github.com/gochain-io/gochain@v2.2.26+incompatible/swarm/storage/chunker.go (about) 1 // Copyright 2016 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package storage 18 19 import ( 20 "encoding/binary" 21 "errors" 22 "fmt" 23 "io" 24 "sync" 25 "time" 26 ) 27 28 /* 29 The distributed storage implemented in this package requires fix sized chunks of content. 30 31 Chunker is the interface to a component that is responsible for disassembling and assembling larger data. 32 33 TreeChunker implements a Chunker based on a tree structure defined as follows: 34 35 1 each node in the tree including the root and other branching nodes are stored as a chunk. 36 37 2 branching nodes encode data contents that includes the size of the dataslice covered by its entire subtree under the node as well as the hash keys of all its children : 38 data_{i} := size(subtree_{i}) || key_{j} || key_{j+1} .... || key_{j+n-1} 39 40 3 Leaf nodes encode an actual subslice of the input data. 41 42 4 if data size is not more than maximum chunksize, the data is stored in a single chunk 43 key = hash(int64(size) + data) 44 45 5 if data size is more than chunksize*branches^l, but no more than chunksize* 46 branches^(l+1), the data vector is split into slices of chunksize* 47 branches^l length (except the last one). 48 key = hash(int64(size) + key(slice0) + key(slice1) + ...) 49 50 The underlying hash function is configurable 51 */ 52 53 /* 54 Tree chunker is a concrete implementation of data chunking. 55 This chunker works in a simple way, it builds a tree out of the document so that each node either represents a chunk of real data or a chunk of data representing an branching non-leaf node of the tree. In particular each such non-leaf chunk will represent is a concatenation of the hash of its respective children. This scheme simultaneously guarantees data integrity as well as self addressing. Abstract nodes are transparent since their represented size component is strictly greater than their maximum data size, since they encode a subtree. 56 57 If all is well it is possible to implement this by simply composing readers so that no extra allocation or buffering is necessary for the data splitting and joining. This means that in principle there can be direct IO between : memory, file system, network socket (bzz peers storage request is read from the socket). In practice there may be need for several stages of internal buffering. 58 The hashing itself does use extra copies and allocation though, since it does need it. 59 */ 60 61 var ( 62 errAppendOppNotSupported = errors.New("Append operation not supported") 63 ) 64 65 type TreeChunker struct { 66 branches int64 67 hashFunc SwarmHasher 68 // calculated 69 hashSize int64 // self.hashFunc.New().Size() 70 chunkSize int64 // hashSize* branches 71 workerCount int64 // the number of worker routines used 72 workerLock sync.RWMutex // lock for the worker count 73 } 74 75 func NewTreeChunker(params *ChunkerParams) *TreeChunker { 76 t := &TreeChunker{} 77 t.hashFunc = MakeHashFunc(params.Hash) 78 t.branches = params.Branches 79 t.hashSize = int64(t.hashFunc().Size()) 80 t.chunkSize = t.hashSize * t.branches 81 t.workerCount = 0 82 return t 83 } 84 85 // String() for pretty printing 86 func (c *Chunk) String() string { 87 return fmt.Sprintf("Key: %v TreeSize: %v Chunksize: %v", c.Key.Log(), c.Size, len(c.SData)) 88 } 89 90 type hashJob struct { 91 key Key 92 chunk []byte 93 size int64 94 done func() 95 } 96 97 func (t *TreeChunker) incrementWorkerCount() { 98 t.workerLock.Lock() 