err
   244  	}
   245  	// Getcwd returns the number of bytes written to buf, including the NUL.
   246  	if n < 1 || n > len(buf) || buf[n-1] != 0 {
   247  		return "", EINVAL
   248  	}
   249  	return string(buf[0 : n-1]), nil
   250  }
   251  
   252  func Getgroups() (gids []int, err error) {
   253  	n, err := getgroups(0, nil)
   254  	if err != nil {
   255  		return nil, err
   256  	}
   257  	if n == 0 {
   258  		return nil, nil
   259  	}
   260  
   261  	// Sanity check group count. Max is 1<<16 on Linux.
   262  	if n < 0 || n > 1<<20 {
   263  		return nil, EINVAL
   264  	}
   265  
   266  	a := make([]_Gid_t, n)
   267  	n, err = getgroups(n, &a[0])
   268  	if err != nil {
   269  		return nil, err
   270  	}
   271  	gids = make([]int, n)
   272  	for i, v := range a[0:n] {
   273  		gids[i] = int(v)
   274  	}
   275  	return
   276  }
   277  
   278  func Setgroups(gids []int) (err error) {
   279  	if len(gids) == 0 {
   280  		return setgroups(0, nil)
   281  	}
   282  
   283  	a := make([]_Gid_t, len(gids))
   284  	for i, v := range gids {
   285  		a[i] = _Gid_t(v)
   286  	}
   287  	return setgroups(len(a), &a[0])
   288  }
   289  
   290  type WaitStatus uint32
   291  
   292  // Wait status is 7 bits at bottom, either 0 (exited),
   293  // 0x7F (stopped), or a signal number that caused an exit.
   294  // The 0x80 bit is whether there was a core dump.
   295  // An extra number (exit code, signal causing a stop)
   296  // is in the high bits. At least that's the idea.
   297  // There are various irregularities. For example, the
   298  // "continued" status is 0xFFFF, distinguishing itself
   299  // from stopped via the core dump bit.
   300  
   301  const (
   302  	mask    = 0x7F
   303  	core    = 0x80
   304  	exited  = 0x00
   305  	stopped = 0x7F
   306  	shift   = 8
   307  )
   308  
   309  func (w WaitStatus) Exited() bool { return w&mask == exited }
   310  
   311  func (w WaitStatus) Signaled() bool { return w&mask != stopped && w&mask != exited }
   312  
   313  func (w WaitStatus) Stopped() bool { return w&0xFF == stopped }
   314  
   315  func (w WaitStatus) Continued() bool { return w == 0xFFFF }
   316  
   317  func (w WaitStatus) CoreDump() bool { return w.Signaled() && w&core != 0 }
   318  
   319  func (w WaitStatus) ExitStatus() int {
   320  	if !w.Exited() {
   321  		return -1
   322  	}
   323  	return int(w>>shift) & 0xFF
   324  }
   325  
   326  func (w WaitStatus) Signal() syscall.Signal {
   327  	if !w.Signaled() {
   328  		return -1
   329  	}
   330  	return syscall.Signal(w & mask)
   331  }
   332  
   333  func (w WaitStatus) StopSignal() syscall.Signal {
   334  	if !w.Stopped() {
   335  		return -1
   336  	}
   337  	return syscall.Signal(w>>shift) & 0xFF
   338  }
   339  
   340  func (w WaitStatus) TrapCause() int {
   341  	if w.StopSignal() != SIGTRAP {
   342  		return -1
   343  	}
   344  	return int(w>>shift) >> 8
   345  }
   346  
   347  //sys	wait4(pid int, wstatus *_C_int, options int, rusage *Rusage) (wpid int, err error)
   348  
   349  func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, err error) {
   350  	var status _C_int
   351  	wpid, err = wait4(pid, &status, options, rusage)
   352  	if wstatus != nil {
   353  		*wstatus = WaitStatus(status)
   354  	}
   355  	return
   356  }
   357  
   358  func Mkfifo(path string, mode uint32) error {
   359  	return Mknod(path, mode|S_IFIFO, 0)
   360  }
   361  
   362  func Mkfifoat(dirfd int, path string, mode uint32) error {
   363  	return Mknodat(dirfd, path, mode|S_IFIFO, 0)
   364  }
   365  
   366  func (sa *SockaddrInet4) sockaddr() (unsafe.Pointer, _Socklen, error) {
   367  	if sa.Port < 0 || sa.Port > 0xFFFF {
   368  		return nil, 0, EINVAL
   369  	}
   370  	sa.raw.Family = AF_INET
   371  	p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
   372  	p[0] = byte(sa.Port >> 8)
   373  	p[1] = byte(sa.Port)
   374  	for i := 0; i < len(sa.Addr); i++ {
   375  		sa.raw.Addr[i] = sa.Addr[i]
   376  	}
   377  	return unsafe.Pointer(&sa.raw), SizeofSockaddrInet4, nil
   378  }
   379  
   380  func (sa *SockaddrInet6) sockaddr() (unsafe.Pointer, _Socklen, error) {
   381  	if sa.Port < 0 || sa.Port > 0xFFFF {
   382  		return nil, 0, EINVAL
   383  	}
   384  	sa.raw.Family = AF_INET6
   385  	p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
   386  	p[0] = byte(sa.Port >> 8)
   387  	p[1] = byte(sa.Port)
   388  	sa.raw.Scope_id = sa.ZoneId
   389  	for i := 0; i < len(sa.Addr); i++ {
   390  		sa.raw.Addr[i] = sa.Addr[i]
   391  	}
   392  	return unsafe.Pointer(&sa.raw), SizeofSockaddrInet6, nil
   393  }
   394  
   395  func (sa *SockaddrUnix) sockaddr() (unsafe.Pointer, _Socklen, error) {
   396  	name := sa.Name
   397  	n := len(name)
   398  	if n >= len(sa.raw.Path) {
   399  		return nil, 0, EINVAL
   400  	}
   401  	sa.raw.Family = AF_UNIX
   402  	for i := 0; i < n; i++ {
   403  		sa.raw.Path[i] = int8(name[i])
   404  	}
   405  	// length is family (uint16), name, NUL.
   406  	sl := _Socklen(2)
   407  	if n > 0 {
   408  		sl += _Socklen(n) + 1
   409  	}
   410  	if sa.raw.Path[0] == '@' {
   411  		sa.raw.Path[0] = 0
   412  		// Don't count trailing NUL for abstract address.
   413  		sl--
   414  	}
   415  
   416  	return unsafe.Pointer(&sa.raw), sl, nil
   417  }
   418  
   419  // SockaddrLinklayer implements the Sockaddr interface for AF_PACKET type sockets.
   420  type SockaddrLinklayer struct {
   421  	Protocol uint16
   422  	Ifindex  int
   423  	Hatype   uint16
   424  	Pkttype  uint8
   425  	Halen    uint8
   426  	Addr     [8]byte
   427  	raw      RawSockaddrLinklayer
   428  }
   429  
   430  func (sa *SockaddrLinklayer) sockaddr() (unsafe.Pointer, _Socklen, error) {
   431  	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
   432  		return nil, 0, EINVAL
   433  	}
   434  	sa.raw.Family = AF_PACKET
   435  	sa.raw.Protocol = sa.Protocol
   436  	sa.raw.Ifindex = int32(sa.Ifindex)
   437  	sa.raw.Hatype = sa.Hatype
   438  	sa.raw.Pkttype = sa.Pkttype
   439  	sa.raw.Halen = sa.Halen
   440  	for i := 0; i < len(sa.Addr); i++ {
   441  		sa.raw.Addr[i] = sa.Addr[i]
   442  	}
   443  	return unsafe.Pointer(&sa.raw), SizeofSockaddrLinklayer, nil
   444  }
   445  
   446  // SockaddrNetlink implements the Sockaddr interface for AF_NETLINK type sockets.
