github.com/gochain/gochain/v3@v3.4.9/p2p/rlpx.go (about)

     1  // Copyright 2015 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package p2p
    18  
    19  import (
    20  	"bytes"
    21  	"crypto/aes"
    22  	"crypto/cipher"
    23  	"crypto/ecdsa"
    24  	"crypto/elliptic"
    25  	"crypto/hmac"
    26  	"crypto/rand"
    27  	"encoding/binary"
    28  	"errors"
    29  	"fmt"
    30  	"hash"
    31  	"io"
    32  	"io/ioutil"
    33  	mrand "math/rand"
    34  	"net"
    35  	"sync"
    36  	"time"
    37  
    38  	"github.com/golang/snappy"
    39  	"golang.org/x/crypto/sha3"
    40  
    41  	"github.com/gochain/gochain/v3/crypto"
    42  	"github.com/gochain/gochain/v3/crypto/ecies"
    43  	"github.com/gochain/gochain/v3/crypto/secp256k1"
    44  	"github.com/gochain/gochain/v3/p2p/discover"
    45  	"github.com/gochain/gochain/v3/rlp"
    46  )
    47  
    48  const (
    49  	maxUint24 = ^uint32(0) >> 8
    50  
    51  	sskLen = 16 // ecies.MaxSharedKeyLength(pubKey) / 2
    52  	sigLen = 65 // elliptic S256
    53  	pubLen = 64 // 512 bit pubkey in uncompressed representation without format byte
    54  	shaLen = 32 // hash length (for nonce etc)
    55  
    56  	authMsgLen  = sigLen + shaLen + pubLen + shaLen + 1
    57  	authRespLen = pubLen + shaLen + 1
    58  
    59  	eciesOverhead = 65 /* pubkey */ + 16 /* IV */ + 32 /* MAC */
    60  
    61  	encAuthMsgLen  = authMsgLen + eciesOverhead  // size of encrypted pre-EIP-8 initiator handshake
    62  	encAuthRespLen = authRespLen + eciesOverhead // size of encrypted pre-EIP-8 handshake reply
    63  
    64  	// total timeout for encryption handshake and protocol
    65  	// handshake in both directions.
    66  	handshakeTimeout = 5 * time.Second
    67  
    68  	// This is the timeout for sending the disconnect reason.
    69  	// This is shorter than the usual timeout because we don't want
    70  	// to wait if the connection is known to be bad anyway.
    71  	discWriteTimeout = 1 * time.Second
    72  )
    73  
    74  // errPlainMessageTooLarge is returned if a decompressed message length exceeds
    75  // the allowed 24 bits (i.e. length >= 16MB).
    76  var errPlainMessageTooLarge = errors.New("message length >= 16MB")
    77  
    78  // rlpx is the transport protocol used by actual (non-test) connections.
    79  // It wraps the frame encoder with locks and read/write deadlines.
    80  type rlpx struct {
    81  	fd net.Conn
    82  
    83  	rmu, wmu sync.Mutex
    84  	rw       *rlpxFrameRW
    85  }
    86  
    87  func newRLPX(fd net.Conn) transport {
    88  	fd.SetDeadline(time.Now().Add(handshakeTimeout))
    89  	return &rlpx{fd: fd}
    90  }
    91  
    92  func (t *rlpx) ReadMsg() (Msg, error) {
    93  	t.rmu.Lock()
    94  	defer t.rmu.Unlock()
    95  	t.fd.SetReadDeadline(time.Now().Add(frameReadTimeout))
    96  	return t.rw.ReadMsg()
    97  }
    98  
    99  func (t *rlpx) WriteMsg(msg Msg) error {
   100  	t.wmu.Lock()
   101  	defer t.wmu.Unlock()
   102  	t.fd.SetWriteDeadline(time.Now().Add(frameWriteTimeout))
   103  	return t.rw.WriteMsg(msg)
   104  }
   105  
   106  func (t *rlpx) close(err error) {
   107  	t.wmu.Lock()
   108  	defer t.wmu.Unlock()
   109  	// Tell the remote end why we're disconnecting if possible.
