github.com/gochain-io/gochain@v2.2.26+incompatible/p2p/rlpx.go (about)

     1  // Copyright 2015 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package p2p
    18  
    19  import (
    20  	"bytes"
    21  	"context"
    22  	"crypto/aes"
    23  	"crypto/cipher"
    24  	"crypto/ecdsa"
    25  	"crypto/elliptic"
    26  	"crypto/hmac"
    27  	"crypto/rand"
    28  	"encoding/binary"
    29  	"encoding/hex"
    30  	"errors"
    31  	"fmt"
    32  	"hash"
    33  	"io"
    34  	"io/ioutil"
    35  	mrand "math/rand"
    36  	"net"
    37  	"sync"
    38  	"time"
    39  
    40  	"github.com/golang/snappy"
    41  	"go.opencensus.io/trace"
    42  
    43  	"github.com/gochain-io/gochain/crypto"
    44  	"github.com/gochain-io/gochain/crypto/ecies"
    45  	"github.com/gochain-io/gochain/crypto/secp256k1"
    46  	"github.com/gochain-io/gochain/crypto/sha3"
    47  	"github.com/gochain-io/gochain/log"
    48  	"github.com/gochain-io/gochain/p2p/discover"
    49  	"github.com/gochain-io/gochain/rlp"
    50  )
    51  
    52  const (
    53  	maxUint24 = ^uint32(0) >> 8
    54  
    55  	sskLen = 16 // ecies.MaxSharedKeyLength(pubKey) / 2
    56  	sigLen = 65 // elliptic S256
    57  	pubLen = 64 // 512 bit pubkey in uncompressed representation without format byte
    58  	shaLen = 32 // hash length (for nonce etc)
    59  
    60  	authMsgLen  = sigLen + shaLen + pubLen + shaLen + 1
    61  	authRespLen = pubLen + shaLen + 1
    62  
    63  	eciesOverhead = 65 /* pubkey */ + 16 /* IV */ + 32 /* MAC */
    64  
    65  	encAuthMsgLen  = authMsgLen + eciesOverhead  // size of encrypted pre-EIP-8 initiator handshake
    66  	encAuthRespLen = authRespLen + eciesOverhead // size of encrypted pre-EIP-8 handshake reply
    67  
    68  	// total timeout for encryption handshake and protocol
    69  	// handshake in both directions.
    70  	handshakeTimeout = 5 * time.Second
    71  
    72  	// This is the timeout for sending the disconnect reason.
    73  	// This is shorter than the usual timeout because we don't want
    74  	// to wait if the connection is known to be bad anyway.
    75  	discWriteTimeout = 1 * time.Second
    76  )
    77  
    78  // errPlainMessageTooLarge is returned if a decompressed message length exceeds
    79  // the allowed 24 bits (i.e. length >= 16MB).
    80  var errPlainMessageTooLarge = errors.New("message length >= 16MB")
    81  
    82  // rlpx is the transport protocol used by actual (non-test) connections.
    83  // It wraps the frame encoder with locks and read/write deadlines.
    84  type rlpx struct {
    85  	fd net.Conn
    86  
    87  	rmu, wmu sync.Mutex
    88  	rw       *rlpxFrameRW
    89  }
    90  
    91  func newRLPX(fd net.Conn) transport {
    92  	if err := fd.SetDeadline(time.Now().Add(handshakeTimeout)); err != nil {
    93  		log.Info("Failed to set rlpx deadline", "err", err)
    94  	}
    95  	return &rlpx{fd: fd}
    96  }
    97  
    98  func (t *rlpx) ReadMsg() (Msg, error) {
    99  	t.rmu.Lock()
   100  	defer t.rmu.Unlock()
   101  	if err := t.fd.SetReadDeadline(time.Now().Add(frameReadTimeout)); err != nil {
   102  		log.Info("Failed to set rlpx read deadline", "err", err)
   103  	}
   104  	return t.rw.ReadMsg()
   105  }
   106  
   107  func (t *rlpx) WriteMsg(ctx context.Context, msg Msg) error {
   108  	ctx, span := trace.StartSpan(ctx, "rlpx.WriteMsg")
   109  	defer span.End()
   110  
   111  	t.wmu.Lock()
   112  	defer t.wmu.Unlock()
   113  	if err := t.fd.SetWriteDeadline(time.Now().Add(frameWriteTimeout)); err != nil {
   114  		return err
   115  	}
   116  	return t.rw.WriteMsg(ctx, msg)
   117  }
   118  
   119  func (t *rlpx) close(err error) {
   120  	t.wmu.Lock()
   121  	defer t.wmu.Unlock()
   122  	// Tell the remote end why we're disconnecting if possible.