   447  type SockaddrNetlink struct {
   448  	Family uint16
   449  	Pad    uint16
   450  	Pid    uint32
   451  	Groups uint32
   452  	raw    RawSockaddrNetlink
   453  }
   454  
   455  func (sa *SockaddrNetlink) sockaddr() (unsafe.Pointer, _Socklen, error) {
   456  	sa.raw.Family = AF_NETLINK
   457  	sa.raw.Pad = sa.Pad
   458  	sa.raw.Pid = sa.Pid
   459  	sa.raw.Groups = sa.Groups
   460  	return unsafe.Pointer(&sa.raw), SizeofSockaddrNetlink, nil
   461  }
   462  
   463  // SockaddrHCI implements the Sockaddr interface for AF_BLUETOOTH type sockets
   464  // using the HCI protocol.
   465  type SockaddrHCI struct {
   466  	Dev     uint16
   467  	Channel uint16
   468  	raw     RawSockaddrHCI
   469  }
   470  
   471  func (sa *SockaddrHCI) sockaddr() (unsafe.Pointer, _Socklen, error) {
   472  	sa.raw.Family = AF_BLUETOOTH
   473  	sa.raw.Dev = sa.Dev
   474  	sa.raw.Channel = sa.Channel
   475  	return unsafe.Pointer(&sa.raw), SizeofSockaddrHCI, nil
   476  }
   477  
   478  // SockaddrL2 implements the Sockaddr interface for AF_BLUETOOTH type sockets
   479  // using the L2CAP protocol.
   480  type SockaddrL2 struct {
   481  	PSM      uint16
   482  	CID      uint16
   483  	Addr     [6]uint8
   484  	AddrType uint8
   485  	raw      RawSockaddrL2
   486  }
   487  
   488  func (sa *SockaddrL2) sockaddr() (unsafe.Pointer, _Socklen, error) {
   489  	sa.raw.Family = AF_BLUETOOTH
   490  	psm := (*[2]byte)(unsafe.Pointer(&sa.raw.Psm))
   491  	psm[0] = byte(sa.PSM)
   492  	psm[1] = byte(sa.PSM >> 8)
   493  	for i := 0; i < len(sa.Addr); i++ {
   494  		sa.raw.Bdaddr[i] = sa.Addr[len(sa.Addr)-1-i]
   495  	}
   496  	cid := (*[2]byte)(unsafe.Pointer(&sa.raw.Cid))
   497  	cid[0] = byte(sa.CID)
   498  	cid[1] = byte(sa.CID >> 8)
   499  	sa.raw.Bdaddr_type = sa.AddrType
   500  	return unsafe.Pointer(&sa.raw), SizeofSockaddrL2, nil
   501  }
   502  
   503  // SockaddrRFCOMM implements the Sockaddr interface for AF_BLUETOOTH type sockets
   504  // using the RFCOMM protocol.
   505  //
   506  // Server example:
   507  //
   508  //      fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
   509  //      _ = unix.Bind(fd, &unix.SockaddrRFCOMM{
   510  //      	Channel: 1,
   511  //      	Addr:    [6]uint8{0, 0, 0, 0, 0, 0}, // BDADDR_ANY or 00:00:00:00:00:00
   512  //      })
   513  //      _ = Listen(fd, 1)
   514  //      nfd, sa, _ := Accept(fd)
   515  //      fmt.Printf("conn addr=%v fd=%d", sa.(*unix.SockaddrRFCOMM).Addr, nfd)
   516  //      Read(nfd, buf)
   517  //
   518  // Client example:
   519  //
   520  //      fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
   521  //      _ = Connect(fd, &SockaddrRFCOMM{
   522  //      	Channel: 1,
   523  //      	Addr:    [6]byte{0x11, 0x22, 0x33, 0xaa, 0xbb, 0xcc}, // CC:BB:AA:33:22:11
   524  //      })
   525  //      Write(fd, []byte(`hello`))
   526  type SockaddrRFCOMM struct {
   527  	// Addr represents a bluetooth address, byte ordering is little-endian.
   528  	Addr [6]uint8
   529  
   530  	// Channel is a designated bluetooth channel, only 1-30 are available for use.
   531  	// Since Linux 2.6.7 and further zero value is the first available channel.
   532  	Channel uint8
   533  
   534  	raw RawSockaddrRFCOMM
   535  }
   536  
   537  func (sa *SockaddrRFCOMM) sockaddr() (unsafe.Pointer, _Socklen, error) {
   538  	sa.raw.Family = AF_BLUETOOTH
   539  	sa.raw.Channel = sa.Channel
   540  	sa.raw.Bdaddr = sa.Addr
   541  	return unsafe.Pointer(&sa.raw), SizeofSockaddrRFCOMM, nil
   542  }
   543  
   544  // SockaddrCAN implements the Sockaddr interface for AF_CAN type sockets.
   545  // The RxID and TxID fields are used for transport protocol addressing in
   546  // (CAN_TP16, CAN_TP20, CAN_MCNET, and CAN_ISOTP), they can be left with
   547  // zero values for CAN_RAW and CAN_BCM sockets as they have no meaning.
   548  //
   549  // The SockaddrCAN struct must be bound to the socket file descriptor
   550  // using Bind before the CAN socket can be used.
   551  //
   552  //      // Read one raw CAN frame
   553  //      fd, _ := Socket(AF_CAN, SOCK_RAW, CAN_RAW)
   554  //      addr := &SockaddrCAN{Ifindex: index}
   555  //      Bind(fd, addr)
   556  //      frame := make([]byte, 16)
   557  //      Read(fd, frame)
   558  //
   559  // The full SocketCAN documentation can be found in the linux kernel
   560  // archives at: https://www.kernel.org/doc/Documentation/networking/can.txt
   561  type SockaddrCAN struct {
   562  	Ifindex int
   563  	RxID    uint32
   564  	TxID    uint32
   565  	raw     RawSockaddrCAN
   566  }
   567  
   568  func (sa *SockaddrCAN) sockaddr() (unsafe.Pointer, _Socklen, error) {
   569  	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
   570  		return nil, 0, EINVAL
   571  	}
   572  	sa.raw.Family = AF_CAN
   573  	sa.raw.Ifindex = int32(sa.Ifindex)
   574  	rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
   575  	for i := 0; i < 4; i++ {
   576  		sa.raw.Addr[i] = rx[i]
   577  	}
   578  	tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
   579  	for i := 0; i < 4; i++ {
   580  		sa.raw.Addr[i+4] = tx[i]
   581  	}
   582  	return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
   583  }
   584  
   585  // SockaddrALG implements the Sockaddr interface for AF_ALG type sockets.
   586  // SockaddrALG enables userspace access to the Linux kernel's cryptography
   587  // subsystem. The Type and Name fields specify which type of hash or cipher
   588  // should be used with a given socket.
   589  //
   590  // To create a file descriptor that provides access to a hash or cipher, both
   591  // Bind and Accept must be used. Once the setup process is complete, input
   592  // data can be written to the socket, processed by the kernel, and then read
   593  // back as hash output or ciphertext.
   594  //
   595  // Here is an example of using an AF_ALG socket with SHA1 hashing.
   596  // The initial socket setup process is as follows:
   597  //
   598  //      // Open a socket to perform SHA1 hashing.
   599  //      fd, _ := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0)
   600  //      addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"}
   601  //      unix.Bind(fd, addr)
   602  //      // Note: unix.Accept does not work at this time; must invoke accept()
   603  //      // manually using unix.Syscall.
   604  //      hashfd, _, _ := unix.Syscall(unix.SYS_ACCEPT, uintptr(fd), 0, 0)
   605  //
   606  // Once a file descriptor has been returned from Accept, it may be used to
   607  // perform SHA1 hashing. The descriptor is not safe for concurrent use, but
   608  // may be re-used repeatedly with subsequent Write and Read operations.
   609  //
   610  // When hashing a small byte slice or string, a single Write and Read may
   611  // be used:
   612  //
   613  //      // Assume hashfd is already configured using the setup process.
   614  //      hash := os.NewFile(hashfd, "sha1")
   615  //      // Hash an input string and read the results. Each Write discards
   616  //      // previous hash state. Read always reads the current state.
   617  //      b := make([]byte, 20)
   618  //      for i := 0; i < 2; i++ {
   619  //          io.WriteString(hash, "Hello, world.")
