github.com/gocuntian/go@v0.0.0-20160610041250-fee02d270bf8/src/cmd/compile/internal/gc/ssa.go (about)

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package gc
     6  
     7  import (
     8  	"bytes"
     9  	"fmt"
    10  	"html"
    11  	"os"
    12  	"strings"
    13  
    14  	"cmd/compile/internal/ssa"
    15  	"cmd/internal/obj"
    16  	"cmd/internal/sys"
    17  )
    18  
    19  var ssaEnabled = true
    20  
    21  var ssaConfig *ssa.Config
    22  var ssaExp ssaExport
    23  
    24  func initssa() *ssa.Config {
    25  	ssaExp.unimplemented = false
    26  	ssaExp.mustImplement = true
    27  	if ssaConfig == nil {
    28  		ssaConfig = ssa.NewConfig(Thearch.LinkArch.Name, &ssaExp, Ctxt, Debug['N'] == 0)
    29  	}
    30  	return ssaConfig
    31  }
    32  
    33  func shouldssa(fn *Node) bool {
    34  	switch Thearch.LinkArch.Name {
    35  	default:
    36  		// Only available for testing.
    37  		if os.Getenv("SSATEST") == "" {
    38  			return false
    39  		}
    40  		// Generally available.
    41  	case "amd64":
    42  	}
    43  	if !ssaEnabled {
    44  		return false
    45  	}
    46  
    47  	// Environment variable control of SSA CG
    48  	// 1. IF GOSSAFUNC == current function name THEN
    49  	//       compile this function with SSA and log output to ssa.html
    50  
    51  	// 2. IF GOSSAHASH == "" THEN
    52  	//       compile this function (and everything else) with SSA
    53  
    54  	// 3. IF GOSSAHASH == "n" or "N"
    55  	//       IF GOSSAPKG == current package name THEN
    56  	//          compile this function (and everything in this package) with SSA
    57  	//       ELSE
    58  	//          use the old back end for this function.
    59  	//       This is for compatibility with existing test harness and should go away.
    60  
    61  	// 4. IF GOSSAHASH is a suffix of the binary-rendered SHA1 hash of the function name THEN
    62  	//          compile this function with SSA
    63  	//       ELSE
    64  	//          compile this function with the old back end.
    65  
    66  	// Plan is for 3 to be removed when the tests are revised.
    67  	// SSA is now default, and is disabled by setting
    68  	// GOSSAHASH to n or N, or selectively with strings of
    69  	// 0 and 1.
    70  
    71  	name := fn.Func.Nname.Sym.Name
    72  
    73  	funcname := os.Getenv("GOSSAFUNC")
    74  	if funcname != "" {
    75  		// If GOSSAFUNC is set, compile only that function.
    76  		return name == funcname
    77  	}
    78  
    79  	pkg := os.Getenv("GOSSAPKG")
    80  	if pkg != "" {
    81  		// If GOSSAPKG is set, compile only that package.
    82  		return localpkg.Name == pkg
    83  	}
    84  
    85  	return initssa().DebugHashMatch("GOSSAHASH", name)
    86  }
    87  
    88  // buildssa builds an SSA function.
    89  func buildssa(fn *Node) *ssa.Func {
    90  	name := fn.Func.Nname.Sym.Name
    91  	printssa := name == os.Getenv("GOSSAFUNC")
    92  	if printssa {
    93  		fmt.Println("generating SSA for", name)
    94  		dumplist("buildssa-enter", fn.Func.Enter)
    95  		dumplist("buildssa-body", fn.Nbody)
    96  		dumplist("buildssa-exit", fn.Func.Exit)
    97  	}
    98  
    99  	var s state
   100  	s.pushLine(fn.Lineno)
   101  	defer s.popLine()
   102  
   103  	if fn.Func.Pragma&CgoUnsafeArgs != 0 {
   104  		s.cgoUnsafeArgs = true
   105  	}
   106  	if fn.Func.Pragma&Nowritebarrier != 0 {
   107  		s.noWB = true
   108  	}
   109  	defer func() {
   110  		if s.WBLineno != 0 {
   111  			fn.Func.WBLineno = s.WBLineno
   112  		}
   113  	}()
   114  	// TODO(khr): build config just once at the start of the compiler binary
   115  
   116  	ssaExp.log = printssa
   117  
   118  	s.config = initssa()
   119  	s.f = s.config.NewFunc()
   120  	s.f.Name = name
   121  	s.exitCode = fn.Func.Exit
   122  	s.panics = map[funcLine]*ssa.Block{}
   123  
   124  	if name == os.Getenv("GOSSAFUNC") {
   125  		// TODO: tempfile? it is handy to have the location
   126  		// of this file be stable, so you can just reload in the browser.
   127  		s.config.HTML = ssa.NewHTMLWriter("ssa.html", s.config, name)
   128  		// TODO: generate and print a mapping from nodes to values and blocks
   129  	}
   130  	defer func() {
   131  		if !printssa {
   132  			s.config.HTML.Close()
   133  		}
   134  	}()
   135  
   136  	// Allocate starting block
   137  	s.f.Entry = s.f.NewBlock(ssa.BlockPlain)
   138  
   139  	// Allocate starting values
   140  	s.labels = map[string]*ssaLabel{}
   141  	s.labeledNodes = map[*Node]*ssaLabel{}
   142  	s.startmem = s.entryNewValue0(ssa.OpInitMem, ssa.TypeMem)
   143  	s.sp = s.entryNewValue0(ssa.OpSP, Types[TUINTPTR]) // TODO: use generic pointer type (unsafe.Pointer?) instead
   144  	s.sb = s.entryNewValue0(ssa.OpSB, Types[TUINTPTR])
   145  
   146  	s.startBlock(s.f.Entry)
   147  	s.vars[&memVar] = s.startmem
   148  
   149  	s.varsyms = map[*Node]interface{}{}
   150  
   151  	// Generate addresses of local declarations
   152  	s.decladdrs = map[*Node]*ssa.Value{}
   153  	for _, n := range fn.Func.Dcl {
   154  		switch n.Class {
   155  		case PPARAM, PPARAMOUT:
   156  			aux := s.lookupSymbol(n, &ssa.ArgSymbol{Typ: n.Type, Node: n})
   157  			s.decladdrs[n] = s.entryNewValue1A(ssa.OpAddr, Ptrto(n.Type), aux, s.sp)
   158  			if n.Class == PPARAMOUT && s.canSSA(n) {
   159  				// Save ssa-able PPARAMOUT variables so we can
   160  				// store them back to the stack at the end of
   161  				// the function.
   162  				s.returns = append(s.returns, n)
   163  			}
   164  			if n.Class == PPARAM && s.canSSA(n) && n.Type.IsPtrShaped() {
   165  				s.ptrargs = append(s.ptrargs, n)
   166  				n.SetNotLiveAtEnd(true) // SSA takes care of this explicitly
   167  			}
   168  		case PAUTO:
   169  			// processed at each use, to prevent Addr coming
   170  			// before the decl.
   171  		case PAUTOHEAP:
   172  			// moved to heap - already handled by frontend
   173  		case PFUNC:
   174  			// local function - already handled by frontend
   175  		default:
   176  			s.Unimplementedf("local variable with class %s unimplemented", classnames[n.Class])
   177  		}
   178  	}
   179  
   180  	// Convert the AST-based IR to the SSA-based IR
   181  	s.stmts(fn.Func.Enter)
   182  	s.stmts(fn.Nbody)
   183  
   184  	// fallthrough to exit
   185  	if s.curBlock != nil {
   186  		s.pushLine(fn.Func.Endlineno)
   187  		s.exit()
   188  		s.popLine()
   189  	}
   190  
   191  	// Check that we used all labels
   192  	for name, lab := range s.labels {
   193  		if !lab.used() && !lab.reported {
   194  			yyerrorl(lab.defNode.Lineno, "label %v defined and not used", name)
   195  			lab.reported = true
   196  		}
   197  		if lab.used() && !lab.defined() && !lab.reported {
   198  			yyerrorl(lab.useNode.Lineno, "label %v not defined", name)
   199  			lab.reported = true
   200  		}
   201  	}
   202  
   203  	// Check any forward gotos. Non-forward gotos have already been checked.
   204  	for _, n := range s.fwdGotos {
   205  		lab := s.labels[n.Left.Sym.Name]
   206  		// If the label is undefined, we have already have printed an error.
   207  		if lab.defined() {
   208  			s.checkgoto(n, lab.defNode)
   209  		}
   210  	}
   211  
   212  	if nerrors > 0 {
   213  		s.f.Free()
   214  		return nil
   215  	}
   216  
   217  	prelinkNumvars := s.f.NumValues()
   218  	sparseDefState := s.locatePotentialPhiFunctions(fn)
   219  
   220  	// Link up variable uses to variable definitions
   221  	s.linkForwardReferences(sparseDefState)
   222  
   223  	if ssa.BuildStats > 0 {
   224  		s.f.LogStat("build", s.f.NumBlocks(), "blocks", prelinkNumvars, "vars_before",
   225  			s.f.NumValues(), "vars_after", prelinkNumvars*s.f.NumBlocks(), "ssa_phi_loc_cutoff_score")
   226  	}
   227  
   228  	// Don't carry reference this around longer than necessary
   229  	s.exitCode = Nodes{}
   230  
   231  	// Main call to ssa package to compile function
   232  	ssa.Compile(s.f)
   233  
   234  	return s.f
   235  }
   236  
   237  type state struct {
   238  	// configuration (arch) information
   239  	config *ssa.Config
   240  
   241  	// function we're building
   242  	f *ssa.Func
   243  
   244  	// labels and labeled control flow nodes (OFOR, OSWITCH, OSELECT) in f
   245  	labels       map[string]*ssaLabel
   246  	labeledNodes map[*Node]*ssaLabel
   247  
   248  	// gotos that jump forward; required for deferred checkgoto calls
   249  	fwdGotos []*Node
   250  	// Code that must precede any return
   251  	// (e.g., copying value of heap-escaped paramout back to true paramout)
   252  	exitCode Nodes
   253  
   254  	// unlabeled break and continue statement tracking
   255  	breakTo    *ssa.Block // current target for plain break statement
   256  	continueTo *ssa.Block // current target for plain continue statement
   257  
   258  	// current location where we're interpreting the AST
   259  	curBlock *ssa.Block
   260  
   261  	// variable assignments in the current block (map from variable symbol to ssa value)
   262  	// *Node is the unique identifier (an ONAME Node) for the variable.
   263  	vars map[*Node]*ssa.Value
   264  
   265  	// all defined variables at the end of each block. Indexed by block ID.
   266  	defvars []map[*Node]*ssa.Value
   267  
   268  	// addresses of PPARAM and PPARAMOUT variables.
   269  	decladdrs map[*Node]*ssa.Value
   270  
   271  	// symbols for PEXTERN, PAUTO and PPARAMOUT variables so they can be reused.
   272  	varsyms map[*Node]interface{}
   273  
   274  	// starting values. Memory, stack pointer, and globals pointer
   275  	startmem *ssa.Value
   276  	sp       *ssa.Value
   277  	sb       *ssa.Value
   278  
   279  	// line number stack. The current line number is top of stack
   280  	line []int32
   281  
   282  	// list of panic calls by function name and line number.
   283  	// Used to deduplicate panic calls.
   284  	panics map[funcLine]*ssa.Block
   285  
   286  	// list of FwdRef values.
   287  	fwdRefs []*ssa.Value
   288  
   289  	// list of PPARAMOUT (return) variables.
   290  	returns []*Node
   291  
   292  	// list of PPARAM SSA-able pointer-shaped args. We ensure these are live
   293  	// throughout the function to help users avoid premature finalizers.
   294  	ptrargs []*Node
   295  
   296  	cgoUnsafeArgs bool
   297  	noWB          bool
   298  	WBLineno      int32 // line number of first write barrier. 0=no write barriers
   299  }
   300  
   301  type funcLine struct {
   302  	f    *Node
   303  	line int32
   304  }
   305  
   306  type ssaLabel struct {
   307  	target         *ssa.Block // block identified by this label
   308  	breakTarget    *ssa.Block // block to break to in control flow node identified by this label
   309  	continueTarget *ssa.Block // block to continue to in control flow node identified by this label
   310  	defNode        *Node      // label definition Node (OLABEL)
   311  	// Label use Node (OGOTO, OBREAK, OCONTINUE).
   312  	// Used only for error detection and reporting.
   313  	// There might be multiple uses, but we only need to track one.
   314  	useNode  *Node
   315  	reported bool // reported indicates whether an error has already been reported for this label
   316  }
   317  
   318  // defined reports whether the label has a definition (OLABEL node).
   319  func (l *ssaLabel) defined() bool { return l.defNode != nil }
   320  
   321  // used reports whether the label has a use (OGOTO, OBREAK, or OCONTINUE node).