   123  	if t.rw != nil {
   124  		if r, ok := err.(DiscReason); ok && r != DiscNetworkError {
   125  			if err := t.fd.SetWriteDeadline(time.Now().Add(discWriteTimeout)); err != nil {
   126  				log.Info("Failed to set rlpx write deadline while closing", "err", err)
   127  			}
   128  			if err := SendItems(t.rw, discMsg, r); err != nil {
   129  				log.Info("Failed to send rlpx disc msg while closing", "err", err)
   130  			}
   131  		}
   132  	}
   133  	if err := t.fd.Close(); err != nil {
   134  		log.Error("Failed to close rlpx file descriptor", "err", err)
   135  	}
   136  }
   137  
   138  // doEncHandshake runs the protocol handshake using authenticated
   139  // messages. the protocol handshake is the first authenticated message
   140  // and also verifies whether the encryption handshake 'worked' and the
   141  // remote side actually provided the right public key.
   142  func (t *rlpx) doProtoHandshake(ctx context.Context, our *protoHandshake) (their *protoHandshake, err error) {
   143  	// Writing our handshake happens concurrently, we prefer
   144  	// returning the handshake read error. If the remote side
   145  	// disconnects us early with a valid reason, we should return it
   146  	// as the error so it can be tracked elsewhere.
   147  	werr := make(chan error, 1)
   148  	go func() { werr <- SendCtx(ctx, t.rw, handshakeMsg, our) }()
   149  	if their, err = readProtocolHandshake(t.rw, our); err != nil {
   150  		<-werr // make sure the write terminates too
   151  		return nil, err
   152  	}
   153  	if err := <-werr; err != nil {
   154  		return nil, fmt.Errorf("write error: %v", err)
   155  	}
   156  	// If the protocol version supports Snappy encoding, upgrade immediately
   157  	t.rw.snappy = their.Version >= snappyProtocolVersion
   158  
   159  	return their, nil
   160  }
   161  
   162  func readProtocolHandshake(rw MsgReader, our *protoHandshake) (*protoHandshake, error) {
   163  	msg, err := rw.ReadMsg()
   164  	if err != nil {
   165  		return nil, err
   166  	}
   167  	if msg.Size > baseProtocolMaxMsgSize {
   168  		return nil, fmt.Errorf("message too big")
   169  	}
   170  	if msg.Code == discMsg {
   171  		buf := bytes.NewBuffer(make([]byte, 0, msg.Size))
   172  		if _, err := io.Copy(buf, msg.Payload); err != nil {
   173  			return nil, fmt.Errorf("failed to read disc msg: %s", err)
   174  		}
   175  		// Disconnect before protocol handshake is valid according to the
   176  		// spec and we send it ourself if the posthanshake checks fail.
   177  		// We can't return the reason directly, though, because it is echoed
   178  		// back otherwise. Wrap it in a string instead.