   620  //          hash.Read(b)
   621  //          fmt.Println(hex.EncodeToString(b))
   622  //      }
   623  //      // Output:
   624  //      // 2ae01472317d1935a84797ec1983ae243fc6aa28
   625  //      // 2ae01472317d1935a84797ec1983ae243fc6aa28
   626  //
   627  // For hashing larger byte slices, or byte streams such as those read from
   628  // a file or socket, use Sendto with MSG_MORE to instruct the kernel to update
   629  // the hash digest instead of creating a new one for a given chunk and finalizing it.
   630  //
   631  //      // Assume hashfd and addr are already configured using the setup process.
   632  //      hash := os.NewFile(hashfd, "sha1")
   633  //      // Hash the contents of a file.
   634  //      f, _ := os.Open("/tmp/linux-4.10-rc7.tar.xz")
   635  //      b := make([]byte, 4096)
   636  //      for {
   637  //          n, err := f.Read(b)
   638  //          if err == io.EOF {
   639  //              break
   640  //          }
   641  //          unix.Sendto(hashfd, b[:n], unix.MSG_MORE, addr)
   642  //      }
   643  //      hash.Read(b)
   644  //      fmt.Println(hex.EncodeToString(b))
   645  //      // Output: 85cdcad0c06eef66f805ecce353bec9accbeecc5
   646  //
   647  // For more information, see: http://www.chronox.de/crypto-API/crypto/userspace-if.html.
   648  type SockaddrALG struct {
   649  	Type    string
   650  	Name    string
   651  	Feature uint32
   652  	Mask    uint32
   653  	raw     RawSockaddrALG
   654  }
   655  
   656  func (sa *SockaddrALG) sockaddr() (unsafe.Pointer, _Socklen, error) {
   657  	// Leave room for NUL byte terminator.
   658  	if len(sa.Type) > 13 {
   659  		return nil, 0, EINVAL
   660  	}
   661  	if len(sa.Name) > 63 {
   662  		return nil, 0, EINVAL
   663  	}
   664  
   665  	sa.raw.Family = AF_ALG
   666  	sa.raw.Feat = sa.Feature
   667  	sa.raw.Mask = sa.Mask
   668  
   669  	typ, err := ByteSliceFromString(sa.Type)
   670  	if err != nil {
   671  		return nil, 0, err
   672  	}
   673  	name, err := ByteSliceFromString(sa.Name)
   674  	if err != nil {
   675  		return nil, 0, err
   676  	}
   677  
   678  	copy(sa.raw.Type[:], typ)
   679  	copy(sa.raw.Name[:], name)
   680  
   681  	return unsafe.Pointer(&sa.raw), SizeofSockaddrALG, nil
   682  }
   683  
   684  // SockaddrVM implements the Sockaddr interface for AF_VSOCK type sockets.
   685  // SockaddrVM provides access to Linux VM sockets: a mechanism that enables
   686  // bidirectional communication between a hypervisor and its guest virtual
   687  // machines.
   688  type SockaddrVM struct {
   689  	// CID and Port specify a context ID and port address for a VM socket.
   690  	// Guests have a unique CID, and hosts may have a well-known CID of:
   691  	//  - VMADDR_CID_HYPERVISOR: refers to the hypervisor process.
   692  	//  - VMADDR_CID_HOST: refers to other processes on the host.
   693  	CID  uint32
   694  	Port uint32
   695  	raw  RawSockaddrVM
   696  }
   697  
   698  func (sa *SockaddrVM) sockaddr() (unsafe.Pointer, _Socklen, error) {
   699  	sa.raw.Family = AF_VSOCK
   700  	sa.raw.Port = sa.Port
   701  	sa.raw.Cid = sa.CID
   702  
   703  	return unsafe.Pointer(&sa.raw), SizeofSockaddrVM, nil
   704  }
   705  
   706  type SockaddrXDP struct {
   707  	Flags        uint16
   708  	Ifindex      uint32
   709  	QueueID      uint32
   710  	SharedUmemFD uint32
   711  	raw          RawSockaddrXDP
   712  }
   713  
   714  func (sa *SockaddrXDP) sockaddr() (unsafe.Pointer, _Socklen, error) {
   715  	sa.raw.Family = AF_XDP
   716  	sa.raw.Flags = sa.Flags
   717  	sa.raw.Ifindex = sa.Ifindex
   718  	sa.raw.Queue_id = sa.QueueID
   719  	sa.raw.Shared_umem_fd = sa.SharedUmemFD
   720  
   721  	return unsafe.Pointer(&sa.raw), SizeofSockaddrXDP, nil
   722  }
   723  
   724  // This constant mirrors the #define of PX_PROTO_OE in
   725  // linux/if_pppox.h. We're defining this by hand here instead of
   726  // autogenerating through mkerrors.sh because including
   727  // linux/if_pppox.h causes some declaration conflicts with other
   728  // includes (linux/if_pppox.h includes linux/in.h, which conflicts
   729  // with netinet/in.h). Given that we only need a single zero constant
   730  // out of that file, it's cleaner to just define it by hand here.
   731  const px_proto_oe = 0
   732  
   733  type SockaddrPPPoE struct {
   734  	SID    uint16
   735  	Remote net.HardwareAddr
   736  	Dev    string
   737  	raw    RawSockaddrPPPoX
   738  }
   739  
   740  func (sa *SockaddrPPPoE) sockaddr() (unsafe.Pointer, _Socklen, error) {
   741  	if len(sa.Remote) != 6 {
   742  		return nil, 0, EINVAL
   743  	}
   744  	if len(sa.Dev) > IFNAMSIZ-1 {
   745  		return nil, 0, EINVAL
   746  	}
   747  
   748  	*(*uint16)(unsafe.Pointer(&sa.raw[0])) = AF_PPPOX
   749  	// This next field is in host-endian byte order. We can't use the
   750  	// same unsafe pointer cast as above, because this value is not
   751  	// 32-bit aligned and some architectures don't allow unaligned
   752  	// access.
   753  	//
   754  	// However, the value of px_proto_oe is 0, so we can use
   755  	// encoding/binary helpers to write the bytes without worrying
   756  	// about the ordering.
   757  	binary.BigEndian.PutUint32(sa.raw[2:6], px_proto_oe)
   758  	// This field is deliberately big-endian, unlike the previous
   759  	// one. The kernel expects SID to be in network byte order.
   760  	binary.BigEndian.PutUint16(sa.raw[6:8], sa.SID)
   761  	copy(sa.raw[8:14], sa.Remote)
   762  	for i := 14; i < 14+IFNAMSIZ; i++ {
   763  		sa.raw[i] = 0
   764  	}
   765  	copy(sa.raw[14:], sa.Dev)
   766  	return unsafe.Pointer(&sa.raw), SizeofSockaddrPPPoX, nil
   767  }
   768  
   769  func anyToSockaddr(fd int, rsa *RawSockaddrAny) (Sockaddr, error) {
   770  	switch rsa.Addr.Family {
   771  	case AF_NETLINK:
   772  		pp := (*RawSockaddrNetlink)(unsafe.Pointer(rsa))
   773  		sa := new(SockaddrNetlink)
   774  		sa.Family = pp.Family
   775  		sa.Pad = pp.Pad
   776  		sa.Pid = pp.Pid
   777  		sa.Groups = pp.Groups
   778  		return sa, nil
   779  
   780  	case AF_PACKET:
   781  		pp := (*RawSockaddrLinklayer)(unsafe.Pointer(rsa))
   782  		sa := new(SockaddrLinklayer)
   783  		sa.Protocol = pp.Protocol
   784  		sa.Ifindex = int(pp.Ifindex)
   785  		sa.Hatype = pp.Hatype
   786  		sa.Pkttype = pp.Pkttype
   787  		sa.Halen = pp.Halen
   788  		for i := 0; i < len(sa.Addr); i++ {
   789  			sa.Addr[i] = pp.Addr[i]
   790  		}
   791  		return sa, nil
   792  
   793  	case AF_UNIX:
   794  		pp := (*RawSockaddrUnix)(unsafe.Pointer(rsa))
   795  		sa := new(SockaddrUnix)
   796  		if pp.Path[0] == 0 {
   797  			// "Abstract" Unix domain socket.
   798  			// Rewrite leading NUL as @ for textual display.
   799  			// (This is the standard convention.)
   800  			// Not friendly to overwrite in place,
   801  			// but the callers below don't care.
   802  			pp.Path[0] = '@'
   803  		}
   804  
   805  		// Assume path ends at NUL.
