github.com/gochain-io/gochain@v2.2.26+incompatible/core/vm/contracts.go (about) 1 // Copyright 2014 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package vm 18 19 import ( 20 "crypto/sha256" 21 "errors" 22 "math/big" 23 24 "github.com/gochain-io/gochain/common" 25 "github.com/gochain-io/gochain/common/math" 26 "github.com/gochain-io/gochain/crypto" 27 "github.com/gochain-io/gochain/crypto/bn256" 28 "github.com/gochain-io/gochain/params" 29 "golang.org/x/crypto/ripemd160" 30 ) 31 32 // PrecompiledContract is the basic interface for native Go contracts. The implementation 33 // requires a deterministic gas count based on the input size of the Run method of the 34 // contract. 35 type PrecompiledContract interface { 36 RequiredGas(input []byte) uint64 // RequiredPrice calculates the contract gas use 37 Run(input []byte) ([]byte, error) // Run runs the precompiled contract 38 } 39 40 // PrecompiledContractsHomestead contains the default set of pre-compiled Ethereum 41 // contracts used in the Frontier and Homestead releases. 42 var PrecompiledContractsHomestead = map[common.Address]PrecompiledContract{ 43 common.BytesToAddress([]byte{1}): &ecrecover{}, 44 common.BytesToAddress([]byte{2}): &sha256hash{}, 45 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 46 common.BytesToAddress([]byte{4}): &dataCopy{}, 47 } 48 49 // PrecompiledContractsByzantium contains the default set of pre-compiled Ethereum 50 // contracts used in the Byzantium release. 51 var PrecompiledContractsByzantium = map[common.Address]PrecompiledContract{ 52 common.BytesToAddress([]byte{1}): &ecrecover{}, 53 common.BytesToAddress([]byte{2}): &sha256hash{}, 54 common.BytesToAddress([]byte{3}): &ripemd160hash{}, 55 common.BytesToAddress([]byte{4}): &dataCopy{}, 56 common.BytesToAddress([]byte{5}): &bigModExp{}, 57 common.BytesToAddress([]byte{6}): &bn256Add{}, 58 common.BytesToAddress([]byte{7}): &bn256ScalarMul{}, 59 common.BytesToAddress([]byte{8}): &bn256Pairing{}, 60 } 61 62 // RunPrecompiledContract runs and evaluates the output of a precompiled contract. 63 func RunPrecompiledContract(p PrecompiledContract, input []byte, contract *Contract) (ret []byte, err error) { 64 gas := p.RequiredGas(input) 65 if contract.UseGas(gas) { 66 return p.Run(input) 67 } 68 return nil, ErrOutOfGas 69 } 70 71 // ECRECOVER implemented as a native contract. 72 type ecrecover struct{} 73 74 func (c *ecrecover) RequiredGas(input []byte) uint64 { 75 return params.EcrecoverGas 76 } 77 78 func (c *ecrecover) Run(input []byte) ([]byte, error) { 79 const ecRecoverInputLength = 128 80 81 input = common.RightPadBytes(input, ecRecoverInputLength) 82 // "input" is (hash, v, r, s), each 32 bytes 83 // but for ecrecover we want (r, s, v) 84 85 r := new(big.Int).SetBytes(input[64:96]) 86 s := new(big.Int).SetBytes(input[96:128]) 87 v := input[63] - 27 88 89 // tighter sig s values input homestead only apply to tx sigs 90 if !allZero(input[32:63]) || !crypto.ValidateSignatureValues(v, r, s, false) { 91 return nil, nil 92 } 93 // v needs to be at the end for libsecp256k1 94 pubKey, err := crypto.Ecrecover(input[:32], append(input[64:128], v)) 95 // make sure the public key is a valid one 96 if err != nil { 97 return nil, nil 98 } 99 100 // the first byte of pubkey is bitcoin heritage 101 h := crypto.Keccak256Hash(pubKey[1:]) 102 for i := 0; i < 12; i++ { 103 h[i] = 0 104 } 105 return h[:], nil 106 } 107 108 // SHA256 implemented as a native contract. 109 type sha256hash struct{} 110 111 // RequiredGas returns the gas required to execute the pre-compiled contract. 112 // 113 // This method does not require any overflow checking as the input size gas costs 114 // required for anything significant is so high it's impossible to pay for. 115 func (c *sha256hash) RequiredGas(input []byte) uint64 { 116 return uint64(len(input)+31)/32*params.Sha256PerWordGas + params.Sha256BaseGas 117 } 118 func (c *sha256hash) Run(input []byte) ([]byte, error) { 119 h := sha256.Sum256(input) 120 return h[:], nil 121 } 122 123 // RIPEMD160 implemented as a native contract. 