   179  		var reason [1]DiscReason
   180  		if err := rlp.Decode(buf, &reason); err != nil {
   181  			log.Error("Cannot decode rlpx disc msg", "msg", hex.EncodeToString(buf.Bytes()), "err", err)
   182  			return nil, fmt.Errorf("failed to decode disc msg: %s", err)
   183  		}
   184  		return nil, reason[0]
   185  	}
   186  	if msg.Code != handshakeMsg {
   187  		return nil, fmt.Errorf("expected handshake, got %x", msg.Code)
   188  	}
   189  	var hs protoHandshake
   190  	if err := msg.Decode(&hs); err != nil {
   191  		return nil, err
   192  	}
   193  	if (hs.ID == discover.NodeID{}) {
   194  		return nil, DiscInvalidIdentity
   195  	}
   196  	return &hs, nil
   197  }
   198  
   199  func (t *rlpx) doEncHandshake(ctx context.Context, prv *ecdsa.PrivateKey, dial *discover.Node) (discover.NodeID, error) {
   200  	ctx, span := trace.StartSpan(ctx, "rlpx.doEncHandshake")
   201  	defer span.End()
   202  
   203  	var (
   204  		sec secrets
   205  		err error
   206  	)
   207  	if dial == nil {
   208  		sec, err = receiverEncHandshake(ctx, t.fd, prv, nil)
   209  	} else {
   210  		sec, err = initiatorEncHandshake(t.fd, prv, dial.ID, nil)
   211  	}
   212  	if err != nil {
   213  		return discover.NodeID{}, err
   214  	}
   215  	t.wmu.Lock()
   216  	t.rw = newRLPXFrameRW(t.fd, sec)
   217  	t.wmu.Unlock()
   218  	return sec.RemoteID, nil
   219  }
   220  
   221  // encHandshake contains the state of the encryption handshake.
   222  type encHandshake struct {
   223  	initiator bool
   224  	remoteID  discover.NodeID
   225  
   226  	remotePub            *ecies.PublicKey  // remote-pubk
   227  	initNonce, respNonce []byte            // nonce
   228  	randomPrivKey        *ecies.PrivateKey // ecdhe-random
   229  	remoteRandomPub      *ecies.PublicKey  // ecdhe-random-pubk
   230  }
   231  
   232  // secrets represents the connection secrets
   233  // which are negotiated during the encryption handshake.
   234  type secrets struct {
   235  	RemoteID              discover.NodeID
   236  	AES, MAC              []byte
   237  	EgressMAC, IngressMAC hash.Hash
   238  	Token                 []byte
   239  }
   240  
   241  // RLPx v4 handshake auth (defined in EIP-8).
   242  type authMsgV4 struct {
   243  	gotPlain bool // whether read packet had plain format.
   244  
   245  	Signature       [sigLen]byte
   246  	InitiatorPubkey [pubLen]byte
   247  	Nonce           [shaLen]byte
   248  	Version         uint
   249  
   250  	// Ignore additional fields (forward-compatibility)
   251  	Rest []rlp.RawValue `rlp:"tail"`
   252  }
   253  
   254  // RLPx v4 handshake response (defined in EIP-8).
   255  type authRespV4 struct {
   256  	RandomPubkey [pubLen]byte
   257  	Nonce        [shaLen]byte
   258  	Version      uint
   259  
   260  	// Ignore additional fields (forward-compatibility)
   261  	Rest []rlp.RawValue `rlp:"tail"`
   262  }
   263  
   264  // secrets is called after the handshake is completed.
   265  // It extracts the connection secrets from the handshake values.
   266  func (h *encHandshake) secrets(auth, authResp []byte) (secrets, error) {
   267  	ecdheSecret, err := h.randomPrivKey.GenerateShared(h.remoteRandomPub, sskLen, sskLen)
   268  	if err != nil {
   269  		return secrets{}, err
   270  	}
   271  
   272  	// derive base secrets from ephemeral key agreement
   273  	sharedSecret := crypto.Keccak256(ecdheSecret, crypto.Keccak256(h.respNonce, h.initNonce))
   274  	aesSecret := crypto.Keccak256(ecdheSecret, sharedSecret)
   275  	s := secrets{
   276  		RemoteID: h.remoteID,
   277  		AES:      aesSecret,
   278  		MAC:      crypto.Keccak256(ecdheSecret, aesSecret),
   279  	}
   280  
   281  	// setup sha3 instances for the MACs
   282  	mac1 := sha3.NewKeccak256()
   283  	mac1.Write(xor(s.MAC, h.respNonce))
   284  	mac1.Write(auth)
   285  	mac2 := sha3.NewKeccak256()
   286  	mac2.Write(xor(s.MAC, h.initNonce))
   287  	mac2.Write(authResp)
   288  	if h.initiator {
   289  		s.EgressMAC, s.IngressMAC = mac1, mac2
   290  	} else {
   291  		s.EgressMAC, s.IngressMAC = mac2, mac1
   292  	}
   293  
   294  	return s, nil
   295  }
   296  
   297  // staticSharedSecret returns the static shared secret, the result
   298  // of key agreement between the local and remote static node key.