   110  	if t.rw != nil {
   111  		if r, ok := err.(DiscReason); ok && r != DiscNetworkError {
   112  			// rlpx tries to send DiscReason to disconnected peer
   113  			// if the connection is net.Pipe (in-memory simulation)
   114  			// it hangs forever, since net.Pipe does not implement
   115  			// a write deadline. Because of this only try to send
   116  			// the disconnect reason message if there is no error.
   117  			if err := t.fd.SetWriteDeadline(time.Now().Add(discWriteTimeout)); err == nil {
   118  				SendItems(t.rw, discMsg, r)
   119  			}
   120  		}
   121  	}
   122  	t.fd.Close()
   123  }
   124  
   125  // doEncHandshake runs the protocol handshake using authenticated
   126  // messages. the protocol handshake is the first authenticated message
   127  // and also verifies whether the encryption handshake 'worked' and the
   128  // remote side actually provided the right public key.
   129  func (t *rlpx) doProtoHandshake(our *protoHandshake) (their *protoHandshake, err error) {
   130  	// Writing our handshake happens concurrently, we prefer
   131  	// returning the handshake read error. If the remote side
   132  	// disconnects us early with a valid reason, we should return it
   133  	// as the error so it can be tracked elsewhere.
   134  	werr := make(chan error, 1)
   135  	go func() { werr <- Send(t.rw, handshakeMsg, our) }()
   136  	if their, err = readProtocolHandshake(t.rw, our); err != nil {
   137  		<-werr // make sure the write terminates too
   138  		return nil, err
   139  	}
   140  	if err := <-werr; err != nil {
   141  		return nil, fmt.Errorf("write error: %v", err)
   142  	}
   143  	// If the protocol version supports Snappy encoding, upgrade immediately
   144  	t.rw.snappy = their.Version >= snappyProtocolVersion
   145  
   146  	return their, nil
   147  }
   148  
   149  func readProtocolHandshake(rw MsgReader, our *protoHandshake) (*protoHandshake, error) {
   150  	msg, err := rw.ReadMsg()
   151  	if err != nil {
   152  		return nil, err
   153  	}
   154  	if msg.Size > baseProtocolMaxMsgSize {
   155  		return nil, fmt.Errorf("message too big")
   156  	}
   157  	if msg.Code == discMsg {
   158  		// Disconnect before protocol handshake is valid according to the
   159  		// spec and we send it ourself if the post-handshake checks fail.
   160  		// We can't return the reason directly, though, because it is echoed
   161  		// back otherwise. Wrap it in a string instead.
   162  		var reason [1]DiscReason
   163  		rlp.Decode(msg.Payload, &reason)
   164  		return nil, reason[0]
   165  	}
   166  	if msg.Code != handshakeMsg {
   167  		return nil, fmt.Errorf("expected handshake, got %x", msg.Code)
   168  	}
   169  	var hs protoHandshake
   170  	if err := msg.Decode(&hs); err != nil {
   171  		return nil, err
   172  	}
   173  	if (hs.ID == discover.NodeID{}) {
   174  		return nil, DiscInvalidIdentity
   175  	}
   176  	return &hs, nil
   177  }
   178  
   179  func (t *rlpx) doEncHandshake(prv *ecdsa.PrivateKey, dial *discover.Node) (discover.NodeID, error) {
   180  	var (
   181  		sec secrets
   182  		err error
   183  	)
   184  	if dial == nil {
   185  		sec, err = receiverEncHandshake(t.fd, prv, nil)
   186  	} else {
   187  		sec, err = initiatorEncHandshake(t.fd, prv, dial.ID, nil)
   188  	}
   189  	if err != nil {
   190  		return discover.NodeID{}, err
   191  	}
   192  	t.wmu.Lock()
   193  	t.rw = newRLPXFrameRW(t.fd, sec)
   194  	t.wmu.Unlock()
   195  	return sec.RemoteID, nil
   196  }
   197  
   198  // encHandshake contains the state of the encryption handshake.