124 type ripemd160hash struct{} 125 126 // RequiredGas returns the gas required to execute the pre-compiled contract. 127 // 128 // This method does not require any overflow checking as the input size gas costs 129 // required for anything significant is so high it's impossible to pay for. 130 func (c *ripemd160hash) RequiredGas(input []byte) uint64 { 131 return uint64(len(input)+31)/32*params.Ripemd160PerWordGas + params.Ripemd160BaseGas 132 } 133 func (c *ripemd160hash) Run(input []byte) ([]byte, error) { 134 ripemd := ripemd160.New() 135 ripemd.Write(input) 136 return common.LeftPadBytes(ripemd.Sum(nil), 32), nil 137 } 138 139 // data copy implemented as a native contract. 140 type dataCopy struct{} 141 142 // RequiredGas returns the gas required to execute the pre-compiled contract. 143 // 144 // This method does not require any overflow checking as the input size gas costs 145 // required for anything significant is so high it's impossible to pay for. 146 func (c *dataCopy) RequiredGas(input []byte) uint64 { 147 return uint64(len(input)+31)/32*params.IdentityPerWordGas + params.IdentityBaseGas 148 } 149 func (c *dataCopy) Run(in []byte) ([]byte, error) { 150 return in, nil 151 } 152 153 // bigModExp implements a native big integer exponential modular operation. 154 type bigModExp struct{} 155 156 var ( 157 big1 = big.NewInt(1) 158 big4 = big.NewInt(4) 159 big8 = big.NewInt(8) 160 big16 = big.NewInt(16) 161 big32 = big.NewInt(32) 162 big64 = big.NewInt(64) 163 big96 = big.NewInt(96) 164 big480 = big.NewInt(480) 165 big1024 = big.NewInt(1024) 166 big3072 = big.NewInt(3072) 167 big199680 = big.NewInt(199680) 168 ) 169 170 // RequiredGas returns the gas required to execute the pre-compiled contract. 171 func (c *bigModExp) RequiredGas(input []byte) uint64 { 172 var ( 173 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)) 174 expLen = new(big.Int).SetBytes(getData(input, 32, 32)) 175 modLen = new(big.Int).SetBytes(getData(input, 64, 32)) 176 ) 177 if len(input) > 96 { 178 input = input[96:] 179 } else { 180 input = input[:0] 181 } 182 // Retrieve the head 32 bytes of exp for the adjusted exponent length 183 var expHead *big.Int 184 if big.NewInt(int64(len(input))).Cmp(baseLen) <= 0 { 185 expHead = new(big.Int) 186 } else { 187 if expLen.Cmp(big32) > 0 { 188 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), 32)) 189 } else { 190 expHead = new(big.Int).SetBytes(getData(input, baseLen.Uint64(), expLen.Uint64())) 191 } 192 } 193 // Calculate the adjusted exponent length 194 var msb int 195 if bitlen := expHead.BitLen(); bitlen > 0 { 196 msb = bitlen - 1 197 } 198 adjExpLen := new(big.Int) 199 if expLen.Cmp(big32) > 0 { 200 adjExpLen.Sub(expLen, big32) 201 adjExpLen.Mul(big8, adjExpLen) 202 } 203 adjExpLen.Add(adjExpLen, big.NewInt(int64(msb))) 204 205 // Calculate the gas cost of the operation 206 gas := new(big.Int).Set(math.BigMax(modLen, baseLen)) 207 switch { 208 case gas.Cmp(big64) <= 0: 209 gas.Mul(gas, gas) 210 case gas.Cmp(big1024) <= 0: 211 gas = new(big.Int).Add( 212 new(big.Int).Div(new(big.Int).Mul(gas, gas), big4), 213 new(big.Int).Sub(new(big.Int).Mul(big96, gas), big3072), 214 ) 215 default: 216 gas = new(big.Int).Add( 217 new(big.Int).Div(new(big.Int).Mul(gas, gas), big16), 218 new(big.Int).Sub(new(big.Int).Mul(big480, gas), big199680), 219 ) 220 } 221 gas.Mul(gas, math.BigMax(adjExpLen, big1)) 222 gas.Div(gas, new(big.Int).SetUint64(params.ModExpQuadCoeffDiv)) 223 224 if gas.BitLen() > 64 { 225 return math.MaxUint64 226 } 227 return gas.Uint64() 228 } 229 230 func (c *bigModExp) Run(input []byte) ([]byte, error) { 231 var ( 232 baseLen = new(big.Int).SetBytes(getData(input, 0, 32)).Uint64() 233 expLen = new(big.Int).SetBytes(getData(input, 32, 32)).Uint64() 234 modLen = new(big.Int).SetBytes(getData(input, 64, 32)).Uint64() 235 ) 236 if len(input) > 96 { 237 input = input[96:] 238 } else { 239 input = input[:0] 240 } 241 // Handle a special case when both the base and mod length is zero 242 if baseLen == 0 && modLen == 0 { 243 return []byte{}, nil 244 } 245 // Retrieve the operands and execute the exponentiation 246 var ( 247 base = new(big.Int).SetBytes(getData(input, 0, baseLen)) 248 exp = new(big.Int).SetBytes(getData(input, baseLen, expLen)) 249 mod = new(big.Int).SetBytes(getData(input, baseLen+expLen, modLen)) 250 ) 251 if mod.BitLen() == 0 { 252 // Modulo 0 is undefined, return zero 253 return common.LeftPadBytes([]byte{}, int(modLen)), nil 254 } 255 return common.LeftPadBytes(base.Exp(base, exp, mod).Bytes(), int(modLen)), nil 256 } 257 258 // newCurvePoint unmarshals a binary blob into a bn256 elliptic curve point, 259 // returning it, or an error if the point is invalid. 260 func newCurvePoint(blob []byte) (*bn256.G1, error) { 261 p := new(bn256.G1) 262 if _, err := p.Unmarshal(blob); err != nil { 263 return nil, err 264 } 265 return p, nil 266 } 267 268 // newTwistPoint unmarshals a binary blob into a bn256 elliptic curve point, 269 // returning it, or an error if the point is invalid. 270 func newTwistPoint(blob []byte) (*bn256.G2, error) { 271 p := new(bn256.G2) 272 if _, err := p.Unmarshal(blob); err != nil { 273 return nil, err 274 } 275 return p, nil 276 } 277 278 // bn256Add implements a native elliptic curve point addition. 279 type bn256Add struct{} 280 281 // RequiredGas returns the gas required to execute the pre-compiled contract. 282 func (c *bn256Add) RequiredGas(input []byte) uint64 { 283 return params.Bn256AddGas 284 } 285 286 func (c *bn256Add) Run(input []byte) ([]byte, error) { 287 x, err := newCurvePoint(getData(input, 0, 64)) 288 if err != nil { 289 return nil, err 290 } 291 y, err := newCurvePoint(getData(input, 64, 64)) 292 if err != nil { 293 return nil, err 294 } 295 res := new(bn256.G1) 296 res.Add(x, y) 297 return res.Marshal(), nil 298 } 299 300 // bn256ScalarMul implements a native elliptic curve scalar multiplication. 301 type bn256ScalarMul struct{} 302 303 // RequiredGas returns the gas required to execute the pre-compiled contract. 304 func (c *bn256ScalarMul) RequiredGas(input []byte) uint64 { 305 return params.Bn256ScalarMulGas 306 } 307 308 func (c *bn256ScalarMul) Run(input []byte) ([]byte, error) { 309 p, err := newCurvePoint(getData(input, 0, 64)) 310 if err != nil { 311 return nil, err 312 } 313 res := new(bn256.G1) 314 res.ScalarMult(p, new(big.Int).SetBytes(getData(input, 64, 32))) 315 return res.Marshal(), nil 316 } 317 318 var ( 319 // true32Byte is returned if the bn256 pairing check succeeds. 320 true32Byte = []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1} 321 322 // false32Byte is returned if the bn256 pairing check fails. 323 false32Byte = make([]byte, 32) 324 325 // errBadPairingInput is returned if the bn256 pairing input is invalid. 326 errBadPairingInput = errors.New("bad elliptic curve pairing size") 327 ) 328 329 // bn256Pairing implements a pairing pre-compile for the bn256 curve 330 type bn256Pairing struct{} 331 332 // RequiredGas returns the gas required to execute the pre-compiled contract. 333 func (c *bn256Pairing) RequiredGas(input []byte) uint64 { 334 return params.Bn256PairingBaseGas + uint64(len(input)/192)*params.Bn256PairingPerPointGas 335 } 336 337 func (c *bn256Pairing) Run(input []byte) ([]byte, error) { 338 // Handle some corner cases cheaply 339 if len(input)%192 > 0 { 340 return nil, errBadPairingInput 341 } 342 // Convert the input into a set of coordinates 343 var ( 344 cs []*bn256.G1 345 ts []*bn256.G2 346 ) 347 for i := 0; i < len(input); i += 192 { 348 c, err := newCurvePoint(input[i : i+64]) 349 if err != nil { 350 return nil, err 351 } 352 t, err := newTwistPoint(input[i+64 : i+192]) 353 if err != nil { 354 return nil, err 355 } 356 cs = append(cs, c) 357 ts = append(ts, t) 358 } 359 // Execute the pairing checks and return the results 360 if bn256.PairingCheck(cs, ts) { 361 return true32Byte, nil 362 } 363 return false32Byte, nil 364 }