99 defer t.workerLock.Unlock() 100 t.workerCount += 1 101 } 102 103 func (t *TreeChunker) getWorkerCount() int64 { 104 t.workerLock.RLock() 105 defer t.workerLock.RUnlock() 106 return t.workerCount 107 } 108 109 func (t *TreeChunker) decrementWorkerCount() { 110 t.workerLock.Lock() 111 defer t.workerLock.Unlock() 112 t.workerCount -= 1 113 } 114 115 func (t *TreeChunker) Split(data io.Reader, size int64, chunkC chan *Chunk, swg *sync.WaitGroup) (Key, error) { 116 if t.chunkSize <= 0 { 117 panic("chunker must be initialised") 118 } 119 120 jobC := make(chan *hashJob, 2*ChunkProcessors) 121 var rootHash sync.WaitGroup 122 quitC := make(chan bool) 123 defer close(quitC) 124 125 t.incrementWorkerCount() 126 if swg != nil { 127 swg.Add(1) 128 } 129 go t.hashWorker(jobC, chunkC, quitC, swg) 130 131 depth := 0 132 treeSize := t.chunkSize 133 134 // takes lowest depth such that chunksize*HashCount^(depth+1) > size 135 // power series, will find the order of magnitude of the data size in base hashCount or numbers of levels of branching in the resulting tree. 136 for ; treeSize < size; treeSize *= t.branches { 137 depth++ 138 } 139 140 key := make([]byte, t.hashFunc().Size()) 141 rootHash.Add(1) 142 err := t.split(depth, treeSize/t.branches, key, data, size, jobC, chunkC, quitC, rootHash.Done, swg) 143 close(jobC) 144 if err != nil { 145 return nil, err 146 } 147 148 done := make(chan struct{}) 149 go func() { 150 rootHash.Wait() 151 if swg != nil { 152 swg.Wait() 153 } 154 close(done) 155 }() 156 157 select { 158 case <-done: 159 case <-time.After(splitTimeout): 160 return nil, timeoutErr 161 } 162 163 return key, nil 164 } 165 166 func (t *TreeChunker) split(depth int, treeSize int64, key Key, data io.Reader, size int64, jobC chan *hashJob, chunkC chan *Chunk, quitC chan bool, hashDone func(), swg *sync.WaitGroup) error { 167 for depth > 0 && size < treeSize { 168 treeSize /= t.branches 169 depth-- 170 } 171 172 if depth == 0 { 173 // leaf nodes -> content chunks 174 chunkData := make([]byte, size+8) 175 binary.LittleEndian.PutUint64(chunkData[0:8], uint64(size)) 176 var readBytes int64 177 for readBytes < size { 178 n, err := data.Read(chunkData[8+readBytes:]) 179 readBytes += int64(n) 180 if err != nil && !(err == io.EOF && readBytes == size) { 181 return err 182 } 183 } 184 select { 185 case jobC <- &hashJob{key, chunkData, size, hashDone}: 186 case <-quitC: 187 } 188 return nil 189 } 190 // dept > 0 191 // intermediate chunk containing child nodes hashes 192 branchCnt := (size + treeSize - 1) / treeSize 193 194 var chunk = make([]byte, branchCnt*t.hashSize+8) 195 var pos, i int64 196 197 binary.LittleEndian.PutUint64(chunk[0:8], uint64(size)) 198 199 var childHashes sync.WaitGroup 200 var secSize int64 201 for i < branchCnt { 202 // the last item can have shorter data 203 if size-pos < treeSize { 204 secSize = size - pos 205 } else { 206 secSize = treeSize 207 } 208 // the hash of that data 209 subTreeKey := chunk[8+i*t.hashSize : 8+(i+1)*t.hashSize] 210 211 childHashes.Add(1) 212 err := t.split(depth-1, treeSize/t.branches, subTreeKey, data, secSize, jobC, chunkC, quitC, childHashes.Done, swg) 213 if err != nil { 214 return err 215 } 216 217 i++ 218 pos += treeSize 219 } 220 childHashes.Wait() 221 222 worker := t.getWorkerCount() 223 if int64(len(jobC)) > worker && worker < ChunkProcessors { 224 t.incrementWorkerCount() 225 if swg != nil { 226 swg.Add(1) 227 } 228 go t.hashWorker(jobC, chunkC, quitC, swg) 229 } 230 select { 231 case jobC <- &hashJob{key, chunk, size, hashDone}: 