   299  func (h *encHandshake) staticSharedSecret(prv *ecdsa.PrivateKey) ([]byte, error) {
   300  	return ecies.ImportECDSA(prv).GenerateShared(h.remotePub, sskLen, sskLen)
   301  }
   302  
   303  // initiatorEncHandshake negotiates a session token on conn.
   304  // it should be called on the dialing side of the connection.
   305  //
   306  // prv is the local client's private key.
   307  func initiatorEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, remoteID discover.NodeID, token []byte) (s secrets, err error) {
   308  	h := &encHandshake{initiator: true, remoteID: remoteID}
   309  	authMsg, err := h.makeAuthMsg(prv, token)
   310  	if err != nil {
   311  		return s, err
   312  	}
   313  	authPacket, err := sealEIP8(authMsg, h)
   314  	if err != nil {
   315  		return s, err
   316  	}
   317  	if _, err = conn.Write(authPacket); err != nil {
   318  		return s, err
   319  	}
   320  
   321  	authRespMsg := new(authRespV4)
   322  	authRespPacket, err := readHandshakeMsg(authRespMsg, encAuthRespLen, prv, conn)
   323  	if err != nil {
   324  		return s, err
   325  	}
   326  	if err := h.handleAuthResp(authRespMsg); err != nil {
   327  		return s, err
   328  	}
   329  	return h.secrets(authPacket, authRespPacket)
   330  }
   331  
   332  // makeAuthMsg creates the initiator handshake message.
   333  func (h *encHandshake) makeAuthMsg(prv *ecdsa.PrivateKey, token []byte) (*authMsgV4, error) {
   334  	rpub, err := h.remoteID.Pubkey()
   335  	if err != nil {
   336  		return nil, fmt.Errorf("bad remoteID: %v", err)
   337  	}
   338  	h.remotePub = ecies.ImportECDSAPublic(rpub)
   339  	// Generate random initiator nonce.
   340  	h.initNonce = make([]byte, shaLen)
   341  	if _, err := rand.Read(h.initNonce); err != nil {
   342  		return nil, err
   343  	}
   344  	// Generate random keypair to for ECDH.
   345  	h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil)
   346  	if err != nil {
   347  		return nil, err
   348  	}
   349  
   350  	// Sign known message: static-shared-secret ^ nonce
   351  	token, err = h.staticSharedSecret(prv)
   352  	if err != nil {
   353  		return nil, err
   354  	}
   355  	signed := xor(token, h.initNonce)
   356  	signature, err := crypto.Sign(signed, h.randomPrivKey.ExportECDSA())
   357  	if err != nil {
   358  		return nil, err
   359  	}
   360  
   361  	msg := new(authMsgV4)
   362  	copy(msg.Signature[:], signature)
   363  	copy(msg.InitiatorPubkey[:], crypto.FromECDSAPub(&prv.PublicKey)[1:])
   364  	copy(msg.Nonce[:], h.initNonce)
   365  	msg.Version = 4
   366  	return msg, nil
   367  }
   368  
   369  func (h *encHandshake) handleAuthResp(msg *authRespV4) (err error) {
   370  	h.respNonce = msg.Nonce[:]
   371  	h.remoteRandomPub, err = importPublicKey(msg.RandomPubkey[:])
   372  	return err
   373  }
   374  
   375  // receiverEncHandshake negotiates a session token on conn.
   376  // it should be called on the listening side of the connection.
   377  //
   378  // prv is the local client's private key.
   379  // token is the token from a previous session with this node.