   806  		// This is not technically the Linux semantics for
   807  		// abstract Unix domain sockets--they are supposed
   808  		// to be uninterpreted fixed-size binary blobs--but
   809  		// everyone uses this convention.
   810  		n := 0
   811  		for n < len(pp.Path) && pp.Path[n] != 0 {
   812  			n++
   813  		}
   814  		bytes := (*[10000]byte)(unsafe.Pointer(&pp.Path[0]))[0:n]
   815  		sa.Name = string(bytes)
   816  		return sa, nil
   817  
   818  	case AF_INET:
   819  		pp := (*RawSockaddrInet4)(unsafe.Pointer(rsa))
   820  		sa := new(SockaddrInet4)
   821  		p := (*[2]byte)(unsafe.Pointer(&pp.Port))
   822  		sa.Port = int(p[0])<<8 + int(p[1])
   823  		for i := 0; i < len(sa.Addr); i++ {
   824  			sa.Addr[i] = pp.Addr[i]
   825  		}
   826  		return sa, nil
   827  
   828  	case AF_INET6:
   829  		pp := (*RawSockaddrInet6)(unsafe.Pointer(rsa))
   830  		sa := new(SockaddrInet6)
   831  		p := (*[2]byte)(unsafe.Pointer(&pp.Port))
   832  		sa.Port = int(p[0])<<8 + int(p[1])
   833  		sa.ZoneId = pp.Scope_id
   834  		for i := 0; i < len(sa.Addr); i++ {
   835  			sa.Addr[i] = pp.Addr[i]
   836  		}
   837  		return sa, nil
   838  
   839  	case AF_VSOCK:
   840  		pp := (*RawSockaddrVM)(unsafe.Pointer(rsa))
   841  		sa := &SockaddrVM{
   842  			CID:  pp.Cid,
   843  			Port: pp.Port,
   844  		}
   845  		return sa, nil
   846  	case AF_BLUETOOTH:
   847  		proto, err := GetsockoptInt(fd, SOL_SOCKET, SO_PROTOCOL)
   848  		if err != nil {
   849  			return nil, err
   850  		}
   851  		// only BTPROTO_L2CAP and BTPROTO_RFCOMM can accept connections
   852  		switch proto {
   853  		case BTPROTO_L2CAP:
   854  			pp := (*RawSockaddrL2)(unsafe.Pointer(rsa))
   855  			sa := &SockaddrL2{
   856  				PSM:      pp.Psm,
   857  				CID:      pp.Cid,
   858  				Addr:     pp.Bdaddr,
   859  				AddrType: pp.Bdaddr_type,
   860  			}
   861  			return sa, nil
   862  		case BTPROTO_RFCOMM:
   863  			pp := (*RawSockaddrRFCOMM)(unsafe.Pointer(rsa))
   864  			sa := &SockaddrRFCOMM{
   865  				Channel: pp.Channel,
   866  				Addr:    pp.Bdaddr,
   867  			}
   868  			return sa, nil
   869  		}
   870  	case AF_XDP:
   871  		pp := (*RawSockaddrXDP)(unsafe.Pointer(rsa))
   872  		sa := &SockaddrXDP{
   873  			Flags:        pp.Flags,
   874  			Ifindex:      pp.Ifindex,
   875  			QueueID:      pp.Queue_id,
   876  			SharedUmemFD: pp.Shared_umem_fd,
   877  		}
   878  		return sa, nil
   879  	case AF_PPPOX:
   880  		pp := (*RawSockaddrPPPoX)(unsafe.Pointer(rsa))
   881  		if binary.BigEndian.Uint32(pp[2:6]) != px_proto_oe {
   882  			return nil, EINVAL
   883  		}
   884  		sa := &SockaddrPPPoE{
   885  			SID:    binary.BigEndian.Uint16(pp[6:8]),
   886  			Remote: net.HardwareAddr(pp[8:14]),
   887  		}
   888  		for i := 14; i < 14+IFNAMSIZ; i++ {
   889  			if pp[i] == 0 {
   890  				sa.Dev = string(pp[14:i])
   891  				break
   892  			}
   893  		}
   894  		return sa, nil
   895  	}
   896  	return nil, EAFNOSUPPORT
   897  }
   898  
   899  func Accept(fd int) (nfd int, sa Sockaddr, err error) {
   900  	var rsa RawSockaddrAny
   901  	var len _Socklen = SizeofSockaddrAny
   902  	nfd, err = accept(fd, &rsa, &len)
   903  	if err != nil {
   904  		return
   905  	}
   906  	sa, err = anyToSockaddr(fd, &rsa)
   907  	if err != nil {
   908  		Close(nfd)
   909  		nfd = 0
   910  	}
   911  	return
   912  }
   913  
   914  func Accept4(fd int, flags int) (nfd int, sa Sockaddr, err error) {
   915  	var rsa RawSockaddrAny
   916  	var len _Socklen = SizeofSockaddrAny
   917  	nfd, err = accept4(fd, &rsa, &len, flags)
   918  	if err != nil {
   919  		return
   920  	}
   921  	if len > SizeofSockaddrAny {
   922  		panic("RawSockaddrAny too small")
   923  	}
   924  	sa, err = anyToSockaddr(fd, &rsa)
   925  	if err != nil {
   926  		Close(nfd)
   927  		nfd = 0
   928  	}
   929  	return
   930  }
   931  
   932  func Getsockname(fd int) (sa Sockaddr, err error) {
   933  	var rsa RawSockaddrAny
   934  	var len _Socklen = SizeofSockaddrAny
   935  	if err = getsockname(fd, &rsa, &len); err != nil {
   936  		return
   937  	}
   938  	return anyToSockaddr(fd, &rsa)
   939  }
   940  
   941  func GetsockoptIPMreqn(fd, level, opt int) (*IPMreqn, error) {
   942  	var value IPMreqn
   943  	vallen := _Socklen(SizeofIPMreqn)
   944  	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
   945  	return &value, err
   946  }
   947  
   948  func GetsockoptUcred(fd, level, opt int) (*Ucred, error) {
   949  	var value Ucred
   950  	vallen := _Socklen(SizeofUcred)
   951  	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
   952  	return &value, err
   953  }
   954  
   955  func GetsockoptTCPInfo(fd, level, opt int) (*TCPInfo, error) {
   956  	var value TCPInfo
   957  	vallen := _Socklen(SizeofTCPInfo)
   958  	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
   959  	return &value, err
   960  }
   961  
   962  // GetsockoptString returns the string value of the socket option opt for the
   963  // socket associated with fd at the given socket level.
   964  func GetsockoptString(fd, level, opt int) (string, error) {
   965  	buf := make([]byte, 256)
   966  	vallen := _Socklen(len(buf))
   967  	err := getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
   968  	if err != nil {
   969  		if err == ERANGE {
   970  			buf = make([]byte, vallen)
   971  			err = getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
   972  		}
   973  		if err != nil {
   974  			return "", err
   975  		}
   976  	}
   977  	return string(buf[:vallen-1]), nil
   978  }
   979  
   980  func SetsockoptIPMreqn(fd, level, opt int, mreq *IPMreqn) (err error) {
   981  	return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
   982  }
   983  
   984  // Keyctl Commands (http://man7.org/linux/man-pages/man2/keyctl.2.html)
   985  
   986  // KeyctlInt calls keyctl commands in which each argument is an int.
   987  // These commands are KEYCTL_REVOKE, KEYCTL_CHOWN, KEYCTL_CLEAR, KEYCTL_LINK,
   988  // KEYCTL_UNLINK, KEYCTL_NEGATE, KEYCTL_SET_REQKEY_KEYRING, KEYCTL_SET_TIMEOUT,
   989  // KEYCTL_ASSUME_AUTHORITY, KEYCTL_SESSION_TO_PARENT, KEYCTL_REJECT,
   990  // KEYCTL_INVALIDATE, and KEYCTL_GET_PERSISTENT.
   991  //sys	KeyctlInt(cmd int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err error) = SYS_KEYCTL
   992  
   993  // KeyctlBuffer calls keyctl commands in which the third and fourth
   994  // arguments are a buffer and its length, respectively.