   199  type encHandshake struct {
   200  	initiator bool
   201  	remoteID  discover.NodeID
   202  
   203  	remotePub            *ecies.PublicKey  // remote-pubk
   204  	initNonce, respNonce []byte            // nonce
   205  	randomPrivKey        *ecies.PrivateKey // ecdhe-random
   206  	remoteRandomPub      *ecies.PublicKey  // ecdhe-random-pubk
   207  }
   208  
   209  // secrets represents the connection secrets
   210  // which are negotiated during the encryption handshake.
   211  type secrets struct {
   212  	RemoteID              discover.NodeID
   213  	AES, MAC              []byte
   214  	EgressMAC, IngressMAC hash.Hash
   215  	Token                 []byte
   216  }
   217  
   218  // RLPx v4 handshake auth (defined in EIP-8).
   219  type authMsgV4 struct {
   220  	gotPlain bool // whether read packet had plain format.
   221  
   222  	Signature       [sigLen]byte
   223  	InitiatorPubkey [pubLen]byte
   224  	Nonce           [shaLen]byte
   225  	Version         uint
   226  
   227  	// Ignore additional fields (forward-compatibility)
   228  	Rest []rlp.RawValue `rlp:"tail"`
   229  }
   230  
   231  // RLPx v4 handshake response (defined in EIP-8).
   232  type authRespV4 struct {
   233  	RandomPubkey [pubLen]byte
   234  	Nonce        [shaLen]byte
   235  	Version      uint
   236  
   237  	// Ignore additional fields (forward-compatibility)
   238  	Rest []rlp.RawValue `rlp:"tail"`
   239  }
   240  
   241  // secrets is called after the handshake is completed.
   242  // It extracts the connection secrets from the handshake values.
   243  func (h *encHandshake) secrets(auth, authResp []byte) (secrets, error) {
   244  	ecdheSecret, err := h.randomPrivKey.GenerateShared(h.remoteRandomPub, sskLen, sskLen)
   245  	if err != nil {
   246  		return secrets{}, err
   247  	}
   248  
   249  	// derive base secrets from ephemeral key agreement
   250  	sharedSecret := crypto.Keccak256(ecdheSecret, crypto.Keccak256(h.respNonce, h.initNonce))
   251  	aesSecret := crypto.Keccak256(ecdheSecret, sharedSecret)
   252  	s := secrets{
   253  		RemoteID: h.remoteID,
   254  		AES:      aesSecret,
   255  		MAC:      crypto.Keccak256(ecdheSecret, aesSecret),
   256  	}
   257  
   258  	// setup sha3 instances for the MACs
   259  	mac1 := sha3.NewLegacyKeccak256()
   260  	mac1.Write(xor(s.MAC, h.respNonce))
   261  	mac1.Write(auth)
   262  	mac2 := sha3.NewLegacyKeccak256()
   263  	mac2.Write(xor(s.MAC, h.initNonce))
   264  	mac2.Write(authResp)
   265  	if h.initiator {
   266  		s.EgressMAC, s.IngressMAC = mac1, mac2
   267  	} else {
   268  		s.EgressMAC, s.IngressMAC = mac2, mac1
   269  	}
   270  
   271  	return s, nil
   272  }
   273  
   274  // staticSharedSecret returns the static shared secret, the result
   275  // of key agreement between the local and remote static node key.
   276  func (h *encHandshake) staticSharedSecret(prv *ecdsa.PrivateKey) ([]byte, error) {
   277  	return ecies.ImportECDSA(prv).GenerateShared(h.remotePub, sskLen, sskLen)
   278  }
   279  
   280  // initiatorEncHandshake negotiates a session token on conn.
   281  // it should be called on the dialing side of the connection.
   282  //
   283  // prv is the local client's private key.