   380  func receiverEncHandshake(ctx context.Context, conn io.ReadWriter, prv *ecdsa.PrivateKey, token []byte) (s secrets, err error) {
   381  	ctx, span := trace.StartSpan(ctx, "receiverEncHandshake")
   382  	defer span.End()
   383  
   384  	authMsg := new(authMsgV4)
   385  	authPacket, err := readHandshakeMsg(authMsg, encAuthMsgLen, prv, conn)
   386  	if err != nil {
   387  		return s, err
   388  	}
   389  	h := new(encHandshake)
   390  	if err := h.handleAuthMsg(authMsg, prv); err != nil {
   391  		return s, err
   392  	}
   393  
   394  	authRespMsg, err := h.makeAuthResp()
   395  	if err != nil {
   396  		return s, err
   397  	}
   398  	var authRespPacket []byte
   399  	if authMsg.gotPlain {
   400  		authRespPacket, err = authRespMsg.sealPlain(h)
   401  	} else {
   402  		authRespPacket, err = sealEIP8(authRespMsg, h)
   403  	}
   404  	if err != nil {
   405  		return s, err
   406  	}
   407  	if _, err = conn.Write(authRespPacket); err != nil {
   408  		return s, err
   409  	}
   410  	return h.secrets(authPacket, authRespPacket)
   411  }
   412  
   413  func (h *encHandshake) handleAuthMsg(msg *authMsgV4, prv *ecdsa.PrivateKey) error {
   414  	// Import the remote identity.
   415  	h.initNonce = msg.Nonce[:]
   416  	h.remoteID = msg.InitiatorPubkey
   417  	rpub, err := h.remoteID.Pubkey()
   418  	if err != nil {
   419  		return fmt.Errorf("bad remoteID: %#v", err)
   420  	}
   421  	h.remotePub = ecies.ImportECDSAPublic(rpub)
   422  
   423  	// Generate random keypair for ECDH.
   424  	// If a private key is already set, use it instead of generating one (for testing).
   425  	if h.randomPrivKey == nil {
   426  		h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil)
   427  		if err != nil {
   428  			return err
   429  		}
   430  	}
   431  
   432  	// Check the signature.
   433  	token, err := h.staticSharedSecret(prv)
   434  	if err != nil {
   435  		return err
   436  	}
   437  	signedMsg := xor(token, h.initNonce)
   438  	remoteRandomPub, err := secp256k1.RecoverPubkey(signedMsg, msg.Signature[:])
   439  	if err != nil {
   440  		return err
   441  	}
   442  	h.remoteRandomPub, _ = importPublicKey(remoteRandomPub)
   443  	return nil
   444  }
   445  
   446  func (h *encHandshake) makeAuthResp() (msg *authRespV4, err error) {
   447  	// Generate random nonce.
   448  	h.respNonce = make([]byte, shaLen)
   449  	if _, err = rand.Read(h.respNonce); err != nil {
   450  		return nil, err
   451  	}
   452  
   453  	msg = new(authRespV4)
   454  	copy(msg.Nonce[:], h.respNonce)
   455  	copy(msg.RandomPubkey[:], exportPubkey(&h.randomPrivKey.PublicKey))
   456  	msg.Version = 4
   457  	return msg, nil
   458  }
   459  
   460  func (msg *authMsgV4) sealPlain(h *encHandshake) ([]byte, error) {
   461  	buf := make([]byte, authMsgLen)
   462  	n := copy(buf, msg.Signature[:])
   463  	sha3.Keccak256(buf[n:n+32], exportPubkey(&h.randomPrivKey.PublicKey))
   464  	n += 32
   465  	n += copy(buf[n:], msg.InitiatorPubkey[:])
   466  	n += copy(buf[n:], msg.Nonce[:])
   467  	buf[n] = 0 // token-flag
   468  	return ecies.Encrypt(rand.Reader, h.remotePub, buf, nil, nil)
   469  }
   470  
   471  func (msg *authMsgV4) decodePlain(input []byte) {
   472  	n := copy(msg.Signature[:], input)
   473  	n += shaLen // skip sha3(initiator-ephemeral-pubk)
   474  	n += copy(msg.InitiatorPubkey[:], input[n:])
   475  	copy(msg.Nonce[:], input[n:])
   476  	msg.Version = 4
   477  	msg.gotPlain = true
   478  }
   479  
   480  func (msg *authRespV4) sealPlain(hs *encHandshake) ([]byte, error) {
   481  	buf := make([]byte, authRespLen)
   482  	n := copy(buf, msg.RandomPubkey[:])
   483  	copy(buf[n:], msg.Nonce[:])
   484  	return ecies.Encrypt(rand.Reader, hs.remotePub, buf, nil, nil)
   485  }
   486  
   487  func (msg *authRespV4) decodePlain(input []byte) {
   488  	n := copy(msg.RandomPubkey[:], input)
   489  	copy(msg.Nonce[:], input[n:])
   490  	msg.Version = 4
   491  }
   492  
   493  var padSpace = make([]byte, 300)
   494  
   495  func sealEIP8(msg interface{}, h *encHandshake) ([]byte, error) {
   496  	buf := new(bytes.Buffer)
   497  	if err := rlp.Encode(buf, msg); err != nil {
   498  		return nil, err
   499  	}
   500  	// pad with random amount of data. the amount needs to be at least 100 bytes to make
   501  	// the message distinguishable from pre-EIP-8 handshakes.