   995  // These commands are KEYCTL_UPDATE, KEYCTL_READ, and KEYCTL_INSTANTIATE.
   996  //sys	KeyctlBuffer(cmd int, arg2 int, buf []byte, arg5 int) (ret int, err error) = SYS_KEYCTL
   997  
   998  // KeyctlString calls keyctl commands which return a string.
   999  // These commands are KEYCTL_DESCRIBE and KEYCTL_GET_SECURITY.
  1000  func KeyctlString(cmd int, id int) (string, error) {
  1001  	// We must loop as the string data may change in between the syscalls.
  1002  	// We could allocate a large buffer here to reduce the chance that the
  1003  	// syscall needs to be called twice; however, this is unnecessary as
  1004  	// the performance loss is negligible.
  1005  	var buffer []byte
  1006  	for {
  1007  		// Try to fill the buffer with data
  1008  		length, err := KeyctlBuffer(cmd, id, buffer, 0)
  1009  		if err != nil {
  1010  			return "", err
  1011  		}
  1012  
  1013  		// Check if the data was written
  1014  		if length <= len(buffer) {
  1015  			// Exclude the null terminator
  1016  			return string(buffer[:length-1]), nil
  1017  		}
  1018  
  1019  		// Make a bigger buffer if needed
  1020  		buffer = make([]byte, length)
  1021  	}
  1022  }
  1023  
  1024  // Keyctl commands with special signatures.
  1025  
  1026  // KeyctlGetKeyringID implements the KEYCTL_GET_KEYRING_ID command.
  1027  // See the full documentation at:
  1028  // http://man7.org/linux/man-pages/man3/keyctl_get_keyring_ID.3.html
  1029  func KeyctlGetKeyringID(id int, create bool) (ringid int, err error) {
  1030  	createInt := 0
  1031  	if create {
  1032  		createInt = 1
  1033  	}
  1034  	return KeyctlInt(KEYCTL_GET_KEYRING_ID, id, createInt, 0, 0)
  1035  }
  1036  
  1037  // KeyctlSetperm implements the KEYCTL_SETPERM command. The perm value is the
  1038  // key handle permission mask as described in the "keyctl setperm" section of
  1039  // http://man7.org/linux/man-pages/man1/keyctl.1.html.
  1040  // See the full documentation at:
  1041  // http://man7.org/linux/man-pages/man3/keyctl_setperm.3.html
  1042  func KeyctlSetperm(id int, perm uint32) error {
  1043  	_, err := KeyctlInt(KEYCTL_SETPERM, id, int(perm), 0, 0)
  1044  	return err
  1045  }
  1046  
  1047  //sys	keyctlJoin(cmd int, arg2 string) (ret int, err error) = SYS_KEYCTL
  1048  
  1049  // KeyctlJoinSessionKeyring implements the KEYCTL_JOIN_SESSION_KEYRING command.
  1050  // See the full documentation at:
  1051  // http://man7.org/linux/man-pages/man3/keyctl_join_session_keyring.3.html
  1052  func KeyctlJoinSessionKeyring(name string) (ringid int, err error) {
  1053  	return keyctlJoin(KEYCTL_JOIN_SESSION_KEYRING, name)
  1054  }
  1055  
  1056  //sys	keyctlSearch(cmd int, arg2 int, arg3 string, arg4 string, arg5 int) (ret int, err error) = SYS_KEYCTL
  1057  
  1058  // KeyctlSearch implements the KEYCTL_SEARCH command.
  1059  // See the full documentation at:
  1060  // http://man7.org/linux/man-pages/man3/keyctl_search.3.html
  1061  func KeyctlSearch(ringid int, keyType, description string, destRingid int) (id int, err error) {
  1062  	return keyctlSearch(KEYCTL_SEARCH, ringid, keyType, description, destRingid)
  1063  }
  1064  
  1065  //sys	keyctlIOV(cmd int, arg2 int, payload []Iovec, arg5 int) (err error) = SYS_KEYCTL
  1066  
  1067  // KeyctlInstantiateIOV implements the KEYCTL_INSTANTIATE_IOV command. This
  1068  // command is similar to KEYCTL_INSTANTIATE, except that the payload is a slice
  1069  // of Iovec (each of which represents a buffer) instead of a single buffer.
  1070  // See the full documentation at:
  1071  // http://man7.org/linux/man-pages/man3/keyctl_instantiate_iov.3.html
  1072  func KeyctlInstantiateIOV(id int, payload []Iovec, ringid int) error {
  1073  	return keyctlIOV(KEYCTL_INSTANTIATE_IOV, id, payload, ringid)
  1074  }
  1075  
  1076  //sys	keyctlDH(cmd int, arg2 *KeyctlDHParams, buf []byte) (ret int, err error) = SYS_KEYCTL
  1077  
  1078  // KeyctlDHCompute implements the KEYCTL_DH_COMPUTE command. This command
  1079  // computes a Diffie-Hellman shared secret based on the provide params. The
  1080  // secret is written to the provided buffer and the returned size is the number
  1081  // of bytes written (returning an error if there is insufficient space in the
  1082  // buffer). If a nil buffer is passed in, this function returns the minimum
  1083  // buffer length needed to store the appropriate data. Note that this differs
  1084  // from KEYCTL_READ's behavior which always returns the requested payload size.
  1085  // See the full documentation at:
  1086  // http://man7.org/linux/man-pages/man3/keyctl_dh_compute.3.html
  1087  func KeyctlDHCompute(params *KeyctlDHParams, buffer []byte) (size int, err error) {
  1088  	return keyctlDH(KEYCTL_DH_COMPUTE, params, buffer)
  1089  }
  1090  
  1091  func Recvmsg(fd int, p, oob []byte, flags int) (n, oobn int, recvflags int, from Sockaddr, err error) {
  1092  	var msg Msghdr
  1093  	var rsa RawSockaddrAny
  1094  	msg.Name = (*byte)(unsafe.Pointer(&rsa))
  1095  	msg.Namelen = uint32(SizeofSockaddrAny)
  1096  	var iov Iovec
  1097  	if len(p) > 0 {
  1098  		iov.Base = &p[0]
  1099  		iov.SetLen(len(p))
  1100  	}
  1101  	var dummy byte
  1102  	if len(oob) > 0 {
  1103  		if len(p) == 0 {
  1104  			var sockType int
  1105  			sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
  1106  			if err != nil {
  1107  				return
  1108  			}
  1109  			// receive at least one normal byte
  1110  			if sockType != SOCK_DGRAM {
  1111  				iov.Base = &dummy
  1112  				iov.SetLen(1)
  1113  			}
  1114  		}
  1115  		msg.Control = &oob[0]
  1116  		msg.SetControllen(len(oob))
  1117  	}
  1118  	msg.Iov = &iov
  1119  	msg.Iovlen = 1
  1120  	if n, err = recvmsg(fd, &msg, flags); err != nil {
  1121  		return
  1122  	}
  1123  	oobn = int(msg.Controllen)
  1124  	recvflags = int(msg.Flags)
  1125  	// source address is only specified if the socket is unconnected
  1126  	if rsa.Addr.Family != AF_UNSPEC {
  1127  		from, err = anyToSockaddr(fd, &rsa)
  1128  	}
  1129  	return
  1130  }
  1131  
  1132  func Sendmsg(fd int, p, oob []byte, to Sockaddr, flags int) (err error) {
  1133  	_, err = SendmsgN(fd, p, oob, to, flags)
  1134  	return
  1135  }
  1136  
  1137  func SendmsgN(fd int, p, oob []byte, to Sockaddr, flags int) (n int, err error) {
  1138  	var ptr unsafe.Pointer
  1139  	var salen _Socklen
  1140  	if to != nil {
  1141  		var err error
  1142  		ptr, salen, err = to.sockaddr()
  1143  		if err != nil {
  1144  			return 0, err
  1145  		}
  1146  	}
  1147  	var msg Msghdr
  1148  	msg.Name = (*byte)(ptr)
  1149  	msg.Namelen = uint32(salen)
  1150  	var iov Iovec
  1151  	if len(p) > 0 {
  1152  		iov.Base = &p[0]
  1153  		iov.SetLen(len(p))
  1154  	}
  1155  	var dummy byte
  1156  	if len(oob) > 0 {
  1157  		if len(p) == 0 {
  1158  			var sockType int
  1159  			sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
  1160  			if err != nil {
  1161  				return 0, err
  1162  			}
  1163  			// send at least one normal byte
  1164  			if sockType != SOCK_DGRAM {
  1165  				iov.Base = &dummy
  1166  				iov.SetLen(1)
  1167  			}
  1168  		}
  1169  		msg.Control = &oob[0]
  1170  		msg.SetControllen(len(oob))
  1171  	}
  1172  	msg.Iov = &iov
  1173  	msg.Iovlen = 1
  1174  	if n, err = sendmsg(fd, &msg, flags); err != nil {
  1175  		return 0, err
  1176  	}
  1177  	if len(oob) > 0 && len(p) == 0 {
  1178  		n = 0
  1179  	}
  1180  	return n, nil
  1181  }
  1182  
  1183  // BindToDevice binds the socket associated with fd to device.