   284  func initiatorEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, remoteID discover.NodeID, token []byte) (s secrets, err error) {
   285  	h := &encHandshake{initiator: true, remoteID: remoteID}
   286  	authMsg, err := h.makeAuthMsg(prv, token)
   287  	if err != nil {
   288  		return s, err
   289  	}
   290  	authPacket, err := sealEIP8(authMsg, h)
   291  	if err != nil {
   292  		return s, err
   293  	}
   294  	if _, err = conn.Write(authPacket); err != nil {
   295  		return s, err
   296  	}
   297  
   298  	authRespMsg := new(authRespV4)
   299  	authRespPacket, err := readHandshakeMsg(authRespMsg, encAuthRespLen, prv, conn)
   300  	if err != nil {
   301  		return s, err
   302  	}
   303  	if err := h.handleAuthResp(authRespMsg); err != nil {
   304  		return s, err
   305  	}
   306  	return h.secrets(authPacket, authRespPacket)
   307  }
   308  
   309  // makeAuthMsg creates the initiator handshake message.
   310  func (h *encHandshake) makeAuthMsg(prv *ecdsa.PrivateKey, token []byte) (*authMsgV4, error) {
   311  	rpub, err := h.remoteID.Pubkey()
   312  	if err != nil {
   313  		return nil, fmt.Errorf("bad remoteID: %v", err)
   314  	}
   315  	h.remotePub = ecies.ImportECDSAPublic(rpub)
   316  	// Generate random initiator nonce.
   317  	h.initNonce = make([]byte, shaLen)
   318  	if _, err := rand.Read(h.initNonce); err != nil {
   319  		return nil, err
   320  	}
   321  	// Generate random keypair to for ECDH.
   322  	h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil)
   323  	if err != nil {
   324  		return nil, err
   325  	}
   326  
   327  	// Sign known message: static-shared-secret ^ nonce
   328  	token, err = h.staticSharedSecret(prv)
   329  	if err != nil {
   330  		return nil, err
   331  	}
   332  	signed := xor(token, h.initNonce)
   333  	signature, err := crypto.Sign(signed, h.randomPrivKey.ExportECDSA())
   334  	if err != nil {
   335  		return nil, err
   336  	}
   337  
   338  	msg := new(authMsgV4)
   339  	copy(msg.Signature[:], signature)
   340  	copy(msg.InitiatorPubkey[:], crypto.FromECDSAPub(&prv.PublicKey)[1:])
   341  	copy(msg.Nonce[:], h.initNonce)
   342  	msg.Version = 4
   343  	return msg, nil
   344  }
   345  
   346  func (h *encHandshake) handleAuthResp(msg *authRespV4) (err error) {
   347  	h.respNonce = msg.Nonce[:]
   348  	h.remoteRandomPub, err = importPublicKey(msg.RandomPubkey[:])
   349  	return err
   350  }
   351  
   352  // receiverEncHandshake negotiates a session token on conn.
   353  // it should be called on the listening side of the connection.
   354  //
   355  // prv is the local client's private key.
   356  // token is the token from a previous session with this node.
   357  func receiverEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, token []byte) (s secrets, err error) {
   358  	authMsg := new(authMsgV4)
   359  	authPacket, err := readHandshakeMsg(authMsg, encAuthMsgLen, prv, conn)
   360  	if err != nil {
   361  		return s, err
   362  	}
   363  	h := new(encHandshake)
   364  	if err := h.handleAuthMsg(authMsg, prv); err != nil {
   365  		return s, err
   366  	}
   367  
   368  	authRespMsg, err := h.makeAuthResp()
   369  	if err != nil {
   370  		return s, err
   371  	}
   372  	var authRespPacket []byte
   373  	if authMsg.gotPlain {
   374  		authRespPacket, err = authRespMsg.sealPlain(h)
   375  	} else {
   376  		authRespPacket, err = sealEIP8(authRespMsg, h)
   377  	}
   378  	if err != nil {
   379  		return s, err
   380  	}
   381  	if _, err = conn.Write(authRespPacket); err != nil {
   382  		return s, err
   383  	}
   384  	return h.secrets(authPacket, authRespPacket)
   385  }
   386  
   387  func (h *encHandshake) handleAuthMsg(msg *authMsgV4, prv *ecdsa.PrivateKey) error {
   388  	// Import the remote identity.