   322  func (l *ssaLabel) used() bool { return l.useNode != nil }
   323  
   324  // label returns the label associated with sym, creating it if necessary.
   325  func (s *state) label(sym *Sym) *ssaLabel {
   326  	lab := s.labels[sym.Name]
   327  	if lab == nil {
   328  		lab = new(ssaLabel)
   329  		s.labels[sym.Name] = lab
   330  	}
   331  	return lab
   332  }
   333  
   334  func (s *state) Logf(msg string, args ...interface{})   { s.config.Logf(msg, args...) }
   335  func (s *state) Log() bool                              { return s.config.Log() }
   336  func (s *state) Fatalf(msg string, args ...interface{}) { s.config.Fatalf(s.peekLine(), msg, args...) }
   337  func (s *state) Unimplementedf(msg string, args ...interface{}) {
   338  	s.config.Unimplementedf(s.peekLine(), msg, args...)
   339  }
   340  func (s *state) Warnl(line int32, msg string, args ...interface{}) { s.config.Warnl(line, msg, args...) }
   341  func (s *state) Debug_checknil() bool                              { return s.config.Debug_checknil() }
   342  
   343  var (
   344  	// dummy node for the memory variable
   345  	memVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "mem"}}
   346  
   347  	// dummy nodes for temporary variables
   348  	ptrVar    = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "ptr"}}
   349  	lenVar    = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "len"}}
   350  	newlenVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "newlen"}}
   351  	capVar    = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "cap"}}
   352  	typVar    = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "typ"}}
   353  	idataVar  = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "idata"}}
   354  	okVar     = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "ok"}}
   355  	deltaVar  = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "delta"}}
   356  )
   357  
   358  // startBlock sets the current block we're generating code in to b.
   359  func (s *state) startBlock(b *ssa.Block) {
   360  	if s.curBlock != nil {
   361  		s.Fatalf("starting block %v when block %v has not ended", b, s.curBlock)
   362  	}
   363  	s.curBlock = b
   364  	s.vars = map[*Node]*ssa.Value{}
   365  }
   366  
   367  // endBlock marks the end of generating code for the current block.
   368  // Returns the (former) current block. Returns nil if there is no current
   369  // block, i.e. if no code flows to the current execution point.
   370  func (s *state) endBlock() *ssa.Block {
   371  	b := s.curBlock
   372  	if b == nil {
   373  		return nil
   374  	}
   375  	for len(s.defvars) <= int(b.ID) {
   376  		s.defvars = append(s.defvars, nil)
   377  	}
   378  	s.defvars[b.ID] = s.vars
   379  	s.curBlock = nil
   380  	s.vars = nil
   381  	b.Line = s.peekLine()
   382  	return b
   383  }
   384  
   385  // pushLine pushes a line number on the line number stack.
   386  func (s *state) pushLine(line int32) {
   387  	s.line = append(s.line, line)
   388  }
   389  
   390  // popLine pops the top of the line number stack.
   391  func (s *state) popLine() {
   392  	s.line = s.line[:len(s.line)-1]
   393  }
   394  
   395  // peekLine peek the top of the line number stack.
   396  func (s *state) peekLine() int32 {
   397  	return s.line[len(s.line)-1]
   398  }
   399  
   400  func (s *state) Error(msg string, args ...interface{}) {
   401  	yyerrorl(s.peekLine(), msg, args...)
   402  }
   403  
   404  // newValue0 adds a new value with no arguments to the current block.
   405  func (s *state) newValue0(op ssa.Op, t ssa.Type) *ssa.Value {
   406  	return s.curBlock.NewValue0(s.peekLine(), op, t)
   407  }
   408  
   409  // newValue0A adds a new value with no arguments and an aux value to the current block.
   410  func (s *state) newValue0A(op ssa.Op, t ssa.Type, aux interface{}) *ssa.Value {
   411  	return s.curBlock.NewValue0A(s.peekLine(), op, t, aux)
   412  }
   413  
   414  // newValue0I adds a new value with no arguments and an auxint value to the current block.
   415  func (s *state) newValue0I(op ssa.Op, t ssa.Type, auxint int64) *ssa.Value {
   416  	return s.curBlock.NewValue0I(s.peekLine(), op, t, auxint)
   417  }
   418  
   419  // newValue1 adds a new value with one argument to the current block.
   420  func (s *state) newValue1(op ssa.Op, t ssa.Type, arg *ssa.Value) *ssa.Value {
   421  	return s.curBlock.NewValue1(s.peekLine(), op, t, arg)
   422  }
   423  
   424  // newValue1A adds a new value with one argument and an aux value to the current block.
   425  func (s *state) newValue1A(op ssa.Op, t ssa.Type, aux interface{}, arg *ssa.Value) *ssa.Value {
   426  	return s.curBlock.NewValue1A(s.peekLine(), op, t, aux, arg)
   427  }
   428  
   429  // newValue1I adds a new value with one argument and an auxint value to the current block.
   430  func (s *state) newValue1I(op ssa.Op, t ssa.Type, aux int64, arg *ssa.Value) *ssa.Value {
   431  	return s.curBlock.NewValue1I(s.peekLine(), op, t, aux, arg)
   432  }
   433  
   434  // newValue2 adds a new value with two arguments to the current block.
   435  func (s *state) newValue2(op ssa.Op, t ssa.Type, arg0, arg1 *ssa.Value) *ssa.Value {
   436  	return s.curBlock.NewValue2(s.peekLine(), op, t, arg0, arg1)
   437  }
   438  
   439  // newValue2I adds a new value with two arguments and an auxint value to the current block.
   440  func (s *state) newValue2I(op ssa.Op, t ssa.Type, aux int64, arg0, arg1 *ssa.Value) *ssa.Value {
   441  	return s.curBlock.NewValue2I(s.peekLine(), op, t, aux, arg0, arg1)
   442  }
   443  
   444  // newValue3 adds a new value with three arguments to the current block.
   445  func (s *state) newValue3(op ssa.Op, t ssa.Type, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
   446  	return s.curBlock.NewValue3(s.peekLine(), op, t, arg0, arg1, arg2)
   447  }
   448  
   449  // newValue3I adds a new value with three arguments and an auxint value to the current block.
   450  func (s *state) newValue3I(op ssa.Op, t ssa.Type, aux int64, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
   451  	return s.curBlock.NewValue3I(s.peekLine(), op, t, aux, arg0, arg1, arg2)
   452  }
   453  
   454  // entryNewValue0 adds a new value with no arguments to the entry block.
   455  func (s *state) entryNewValue0(op ssa.Op, t ssa.Type) *ssa.Value {
   456  	return s.f.Entry.NewValue0(s.peekLine(), op, t)
   457  }
   458  
   459  // entryNewValue0A adds a new value with no arguments and an aux value to the entry block.
   460  func (s *state) entryNewValue0A(op ssa.Op, t ssa.Type, aux interface{}) *ssa.Value {
   461  	return s.f.Entry.NewValue0A(s.peekLine(), op, t, aux)
   462  }
   463  
   464  // entryNewValue0I adds a new value with no arguments and an auxint value to the entry block.
   465  func (s *state) entryNewValue0I(op ssa.Op, t ssa.Type, auxint int64) *ssa.Value {
   466  	return s.f.Entry.NewValue0I(s.peekLine(), op, t, auxint)
   467  }
   468  
   469  // entryNewValue1 adds a new value with one argument to the entry block.
   470  func (s *state) entryNewValue1(op ssa.Op, t ssa.Type, arg *ssa.Value) *ssa.Value {
   471  	return s.f.Entry.NewValue1(s.peekLine(), op, t, arg)
   472  }
   473  
   474  // entryNewValue1 adds a new value with one argument and an auxint value to the entry block.
   475  func (s *state) entryNewValue1I(op ssa.Op, t ssa.Type, auxint int64, arg *ssa.Value) *ssa.Value {
   476  	return s.f.Entry.NewValue1I(s.peekLine(), op, t, auxint, arg)
   477  }
   478  
   479  // entryNewValue1A adds a new value with one argument and an aux value to the entry block.
   480  func (s *state) entryNewValue1A(op ssa.Op, t ssa.Type, aux interface{}, arg *ssa.Value) *ssa.Value {
   481  	return s.f.Entry.NewValue1A(s.peekLine(), op, t, aux, arg)
   482  }
   483  
   484  // entryNewValue2 adds a new value with two arguments to the entry block.
   485  func (s *state) entryNewValue2(op ssa.Op, t ssa.Type, arg0, arg1 *ssa.Value) *ssa.Value {
   486  	return s.f.Entry.NewValue2(s.peekLine(), op, t, arg0, arg1)
   487  }
   488  
   489  // const* routines add a new const value to the entry block.
   490  func (s *state) constSlice(t ssa.Type) *ssa.Value       { return s.f.ConstSlice(s.peekLine(), t) }
   491  func (s *state) constInterface(t ssa.Type) *ssa.Value   { return s.f.ConstInterface(s.peekLine(), t) }
   492  func (s *state) constNil(t ssa.Type) *ssa.Value         { return s.f.ConstNil(s.peekLine(), t) }
   493  func (s *state) constEmptyString(t ssa.Type) *ssa.Value { return s.f.ConstEmptyString(s.peekLine(), t) }
   494  func (s *state) constBool(c bool) *ssa.Value {
   495  	return s.f.ConstBool(s.peekLine(), Types[TBOOL], c)
   496  }
   497  func (s *state) constInt8(t ssa.Type, c int8) *ssa.Value {
   498  	return s.f.ConstInt8(s.peekLine(), t, c)
   499  }
   500  func (s *state) constInt16(t ssa.Type, c int16) *ssa.Value {
   501  	return s.f.ConstInt16(s.peekLine(), t, c)
   502  }
   503  func (s *state) constInt32(t ssa.Type, c int32) *ssa.Value {
   504  	return s.f.ConstInt32(s.peekLine(), t, c)
   505  }
   506  func (s *state) constInt64(t ssa.Type, c int64) *ssa.Value {
   507  	return s.f.ConstInt64(s.peekLine(), t, c)
   508  }
   509  func (s *state) constFloat32(t ssa.Type, c float64) *ssa.Value {
   510  	return s.f.ConstFloat32(s.peekLine(), t, c)
   511  }
   512  func (s *state) constFloat64(t ssa.Type, c float64) *ssa.Value {
   513  	return s.f.ConstFloat64(s.peekLine(), t, c)
   514  }
   515  func (s *state) constInt(t ssa.Type, c int64) *ssa.Value {
   516  	if s.config.IntSize == 8 {
   517  		return s.constInt64(t, c)
   518  	}
   519  	if int64(int32(c)) != c {
   520  		s.Fatalf("integer constant too big %d", c)
   521  	}
   522  	return s.constInt32(t, int32(c))
   523  }
   524  
   525  func (s *state) stmts(a Nodes) {
   526  	for _, x := range a.Slice() {
   527  		s.stmt(x)
   528  	}
   529  }
   530  
   531  // ssaStmtList converts the statement n to SSA and adds it to s.
   532  func (s *state) stmtList(l Nodes) {
   533  	for _, n := range l.Slice() {
   534  		s.stmt(n)
   535  	}
   536  }
   537  
   538  // ssaStmt converts the statement n to SSA and adds it to s.
   539  func (s *state) stmt(n *Node) {
   540  	s.pushLine(n.Lineno)
   541  	defer s.popLine()
   542  
   543  	// If s.curBlock is nil, then we're about to generate dead code.
   544  	// We can't just short-circuit here, though,
   545  	// because we check labels and gotos as part of SSA generation.
   546  	// Provide a block for the dead code so that we don't have
   547  	// to add special cases everywhere else.
   548  	if s.curBlock == nil {
   549  		dead := s.f.NewBlock(ssa.BlockPlain)
   550  		s.startBlock(dead)
   551  	}
   552  
   553  	s.stmtList(n.Ninit)
   554  	switch n.Op {
   555  
   556  	case OBLOCK:
   557  		s.stmtList(n.List)
   558  
   559  	// No-ops
   560  	case OEMPTY, ODCLCONST, ODCLTYPE, OFALL:
   561  
   562  	// Expression statements
   563  	case OCALLFUNC, OCALLMETH, OCALLINTER:
   564  		s.call(n, callNormal)
   565  		if n.Op == OCALLFUNC && n.Left.Op == ONAME && n.Left.Class == PFUNC &&
   566  			(compiling_runtime && n.Left.Sym.Name == "throw" ||
   567  				n.Left.Sym.Pkg == Runtimepkg && (n.Left.Sym.Name == "gopanic" || n.Left.Sym.Name == "selectgo" || n.Left.Sym.Name == "block")) {
   568  			m := s.mem()
   569  			b := s.endBlock()
   570  			b.Kind = ssa.BlockExit
   571  			b.SetControl(m)
   572  			// TODO: never rewrite OPANIC to OCALLFUNC in the
   573  			// first place. Need to wait until all backends
   574  			// go through SSA.