  1184  func BindToDevice(fd int, device string) (err error) {
  1185  	return SetsockoptString(fd, SOL_SOCKET, SO_BINDTODEVICE, device)
  1186  }
  1187  
  1188  //sys	ptrace(request int, pid int, addr uintptr, data uintptr) (err error)
  1189  
  1190  func ptracePeek(req int, pid int, addr uintptr, out []byte) (count int, err error) {
  1191  	// The peek requests are machine-size oriented, so we wrap it
  1192  	// to retrieve arbitrary-length data.
  1193  
  1194  	// The ptrace syscall differs from glibc's ptrace.
  1195  	// Peeks returns the word in *data, not as the return value.
  1196  
  1197  	var buf [SizeofPtr]byte
  1198  
  1199  	// Leading edge. PEEKTEXT/PEEKDATA don't require aligned
  1200  	// access (PEEKUSER warns that it might), but if we don't
  1201  	// align our reads, we might straddle an unmapped page
  1202  	// boundary and not get the bytes leading up to the page
  1203  	// boundary.
  1204  	n := 0
  1205  	if addr%SizeofPtr != 0 {
  1206  		err = ptrace(req, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
  1207  		if err != nil {
  1208  			return 0, err
  1209  		}
  1210  		n += copy(out, buf[addr%SizeofPtr:])
  1211  		out = out[n:]
  1212  	}
  1213  
  1214  	// Remainder.
  1215  	for len(out) > 0 {
  1216  		// We use an internal buffer to guarantee alignment.
  1217  		// It's not documented if this is necessary, but we're paranoid.
  1218  		err = ptrace(req, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
  1219  		if err != nil {
  1220  			return n, err
  1221  		}
  1222  		copied := copy(out, buf[0:])
  1223  		n += copied
  1224  		out = out[copied:]
  1225  	}
  1226  
  1227  	return n, nil
  1228  }
  1229  
  1230  func PtracePeekText(pid int, addr uintptr, out []byte) (count int, err error) {
  1231  	return ptracePeek(PTRACE_PEEKTEXT, pid, addr, out)
  1232  }
  1233  
  1234  func PtracePeekData(pid int, addr uintptr, out []byte) (count int, err error) {
  1235  	return ptracePeek(PTRACE_PEEKDATA, pid, addr, out)
  1236  }
  1237  
  1238  func PtracePeekUser(pid int, addr uintptr, out []byte) (count int, err error) {
  1239  	return ptracePeek(PTRACE_PEEKUSR, pid, addr, out)
  1240  }
  1241  
  1242  func ptracePoke(pokeReq int, peekReq int, pid int, addr uintptr, data []byte) (count int, err error) {
  1243  	// As for ptracePeek, we need to align our accesses to deal
  1244  	// with the possibility of straddling an invalid page.
  1245  
  1246  	// Leading edge.
  1247  	n := 0
  1248  	if addr%SizeofPtr != 0 {
  1249  		var buf [SizeofPtr]byte
  1250  		err = ptrace(peekReq, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
  1251  		if err != nil {
  1252  			return 0, err
  1253  		}
  1254  		n += copy(buf[addr%SizeofPtr:], data)
  1255  		word := *((*uintptr)(unsafe.Pointer(&buf[0])))
  1256  		err = ptrace(pokeReq, pid, addr-addr%SizeofPtr, word)
  1257  		if err != nil {
  1258  			return 0, err
  1259  		}
  1260  		data = data[n:]
  1261  	}
  1262  
  1263  	// Interior.
  1264  	for len(data) > SizeofPtr {
  1265  		word := *((*uintptr)(unsafe.Pointer(&data[0])))
  1266  		err = ptrace(pokeReq, pid, addr+uintptr(n), word)
  1267  		if err != nil {
  1268  			return n, err
  1269  		}
  1270  		n += SizeofPtr
  1271  		data = data[SizeofPtr:]
  1272  	}
  1273  
  1274  	// Trailing edge.
  1275  	if len(data) > 0 {
  1276  		var buf [SizeofPtr]byte
  1277  		err = ptrace(peekReq, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
  1278  		if err != nil {
  1279  			return n, err
  1280  		}
  1281  		copy(buf[0:], data)
  1282  		word := *((*uintptr)(unsafe.Pointer(&buf[0])))
  1283  		err = ptrace(pokeReq, pid, addr+uintptr(n), word)
  1284  		if err != nil {
  1285  			return n, err
  1286  		}
  1287  		n += len(data)
  1288  	}
  1289  
  1290  	return n, nil
  1291  }
  1292  
  1293  func PtracePokeText(pid int, addr uintptr, data []byte) (count int, err error) {
  1294  	return ptracePoke(PTRACE_POKETEXT, PTRACE_PEEKTEXT, pid, addr, data)
  1295  }
  1296  
  1297  func PtracePokeData(pid int, addr uintptr, data []byte) (count int, err error) {
  1298  	return ptracePoke(PTRACE_POKEDATA, PTRACE_PEEKDATA, pid, addr, data)
  1299  }
  1300  
  1301  func PtracePokeUser(pid int, addr uintptr, data []byte) (count int, err error) {
  1302  	return ptracePoke(PTRACE_POKEUSR, PTRACE_PEEKUSR, pid, addr, data)
  1303  }
  1304  
  1305  func PtraceGetRegs(pid int, regsout *PtraceRegs) (err error) {
  1306  	return ptrace(PTRACE_GETREGS, pid, 0, uintptr(unsafe.Pointer(regsout)))
  1307  }
  1308  
  1309  func PtraceSetRegs(pid int, regs *PtraceRegs) (err error) {
  1310  	return ptrace(PTRACE_SETREGS, pid, 0, uintptr(unsafe.Pointer(regs)))
  1311  }
  1312  
  1313  func PtraceSetOptions(pid int, options int) (err error) {
  1314  	return ptrace(PTRACE_SETOPTIONS, pid, 0, uintptr(options))
  1315  }
  1316  
  1317  func PtraceGetEventMsg(pid int) (msg uint, err error) {
  1318  	var data _C_long
  1319  	err = ptrace(PTRACE_GETEVENTMSG, pid, 0, uintptr(unsafe.Pointer(&data)))
  1320  	msg = uint(data)
  1321  	return
  1322  }
  1323  
  1324  func PtraceCont(pid int, signal int) (err error) {
  1325  	return ptrace(PTRACE_CONT, pid, 0, uintptr(signal))
  1326  }
  1327  
  1328  func PtraceSyscall(pid int, signal int) (err error) {
  1329  	return ptrace(PTRACE_SYSCALL, pid, 0, uintptr(signal))
  1330  }
  1331  
  1332  func PtraceSingleStep(pid int) (err error) { return ptrace(PTRACE_SINGLESTEP, pid, 0, 0) }
  1333  
  1334  func PtraceAttach(pid int) (err error) { return ptrace(PTRACE_ATTACH, pid, 0, 0) }
  1335  
  1336  func PtraceDetach(pid int) (err error) { return ptrace(PTRACE_DETACH, pid, 0, 0) }
  1337  
  1338  //sys	reboot(magic1 uint, magic2 uint, cmd int, arg string) (err error)
  1339  
  1340  func Reboot(cmd int) (err error) {
  1341  	return reboot(LINUX_REBOOT_MAGIC1, LINUX_REBOOT_MAGIC2, cmd, "")
  1342  }
  1343  
  1344  func ReadDirent(fd int, buf []byte) (n int, err error) {
  1345  	return Getdents(fd, buf)
  1346  }
  1347  
  1348  //sys	mount(source string, target string, fstype string, flags uintptr, data *byte) (err error)
  1349  
  1350  func Mount(source string, target string, fstype string, flags uintptr, data string) (err error) {
  1351  	// Certain file systems get rather angry and EINVAL if you give
  1352  	// them an empty string of data, rather than NULL.