   389  	h.initNonce = msg.Nonce[:]
   390  	h.remoteID = msg.InitiatorPubkey
   391  	rpub, err := h.remoteID.Pubkey()
   392  	if err != nil {
   393  		return fmt.Errorf("bad remoteID: %#v", err)
   394  	}
   395  	h.remotePub = ecies.ImportECDSAPublic(rpub)
   396  
   397  	// Generate random keypair for ECDH.
   398  	// If a private key is already set, use it instead of generating one (for testing).
   399  	if h.randomPrivKey == nil {
   400  		h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, crypto.S256(), nil)
   401  		if err != nil {
   402  			return err
   403  		}
   404  	}
   405  
   406  	// Check the signature.
   407  	token, err := h.staticSharedSecret(prv)
   408  	if err != nil {
   409  		return err
   410  	}
   411  	signedMsg := xor(token, h.initNonce)
   412  	remoteRandomPub, err := secp256k1.RecoverPubkey(signedMsg, msg.Signature[:])
   413  	if err != nil {
   414  		return err
   415  	}
   416  	h.remoteRandomPub, _ = importPublicKey(remoteRandomPub)
   417  	return nil
   418  }
   419  
   420  func (h *encHandshake) makeAuthResp() (msg *authRespV4, err error) {
   421  	// Generate random nonce.
   422  	h.respNonce = make([]byte, shaLen)
   423  	if _, err = rand.Read(h.respNonce); err != nil {
   424  		return nil, err
   425  	}
   426  
   427  	msg = new(authRespV4)
   428  	copy(msg.Nonce[:], h.respNonce)
   429  	copy(msg.RandomPubkey[:], exportPubkey(&h.randomPrivKey.PublicKey))
   430  	msg.Version = 4
   431  	return msg, nil
   432  }
   433  
   434  func (msg *authMsgV4) sealPlain(h *encHandshake) ([]byte, error) {
   435  	buf := make([]byte, authMsgLen)
   436  	n := copy(buf, msg.Signature[:])
   437  	n += copy(buf[n:], crypto.Keccak256(exportPubkey(&h.randomPrivKey.PublicKey)))
   438  	n += copy(buf[n:], msg.InitiatorPubkey[:])
   439  	n += copy(buf[n:], msg.Nonce[:])
   440  	buf[n] = 0 // token-flag
   441  	return ecies.Encrypt(rand.Reader, h.remotePub, buf, nil, nil)
   442  }
   443  
   444  func (msg *authMsgV4) decodePlain(input []byte) {
   445  	n := copy(msg.Signature[:], input)
   446  	n += shaLen // skip sha3(initiator-ephemeral-pubk)
   447  	n += copy(msg.InitiatorPubkey[:], input[n:])
   448  	copy(msg.Nonce[:], input[n:])
   449  	msg.Version = 4
   450  	msg.gotPlain = true
   451  }
   452  
   453  func (msg *authRespV4) sealPlain(hs *encHandshake) ([]byte, error) {
   454  	buf := make([]byte, authRespLen)
   455  	n := copy(buf, msg.RandomPubkey[:])
   456  	copy(buf[n:], msg.Nonce[:])
   457  	return ecies.Encrypt(rand.Reader, hs.remotePub, buf, nil, nil)
   458  }
   459  
   460  func (msg *authRespV4) decodePlain(input []byte) {
   461  	n := copy(msg.RandomPubkey[:], input)
   462  	copy(msg.Nonce[:], input[n:])
   463  	msg.Version = 4
   464  }
   465  
   466  var padSpace = make([]byte, 300)
   467  
   468  func sealEIP8(msg interface{}, h *encHandshake) ([]byte, error) {
   469  	buf := new(bytes.Buffer)
   470  	if err := rlp.Encode(buf, msg); err != nil {
   471  		return nil, err
   472  	}
   473  	// pad with random amount of data. the amount needs to be at least 100 bytes to make
   474  	// the message distinguishable from pre-EIP-8 handshakes.