232 case <-quitC: 233 } 234 return nil 235 } 236 237 func (t *TreeChunker) hashWorker(jobC <-chan *hashJob, chunkC chan *Chunk, quitC chan bool, swg *sync.WaitGroup) { 238 defer t.decrementWorkerCount() 239 if swg != nil { 240 swg.Done() 241 } 242 243 hasher := t.hashFunc() 244 for { 245 select { 246 case job, ok := <-jobC: 247 if !ok { 248 return 249 } 250 // now we got the hashes in the chunk, then hash the chunks 251 t.hashChunk(hasher, job, chunkC, swg) 252 case <-quitC: 253 return 254 } 255 } 256 } 257 258 // The treeChunkers own Hash hashes together 259 // - the size (of the subtree encoded in the Chunk) 260 // - the Chunk, ie. the contents read from the input reader 261 func (t *TreeChunker) hashChunk(hasher SwarmHash, job *hashJob, chunkC chan *Chunk, swg *sync.WaitGroup) { 262 defer job.done() 263 hasher.ResetWithLength(job.chunk[:8]) // 8 bytes of length 264 hasher.Write(job.chunk[8:]) // minus 8 []byte length 265 h := hasher.Sum(nil) 266 267 // report hash of this chunk one level up (keys corresponds to the proper subslice of the parent chunk) 268 copy(job.key, h) 269 270 // send off new chunk to storage 271 if chunkC != nil { 272 if swg != nil { 273 swg.Add(1) 274 } 275 chunkC <- &Chunk{Key: h, SData: job.chunk, Size: job.size, wg: swg} 276 } 277 } 278 279 func (t *TreeChunker) Append(key Key, data io.Reader, chunkC chan *Chunk, swg *sync.WaitGroup) (Key, error) { 280 return nil, errAppendOppNotSupported 281 } 282 283 // LazyChunkReader implements LazySectionReader 284 type LazyChunkReader struct { 285 key Key // root key 286 chunkC chan *Chunk // chunk channel to send retrieve requests on 287 chunk *Chunk // size of the entire subtree 288 off int64 // offset 289 chunkSize int64 // inherit from chunker 290 branches int64 // inherit from chunker 291 hashSize int64 // inherit from chunker 292 } 293 294 // implements the Joiner interface 295 func (t *TreeChunker) Join(key Key, chunkC chan *Chunk) LazySectionReader { 296 return &LazyChunkReader{ 297 key: key, 298 chunkC: chunkC, 299 chunkSize: t.chunkSize, 300 branches: t.branches, 301 hashSize: t.hashSize, 302 } 303 } 304 305 // Size is meant to be called on the LazySectionReader 306 func (l *LazyChunkReader) Size(quitC chan bool) (n int64, err error) { 307 if l.chunk != nil { 308 return l.chunk.Size, nil 309 } 310 chunk := retrieve(l.key, l.chunkC, quitC) 311 if chunk == nil { 312 select { 313 case <-quitC: 314 return 0, errors.New("aborted") 315 default: 316 return 0, fmt.Errorf("root chunk not found for %v", l.key.Hex()) 317 } 318 } 319 l.chunk = chunk 320 return chunk.Size, nil 321 } 322 323 // read at can be called numerous times 324 // concurrent reads are allowed 325 // Size() needs to be called synchronously on the LazyChunkReader first 326 func (l *LazyChunkReader) ReadAt(b []byte, off int64) (read int, err error) { 327 // this is correct, a swarm doc cannot be zero length, so no EOF is expected 328 if len(b) == 0 { 329 return 0, nil 330 } 331 quitC := make(chan bool) 332 size, err := l.Size(quitC) 333 if err != nil { 334 return 0, err 335 } 336 337 errC := make(chan error) 338 339 // } 340 var treeSize int64 341 var depth int 342 // calculate depth and max treeSize 343 treeSize = l.chunkSize 344 for ; treeSize < size; treeSize *= l.branches { 345 depth++ 346 } 347 wg := sync.WaitGroup{} 348 wg.Add(1) 349 go l.join(b, off, off+int64(len(b)), depth, treeSize/l.branches, l.chunk, &wg, errC, quitC) 350 go func() { 351 wg.Wait() 352 close(errC) 353 }() 354 355 err = <-errC 356 if err != nil { 357 close(quitC) 358 