   575  		}
   576  	case ODEFER:
   577  		s.call(n.Left, callDefer)
   578  	case OPROC:
   579  		s.call(n.Left, callGo)
   580  
   581  	case OAS2DOTTYPE:
   582  		res, resok := s.dottype(n.Rlist.First(), true)
   583  		s.assign(n.List.First(), res, needwritebarrier(n.List.First(), n.Rlist.First()), false, n.Lineno, 0, false)
   584  		s.assign(n.List.Second(), resok, false, false, n.Lineno, 0, false)
   585  		return
   586  
   587  	case ODCL:
   588  		if n.Left.Class == PAUTOHEAP {
   589  			Fatalf("DCL %v", n)
   590  		}
   591  
   592  	case OLABEL:
   593  		sym := n.Left.Sym
   594  
   595  		if isblanksym(sym) {
   596  			// Empty identifier is valid but useless.
   597  			// See issues 11589, 11593.
   598  			return
   599  		}
   600  
   601  		lab := s.label(sym)
   602  
   603  		// Associate label with its control flow node, if any
   604  		if ctl := n.Name.Defn; ctl != nil {
   605  			switch ctl.Op {
   606  			case OFOR, OSWITCH, OSELECT:
   607  				s.labeledNodes[ctl] = lab
   608  			}
   609  		}
   610  
   611  		if !lab.defined() {
   612  			lab.defNode = n
   613  		} else {
   614  			s.Error("label %v already defined at %v", sym, linestr(lab.defNode.Lineno))
   615  			lab.reported = true
   616  		}
   617  		// The label might already have a target block via a goto.
   618  		if lab.target == nil {
   619  			lab.target = s.f.NewBlock(ssa.BlockPlain)
   620  		}
   621  
   622  		// go to that label (we pretend "label:" is preceded by "goto label")
   623  		b := s.endBlock()
   624  		b.AddEdgeTo(lab.target)
   625  		s.startBlock(lab.target)
   626  
   627  	case OGOTO:
   628  		sym := n.Left.Sym
   629  
   630  		lab := s.label(sym)
   631  		if lab.target == nil {
   632  			lab.target = s.f.NewBlock(ssa.BlockPlain)
   633  		}
   634  		if !lab.used() {
   635  			lab.useNode = n
   636  		}
   637  
   638  		if lab.defined() {
   639  			s.checkgoto(n, lab.defNode)
   640  		} else {
   641  			s.fwdGotos = append(s.fwdGotos, n)
   642  		}
   643  
   644  		b := s.endBlock()
   645  		b.AddEdgeTo(lab.target)
   646  
   647  	case OAS, OASWB:
   648  		// Check whether we can generate static data rather than code.
   649  		// If so, ignore n and defer data generation until codegen.
   650  		// Failure to do this causes writes to readonly symbols.
   651  		if gen_as_init(n, true) {
   652  			var data []*Node
   653  			if s.f.StaticData != nil {
   654  				data = s.f.StaticData.([]*Node)
   655  			}
   656  			s.f.StaticData = append(data, n)
   657  			return
   658  		}
   659  
   660  		if n.Left == n.Right && n.Left.Op == ONAME {
   661  			// An x=x assignment. No point in doing anything
   662  			// here. In addition, skipping this assignment
   663  			// prevents generating:
   664  			//   VARDEF x
   665  			//   COPY x -> x
   666  			// which is bad because x is incorrectly considered
   667  			// dead before the vardef. See issue #14904.
   668  			return
   669  		}
   670  
   671  		var t *Type
   672  		if n.Right != nil {
   673  			t = n.Right.Type
   674  		} else {
   675  			t = n.Left.Type
   676  		}
   677  
   678  		// Evaluate RHS.
   679  		rhs := n.Right
   680  		if rhs != nil {
   681  			switch rhs.Op {
   682  			case OSTRUCTLIT, OARRAYLIT:
   683  				// All literals with nonzero fields have already been
   684  				// rewritten during walk. Any that remain are just T{}
   685  				// or equivalents. Use the zero value.
   686  				if !iszero(rhs) {
   687  					Fatalf("literal with nonzero value in SSA: %v", rhs)
   688  				}
   689  				rhs = nil
   690  			case OAPPEND:
   691  				// If we're writing the result of an append back to the same slice,
   692  				// handle it specially to avoid write barriers on the fast (non-growth) path.
   693  				// If the slice can be SSA'd, it'll be on the stack,
   694  				// so there will be no write barriers,
   695  				// so there's no need to attempt to prevent them.
   696  				if samesafeexpr(n.Left, rhs.List.First()) && !s.canSSA(n.Left) {
   697  					s.append(rhs, true)
   698  					return
   699  				}
   700  			}
   701  		}
   702  		var r *ssa.Value
   703  		var isVolatile bool
   704  		needwb := n.Op == OASWB && rhs != nil
   705  		deref := !canSSAType(t)
   706  		if deref {
   707  			if rhs == nil {
   708  				r = nil // Signal assign to use OpZero.
   709  			} else {
   710  				r, isVolatile = s.addr(rhs, false)
   711  			}
   712  		} else {
   713  			if rhs == nil {
   714  				r = s.zeroVal(t)
   715  			} else {
   716  				r = s.expr(rhs)
   717  			}
   718  		}
   719  		if rhs != nil && rhs.Op == OAPPEND {
   720  			// The frontend gets rid of the write barrier to enable the special OAPPEND
   721  			// handling above, but since this is not a special case, we need it.
   722  			// TODO: just add a ptr graying to the end of growslice?
   723  			// TODO: check whether we need to provide special handling and a write barrier
   724  			// for ODOTTYPE and ORECV also.
   725  			// They get similar wb-removal treatment in walk.go:OAS.
   726  			needwb = true
   727  		}
   728  
   729  		var skip skipMask
   730  		if rhs != nil && (rhs.Op == OSLICE || rhs.Op == OSLICE3 || rhs.Op == OSLICESTR) && samesafeexpr(rhs.Left, n.Left) {
   731  			// We're assigning a slicing operation back to its source.
   732  			// Don't write back fields we aren't changing. See issue #14855.
   733  			i, j, k := rhs.SliceBounds()
   734  			if i != nil && (i.Op == OLITERAL && i.Val().Ctype() == CTINT && i.Int64() == 0) {
   735  				// [0:...] is the same as [:...]
   736  				i = nil
   737  			}
   738  			// TODO: detect defaults for len/cap also.
   739  			// Currently doesn't really work because (*p)[:len(*p)] appears here as:
   740  			//    tmp = len(*p)
   741  			//    (*p)[:tmp]
   742  			//if j != nil && (j.Op == OLEN && samesafeexpr(j.Left, n.Left)) {
   743  			//      j = nil
   744  			//}
   745  			//if k != nil && (k.Op == OCAP && samesafeexpr(k.Left, n.Left)) {
   746  			//      k = nil
   747  			//}
   748  			if i == nil {
   749  				skip |= skipPtr
   750  				if j == nil {
   751  					skip |= skipLen
   752  				}
   753  				if k == nil {
   754  					skip |= skipCap
   755  				}
   756  			}
   757  		}
   758  
   759  		s.assign(n.Left, r, needwb, deref, n.Lineno, skip, isVolatile)
   760  
   761  	case OIF:
   762  		bThen := s.f.NewBlock(ssa.BlockPlain)
   763  		bEnd := s.f.NewBlock(ssa.BlockPlain)
   764  		var bElse *ssa.Block
   765  		if n.Rlist.Len() != 0 {
   766  			bElse = s.f.NewBlock(ssa.BlockPlain)
   767  			s.condBranch(n.Left, bThen, bElse, n.Likely)
   768  		} else {
   769  			s.condBranch(n.Left, bThen, bEnd, n.Likely)
   770  		}
   771  
   772  		s.startBlock(bThen)
   773  		s.stmts(n.Nbody)
   774  		if b := s.endBlock(); b != nil {
   775  			b.AddEdgeTo(bEnd)
   776  		}
   777  
   778  		if n.Rlist.Len() != 0 {
   779  			s.startBlock(bElse)
   780  			s.stmtList(n.Rlist)
   781  			if b := s.endBlock(); b != nil {
   782  				b.AddEdgeTo(bEnd)
   783  			}
   784  		}
   785  		s.startBlock(bEnd)
   786  
   787  	case ORETURN:
   788  		s.stmtList(n.List)
   789  		s.exit()
   790  	case ORETJMP:
   791  		s.stmtList(n.List)
   792  		b := s.exit()
   793  		b.Kind = ssa.BlockRetJmp // override BlockRet
   794  		b.Aux = n.Left.Sym
   795  
   796  	case OCONTINUE, OBREAK:
   797  		var op string
   798  		var to *ssa.Block
   799  		switch n.Op {
   800  		case OCONTINUE:
   801  			op = "continue"
   802  			to = s.continueTo
   803  		case OBREAK:
   804  			op = "break"
   805  			to = s.breakTo
   806  		}
   807  		if n.Left == nil {
   808  			// plain break/continue
   809  			if to == nil {
   810  				s.Error("%s is not in a loop", op)
   811  				return
   812  			}
   813  			// nothing to do; "to" is already the correct target
   814  		} else {
   815  			// labeled break/continue; look up the target
   816  			sym := n.Left.Sym
   817  			lab := s.label(sym)
   818  			if !lab.used() {
   819  				lab.useNode = n.Left
   820  			}
   821  			if !lab.defined() {
   822  				s.Error("%s label not defined: %v", op, sym)
   823  				lab.reported = true
   824  				return
   825  			}
   826  			switch n.Op {
   827  			case OCONTINUE:
   828  				to = lab.continueTarget
   829  			case OBREAK:
   830  				to = lab.breakTarget
   831  			}
   832  			if to == nil {
   833  				// Valid label but not usable with a break/continue here, e.g.:
   834  				// for {
   835  				// 	continue abc
   836  				// }
   837  				// abc:
   838  				// for {}
   839  				s.Error("invalid %s label %v", op, sym)
   840  				lab.reported = true
   841  				return
   842  			}
   843  		}
   844  
   845  		b := s.endBlock()
   846  		b.AddEdgeTo(to)
   847  
   848  	case OFOR:
   849  		// OFOR: for Ninit; Left; Right { Nbody }
   850  		bCond := s.f.NewBlock(ssa.BlockPlain)
   851  		bBody := s.f.NewBlock(ssa.BlockPlain)
   852  		bIncr := s.f.NewBlock(ssa.BlockPlain)
   853  		bEnd := s.f.NewBlock(ssa.BlockPlain)
   854  
   855  		// first, jump to condition test
   856  		b := s.endBlock()
   857  		b.AddEdgeTo(bCond)
   858  
   859  		// generate code to test condition
   860  		s.startBlock(bCond)
   861  		if n.Left != nil {
   862  			s.condBranch(n.Left, bBody, bEnd, 1)
   863  		} else {
   864  			b := s.endBlock()
   865  			b.Kind = ssa.BlockPlain
   866  			b.AddEdgeTo(bBody)
   867  		}
   868  
   869  		// set up for continue/break in body
   870  		prevContinue := s.continueTo
   871  		prevBreak := s.breakTo
   872  		s.continueTo = bIncr
   873  		s.breakTo = bEnd
   874  		lab := s.labeledNodes[n]
   875  		if lab != nil {
   876  			// labeled for loop
   877  			lab.continueTarget = bIncr
   878  			lab.breakTarget = bEnd
   879  		}
   880  
   881  		// generate body
   882  		s.startBlock(bBody)
   883  		s.stmts(n.Nbody)
   884  
   885  		// tear down continue/break
   886  		s.continueTo = prevContinue
   887  		s.breakTo = prevBreak
   888  		if lab != nil {
   889  			lab.continueTarget = nil
   890  			lab.breakTarget = nil
   891  		}
   892  
   893  		// done with body, goto incr
   894  		if b := s.endBlock(); b != nil {
   895  			b.AddEdgeTo(bIncr)
   896  		}
   897  
   898  		// generate incr
   899  		s.startBlock(bIncr)
   900  		if n.Right != nil {
   901  			s.stmt(n.Right)
   902  		}
   903  		if b := s.endBlock(); b != nil {
   904  			b.AddEdgeTo(bCond)
   905  		}
   906  		s.startBlock(bEnd)
   907  
   908  	case OSWITCH, OSELECT:
   909  		// These have been mostly rewritten by the front end into their Nbody fields.
   910  		// Our main task is to correctly hook up any break statements.