   475  	pad := padSpace[:mrand.Intn(len(padSpace)-100)+100]
   476  	buf.Write(pad)
   477  	prefix := make([]byte, 2)
   478  	binary.BigEndian.PutUint16(prefix, uint16(buf.Len()+eciesOverhead))
   479  
   480  	enc, err := ecies.Encrypt(rand.Reader, h.remotePub, buf.Bytes(), nil, prefix)
   481  	return append(prefix, enc...), err
   482  }
   483  
   484  type plainDecoder interface {
   485  	decodePlain([]byte)
   486  }
   487  
   488  func readHandshakeMsg(msg plainDecoder, plainSize int, prv *ecdsa.PrivateKey, r io.Reader) ([]byte, error) {
   489  	buf := make([]byte, plainSize)
   490  	if _, err := io.ReadFull(r, buf); err != nil {
   491  		return buf, err
   492  	}
   493  	// Attempt decoding pre-EIP-8 "plain" format.
   494  	key := ecies.ImportECDSA(prv)
   495  	if dec, err := key.Decrypt(buf, nil, nil); err == nil {
   496  		msg.decodePlain(dec)
   497  		return buf, nil
   498  	}
   499  	// Could be EIP-8 format, try that.
   500  	prefix := buf[:2]
   501  	size := binary.BigEndian.Uint16(prefix)
   502  	if size < uint16(plainSize) {
   503  		return buf, fmt.Errorf("size underflow, need at least %d bytes", plainSize)
   504  	}
   505  	buf = append(buf, make([]byte, size-uint16(plainSize)+2)...)
   506  	if _, err := io.ReadFull(r, buf[plainSize:]); err != nil {
   507  		return buf, err
   508  	}
   509  	dec, err := key.Decrypt(buf[2:], nil, prefix)
   510  	if err != nil {
   511  		return buf, err
   512  	}
   513  	// Can't use rlp.DecodeBytes here because it rejects
   514  	// trailing data (forward-compatibility).
   515  	s := rlp.NewStream(bytes.NewReader(dec), 0)
   516  	return buf, s.Decode(msg)
   517  }
   518  
   519  // importPublicKey unmarshals 512 bit public keys.
   520  func importPublicKey(pubKey []byte) (*ecies.PublicKey, error) {
   521  	var pubKey65 []byte
   522  	switch len(pubKey) {
   523  	case 64:
   524  		// add 'uncompressed key' flag
   525  		pubKey65 = append([]byte{0x04}, pubKey...)
   526  	case 65:
   527  		pubKey65 = pubKey
   528  	default:
   529  		return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey))
   530  	}
   531  	// TODO: fewer pointless conversions
   532  	pub, err := crypto.UnmarshalPubkey(pubKey65)
   533  	if err != nil {
   534  		return nil, err
   535  	}
   536  	return ecies.ImportECDSAPublic(pub), nil
   537  }
   538  
   539  func exportPubkey(pub *ecies.PublicKey) []byte {
   540  	if pub == nil {
   541  		panic("nil pubkey")
   542  	}
   543  	return elliptic.Marshal(pub.Curve, pub.X, pub.Y)[1:]
   544  }
   545  
   546  func xor(one, other []byte) (xor []byte) {
   547  	xor = make([]byte, len(one))
   548  	for i := 0; i < len(one); i++ {
   549  		xor[i] = one[i] ^ other[i]
   550  	}
   551  	return xor
   552  }
   553  
   554  var (
   555  	// this is used in place of actual frame header data.
   556  	// TODO: replace this when Msg contains the protocol type code.