   502  	pad := padSpace[:mrand.Intn(len(padSpace)-100)+100]
   503  	buf.Write(pad)
   504  	prefix := make([]byte, 2)
   505  	binary.BigEndian.PutUint16(prefix, uint16(buf.Len()+eciesOverhead))
   506  
   507  	enc, err := ecies.Encrypt(rand.Reader, h.remotePub, buf.Bytes(), nil, prefix)
   508  	return append(prefix, enc...), err
   509  }
   510  
   511  type plainDecoder interface {
   512  	decodePlain([]byte)
   513  }
   514  
   515  func readHandshakeMsg(msg plainDecoder, plainSize int, prv *ecdsa.PrivateKey, r io.Reader) ([]byte, error) {
   516  	buf := make([]byte, plainSize)
   517  	if _, err := io.ReadFull(r, buf); err != nil {
   518  		return buf, err
   519  	}
   520  	// Attempt decoding pre-EIP-8 "plain" format.
   521  	key := ecies.ImportECDSA(prv)
   522  	if dec, err := key.Decrypt(rand.Reader, buf, nil, nil); err == nil {
   523  		msg.decodePlain(dec)
   524  		return buf, nil
   525  	}
   526  	// Could be EIP-8 format, try that.
   527  	prefix := buf[:2]
   528  	size := binary.BigEndian.Uint16(prefix)
   529  	if size < uint16(plainSize) {
   530  		return buf, fmt.Errorf("size underflow, need at least %d bytes", plainSize)
   531  	}
   532  	buf = append(buf, make([]byte, size-uint16(plainSize)+2)...)
   533  	if _, err := io.ReadFull(r, buf[plainSize:]); err != nil {
   534  		return buf, err
   535  	}
   536  	dec, err := key.Decrypt(rand.Reader, buf[2:], nil, prefix)
   537  	if err != nil {
   538  		return buf, err
   539  	}
   540  	// Can't use rlp.DecodeBytes here because it rejects
   541  	// trailing data (forward-compatibility).
   542  	return buf, rlp.Decode(bytes.NewReader(dec), msg)
   543  }
   544  
   545  // importPublicKey unmarshals 512 bit public keys.
   546  func importPublicKey(pubKey []byte) (*ecies.PublicKey, error) {
   547  	var pubKey65 []byte
   548  	switch len(pubKey) {
   549  	case 64:
   550  		// add 'uncompressed key' flag
   551  		pubKey65 = append([]byte{0x04}, pubKey...)
   552  	case 65:
   553  		pubKey65 = pubKey
   554  	default:
   555  		return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey))
   556  	}
   557  	// TODO: fewer pointless conversions
   558  	pub := crypto.ToECDSAPub(pubKey65)
   559  	if pub.X == nil {
   560  		return nil, fmt.Errorf("invalid public key")
   561  	}
   562  	return ecies.ImportECDSAPublic(pub), nil
   563  }
   564  
   565  func exportPubkey(pub *ecies.PublicKey) []byte {
   566  	if pub == nil {
   567  		panic("nil pubkey")
   568  	}
   569  	return elliptic.Marshal(pub.Curve, pub.X, pub.Y)[1:]
   570  }
   571  
   572  func xor(one, other []byte) (xor []byte) {
   573  	xor = make([]byte, len(one))
   574  	for i := 0; i < len(one); i++ {
   575  		xor[i] = one[i] ^ other[i]
   576  	}
   577  	return xor
   578  }
   579  
   580  var (
   581  	// this is used in place of actual frame header data.