   911  		bEnd := s.f.NewBlock(ssa.BlockPlain)
   912  
   913  		prevBreak := s.breakTo
   914  		s.breakTo = bEnd
   915  		lab := s.labeledNodes[n]
   916  		if lab != nil {
   917  			// labeled
   918  			lab.breakTarget = bEnd
   919  		}
   920  
   921  		// generate body code
   922  		s.stmts(n.Nbody)
   923  
   924  		s.breakTo = prevBreak
   925  		if lab != nil {
   926  			lab.breakTarget = nil
   927  		}
   928  
   929  		// OSWITCH never falls through (s.curBlock == nil here).
   930  		// OSELECT does not fall through if we're calling selectgo.
   931  		// OSELECT does fall through if we're calling selectnb{send,recv}[2].
   932  		// In those latter cases, go to the code after the select.
   933  		if b := s.endBlock(); b != nil {
   934  			b.AddEdgeTo(bEnd)
   935  		}
   936  		s.startBlock(bEnd)
   937  
   938  	case OVARKILL:
   939  		// Insert a varkill op to record that a variable is no longer live.
   940  		// We only care about liveness info at call sites, so putting the
   941  		// varkill in the store chain is enough to keep it correctly ordered
   942  		// with respect to call ops.
   943  		if !s.canSSA(n.Left) {
   944  			s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, ssa.TypeMem, n.Left, s.mem())
   945  		}
   946  
   947  	case OVARLIVE:
   948  		// Insert a varlive op to record that a variable is still live.
   949  		if !n.Left.Addrtaken {
   950  			s.Fatalf("VARLIVE variable %s must have Addrtaken set", n.Left)
   951  		}
   952  		s.vars[&memVar] = s.newValue1A(ssa.OpVarLive, ssa.TypeMem, n.Left, s.mem())
   953  
   954  	case OCHECKNIL:
   955  		p := s.expr(n.Left)
   956  		s.nilCheck(p)
   957  
   958  	default:
   959  		s.Unimplementedf("unhandled stmt %s", n.Op)
   960  	}
   961  }
   962  
   963  // exit processes any code that needs to be generated just before returning.
   964  // It returns a BlockRet block that ends the control flow. Its control value
   965  // will be set to the final memory state.
   966  func (s *state) exit() *ssa.Block {
   967  	if hasdefer {
   968  		s.rtcall(Deferreturn, true, nil)
   969  	}
   970  
   971  	// Run exit code. Typically, this code copies heap-allocated PPARAMOUT
   972  	// variables back to the stack.
   973  	s.stmts(s.exitCode)
   974  
   975  	// Store SSAable PPARAMOUT variables back to stack locations.
   976  	for _, n := range s.returns {
   977  		addr := s.decladdrs[n]
   978  		val := s.variable(n, n.Type)
   979  		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, n, s.mem())
   980  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, n.Type.Size(), addr, val, s.mem())
   981  		// TODO: if val is ever spilled, we'd like to use the
   982  		// PPARAMOUT slot for spilling it. That won't happen
   983  		// currently.
   984  	}
   985  
   986  	// Keep input pointer args live until the return. This is a bandaid
   987  	// fix for 1.7 for what will become in 1.8 explicit runtime.KeepAlive calls.
   988  	// For <= 1.7 we guarantee that pointer input arguments live to the end of
   989  	// the function to prevent premature (from the user's point of view)
   990  	// execution of finalizers. See issue 15277.
   991  	// TODO: remove for 1.8?
   992  	for _, n := range s.ptrargs {
   993  		s.vars[&memVar] = s.newValue2(ssa.OpKeepAlive, ssa.TypeMem, s.variable(n, n.Type), s.mem())
   994  	}
   995  
   996  	// Do actual return.
   997  	m := s.mem()
   998  	b := s.endBlock()
   999  	b.Kind = ssa.BlockRet
  1000  	b.SetControl(m)
  1001  	return b
  1002  }
  1003  
  1004  type opAndType struct {
  1005  	op    Op
  1006  	etype EType
  1007  }
  1008  
  1009  var opToSSA = map[opAndType]ssa.Op{
  1010  	opAndType{OADD, TINT8}:    ssa.OpAdd8,
  1011  	opAndType{OADD, TUINT8}:   ssa.OpAdd8,
  1012  	opAndType{OADD, TINT16}:   ssa.OpAdd16,
  1013  	opAndType{OADD, TUINT16}:  ssa.OpAdd16,
  1014  	opAndType{OADD, TINT32}:   ssa.OpAdd32,
  1015  	opAndType{OADD, TUINT32}:  ssa.OpAdd32,
  1016  	opAndType{OADD, TPTR32}:   ssa.OpAdd32,
  1017  	opAndType{OADD, TINT64}:   ssa.OpAdd64,
  1018  	opAndType{OADD, TUINT64}:  ssa.OpAdd64,
  1019  	opAndType{OADD, TPTR64}:   ssa.OpAdd64,
  1020  	opAndType{OADD, TFLOAT32}: ssa.OpAdd32F,
  1021  	opAndType{OADD, TFLOAT64}: ssa.OpAdd64F,
  1022  
  1023  	opAndType{OSUB, TINT8}:    ssa.OpSub8,
  1024  	opAndType{OSUB, TUINT8}:   ssa.OpSub8,
  1025  	opAndType{OSUB, TINT16}:   ssa.OpSub16,
  1026  	opAndType{OSUB, TUINT16}:  ssa.OpSub16,
  1027  	opAndType{OSUB, TINT32}:   ssa.OpSub32,
  1028  	opAndType{OSUB, TUINT32}:  ssa.OpSub32,
  1029  	opAndType{OSUB, TINT64}:   ssa.OpSub64,
  1030  	opAndType{OSUB, TUINT64}:  ssa.OpSub64,
  1031  	opAndType{OSUB, TFLOAT32}: ssa.OpSub32F,
  1032  	opAndType{OSUB, TFLOAT64}: ssa.OpSub64F,
  1033  
  1034  	opAndType{ONOT, TBOOL}: ssa.OpNot,
  1035  
  1036  	opAndType{OMINUS, TINT8}:    ssa.OpNeg8,
  1037  	opAndType{OMINUS, TUINT8}:   ssa.OpNeg8,
  1038  	opAndType{OMINUS, TINT16}:   ssa.OpNeg16,
  1039  	opAndType{OMINUS, TUINT16}:  ssa.OpNeg16,
  1040  	opAndType{OMINUS, TINT32}:   ssa.OpNeg32,
  1041  	opAndType{OMINUS, TUINT32}:  ssa.OpNeg32,
  1042  	opAndType{OMINUS, TINT64}:   ssa.OpNeg64,
  1043  	opAndType{OMINUS, TUINT64}:  ssa.OpNeg64,
  1044  	opAndType{OMINUS, TFLOAT32}: ssa.OpNeg32F,
  1045  	opAndType{OMINUS, TFLOAT64}: ssa.OpNeg64F,
  1046  
  1047  	opAndType{OCOM, TINT8}:   ssa.OpCom8,
  1048  	opAndType{OCOM, TUINT8}:  ssa.OpCom8,
  1049  	opAndType{OCOM, TINT16}:  ssa.OpCom16,
  1050  	opAndType{OCOM, TUINT16}: ssa.OpCom16,
  1051  	opAndType{OCOM, TINT32}:  ssa.OpCom32,
  1052  	opAndType{OCOM, TUINT32}: ssa.OpCom32,
  1053  	opAndType{OCOM, TINT64}:  ssa.OpCom64,
  1054  	opAndType{OCOM, TUINT64}: ssa.OpCom64,
  1055  
  1056  	opAndType{OIMAG, TCOMPLEX64}:  ssa.OpComplexImag,
  1057  	opAndType{OIMAG, TCOMPLEX128}: ssa.OpComplexImag,
  1058  	opAndType{OREAL, TCOMPLEX64}:  ssa.OpComplexReal,
  1059  	opAndType{OREAL, TCOMPLEX128}: ssa.OpComplexReal,
  1060  
  1061  	opAndType{OMUL, TINT8}:    ssa.OpMul8,
  1062  	opAndType{OMUL, TUINT8}:   ssa.OpMul8,
  1063  	opAndType{OMUL, TINT16}:   ssa.OpMul16,
  1064  	opAndType{OMUL, TUINT16}:  ssa.OpMul16,
  1065  	opAndType{OMUL, TINT32}:   ssa.OpMul32,
  1066  	opAndType{OMUL, TUINT32}:  ssa.OpMul32,
  1067  	opAndType{OMUL, TINT64}:   ssa.OpMul64,
  1068  	opAndType{OMUL, TUINT64}:  ssa.OpMul64,
  1069  	opAndType{OMUL, TFLOAT32}: ssa.OpMul32F,
  1070  	opAndType{OMUL, TFLOAT64}: ssa.OpMul64F,
  1071  
  1072  	opAndType{ODIV, TFLOAT32}: ssa.OpDiv32F,
  1073  	opAndType{ODIV, TFLOAT64}: ssa.OpDiv64F,
  1074  
  1075  	opAndType{OHMUL, TINT8}:   ssa.OpHmul8,
  1076  	opAndType{OHMUL, TUINT8}:  ssa.OpHmul8u,
  1077  	opAndType{OHMUL, TINT16}:  ssa.OpHmul16,
  1078  	opAndType{OHMUL, TUINT16}: ssa.OpHmul16u,
  1079  	opAndType{OHMUL, TINT32}:  ssa.OpHmul32,
  1080  	opAndType{OHMUL, TUINT32}: ssa.OpHmul32u,
  1081  
  1082  	opAndType{ODIV, TINT8}:   ssa.OpDiv8,
  1083  	opAndType{ODIV, TUINT8}:  ssa.OpDiv8u,
  1084  	opAndType{ODIV, TINT16}:  ssa.OpDiv16,
  1085  	opAndType{ODIV, TUINT16}: ssa.OpDiv16u,
  1086  	opAndType{ODIV, TINT32}:  ssa.OpDiv32,
  1087  	opAndType{ODIV, TUINT32}: ssa.OpDiv32u,
  1088  	opAndType{ODIV, TINT64}:  ssa.OpDiv64,
  1089  	opAndType{ODIV, TUINT64}: ssa.OpDiv64u,
  1090  
  1091  	opAndType{OMOD, TINT8}:   ssa.OpMod8,
  1092  	opAndType{OMOD, TUINT8}:  ssa.OpMod8u,
  1093  	opAndType{OMOD, TINT16}:  ssa.OpMod16,
  1094  	opAndType{OMOD, TUINT16}: ssa.OpMod16u,
  1095  	opAndType{OMOD, TINT32}:  ssa.OpMod32,
  1096  	opAndType{OMOD, TUINT32}: ssa.OpMod32u,
  1097  	opAndType{OMOD, TINT64}:  ssa.OpMod64,
  1098  	opAndType{OMOD, TUINT64}: ssa.OpMod64u,
  1099  
  1100  	opAndType{OAND, TINT8}:   ssa.OpAnd8,
  1101  	opAndType{OAND, TUINT8}:  ssa.OpAnd8,
  1102  	opAndType{OAND, TINT16}:  ssa.OpAnd16,
  1103  	opAndType{OAND, TUINT16}: ssa.OpAnd16,
  1104  	opAndType{OAND, TINT32}:  ssa.OpAnd32,
  1105  	opAndType{OAND, TUINT32}: ssa.OpAnd32,
  1106  	opAndType{OAND, TINT64}:  ssa.OpAnd64,
  1107  	opAndType{OAND, TUINT64}: ssa.OpAnd64,
  1108  
  1109  	opAndType{OOR, TINT8}:   ssa.OpOr8,
  1110  	opAndType{OOR, TUINT8}:  ssa.OpOr8,
  1111  	opAndType{OOR, TINT16}:  ssa.OpOr16,
  1112  	opAndType{OOR, TUINT16}: ssa.OpOr16,
  1113  	opAndType{OOR, TINT32}:  ssa.OpOr32,
  1114  	opAndType{OOR, TUINT32}: ssa.OpOr32,
  1115  	opAndType{OOR, TINT64}:  ssa.OpOr64,
  1116  	opAndType{OOR, TUINT64}: ssa.OpOr64,
  1117  
  1118  	opAndType{OXOR, TINT8}:   ssa.OpXor8,
  1119  	opAndType{OXOR, TUINT8}:  ssa.OpXor8,
  1120  	opAndType{OXOR, TINT16}:  ssa.OpXor16,
  1121  	opAndType{OXOR, TUINT16}: ssa.OpXor16,
  1122  	opAndType{OXOR, TINT32}:  ssa.OpXor32,
  1123  	opAndType{OXOR, TUINT32}: ssa.OpXor32,
  1124  	opAndType{OXOR, TINT64}:  ssa.OpXor64,
  1125  	opAndType{OXOR, TUINT64}: ssa.OpXor64,
  1126  
  1127  	opAndType{OEQ, TBOOL}:      ssa.OpEqB,
  1128  	opAndType{OEQ, TINT8}:      ssa.OpEq8,