   557  	zeroHeader = []byte{0xC2, 0x80, 0x80}
   558  	// sixteen zero bytes
   559  	zero16 = make([]byte, 16)
   560  )
   561  
   562  // rlpxFrameRW implements a simplified version of RLPx framing.
   563  // chunked messages are not supported and all headers are equal to
   564  // zeroHeader.
   565  //
   566  // rlpxFrameRW is not safe for concurrent use from multiple goroutines.
   567  type rlpxFrameRW struct {
   568  	conn io.ReadWriter
   569  	enc  cipher.Stream
   570  	dec  cipher.Stream
   571  
   572  	macCipher  cipher.Block
   573  	egressMAC  hash.Hash
   574  	ingressMAC hash.Hash
   575  
   576  	snappy bool
   577  }
   578  
   579  func newRLPXFrameRW(conn io.ReadWriter, s secrets) *rlpxFrameRW {
   580  	macc, err := aes.NewCipher(s.MAC)
   581  	if err != nil {
   582  		panic("invalid MAC secret: " + err.Error())
   583  	}
   584  	encc, err := aes.NewCipher(s.AES)
   585  	if err != nil {
   586  		panic("invalid AES secret: " + err.Error())
   587  	}
   588  	// we use an all-zeroes IV for AES because the key used
   589  	// for encryption is ephemeral.
   590  	iv := make([]byte, encc.BlockSize())
   591  	return &rlpxFrameRW{
   592  		conn:       conn,
   593  		enc:        cipher.NewCTR(encc, iv),
   594  		dec:        cipher.NewCTR(encc, iv),
   595  		macCipher:  macc,
   596  		egressMAC:  s.EgressMAC,
   597  		ingressMAC: s.IngressMAC,
   598  	}
   599  }
   600  
   601  func (rw *rlpxFrameRW) WriteMsg(msg Msg) error {
   602  	ptype, _ := rlp.EncodeToBytes(msg.Code)
   603  
   604  	// if snappy is enabled, compress message now
   605  	if rw.snappy {
   606  		if msg.Size > maxUint24 {
   607  			return errPlainMessageTooLarge
   608  		}
   609  		payload, _ := ioutil.ReadAll(msg.Payload)
   610  		payload = snappy.Encode(nil, payload)
   611  
   612  		msg.Payload = bytes.NewReader(payload)
   613  		msg.Size = uint32(len(payload))
   614  	}
   615  	// write header
   616  	headbuf := make([]byte, 32)
   617  	fsize := uint32(len(ptype)) + msg.Size
   618  	if fsize > maxUint24 {
   619  		return errors.New("message size overflows uint24")
   620  	}
   621  	putInt24(fsize, headbuf) // TODO: check overflow
   622  	copy(headbuf[3:], zeroHeader)
   623  	rw.enc.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now encrypted
   624  
   625  	// write header MAC
   626  	copy(headbuf[16:], updateMAC(rw.egressMAC, rw.macCipher, headbuf[:16]))
   627  	if _, err := rw.conn.Write(headbuf); err != nil {
   628  		return err
   629  	}
   630  
   631  	// write encrypted frame, updating the egress MAC hash with
   632  	// the data written to conn.
   633  	tee := cipher.StreamWriter{S: rw.enc, W: io.MultiWriter(rw.conn, rw.egressMAC)}
   634  	if _, err := tee.Write(ptype); err != nil {
   635  		return err
   636  	}
   637  	if _, err := io.Copy(tee, msg.Payload); err != nil {
   638  		return err
   639  	}
   640  	if padding := fsize % 16; padding > 0 {
   641  		if _, err := tee.Write(zero16[:16-padding]); err != nil {
   642  			return err
   643  		}
   644  	}
   645  
   646  	// write frame MAC. egress MAC hash is up to date because
   647  	// frame content was written to it as well.