   582  	// TODO: replace this when Msg contains the protocol type code.
   583  	zeroHeader = []byte{0xC2, 0x80, 0x80}
   584  	// sixteen zero bytes
   585  	zero16 = make([]byte, 16)
   586  )
   587  
   588  // rlpxFrameRW implements a simplified version of RLPx framing.
   589  // chunked messages are not supported and all headers are equal to
   590  // zeroHeader.
   591  //
   592  // rlpxFrameRW is not safe for concurrent use from multiple goroutines.
   593  type rlpxFrameRW struct {
   594  	conn io.ReadWriter
   595  	enc  cipher.Stream
   596  	dec  cipher.Stream
   597  
   598  	macCipher  cipher.Block
   599  	egressMAC  hash.Hash
   600  	ingressMAC hash.Hash
   601  
   602  	snappy bool
   603  }
   604  
   605  func newRLPXFrameRW(conn io.ReadWriter, s secrets) *rlpxFrameRW {
   606  	macc, err := aes.NewCipher(s.MAC)
   607  	if err != nil {
   608  		panic("invalid MAC secret: " + err.Error())
   609  	}
   610  	encc, err := aes.NewCipher(s.AES)
   611  	if err != nil {
   612  		panic("invalid AES secret: " + err.Error())
   613  	}
   614  	// we use an all-zeroes IV for AES because the key used
   615  	// for encryption is ephemeral.
   616  	iv := make([]byte, encc.BlockSize())
   617  	return &rlpxFrameRW{
   618  		conn:       conn,
   619  		enc:        cipher.NewCTR(encc, iv),
   620  		dec:        cipher.NewCTR(encc, iv),
   621  		macCipher:  macc,
   622  		egressMAC:  s.EgressMAC,
   623  		ingressMAC: s.IngressMAC,
   624  	}
   625  }
   626  
   627  func (rw *rlpxFrameRW) WriteMsg(ctx context.Context, msg Msg) error {
   628  	ctx, span := trace.StartSpan(ctx, "rlpxFrameRW.WriteMsg")
   629  	defer span.End()
   630  
   631  	ptype, _ := rlp.EncodeToBytes(msg.Code)
   632  
   633  	// if snappy is enabled, compress message now
   634  	if rw.snappy {
   635  		if msg.Size > maxUint24 {
   636  			return errPlainMessageTooLarge
   637  		}
   638  		payload, _ := ioutil.ReadAll(msg.Payload)
   639  		payload = snappy.Encode(nil, payload)
   640  
   641  		msg.Payload = bytes.NewReader(payload)
   642  		msg.Size = uint32(len(payload))
   643  	}
   644  	// write header
   645  	headbuf := make([]byte, 32)
   646  	fsize := uint32(len(ptype)) + msg.Size
   647  	if fsize > maxUint24 {
   648  		return errors.New("message size overflows uint24")
   649  	}
   650  	putInt24(fsize, headbuf) // TODO: check overflow
   651  	copy(headbuf[3:], zeroHeader)
   652  	rw.enc.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now encrypted
   653  
   654  	// write header MAC
   655  	copy(headbuf[16:], updateMAC(rw.egressMAC, rw.macCipher, headbuf[:16]))
   656  	if _, err := rw.conn.Write(headbuf); err != nil {
   657  		return err
   658  	}
   659  
   660  	// write encrypted frame, updating the egress MAC hash with
   661  	// the data written to conn.
   662  	tee := cipher.StreamWriter{S: rw.enc, W: io.MultiWriter(rw.conn, rw.egressMAC)}
   663  	if _, err := tee.Write(ptype); err != nil {
   664  		return err
   665  	}
   666  	if _, err := io.Copy(tee, msg.Payload); err != nil {
   667  		return err
   668  	}
   669  	if padding := fsize % 16; padding > 0 {
   670  		if _, err := tee.Write(zero16[:16-padding]); err != nil {
   671  			return err
   672  		}
   673  	}
   674  
   675  	// write frame MAC. egress MAC hash is up to date because
   676  	// frame content was written to it as well.