  1129  	opAndType{OEQ, TUINT8}:     ssa.OpEq8,
  1130  	opAndType{OEQ, TINT16}:     ssa.OpEq16,
  1131  	opAndType{OEQ, TUINT16}:    ssa.OpEq16,
  1132  	opAndType{OEQ, TINT32}:     ssa.OpEq32,
  1133  	opAndType{OEQ, TUINT32}:    ssa.OpEq32,
  1134  	opAndType{OEQ, TINT64}:     ssa.OpEq64,
  1135  	opAndType{OEQ, TUINT64}:    ssa.OpEq64,
  1136  	opAndType{OEQ, TINTER}:     ssa.OpEqInter,
  1137  	opAndType{OEQ, TSLICE}:     ssa.OpEqSlice,
  1138  	opAndType{OEQ, TFUNC}:      ssa.OpEqPtr,
  1139  	opAndType{OEQ, TMAP}:       ssa.OpEqPtr,
  1140  	opAndType{OEQ, TCHAN}:      ssa.OpEqPtr,
  1141  	opAndType{OEQ, TPTR64}:     ssa.OpEqPtr,
  1142  	opAndType{OEQ, TUINTPTR}:   ssa.OpEqPtr,
  1143  	opAndType{OEQ, TUNSAFEPTR}: ssa.OpEqPtr,
  1144  	opAndType{OEQ, TFLOAT64}:   ssa.OpEq64F,
  1145  	opAndType{OEQ, TFLOAT32}:   ssa.OpEq32F,
  1146  
  1147  	opAndType{ONE, TBOOL}:      ssa.OpNeqB,
  1148  	opAndType{ONE, TINT8}:      ssa.OpNeq8,
  1149  	opAndType{ONE, TUINT8}:     ssa.OpNeq8,
  1150  	opAndType{ONE, TINT16}:     ssa.OpNeq16,
  1151  	opAndType{ONE, TUINT16}:    ssa.OpNeq16,
  1152  	opAndType{ONE, TINT32}:     ssa.OpNeq32,
  1153  	opAndType{ONE, TUINT32}:    ssa.OpNeq32,
  1154  	opAndType{ONE, TINT64}:     ssa.OpNeq64,
  1155  	opAndType{ONE, TUINT64}:    ssa.OpNeq64,
  1156  	opAndType{ONE, TINTER}:     ssa.OpNeqInter,
  1157  	opAndType{ONE, TSLICE}:     ssa.OpNeqSlice,
  1158  	opAndType{ONE, TFUNC}:      ssa.OpNeqPtr,
  1159  	opAndType{ONE, TMAP}:       ssa.OpNeqPtr,
  1160  	opAndType{ONE, TCHAN}:      ssa.OpNeqPtr,
  1161  	opAndType{ONE, TPTR64}:     ssa.OpNeqPtr,
  1162  	opAndType{ONE, TUINTPTR}:   ssa.OpNeqPtr,
  1163  	opAndType{ONE, TUNSAFEPTR}: ssa.OpNeqPtr,
  1164  	opAndType{ONE, TFLOAT64}:   ssa.OpNeq64F,
  1165  	opAndType{ONE, TFLOAT32}:   ssa.OpNeq32F,
  1166  
  1167  	opAndType{OLT, TINT8}:    ssa.OpLess8,
  1168  	opAndType{OLT, TUINT8}:   ssa.OpLess8U,
  1169  	opAndType{OLT, TINT16}:   ssa.OpLess16,
  1170  	opAndType{OLT, TUINT16}:  ssa.OpLess16U,
  1171  	opAndType{OLT, TINT32}:   ssa.OpLess32,
  1172  	opAndType{OLT, TUINT32}:  ssa.OpLess32U,
  1173  	opAndType{OLT, TINT64}:   ssa.OpLess64,
  1174  	opAndType{OLT, TUINT64}:  ssa.OpLess64U,
  1175  	opAndType{OLT, TFLOAT64}: ssa.OpLess64F,
  1176  	opAndType{OLT, TFLOAT32}: ssa.OpLess32F,
  1177  
  1178  	opAndType{OGT, TINT8}:    ssa.OpGreater8,
  1179  	opAndType{OGT, TUINT8}:   ssa.OpGreater8U,
  1180  	opAndType{OGT, TINT16}:   ssa.OpGreater16,
  1181  	opAndType{OGT, TUINT16}:  ssa.OpGreater16U,
  1182  	opAndType{OGT, TINT32}:   ssa.OpGreater32,
  1183  	opAndType{OGT, TUINT32}:  ssa.OpGreater32U,
  1184  	opAndType{OGT, TINT64}:   ssa.OpGreater64,
  1185  	opAndType{OGT, TUINT64}:  ssa.OpGreater64U,
  1186  	opAndType{OGT, TFLOAT64}: ssa.OpGreater64F,
  1187  	opAndType{OGT, TFLOAT32}: ssa.OpGreater32F,
  1188  
  1189  	opAndType{OLE, TINT8}:    ssa.OpLeq8,
  1190  	opAndType{OLE, TUINT8}:   ssa.OpLeq8U,
  1191  	opAndType{OLE, TINT16}:   ssa.OpLeq16,
  1192  	opAndType{OLE, TUINT16}:  ssa.OpLeq16U,
  1193  	opAndType{OLE, TINT32}:   ssa.OpLeq32,
  1194  	opAndType{OLE, TUINT32}:  ssa.OpLeq32U,
  1195  	opAndType{OLE, TINT64}:   ssa.OpLeq64,
  1196  	opAndType{OLE, TUINT64}:  ssa.OpLeq64U,
  1197  	opAndType{OLE, TFLOAT64}: ssa.OpLeq64F,
  1198  	opAndType{OLE, TFLOAT32}: ssa.OpLeq32F,
  1199  
  1200  	opAndType{OGE, TINT8}:    ssa.OpGeq8,
  1201  	opAndType{OGE, TUINT8}:   ssa.OpGeq8U,
  1202  	opAndType{OGE, TINT16}:   ssa.OpGeq16,
  1203  	opAndType{OGE, TUINT16}:  ssa.OpGeq16U,
  1204  	opAndType{OGE, TINT32}:   ssa.OpGeq32,
  1205  	opAndType{OGE, TUINT32}:  ssa.OpGeq32U,
  1206  	opAndType{OGE, TINT64}:   ssa.OpGeq64,
  1207  	opAndType{OGE, TUINT64}:  ssa.OpGeq64U,
  1208  	opAndType{OGE, TFLOAT64}: ssa.OpGeq64F,
  1209  	opAndType{OGE, TFLOAT32}: ssa.OpGeq32F,
  1210  
  1211  	opAndType{OLROT, TUINT8}:  ssa.OpLrot8,
  1212  	opAndType{OLROT, TUINT16}: ssa.OpLrot16,
  1213  	opAndType{OLROT, TUINT32}: ssa.OpLrot32,
  1214  	opAndType{OLROT, TUINT64}: ssa.OpLrot64,
  1215  
  1216  	opAndType{OSQRT, TFLOAT64}: ssa.OpSqrt,
  1217  }
  1218  
  1219  func (s *state) concreteEtype(t *Type) EType {
  1220  	e := t.Etype
  1221  	switch e {
  1222  	default:
  1223  		return e
  1224  	case TINT:
  1225  		if s.config.IntSize == 8 {
  1226  			return TINT64
  1227  		}
  1228  		return TINT32
  1229  	case TUINT:
  1230  		if s.config.IntSize == 8 {
  1231  			return TUINT64
  1232  		}
  1233  		return TUINT32
  1234  	case TUINTPTR:
  1235  		if s.config.PtrSize == 8 {
  1236  			return TUINT64
  1237  		}
  1238  		return TUINT32
  1239  	}
  1240  }
  1241  
  1242  func (s *state) ssaOp(op Op, t *Type) ssa.Op {
  1243  	etype := s.concreteEtype(t)
  1244  	x, ok := opToSSA[opAndType{op, etype}]
  1245  	if !ok {
  1246  		s.Unimplementedf("unhandled binary op %s %s", op, etype)
  1247  	}
  1248  	return x
  1249  }
  1250  
  1251  func floatForComplex(t *Type) *Type {
  1252  	if t.Size() == 8 {
  1253  		return Types[TFLOAT32]
  1254  	} else {
  1255  		return Types[TFLOAT64]
  1256  	}
  1257  }
  1258  
  1259  type opAndTwoTypes struct {
  1260  	op     Op
  1261  	etype1 EType
  1262  	etype2 EType
  1263  }
  1264  
  1265  type twoTypes struct {
  1266  	etype1 EType
  1267  	etype2 EType
  1268  }
  1269  
  1270  type twoOpsAndType struct {
  1271  	op1              ssa.Op
  1272  	op2              ssa.Op
  1273  	intermediateType EType
  1274  }
  1275  
  1276  var fpConvOpToSSA = map[twoTypes]twoOpsAndType{
  1277  
  1278  	twoTypes{TINT8, TFLOAT32}:  twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to32F, TINT32},
  1279  	twoTypes{TINT16, TFLOAT32}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to32F, TINT32},
  1280  	twoTypes{TINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to32F, TINT32},
  1281  	twoTypes{TINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to32F, TINT64},
  1282  
  1283  	twoTypes{TINT8, TFLOAT64}:  twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to64F, TINT32},
  1284  	twoTypes{TINT16, TFLOAT64}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to64F, TINT32},
  1285  	twoTypes{TINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to64F, TINT32},
  1286  	twoTypes{TINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to64F, TINT64},
  1287  
  1288  	twoTypes{TFLOAT32, TINT8}:  twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32},
  1289  	twoTypes{TFLOAT32, TINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32},
  1290  	twoTypes{TFLOAT32, TINT32}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpCopy, TINT32},
  1291  	twoTypes{TFLOAT32, TINT64}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpCopy, TINT64},
  1292  
  1293  	twoTypes{TFLOAT64, TINT8}:  twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32},
  1294  	twoTypes{TFLOAT64, TINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32},
  1295  	twoTypes{TFLOAT64, TINT32}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpCopy, TINT32},
  1296  	twoTypes{TFLOAT64, TINT64}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpCopy, TINT64},
  1297  	// unsigned
  1298  	twoTypes{TUINT8, TFLOAT32}:  twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to32F, TINT32},
  1299  	twoTypes{TUINT16, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to32F, TINT32},
  1300  	twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to32F, TINT64}, // go wide to dodge unsigned
  1301  	twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64},            // Cvt64Uto32F, branchy code expansion instead
  1302  
  1303  	twoTypes{TUINT8, TFLOAT64}:  twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to64F, TINT32},
  1304  	twoTypes{TUINT16, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to64F, TINT32},
  1305  	twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to64F, TINT64}, // go wide to dodge unsigned
  1306  	twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64},            // Cvt64Uto64F, branchy code expansion instead
  1307  
  1308  	twoTypes{TFLOAT32, TUINT8}:  twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32},
  1309  	twoTypes{TFLOAT32, TUINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32},
  1310  	twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned
  1311  	twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64},          // Cvt32Fto64U, branchy code expansion instead
  1312  
  1313  	twoTypes{TFLOAT64, TUINT8}:  twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32},
  1314  	twoTypes{TFLOAT64, TUINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32},
  1315  	twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned
  1316  	twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64},          // Cvt64Fto64U, branchy code expansion instead
  1317  
  1318  	// float
  1319  	twoTypes{TFLOAT64, TFLOAT32}: twoOpsAndType{ssa.OpCvt64Fto32F, ssa.OpCopy, TFLOAT32},