   648  	fmacseed := rw.egressMAC.Sum(nil)
   649  	mac := updateMAC(rw.egressMAC, rw.macCipher, fmacseed)
   650  	_, err := rw.conn.Write(mac)
   651  	return err
   652  }
   653  
   654  func (rw *rlpxFrameRW) ReadMsg() (msg Msg, err error) {
   655  	// read the header
   656  	headbuf := make([]byte, 32)
   657  	if _, err := io.ReadFull(rw.conn, headbuf); err != nil {
   658  		return msg, err
   659  	}
   660  	// verify header mac
   661  	shouldMAC := updateMAC(rw.ingressMAC, rw.macCipher, headbuf[:16])
   662  	if !hmac.Equal(shouldMAC, headbuf[16:]) {
   663  		return msg, errors.New("bad header MAC")
   664  	}
   665  	rw.dec.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now decrypted
   666  	fsize := readInt24(headbuf)
   667  	// ignore protocol type for now
   668  
   669  	// read the frame content
   670  	var rsize = fsize // frame size rounded up to 16 byte boundary
   671  	if padding := fsize % 16; padding > 0 {
   672  		rsize += 16 - padding
   673  	}
   674  	framebuf := make([]byte, rsize)
   675  	if _, err := io.ReadFull(rw.conn, framebuf); err != nil {
   676  		return msg, err
   677  	}
   678  
   679  	// read and validate frame MAC. we can re-use headbuf for that.
   680  	rw.ingressMAC.Write(framebuf)
   681  	fmacseed := rw.ingressMAC.Sum(nil)
   682  	if _, err := io.ReadFull(rw.conn, headbuf[:16]); err != nil {
   683  		return msg, err
   684  	}
   685  	shouldMAC = updateMAC(rw.ingressMAC, rw.macCipher, fmacseed)
   686  	if !hmac.Equal(shouldMAC, headbuf[:16]) {
   687  		return msg, errors.New("bad frame MAC")
   688  	}
   689  
   690  	// decrypt frame content
   691  	rw.dec.XORKeyStream(framebuf, framebuf)
   692  
   693  	// decode message code
   694  	content := bytes.NewReader(framebuf[:fsize])
   695  	if err := rlp.Decode(content, &msg.Code); err != nil {
   696  		return msg, err
   697  	}
   698  	msg.Size = uint32(content.Len())
   699  	msg.Payload = content
   700  
   701  	// if snappy is enabled, verify and decompress message
   702  	if rw.snappy {
   703  		payload, err := ioutil.ReadAll(msg.Payload)
   704  		if err != nil {
   705  			return msg, err
   706  		}
   707  		size, err := snappy.DecodedLen(payload)
   708  		if err != nil {
   709  			return msg, err
   710  		}
   711  		if size > int(maxUint24) {
   712  			return msg, errPlainMessageTooLarge
   713  		}
   714  		payload, err = snappy.Decode(nil, payload)
   715  		if err != nil {
   716  			return msg, err
   717  		}
   718  		msg.Size, msg.Payload = uint32(size), bytes.NewReader(payload)
   719  	}
   720  	return msg, nil
   721  }
   722  
   723  // updateMAC reseeds the given hash with encrypted seed.
   724  // it returns the first 16 bytes of the hash sum after seeding.
   725  func updateMAC(mac hash.Hash, block cipher.Block, seed []byte) []byte {
   726  	aesbuf := make([]byte, aes.BlockSize)
   727  	block.Encrypt(aesbuf, mac.Sum(nil))
   728  	for i := range aesbuf {
   729  		aesbuf[i] ^= seed[i]
   730  	}
   731  	mac.Write(aesbuf)
   732  	return mac.Sum(nil)[:16]
   733  }
   734  
   735  func readInt24(b []byte) uint32 {
   736  	return uint32(b[2]) | uint32(b[1])<<8 | uint32(b[0])<<16
   737  }
   738  
   739  func putInt24(v uint32, b []byte) {
   740  	b[0] = byte(v >> 16)
   741  	b[1] = byte(v >> 8)
   742  	b[2] = byte(v)
   743  }