   677  	fmacseed := rw.egressMAC.Sum(nil)
   678  	mac := updateMAC(rw.egressMAC, rw.macCipher, fmacseed)
   679  	_, err := rw.conn.Write(mac)
   680  	return err
   681  }
   682  
   683  func (rw *rlpxFrameRW) ReadMsg() (msg Msg, err error) {
   684  	// read the header
   685  	headbuf := make([]byte, 32)
   686  	if _, err := io.ReadFull(rw.conn, headbuf); err != nil {
   687  		return msg, err
   688  	}
   689  	// verify header mac
   690  	shouldMAC := updateMAC(rw.ingressMAC, rw.macCipher, headbuf[:16])
   691  	if !hmac.Equal(shouldMAC, headbuf[16:]) {
   692  		return msg, errors.New("bad header MAC")
   693  	}
   694  	rw.dec.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now decrypted
   695  	fsize := readInt24(headbuf)
   696  	// ignore protocol type for now
   697  
   698  	// read the frame content
   699  	var rsize = fsize // frame size rounded up to 16 byte boundary
   700  	if padding := fsize % 16; padding > 0 {
   701  		rsize += 16 - padding
   702  	}
   703  	framebuf := make([]byte, rsize)
   704  	if _, err := io.ReadFull(rw.conn, framebuf); err != nil {
   705  		return msg, err
   706  	}
   707  
   708  	// read and validate frame MAC. we can re-use headbuf for that.
   709  	rw.ingressMAC.Write(framebuf)
   710  	fmacseed := rw.ingressMAC.Sum(nil)
   711  	if _, err := io.ReadFull(rw.conn, headbuf[:16]); err != nil {
   712  		return msg, err
   713  	}
   714  	shouldMAC = updateMAC(rw.ingressMAC, rw.macCipher, fmacseed)
   715  	if !hmac.Equal(shouldMAC, headbuf[:16]) {
   716  		return msg, errors.New("bad frame MAC")
   717  	}
   718  
   719  	// decrypt frame content
   720  	rw.dec.XORKeyStream(framebuf, framebuf)
   721  
   722  	// decode message code
   723  	content := bytes.NewReader(framebuf[:fsize])
   724  	if err := rlp.Decode(content, &msg.Code); err != nil {
   725  		return msg, err
   726  	}
   727  	msg.Size = uint32(content.Len())
   728  	msg.Payload = content
   729  
   730  	// if snappy is enabled, verify and decompress message
   731  	if rw.snappy {
   732  		payload, err := ioutil.ReadAll(msg.Payload)
   733  		if err != nil {
   734  			return msg, err
   735  		}
   736  		size, err := snappy.DecodedLen(payload)
   737  		if err != nil {
   738  			return msg, err
   739  		}
   740  		if size > int(maxUint24) {
   741  			return msg, errPlainMessageTooLarge
   742  		}
   743  		payload, err = snappy.Decode(nil, payload)
   744  		if err != nil {
   745  			return msg, err
   746  		}
   747  		msg.Size, msg.Payload = uint32(size), bytes.NewReader(payload)
   748  	}
   749  	return msg, nil
   750  }
   751  
   752  // updateMAC reseeds the given hash with encrypted seed.
   753  // it returns the first 16 bytes of the hash sum after seeding.
   754  func updateMAC(mac hash.Hash, block cipher.Block, seed []byte) []byte {
   755  	aesbuf := make([]byte, aes.BlockSize)
   756  	block.Encrypt(aesbuf, mac.Sum(nil))
   757  	for i := range aesbuf {
   758  		aesbuf[i] ^= seed[i]
   759  	}
   760  	mac.Write(aesbuf)
   761  	return mac.Sum(nil)[:16]
   762  }
   763  
   764  func readInt24(b []byte) uint32 {
   765  	return uint32(b[2]) | uint32(b[1])<<8 | uint32(b[0])<<16
   766  }
   767  
   768  func putInt24(v uint32, b []byte) {
   769  	b[0] = byte(v >> 16)
   770  	b[1] = byte(v >> 8)
   771  	b[2] = byte(v)
   772  }