  1320  	twoTypes{TFLOAT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCopy, TFLOAT64},
  1321  	twoTypes{TFLOAT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCopy, TFLOAT32},
  1322  	twoTypes{TFLOAT32, TFLOAT64}: twoOpsAndType{ssa.OpCvt32Fto64F, ssa.OpCopy, TFLOAT64},
  1323  }
  1324  
  1325  var shiftOpToSSA = map[opAndTwoTypes]ssa.Op{
  1326  	opAndTwoTypes{OLSH, TINT8, TUINT8}:   ssa.OpLsh8x8,
  1327  	opAndTwoTypes{OLSH, TUINT8, TUINT8}:  ssa.OpLsh8x8,
  1328  	opAndTwoTypes{OLSH, TINT8, TUINT16}:  ssa.OpLsh8x16,
  1329  	opAndTwoTypes{OLSH, TUINT8, TUINT16}: ssa.OpLsh8x16,
  1330  	opAndTwoTypes{OLSH, TINT8, TUINT32}:  ssa.OpLsh8x32,
  1331  	opAndTwoTypes{OLSH, TUINT8, TUINT32}: ssa.OpLsh8x32,
  1332  	opAndTwoTypes{OLSH, TINT8, TUINT64}:  ssa.OpLsh8x64,
  1333  	opAndTwoTypes{OLSH, TUINT8, TUINT64}: ssa.OpLsh8x64,
  1334  
  1335  	opAndTwoTypes{OLSH, TINT16, TUINT8}:   ssa.OpLsh16x8,
  1336  	opAndTwoTypes{OLSH, TUINT16, TUINT8}:  ssa.OpLsh16x8,
  1337  	opAndTwoTypes{OLSH, TINT16, TUINT16}:  ssa.OpLsh16x16,
  1338  	opAndTwoTypes{OLSH, TUINT16, TUINT16}: ssa.OpLsh16x16,
  1339  	opAndTwoTypes{OLSH, TINT16, TUINT32}:  ssa.OpLsh16x32,
  1340  	opAndTwoTypes{OLSH, TUINT16, TUINT32}: ssa.OpLsh16x32,
  1341  	opAndTwoTypes{OLSH, TINT16, TUINT64}:  ssa.OpLsh16x64,
  1342  	opAndTwoTypes{OLSH, TUINT16, TUINT64}: ssa.OpLsh16x64,
  1343  
  1344  	opAndTwoTypes{OLSH, TINT32, TUINT8}:   ssa.OpLsh32x8,
  1345  	opAndTwoTypes{OLSH, TUINT32, TUINT8}:  ssa.OpLsh32x8,
  1346  	opAndTwoTypes{OLSH, TINT32, TUINT16}:  ssa.OpLsh32x16,
  1347  	opAndTwoTypes{OLSH, TUINT32, TUINT16}: ssa.OpLsh32x16,
  1348  	opAndTwoTypes{OLSH, TINT32, TUINT32}:  ssa.OpLsh32x32,
  1349  	opAndTwoTypes{OLSH, TUINT32, TUINT32}: ssa.OpLsh32x32,
  1350  	opAndTwoTypes{OLSH, TINT32, TUINT64}:  ssa.OpLsh32x64,
  1351  	opAndTwoTypes{OLSH, TUINT32, TUINT64}: ssa.OpLsh32x64,
  1352  
  1353  	opAndTwoTypes{OLSH, TINT64, TUINT8}:   ssa.OpLsh64x8,
  1354  	opAndTwoTypes{OLSH, TUINT64, TUINT8}:  ssa.OpLsh64x8,
  1355  	opAndTwoTypes{OLSH, TINT64, TUINT16}:  ssa.OpLsh64x16,
  1356  	opAndTwoTypes{OLSH, TUINT64, TUINT16}: ssa.OpLsh64x16,
  1357  	opAndTwoTypes{OLSH, TINT64, TUINT32}:  ssa.OpLsh64x32,
  1358  	opAndTwoTypes{OLSH, TUINT64, TUINT32}: ssa.OpLsh64x32,
  1359  	opAndTwoTypes{OLSH, TINT64, TUINT64}:  ssa.OpLsh64x64,
  1360  	opAndTwoTypes{OLSH, TUINT64, TUINT64}: ssa.OpLsh64x64,
  1361  
  1362  	opAndTwoTypes{ORSH, TINT8, TUINT8}:   ssa.OpRsh8x8,
  1363  	opAndTwoTypes{ORSH, TUINT8, TUINT8}:  ssa.OpRsh8Ux8,
  1364  	opAndTwoTypes{ORSH, TINT8, TUINT16}:  ssa.OpRsh8x16,
  1365  	opAndTwoTypes{ORSH, TUINT8, TUINT16}: ssa.OpRsh8Ux16,
  1366  	opAndTwoTypes{ORSH, TINT8, TUINT32}:  ssa.OpRsh8x32,
  1367  	opAndTwoTypes{ORSH, TUINT8, TUINT32}: ssa.OpRsh8Ux32,
  1368  	opAndTwoTypes{ORSH, TINT8, TUINT64}:  ssa.OpRsh8x64,
  1369  	opAndTwoTypes{ORSH, TUINT8, TUINT64}: ssa.OpRsh8Ux64,
  1370  
  1371  	opAndTwoTypes{ORSH, TINT16, TUINT8}:   ssa.OpRsh16x8,
  1372  	opAndTwoTypes{ORSH, TUINT16, TUINT8}:  ssa.OpRsh16Ux8,
  1373  	opAndTwoTypes{ORSH, TINT16, TUINT16}:  ssa.OpRsh16x16,
  1374  	opAndTwoTypes{ORSH, TUINT16, TUINT16}: ssa.OpRsh16Ux16,
  1375  	opAndTwoTypes{ORSH, TINT16, TUINT32}:  ssa.OpRsh16x32,
  1376  	opAndTwoTypes{ORSH, TUINT16, TUINT32}: ssa.OpRsh16Ux32,
  1377  	opAndTwoTypes{ORSH, TINT16, TUINT64}:  ssa.OpRsh16x64,
  1378  	opAndTwoTypes{ORSH, TUINT16, TUINT64}: ssa.OpRsh16Ux64,
  1379  
  1380  	opAndTwoTypes{ORSH, TINT32, TUINT8}:   ssa.OpRsh32x8,
  1381  	opAndTwoTypes{ORSH, TUINT32, TUINT8}:  ssa.OpRsh32Ux8,
  1382  	opAndTwoTypes{ORSH, TINT32, TUINT16}:  ssa.OpRsh32x16,
  1383  	opAndTwoTypes{ORSH, TUINT32, TUINT16}: ssa.OpRsh32Ux16,
  1384  	opAndTwoTypes{ORSH, TINT32, TUINT32}:  ssa.OpRsh32x32,
  1385  	opAndTwoTypes{ORSH, TUINT32, TUINT32}: ssa.OpRsh32Ux32,
  1386  	opAndTwoTypes{ORSH, TINT32, TUINT64}:  ssa.OpRsh32x64,
  1387  	opAndTwoTypes{ORSH, TUINT32, TUINT64}: ssa.OpRsh32Ux64,
  1388  
  1389  	opAndTwoTypes{ORSH, TINT64, TUINT8}:   ssa.OpRsh64x8,
  1390  	opAndTwoTypes{ORSH, TUINT64, TUINT8}:  ssa.OpRsh64Ux8,
  1391  	opAndTwoTypes{ORSH, TINT64, TUINT16}:  ssa.OpRsh64x16,
  1392  	opAndTwoTypes{ORSH, TUINT64, TUINT16}: ssa.OpRsh64Ux16,
  1393  	opAndTwoTypes{ORSH, TINT64, TUINT32}:  ssa.OpRsh64x32,
  1394  	opAndTwoTypes{ORSH, TUINT64, TUINT32}: ssa.OpRsh64Ux32,
  1395  	opAndTwoTypes{ORSH, TINT64, TUINT64}:  ssa.OpRsh64x64,
  1396  	opAndTwoTypes{ORSH, TUINT64, TUINT64}: ssa.OpRsh64Ux64,
  1397  }
  1398  
  1399  func (s *state) ssaShiftOp(op Op, t *Type, u *Type) ssa.Op {
  1400  	etype1 := s.concreteEtype(t)
  1401  	etype2 := s.concreteEtype(u)
  1402  	x, ok := shiftOpToSSA[opAndTwoTypes{op, etype1, etype2}]
  1403  	if !ok {
  1404  		s.Unimplementedf("unhandled shift op %s etype=%s/%s", op, etype1, etype2)
  1405  	}
  1406  	return x
  1407  }
  1408  
  1409  func (s *state) ssaRotateOp(op Op, t *Type) ssa.Op {
  1410  	etype1 := s.concreteEtype(t)
  1411  	x, ok := opToSSA[opAndType{op, etype1}]
  1412  	if !ok {
  1413  		s.Unimplementedf("unhandled rotate op %s etype=%s", op, etype1)
  1414  	}
  1415  	return x
  1416  }
  1417  
  1418  // expr converts the expression n to ssa, adds it to s and returns the ssa result.
  1419  func (s *state) expr(n *Node) *ssa.Value {
  1420  	if !(n.Op == ONAME || n.Op == OLITERAL && n.Sym != nil) {
  1421  		// ONAMEs and named OLITERALs have the line number
  1422  		// of the decl, not the use. See issue 14742.
  1423  		s.pushLine(n.Lineno)
  1424  		defer s.popLine()
  1425  	}
  1426  
  1427  	s.stmtList(n.Ninit)
  1428  	switch n.Op {
  1429  	case OCFUNC:
  1430  		aux := s.lookupSymbol(n, &ssa.ExternSymbol{Typ: n.Type, Sym: n.Left.Sym})
  1431  		return s.entryNewValue1A(ssa.OpAddr, n.Type, aux, s.sb)
  1432  	case ONAME:
  1433  		if n.Class == PFUNC {
  1434  			// "value" of a function is the address of the function's closure
  1435  			sym := funcsym(n.Sym)
  1436  			aux := &ssa.ExternSymbol{Typ: n.Type, Sym: sym}
  1437  			return s.entryNewValue1A(ssa.OpAddr, Ptrto(n.Type), aux, s.sb)
  1438  		}
  1439  		if s.canSSA(n) {
  1440  			return s.variable(n, n.Type)
  1441  		}
  1442  		addr, _ := s.addr(n, false)
  1443  		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  1444  	case OCLOSUREVAR:
  1445  		addr, _ := s.addr(n, false)
  1446  		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  1447  	case OLITERAL:
  1448  		switch u := n.Val().U.(type) {
  1449  		case *Mpint:
  1450  			i := u.Int64()
  1451  			switch n.Type.Size() {
  1452  			case 1:
  1453  				return s.constInt8(n.Type, int8(i))
  1454  			case 2:
  1455  				return s.constInt16(n.Type, int16(i))
  1456  			case 4:
  1457  				return s.constInt32(n.Type, int32(i))
  1458  			case 8:
  1459  				return s.constInt64(n.Type, i)
  1460  			default:
  1461  				s.Fatalf("bad integer size %d", n.Type.Size())
  1462  				return nil
  1463  			}
  1464  		case string:
  1465  			if u == "" {
  1466  				return s.constEmptyString(n.Type)
  1467  			}
  1468  			return s.entryNewValue0A(ssa.OpConstString, n.Type, u)
  1469  		case bool:
  1470  			return s.constBool(u)
  1471  		case *NilVal:
  1472  			t := n.Type
  1473  			switch {
  1474  			case t.IsSlice():
  1475  				return s.constSlice(t)
  1476  			case t.IsInterface():
  1477  				return s.constInterface(t)
  1478  			default:
  1479  				return s.constNil(t)
  1480  			}
  1481  		case *Mpflt:
  1482  			switch n.Type.Size() {
  1483  			case 4:
  1484  				return s.constFloat32(n.Type, u.Float32())
  1485  			case 8:
  1486  				return s.constFloat64(n.Type, u.Float64())
  1487  			default:
  1488  				s.Fatalf("bad float size %d", n.Type.Size())
  1489  				return nil
  1490  			}
  1491  		case *Mpcplx:
  1492  			r := &u.Real
  1493  			i := &u.Imag
  1494  			switch n.Type.Size() {
  1495  			case 8:
  1496  				pt := Types[TFLOAT32]
  1497  				return s.newValue2(ssa.OpComplexMake, n.Type,
  1498  					s.constFloat32(pt, r.Float32()),
  1499  					s.constFloat32(pt, i.Float32()))
  1500  			case 16:
  1501  				pt := Types[TFLOAT64]
  1502  				return s.newValue2(ssa.OpComplexMake, n.Type,
  1503  					s.constFloat64(pt, r.Float64()),
  1504  					s.constFloat64(pt, i.Float64()))
  1505  			default:
  1506  				s.Fatalf("bad float size %d", n.Type.Size())
  1507  				return nil
  1508  			}
  1509  
  1510  		default:
  1511  			s.Unimplementedf("unhandled OLITERAL %v", n.Val().Ctype())
  1512  			return nil
  1513  		}
  1514  	case OCONVNOP:
  1515  		to := n.Type
  1516  		from := n.Left.Type
  1517  
  1518  		// Assume everything will work out, so set up our return value.
  1519  		// Anything interesting that happens from here is a fatal.
  1520  		x := s.expr(n.Left)
  1521  
  1522  		// Special case for not confusing GC and liveness.
  1523  		// We don't want pointers accidentally classified
  1524  		// as not-pointers or vice-versa because of copy
  1525  		// elision.