  1353  	if data == "" {
  1354  		return mount(source, target, fstype, flags, nil)
  1355  	}
  1356  	datap, err := BytePtrFromString(data)
  1357  	if err != nil {
  1358  		return err
  1359  	}
  1360  	return mount(source, target, fstype, flags, datap)
  1361  }
  1362  
  1363  func Sendfile(outfd int, infd int, offset *int64, count int) (written int, err error) {
  1364  	if raceenabled {
  1365  		raceReleaseMerge(unsafe.Pointer(&ioSync))
  1366  	}
  1367  	return sendfile(outfd, infd, offset, count)
  1368  }
  1369  
  1370  // Sendto
  1371  // Recvfrom
  1372  // Socketpair
  1373  
  1374  /*
  1375   * Direct access
  1376   */
  1377  //sys	Acct(path string) (err error)
  1378  //sys	AddKey(keyType string, description string, payload []byte, ringid int) (id int, err error)
  1379  //sys	Adjtimex(buf *Timex) (state int, err error)
  1380  //sys	Chdir(path string) (err error)
  1381  //sys	Chroot(path string) (err error)
  1382  //sys	ClockGetres(clockid int32, res *Timespec) (err error)
  1383  //sys	ClockGettime(clockid int32, time *Timespec) (err error)
  1384  //sys	ClockNanosleep(clockid int32, flags int, request *Timespec, remain *Timespec) (err error)
  1385  //sys	Close(fd int) (err error)
  1386  //sys	CopyFileRange(rfd int, roff *int64, wfd int, woff *int64, len int, flags int) (n int, err error)
  1387  //sys	DeleteModule(name string, flags int) (err error)
  1388  //sys	Dup(oldfd int) (fd int, err error)
  1389  //sys	Dup3(oldfd int, newfd int, flags int) (err error)
  1390  //sysnb	EpollCreate1(flag int) (fd int, err error)
  1391  //sysnb	EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error)
  1392  //sys	Eventfd(initval uint, flags int) (fd int, err error) = SYS_EVENTFD2
  1393  //sys	Exit(code int) = SYS_EXIT_GROUP
  1394  //sys	Fallocate(fd int, mode uint32, off int64, len int64) (err error)
  1395  //sys	Fchdir(fd int) (err error)
  1396  //sys	Fchmod(fd int, mode uint32) (err error)
  1397  //sys	Fchownat(dirfd int, path string, uid int, gid int, flags int) (err error)
  1398  //sys	fcntl(fd int, cmd int, arg int) (val int, err error)
  1399  //sys	Fdatasync(fd int) (err error)
  1400  //sys	Fgetxattr(fd int, attr string, dest []byte) (sz int, err error)
  1401  //sys	FinitModule(fd int, params string, flags int) (err error)
  1402  //sys	Flistxattr(fd int, dest []byte) (sz int, err error)
  1403  //sys	Flock(fd int, how int) (err error)
  1404  //sys	Fremovexattr(fd int, attr string) (err error)
  1405  //sys	Fsetxattr(fd int, attr string, dest []byte, flags int) (err error)
  1406  //sys	Fsync(fd int) (err error)
  1407  //sys	Getdents(fd int, buf []byte) (n int, err error) = SYS_GETDENTS64
  1408  //sysnb	Getpgid(pid int) (pgid int, err error)
  1409  
  1410  func Getpgrp() (pid int) {
  1411  	pid, _ = Getpgid(0)
  1412  	return
  1413  }
  1414  
  1415  //sysnb	Getpid() (pid int)
  1416  //sysnb	Getppid() (ppid int)
  1417  //sys	Getpriority(which int, who int) (prio int, err error)
  1418  //sys	Getrandom(buf []byte, flags int) (n int, err error)
  1419  //sysnb	Getrusage(who int, rusage *Rusage) (err error)
  1420  //sysnb	Getsid(pid int) (sid int, err error)
  1421  //sysnb	Gettid() (tid int)
  1422  //sys	Getxattr(path string, attr string, dest []byte) (sz int, err error)
  1423  //sys	InitModule(moduleImage []byte, params string) (err error)
  1424  //sys	InotifyAddWatch(fd int, pathname string, mask uint32) (watchdesc int, err error)
  1425  //sysnb	InotifyInit1(flags int) (fd int, err error)
  1426  //sysnb	InotifyRmWatch(fd int, watchdesc uint32) (success int, err error)
  1427  //sysnb	Kill(pid int, sig syscall.Signal) (err error)
  1428  //sys	Klogctl(typ int, buf []byte) (n int, err error) = SYS_SYSLOG
  1429  //sys	Lgetxattr(path string, attr string, dest []byte) (sz int, err error)
  1430  //sys	Listxattr(path string, dest []byte) (sz int, err error)
  1431  //sys	Llistxattr(path string, dest []byte) (sz int, err error)
  1432  //sys	Lremovexattr(path string, attr string) (err error)
  1433  //sys	Lsetxattr(path string, attr string, data []byte, flags int) (err error)
  1434  //sys	MemfdCreate(name string, flags int) (fd int, err error)
  1435  //sys	Mkdirat(dirfd int, path string, mode uint32) (err error)
  1436  //sys	Mknodat(dirfd int, path string, mode uint32, dev int) (err error)
  1437  //sys	Nanosleep(time *Timespec, leftover *Timespec) (err error)
  1438  //sys	PerfEventOpen(attr *PerfEventAttr, pid int, cpu int, groupFd int, flags int) (fd int, err error)
  1439  //sys	PivotRoot(newroot string, putold string) (err error) = SYS_PIVOT_ROOT
  1440  //sysnb prlimit(pid int, resource int, newlimit *Rlimit, old *Rlimit) (err error) = SYS_PRLIMIT64
  1441  //sys   Prctl(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (err error)
  1442  //sys	Pselect(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *Sigset_t) (n int, err error) = SYS_PSELECT6
  1443  //sys	read(fd int, p []byte) (n int, err error)
  1444  //sys	Removexattr(path string, attr string) (err error)
  1445  //sys	Renameat2(olddirfd int, oldpath string, newdirfd int, newpath string, flags uint) (err error)
  1446  //sys	RequestKey(keyType string, description string, callback string, destRingid int) (id int, err error)
  1447  //sys	Setdomainname(p []byte) (err error)
  1448  //sys	Sethostname(p []byte) (err error)
  1449  //sysnb	Setpgid(pid int, pgid int) (err error)
  1450  //sysnb	Setsid() (pid int, err error)
  1451  //sysnb	Settimeofday(tv *Timeval) (err error)
  1452  //sys	Setns(fd int, nstype int) (err error)
  1453  
  1454  // issue 1435.
  1455  // On linux Setuid and Setgid only affects the current thread, not the process.
  1456  // This does not match what most callers expect so we must return an error
  1457  // here rather than letting the caller think that the call succeeded.