359 return 0, err 360 } 361 if off+int64(len(b)) >= size { 362 return len(b), io.EOF 363 } 364 return len(b), nil 365 } 366 367 func (l *LazyChunkReader) join(b []byte, off int64, eoff int64, depth int, treeSize int64, chunk *Chunk, parentWg *sync.WaitGroup, errC chan error, quitC chan bool) { 368 defer parentWg.Done() 369 370 // find appropriate block level 371 for chunk.Size < treeSize && depth > 0 { 372 treeSize /= l.branches 373 depth-- 374 } 375 376 // leaf chunk found 377 if depth == 0 { 378 extra := 8 + eoff - int64(len(chunk.SData)) 379 if extra > 0 { 380 eoff -= extra 381 } 382 copy(b, chunk.SData[8+off:8+eoff]) 383 return // simply give back the chunks reader for content chunks 384 } 385 386 // subtree 387 start := off / treeSize 388 end := (eoff + treeSize - 1) / treeSize 389 390 wg := &sync.WaitGroup{} 391 defer wg.Wait() 392 393 for i := start; i < end; i++ { 394 soff := i * treeSize 395 roff := soff 396 seoff := soff + treeSize 397 398 if soff < off { 399 soff = off 400 } 401 if seoff > eoff { 402 seoff = eoff 403 } 404 if depth > 1 { 405 wg.Wait() 406 } 407 wg.Add(1) 408 go func(j int64) { 409 childKey := chunk.SData[8+j*l.hashSize : 8+(j+1)*l.hashSize] 410 chunk := retrieve(childKey, l.chunkC, quitC) 411 if chunk == nil { 412 select { 413 case errC <- fmt.Errorf("chunk %v-%v not found", off, off+treeSize): 414 case <-quitC: 415 } 416 return 417 } 418 if soff < off { 419 soff = off 420 } 421 l.join(b[soff-off:seoff-off], soff-roff, seoff-roff, depth-1, treeSize/l.branches, chunk, wg, errC, quitC) 422 }(i) 423 } //for 424 } 425 426 // the helper method submits chunks for a key to a oueue (DPA) and 427 // block until they time out or arrive 428 // abort if quitC is readable 429 func retrieve(key Key, chunkC chan *Chunk, quitC chan bool) *Chunk { 430 chunk := &Chunk{ 431 Key: key, 432 C: make(chan bool), // close channel to signal data delivery 433 } 434 // submit chunk for retrieval 435 select { 436 case chunkC <- chunk: // submit retrieval request, someone should be listening on the other side (or we will time out globally) 437 case <-quitC: 438 return nil 439 } 440 // waiting for the chunk retrieval 441 select { // chunk.Size = int64(binary.LittleEndian.Uint64(chunk.SData[0:8])) 442 443 case <-quitC: 444 // this is how we control process leakage (quitC is closed once join is finished (after timeout)) 445 return nil 446 case <-chunk.C: // bells are ringing, data have been delivered 447 } 448 if len(chunk.SData) == 0 { 449 return nil // chunk.Size = int64(binary.LittleEndian.Uint64(chunk.SData[0:8])) 450 451 } 452 return chunk 453 } 454 455 // Read keeps a cursor so cannot be called simulateously, see ReadAt 456 func (l *LazyChunkReader) Read(b []byte) (read int, err error) { 457 read, err = l.ReadAt(b, l.off) 458 459 l.off += int64(read) 460 return 461 } 462 463 // completely analogous to standard SectionReader implementation 464 var errWhence = errors.New("Seek: invalid whence") 465 var errOffset = errors.New("Seek: invalid offset") 466 467 func (l *LazyChunkReader) Seek(offset int64, whence int) (int64, error) { 468 switch whence { 469 default: 470 return 0, errWhence 471 case 0: 472 offset += 0 473 case 1: 474 offset += l.off 475 case 2: 476 if l.chunk == nil { //seek from the end requires rootchunk for size. call Size first 477 _, err := l.Size(nil) 478 if err != nil { 479 return 0, fmt.Errorf("can't get size: %v", err) 480 } 481 } 482 offset += l.chunk.Size 483 } 484 485 if offset < 0 { 486 return 0, errOffset 487 } 488 l.off = offset 489 return offset, nil 490 }