  1526  		if to.IsPtrShaped() != from.IsPtrShaped() {
  1527  			return s.newValue2(ssa.OpConvert, to, x, s.mem())
  1528  		}
  1529  
  1530  		v := s.newValue1(ssa.OpCopy, to, x) // ensure that v has the right type
  1531  
  1532  		// CONVNOP closure
  1533  		if to.Etype == TFUNC && from.IsPtrShaped() {
  1534  			return v
  1535  		}
  1536  
  1537  		// named <--> unnamed type or typed <--> untyped const
  1538  		if from.Etype == to.Etype {
  1539  			return v
  1540  		}
  1541  
  1542  		// unsafe.Pointer <--> *T
  1543  		if to.Etype == TUNSAFEPTR && from.IsPtr() || from.Etype == TUNSAFEPTR && to.IsPtr() {
  1544  			return v
  1545  		}
  1546  
  1547  		dowidth(from)
  1548  		dowidth(to)
  1549  		if from.Width != to.Width {
  1550  			s.Fatalf("CONVNOP width mismatch %v (%d) -> %v (%d)\n", from, from.Width, to, to.Width)
  1551  			return nil
  1552  		}
  1553  		if etypesign(from.Etype) != etypesign(to.Etype) {
  1554  			s.Fatalf("CONVNOP sign mismatch %v (%s) -> %v (%s)\n", from, from.Etype, to, to.Etype)
  1555  			return nil
  1556  		}
  1557  
  1558  		if instrumenting {
  1559  			// These appear to be fine, but they fail the
  1560  			// integer constraint below, so okay them here.
  1561  			// Sample non-integer conversion: map[string]string -> *uint8
  1562  			return v
  1563  		}
  1564  
  1565  		if etypesign(from.Etype) == 0 {
  1566  			s.Fatalf("CONVNOP unrecognized non-integer %v -> %v\n", from, to)
  1567  			return nil
  1568  		}
  1569  
  1570  		// integer, same width, same sign
  1571  		return v
  1572  
  1573  	case OCONV:
  1574  		x := s.expr(n.Left)
  1575  		ft := n.Left.Type // from type
  1576  		tt := n.Type      // to type
  1577  		if ft.IsInteger() && tt.IsInteger() {
  1578  			var op ssa.Op
  1579  			if tt.Size() == ft.Size() {
  1580  				op = ssa.OpCopy
  1581  			} else if tt.Size() < ft.Size() {
  1582  				// truncation
  1583  				switch 10*ft.Size() + tt.Size() {
  1584  				case 21:
  1585  					op = ssa.OpTrunc16to8
  1586  				case 41:
  1587  					op = ssa.OpTrunc32to8
  1588  				case 42:
  1589  					op = ssa.OpTrunc32to16
  1590  				case 81:
  1591  					op = ssa.OpTrunc64to8
  1592  				case 82:
  1593  					op = ssa.OpTrunc64to16
  1594  				case 84:
  1595  					op = ssa.OpTrunc64to32
  1596  				default:
  1597  					s.Fatalf("weird integer truncation %s -> %s", ft, tt)
  1598  				}
  1599  			} else if ft.IsSigned() {
  1600  				// sign extension
  1601  				switch 10*ft.Size() + tt.Size() {
  1602  				case 12:
  1603  					op = ssa.OpSignExt8to16
  1604  				case 14:
  1605  					op = ssa.OpSignExt8to32
  1606  				case 18:
  1607  					op = ssa.OpSignExt8to64
  1608  				case 24:
  1609  					op = ssa.OpSignExt16to32
  1610  				case 28:
  1611  					op = ssa.OpSignExt16to64
  1612  				case 48:
  1613  					op = ssa.OpSignExt32to64
  1614  				default:
  1615  					s.Fatalf("bad integer sign extension %s -> %s", ft, tt)
  1616  				}
  1617  			} else {
  1618  				// zero extension
  1619  				switch 10*ft.Size() + tt.Size() {
  1620  				case 12:
  1621  					op = ssa.OpZeroExt8to16
  1622  				case 14:
  1623  					op = ssa.OpZeroExt8to32
  1624  				case 18:
  1625  					op = ssa.OpZeroExt8to64
  1626  				case 24:
  1627  					op = ssa.OpZeroExt16to32
  1628  				case 28:
  1629  					op = ssa.OpZeroExt16to64
  1630  				case 48:
  1631  					op = ssa.OpZeroExt32to64
  1632  				default:
  1633  					s.Fatalf("weird integer sign extension %s -> %s", ft, tt)
  1634  				}
  1635  			}
  1636  			return s.newValue1(op, n.Type, x)
  1637  		}
  1638  
  1639  		if ft.IsFloat() || tt.IsFloat() {
  1640  			conv, ok := fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]
  1641  			if !ok {
  1642  				s.Fatalf("weird float conversion %s -> %s", ft, tt)
  1643  			}
  1644  			op1, op2, it := conv.op1, conv.op2, conv.intermediateType
  1645  
  1646  			if op1 != ssa.OpInvalid && op2 != ssa.OpInvalid {
  1647  				// normal case, not tripping over unsigned 64
  1648  				if op1 == ssa.OpCopy {
  1649  					if op2 == ssa.OpCopy {
  1650  						return x
  1651  					}
  1652  					return s.newValue1(op2, n.Type, x)
  1653  				}
  1654  				if op2 == ssa.OpCopy {
  1655  					return s.newValue1(op1, n.Type, x)
  1656  				}
  1657  				return s.newValue1(op2, n.Type, s.newValue1(op1, Types[it], x))
  1658  			}
  1659  			// Tricky 64-bit unsigned cases.
  1660  			if ft.IsInteger() {
  1661  				// therefore tt is float32 or float64, and ft is also unsigned
  1662  				if tt.Size() == 4 {
  1663  					return s.uint64Tofloat32(n, x, ft, tt)
  1664  				}
  1665  				if tt.Size() == 8 {
  1666  					return s.uint64Tofloat64(n, x, ft, tt)
  1667  				}
  1668  				s.Fatalf("weird unsigned integer to float conversion %s -> %s", ft, tt)
  1669  			}
  1670  			// therefore ft is float32 or float64, and tt is unsigned integer
  1671  			if ft.Size() == 4 {
  1672  				return s.float32ToUint64(n, x, ft, tt)
  1673  			}
  1674  			if ft.Size() == 8 {
  1675  				return s.float64ToUint64(n, x, ft, tt)
  1676  			}
  1677  			s.Fatalf("weird float to unsigned integer conversion %s -> %s", ft, tt)
  1678  			return nil
  1679  		}
  1680  
  1681  		if ft.IsComplex() && tt.IsComplex() {
  1682  			var op ssa.Op
  1683  			if ft.Size() == tt.Size() {
  1684  				op = ssa.OpCopy
  1685  			} else if ft.Size() == 8 && tt.Size() == 16 {
  1686  				op = ssa.OpCvt32Fto64F
  1687  			} else if ft.Size() == 16 && tt.Size() == 8 {
  1688  				op = ssa.OpCvt64Fto32F
  1689  			} else {
  1690  				s.Fatalf("weird complex conversion %s -> %s", ft, tt)
  1691  			}
  1692  			ftp := floatForComplex(ft)
  1693  			ttp := floatForComplex(tt)
  1694  			return s.newValue2(ssa.OpComplexMake, tt,
  1695  				s.newValue1(op, ttp, s.newValue1(ssa.OpComplexReal, ftp, x)),
  1696  				s.newValue1(op, ttp, s.newValue1(ssa.OpComplexImag, ftp, x)))
  1697  		}
  1698  
  1699  		s.Unimplementedf("unhandled OCONV %s -> %s", n.Left.Type.Etype, n.Type.Etype)
  1700  		return nil
  1701  
  1702  	case ODOTTYPE:
  1703  		res, _ := s.dottype(n, false)
  1704  		return res
  1705  
  1706  	// binary ops
  1707  	case OLT, OEQ, ONE, OLE, OGE, OGT:
  1708  		a := s.expr(n.Left)
  1709  		b := s.expr(n.Right)
  1710  		if n.Left.Type.IsComplex() {
  1711  			pt := floatForComplex(n.Left.Type)
  1712  			op := s.ssaOp(OEQ, pt)
  1713  			r := s.newValue2(op, Types[TBOOL], s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b))
  1714  			i := s.newValue2(op, Types[TBOOL], s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b))
  1715  			c := s.newValue2(ssa.OpAnd8, Types[TBOOL], r, i)
  1716  			switch n.Op {
  1717  			case OEQ:
  1718  				return c
  1719  			case ONE:
  1720  				return s.newValue1(ssa.OpNot, Types[TBOOL], c)
  1721  			default:
  1722  				s.Fatalf("ordered complex compare %s", n.Op)
  1723  			}
  1724  		}
  1725  		return s.newValue2(s.ssaOp(n.Op, n.Left.Type), Types[TBOOL], a, b)
  1726  	case OMUL:
  1727  		a := s.expr(n.Left)
  1728  		b := s.expr(n.Right)
  1729  		if n.Type.IsComplex() {
  1730  			mulop := ssa.OpMul64F
  1731  			addop := ssa.OpAdd64F
  1732  			subop := ssa.OpSub64F
  1733  			pt := floatForComplex(n.Type) // Could be Float32 or Float64
  1734  			wt := Types[TFLOAT64]         // Compute in Float64 to minimize cancellation error
  1735  
  1736  			areal := s.newValue1(ssa.OpComplexReal, pt, a)
  1737  			breal := s.newValue1(ssa.OpComplexReal, pt, b)
  1738  			aimag := s.newValue1(ssa.OpComplexImag, pt, a)
  1739  			bimag := s.newValue1(ssa.OpComplexImag, pt, b)
  1740  
  1741  			if pt != wt { // Widen for calculation
  1742  				areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal)
  1743  				breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal)
  1744  				aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag)
  1745  				bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag)
  1746  			}
  1747  
  1748  			xreal := s.newValue2(subop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag))
  1749  			ximag := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, bimag), s.newValue2(mulop, wt, aimag, breal))
  1750  
  1751  			if pt != wt { // Narrow to store back
  1752  				xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal)
  1753  				ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag)
  1754  			}
  1755  
  1756  			return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag)
  1757  		}
  1758  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1759  
  1760  	case ODIV:
  1761  		a := s.expr(n.Left)
  1762  		b := s.expr(n.Right)
  1763  		if n.Type.IsComplex() {
  1764  			// TODO this is not executed because the front-end substitutes a runtime call.
  1765  			// That probably ought to change; with modest optimization the widen/narrow
  1766  			// conversions could all be elided in larger expression trees.
  1767  			mulop := ssa.OpMul64F
  1768  			addop := ssa.OpAdd64F
  1769  			subop := ssa.OpSub64F
  1770  			divop := ssa.OpDiv64F
  1771  			pt := floatForComplex(n.Type) // Could be Float32 or Float64
  1772  			wt := Types[TFLOAT64]         // Compute in Float64 to minimize cancellation error
  1773  
  1774  			areal := s.newValue1(ssa.OpComplexReal, pt, a)
  1775  			breal := s.newValue1(ssa.OpComplexReal, pt, b)
  1776  			aimag := s.newValue1(ssa.OpComplexImag, pt, a)
  1777  			bimag := s.newValue1(ssa.OpComplexImag, pt, b)
  1778  
  1779  			if pt != wt { // Widen for calculation
  1780  				areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal)
  1781  				breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal)
  1782  				aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag)
  1783  				bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag)
  1784  			}
  1785  
  1786  			denom := s.newValue2(addop, wt, s.newValue2(mulop, wt, breal, breal), s.newValue2(mulop, wt, bimag, bimag))
  1787  			xreal := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag))
  1788  			ximag := s.newValue2(subop, wt, s.newValue2(mulop, wt, aimag, breal), s.newValue2(mulop, wt, areal, bimag))
  1789  
  1790  			// TODO not sure if this is best done in wide precision or narrow
  1791  			// Double-rounding might be an issue.
  1792  			// Note that the pre-SSA implementation does the entire calculation
  1793  			// in wide format, so wide is compatible.