  1458  
  1459  func Setuid(uid int) (err error) {
  1460  	return EOPNOTSUPP
  1461  }
  1462  
  1463  func Setgid(uid int) (err error) {
  1464  	return EOPNOTSUPP
  1465  }
  1466  
  1467  //sys	Setpriority(which int, who int, prio int) (err error)
  1468  //sys	Setxattr(path string, attr string, data []byte, flags int) (err error)
  1469  //sys	Signalfd(fd int, mask *Sigset_t, flags int) = SYS_SIGNALFD4
  1470  //sys	Statx(dirfd int, path string, flags int, mask int, stat *Statx_t) (err error)
  1471  //sys	Sync()
  1472  //sys	Syncfs(fd int) (err error)
  1473  //sysnb	Sysinfo(info *Sysinfo_t) (err error)
  1474  //sys	Tee(rfd int, wfd int, len int, flags int) (n int64, err error)
  1475  //sysnb	Tgkill(tgid int, tid int, sig syscall.Signal) (err error)
  1476  //sysnb	Times(tms *Tms) (ticks uintptr, err error)
  1477  //sysnb	Umask(mask int) (oldmask int)
  1478  //sysnb	Uname(buf *Utsname) (err error)
  1479  //sys	Unmount(target string, flags int) (err error) = SYS_UMOUNT2
  1480  //sys	Unshare(flags int) (err error)
  1481  //sys	write(fd int, p []byte) (n int, err error)
  1482  //sys	exitThread(code int) (err error) = SYS_EXIT
  1483  //sys	readlen(fd int, p *byte, np int) (n int, err error) = SYS_READ
  1484  //sys	writelen(fd int, p *byte, np int) (n int, err error) = SYS_WRITE
  1485  
  1486  // mmap varies by architecture; see syscall_linux_*.go.
  1487  //sys	munmap(addr uintptr, length uintptr) (err error)
  1488  
  1489  var mapper = &mmapper{
  1490  	active: make(map[*byte][]byte),
  1491  	mmap:   mmap,
  1492  	munmap: munmap,
  1493  }
  1494  
  1495  func Mmap(fd int, offset int64, length int, prot int, flags int) (data []byte, err error) {
  1496  	return mapper.Mmap(fd, offset, length, prot, flags)
  1497  }
  1498  
  1499  func Munmap(b []byte) (err error) {
  1500  	return mapper.Munmap(b)
  1501  }
  1502  
  1503  //sys	Madvise(b []byte, advice int) (err error)
  1504  //sys	Mprotect(b []byte, prot int) (err error)
  1505  //sys	Mlock(b []byte) (err error)
  1506  //sys	Mlockall(flags int) (err error)
  1507  //sys	Msync(b []byte, flags int) (err error)
  1508  //sys	Munlock(b []byte) (err error)
  1509  //sys	Munlockall() (err error)
  1510  
  1511  // Vmsplice splices user pages from a slice of Iovecs into a pipe specified by fd,
  1512  // using the specified flags.
  1513  func Vmsplice(fd int, iovs []Iovec, flags int) (int, error) {
  1514  	var p unsafe.Pointer
  1515  	if len(iovs) > 0 {
  1516  		p = unsafe.Pointer(&iovs[0])
  1517  	}
  1518  
  1519  	n, _, errno := Syscall6(SYS_VMSPLICE, uintptr(fd), uintptr(p), uintptr(len(iovs)), uintptr(flags), 0, 0)
  1520  	if errno != 0 {
  1521  		return 0, syscall.Errno(errno)
  1522  	}
  1523  
  1524  	return int(n), nil
  1525  }
  1526  
  1527  //sys	faccessat(dirfd int, path string, mode uint32) (err error)
  1528  
  1529  func Faccessat(dirfd int, path string, mode uint32, flags int) (err error) {
  1530  	if flags & ^(AT_SYMLINK_NOFOLLOW|AT_EACCESS) != 0 {
  1531  		return EINVAL
  1532  	}
  1533  
  1534  	// The Linux kernel faccessat system call does not take any flags.
  1535  	// The glibc faccessat implements the flags itself; see
  1536  	// https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/faccessat.c;hb=HEAD
  1537  	// Because people naturally expect syscall.Faccessat to act
  1538  	// like C faccessat, we do the same.
  1539  
  1540  	if flags == 0 {
  1541  		return faccessat(dirfd, path, mode)
  1542  	}
  1543  
  1544  	var st Stat_t
  1545  	if err := Fstatat(dirfd, path, &st, flags&AT_SYMLINK_NOFOLLOW); err != nil {
  1546  		return err
  1547  	}
  1548  
  1549  	mode &= 7
  1550  	if mode == 0 {
  1551  		return nil
  1552  	}
  1553  
  1554  	var uid int
  1555  	if flags&AT_EACCESS != 0 {
  1556  		uid = Geteuid()
  1557  	} else {
  1558  		uid = Getuid()
  1559  	}
  1560  
  1561  	if uid == 0 {
  1562  		if mode&1 == 0 {
  1563  			// Root can read and write any file.
  1564  			return nil
  1565  		}
  1566  		if st.Mode&0111 != 0 {
  1567  			// Root can execute any file that anybody can execute.
  1568  			return nil
  1569  		}
  1570  		return EACCES
  1571  	}
  1572  
  1573  	var fmode uint32
  1574  	if uint32(uid) == st.Uid {
  1575  		fmode = (st.Mode >> 6) & 7
  1576  	} else {
  1577  		var gid int
  1578  		if flags&AT_EACCESS != 0 {
  1579  			gid = Getegid()
  1580  		} else {
  1581  			gid = Getgid()
  1582  		}
  1583  
  1584  		if uint32(gid) == st.Gid {
  1585  			fmode = (st.Mode >> 3) & 7
  1586  		} else {
  1587  			fmode = st.Mode & 7
  1588  		}
  1589  	}
  1590  
  1591  	if fmode&mode == mode {
  1592  		return nil
  1593  	}
  1594  
  1595  	return EACCES
  1596  }
  1597  
  1598  /*
  1599   * Unimplemented
  1600   */
  1601  // AfsSyscall
  1602  // Alarm
  1603  // ArchPrctl
  1604  // Brk
  1605  // Capget
  1606  // Capset
  1607  // ClockNanosleep
  1608  // ClockSettime
  1609  // Clone
  1610  // EpollCtlOld
  1611  // EpollPwait
  1612  // EpollWaitOld
  1613  // Execve
  1614  // Fork
  1615  // Futex
  1616  // GetKernelSyms
  1617  // GetMempolicy
  1618  // GetRobustList
  1619  // GetThreadArea
  1620  // Getitimer
  1621  // Getpmsg
  1622  // IoCancel
  1623  // IoDestroy
  1624  // IoGetevents
  1625  // IoSetup
  1626  // IoSubmit
  1627  // IoprioGet
  1628  // IoprioSet
  1629  // KexecLoad
  1630  // LookupDcookie
  1631  // Mbind
  1632  // MigratePages
  1633  // Mincore
  1634  // ModifyLdt
  1635  // Mount
  1636  // MovePages
  1637  // MqGetsetattr
  1638  // MqNotify
  1639  // MqOpen
  1640  // MqTimedreceive
  1641  // MqTimedsend
  1642  // MqUnlink
  1643  // Mremap
  1644  // Msgctl
  1645  // Msgget
  1646  // Msgrcv
  1647  // Msgsnd
  1648  // Nfsservctl
  1649  // Personality
  1650  // Pselect6
  1651  // Ptrace
  1652  // Putpmsg
  1653  // Quotactl
  1654  // Readahead
  1655  // Readv
  1656  // RemapFilePages
  1657  // RestartSyscall
  1658  // RtSigaction
  1659  // RtSigpending
  1660  // RtSigprocmask
  1661  // RtSigqueueinfo
  1662  // RtSigreturn
  1663  // RtSigsuspend
  1664  // RtSigtimedwait
  1665  // SchedGetPriorityMax
  1666  // SchedGetPriorityMin
  1667  // SchedGetparam
  1668  // SchedGetscheduler
  1669  // SchedRrGetInterval
  1670  // SchedSetparam
  1671  // SchedYield
  1672  // Security
  1673  // Semctl
  1674  // Semget
  1675  // Semop
  1676  // Semtimedop
  1677  // SetMempolicy
  1678  // SetRobustList
  1679  // SetThreadArea
  1680  // SetTidAddress
  1681  // Shmat
  1682  // Shmctl
  1683  // Shmdt
  1684  // Shmget
  1685  // Sigaltstack
  1686  // Swapoff
  1687  // Swapon
  1688  // Sysfs
  1689  // TimerCreate
  1690  // TimerDelete
  1691  // TimerGetoverrun
  1692  // TimerGettime
  1693  // TimerSettime
  1694  // Timerfd
  1695  // Tkill (obsolete)
  1696  // Tuxcall
  1697  // Umount2
  1698  // Uselib
  1699  // Utimensat
  1700  // Vfork
  1701  // Vhangup
  1702  // Vserver
  1703  // Waitid
  1704  // _Sysctl