  1794  			xreal = s.newValue2(divop, wt, xreal, denom)
  1795  			ximag = s.newValue2(divop, wt, ximag, denom)
  1796  
  1797  			if pt != wt { // Narrow to store back
  1798  				xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal)
  1799  				ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag)
  1800  			}
  1801  			return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag)
  1802  		}
  1803  		if n.Type.IsFloat() {
  1804  			return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1805  		} else {
  1806  			// do a size-appropriate check for zero
  1807  			cmp := s.newValue2(s.ssaOp(ONE, n.Type), Types[TBOOL], b, s.zeroVal(n.Type))
  1808  			s.check(cmp, panicdivide)
  1809  			return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1810  		}
  1811  	case OMOD:
  1812  		a := s.expr(n.Left)
  1813  		b := s.expr(n.Right)
  1814  		// do a size-appropriate check for zero
  1815  		cmp := s.newValue2(s.ssaOp(ONE, n.Type), Types[TBOOL], b, s.zeroVal(n.Type))
  1816  		s.check(cmp, panicdivide)
  1817  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1818  	case OADD, OSUB:
  1819  		a := s.expr(n.Left)
  1820  		b := s.expr(n.Right)
  1821  		if n.Type.IsComplex() {
  1822  			pt := floatForComplex(n.Type)
  1823  			op := s.ssaOp(n.Op, pt)
  1824  			return s.newValue2(ssa.OpComplexMake, n.Type,
  1825  				s.newValue2(op, pt, s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)),
  1826  				s.newValue2(op, pt, s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b)))
  1827  		}
  1828  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1829  	case OAND, OOR, OHMUL, OXOR:
  1830  		a := s.expr(n.Left)
  1831  		b := s.expr(n.Right)
  1832  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1833  	case OLSH, ORSH:
  1834  		a := s.expr(n.Left)
  1835  		b := s.expr(n.Right)
  1836  		return s.newValue2(s.ssaShiftOp(n.Op, n.Type, n.Right.Type), a.Type, a, b)
  1837  	case OLROT:
  1838  		a := s.expr(n.Left)
  1839  		i := n.Right.Int64()
  1840  		if i <= 0 || i >= n.Type.Size()*8 {
  1841  			s.Fatalf("Wrong rotate distance for LROT, expected 1 through %d, saw %d", n.Type.Size()*8-1, i)
  1842  		}
  1843  		return s.newValue1I(s.ssaRotateOp(n.Op, n.Type), a.Type, i, a)
  1844  	case OANDAND, OOROR:
  1845  		// To implement OANDAND (and OOROR), we introduce a
  1846  		// new temporary variable to hold the result. The
  1847  		// variable is associated with the OANDAND node in the
  1848  		// s.vars table (normally variables are only
  1849  		// associated with ONAME nodes). We convert
  1850  		//     A && B
  1851  		// to
  1852  		//     var = A
  1853  		//     if var {
  1854  		//         var = B
  1855  		//     }
  1856  		// Using var in the subsequent block introduces the
  1857  		// necessary phi variable.
  1858  		el := s.expr(n.Left)
  1859  		s.vars[n] = el
  1860  
  1861  		b := s.endBlock()
  1862  		b.Kind = ssa.BlockIf
  1863  		b.SetControl(el)
  1864  		// In theory, we should set b.Likely here based on context.
  1865  		// However, gc only gives us likeliness hints
  1866  		// in a single place, for plain OIF statements,
  1867  		// and passing around context is finnicky, so don't bother for now.
  1868  
  1869  		bRight := s.f.NewBlock(ssa.BlockPlain)
  1870  		bResult := s.f.NewBlock(ssa.BlockPlain)
  1871  		if n.Op == OANDAND {
  1872  			b.AddEdgeTo(bRight)
  1873  			b.AddEdgeTo(bResult)
  1874  		} else if n.Op == OOROR {
  1875  			b.AddEdgeTo(bResult)
  1876  			b.AddEdgeTo(bRight)
  1877  		}
  1878  
  1879  		s.startBlock(bRight)
  1880  		er := s.expr(n.Right)
  1881  		s.vars[n] = er
  1882  
  1883  		b = s.endBlock()
  1884  		b.AddEdgeTo(bResult)
  1885  
  1886  		s.startBlock(bResult)
  1887  		return s.variable(n, Types[TBOOL])
  1888  	case OCOMPLEX:
  1889  		r := s.expr(n.Left)
  1890  		i := s.expr(n.Right)
  1891  		return s.newValue2(ssa.OpComplexMake, n.Type, r, i)
  1892  
  1893  	// unary ops
  1894  	case OMINUS:
  1895  		a := s.expr(n.Left)
  1896  		if n.Type.IsComplex() {
  1897  			tp := floatForComplex(n.Type)
  1898  			negop := s.ssaOp(n.Op, tp)
  1899  			return s.newValue2(ssa.OpComplexMake, n.Type,
  1900  				s.newValue1(negop, tp, s.newValue1(ssa.OpComplexReal, tp, a)),
  1901  				s.newValue1(negop, tp, s.newValue1(ssa.OpComplexImag, tp, a)))
  1902  		}
  1903  		return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a)
  1904  	case ONOT, OCOM, OSQRT:
  1905  		a := s.expr(n.Left)
  1906  		return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a)
  1907  	case OIMAG, OREAL:
  1908  		a := s.expr(n.Left)
  1909  		return s.newValue1(s.ssaOp(n.Op, n.Left.Type), n.Type, a)
  1910  	case OPLUS:
  1911  		return s.expr(n.Left)
  1912  
  1913  	case OADDR:
  1914  		a, _ := s.addr(n.Left, n.Bounded)
  1915  		// Note we know the volatile result is false because you can't write &f() in Go.
  1916  		return a
  1917  
  1918  	case OINDREG:
  1919  		if int(n.Reg) != Thearch.REGSP {
  1920  			s.Unimplementedf("OINDREG of non-SP register %s in expr: %v", obj.Rconv(int(n.Reg)), n)
  1921  			return nil
  1922  		}
  1923  		addr := s.entryNewValue1I(ssa.OpOffPtr, Ptrto(n.Type), n.Xoffset, s.sp)
  1924  		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  1925  
  1926  	case OIND:
  1927  		p := s.exprPtr(n.Left, false, n.Lineno)
  1928  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  1929  
  1930  	case ODOT:
  1931  		t := n.Left.Type
  1932  		if canSSAType(t) {
  1933  			v := s.expr(n.Left)
  1934  			return s.newValue1I(ssa.OpStructSelect, n.Type, int64(fieldIdx(n)), v)
  1935  		}
  1936  		p, _ := s.addr(n, false)
  1937  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  1938  
  1939  	case ODOTPTR:
  1940  		p := s.exprPtr(n.Left, false, n.Lineno)
  1941  		p = s.newValue1I(ssa.OpOffPtr, p.Type, n.Xoffset, p)
  1942  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  1943  
  1944  	case OINDEX:
  1945  		switch {
  1946  		case n.Left.Type.IsString():
  1947  			a := s.expr(n.Left)
  1948  			i := s.expr(n.Right)
  1949  			i = s.extendIndex(i)
  1950  			if !n.Bounded {
  1951  				len := s.newValue1(ssa.OpStringLen, Types[TINT], a)
  1952  				s.boundsCheck(i, len)
  1953  			}
  1954  			ptrtyp := Ptrto(Types[TUINT8])
  1955  			ptr := s.newValue1(ssa.OpStringPtr, ptrtyp, a)
  1956  			if Isconst(n.Right, CTINT) {
  1957  				ptr = s.newValue1I(ssa.OpOffPtr, ptrtyp, n.Right.Int64(), ptr)
  1958  			} else {
  1959  				ptr = s.newValue2(ssa.OpAddPtr, ptrtyp, ptr, i)
  1960  			}
  1961  			return s.newValue2(ssa.OpLoad, Types[TUINT8], ptr, s.mem())
  1962  		case n.Left.Type.IsSlice():
  1963  			p, _ := s.addr(n, false)
  1964  			return s.newValue2(ssa.OpLoad, n.Left.Type.Elem(), p, s.mem())
  1965  		case n.Left.Type.IsArray():
  1966  			// TODO: fix when we can SSA arrays of length 1.
  1967  			p, _ := s.addr(n, false)
  1968  			return s.newValue2(ssa.OpLoad, n.Left.Type.Elem(), p, s.mem())
  1969  		default:
  1970  			s.Fatalf("bad type for index %v", n.Left.Type)
  1971  			return nil
  1972  		}
  1973  
  1974  	case OLEN, OCAP:
  1975  		switch {
  1976  		case n.Left.Type.IsSlice():
  1977  			op := ssa.OpSliceLen
  1978  			if n.Op == OCAP {
  1979  				op = ssa.OpSliceCap
  1980  			}
  1981  			return s.newValue1(op, Types[TINT], s.expr(n.Left))
  1982  		case n.Left.Type.IsString(): // string; not reachable for OCAP
  1983  			return s.newValue1(ssa.OpStringLen, Types[TINT], s.expr(n.Left))
  1984  		case n.Left.Type.IsMap(), n.Left.Type.IsChan():
  1985  			return s.referenceTypeBuiltin(n, s.expr(n.Left))
  1986  		default: // array
  1987  			return s.constInt(Types[TINT], n.Left.Type.NumElem())
  1988  		}
  1989  
  1990  	case OSPTR:
  1991  		a := s.expr(n.Left)
  1992  		if n.Left.Type.IsSlice() {
  1993  			return s.newValue1(ssa.OpSlicePtr, n.Type, a)
  1994  		} else {
  1995  			return s.newValue1(ssa.OpStringPtr, n.Type, a)
  1996  		}
  1997  
  1998  	case OITAB:
  1999  		a := s.expr(n.Left)
  2000  		return s.newValue1(ssa.OpITab, n.Type, a)
  2001  
  2002  	case OEFACE:
  2003  		tab := s.expr(n.Left)
  2004  		data := s.expr(n.Right)
  2005  		// The frontend allows putting things like struct{*byte} in
  2006  		// the data portion of an eface. But we don't want struct{*byte}
  2007  		// as a register type because (among other reasons) the liveness
  2008  		// analysis is confused by the "fat" variables that result from
  2009  		// such types being spilled.
  2010  		// So here we ensure that we are selecting the underlying pointer
  2011  		// when we build an eface.
  2012  		// TODO: get rid of this now that structs can be SSA'd?
  2013  		for !data.Type.IsPtrShaped() {
  2014  			switch {
  2015  			case data.Type.IsArray():
  2016  				data = s.newValue1I(ssa.OpArrayIndex, data.Type.ElemType(), 0, data)
  2017  			case data.Type.IsStruct():
  2018  				for i := data.Type.NumFields() - 1; i >= 0; i-- {
  2019  					f := data.Type.FieldType(i)
  2020  					if f.Size() == 0 {
  2021  						// eface type could also be struct{p *byte; q [0]int}
  2022  						continue
  2023  					}
  2024  					data = s.newValue1I(ssa.OpStructSelect, f, int64(i), data)
  2025  					break
  2026  				}
  2027  			default:
  2028  				s.Fatalf("type being put into an eface isn't a pointer")
  2029  			}
  2030  		}
  2031  		return s.newValue2(ssa.OpIMake, n.Type, tab, data)
  2032  
  2033  	case OSLICE, OSLICEARR, OSLICE3, OSLICE3ARR:
  2034  		v := s.expr(n.Left)
  2035  		var i, j, k *ssa.Value
  2036  		low, high, max := n.SliceBounds()
  2037  		if low != nil {
  2038  			i = s.extendIndex(s.expr(low))
  2039  		}
  2040  		if high != nil {
  2041  			j = s.extendIndex(s.expr(high))
  2042  		}
  2043  		if max != nil {
  2044  			k = s.extendIndex(s.expr(max))
  2045  		}
  2046  		p, l, c := s.slice(n.Left.Type, v, i, j, k)
  2047  		return s.newValue3(ssa.OpSliceMake, n.Type, p, l, c)
  2048  
  2049  	case OSLICESTR:
  2050  		v := s.expr(n.Left)
  2051  		var i, j *ssa.Value
  2052  		low, high, _ := n.SliceBounds()
  2053  		if low != nil {
  2054  			i = s.extendIndex(s.expr(low))
  2055  		}
  2056  		if high != nil {
  2057  			j = s.extendIndex(s.expr(high))
  2058  		}
  2059  		p, l, _ := s.slice(n.Left.Type, v, i, j, nil)
  2060  		return s.newValue2(ssa.OpStringMake, n.Type, p, l)
  2061  
  2062  	case OCALLFUNC:
  2063  		if isIntrinsicCall1(n) {
  2064  			return s.intrinsicCall1(n)
  2065  		}
  2066  		fallthrough
  2067  
  2068  	case OCALLINTER, OCALLMETH:
  2069  		a := s.call(n, callNormal)
  2070  		return s.newValue2(ssa.OpLoad, n.Type, a, s.mem())
  2071  
  2072  	case OGETG:
  2073  		return s.newValue1(ssa.OpGetG, n.Type, s.mem())
  2074  
  2075  	case OAPPEND:
  2076  		return s.append(n, false)
  2077  
  2078  	default:
  2079  		s.Unimplementedf("unhandled expr %s", n.Op)
  2080  		return nil
  2081  	}
  2082  }
  2083  
  2084  // append converts an OAPPEND node to SSA.
  2085  // If inplace is false, it converts the OAPPEND expression n to an ssa.Value,
  2086  // adds it to s, and returns the Value.
  2087  // If inplace is true, it writes the result of the OAPPEND expression n
  2088  // back to the slice being appended to, and returns nil.
  2089  // inplace MUST be set to false if the slice can be SSA'd.
  2090  func (s *state) append(n *Node, inplace bool) *ssa.Value {
  2091  	// If inplace is false, process as expression "append(s, e1, e2, e3)":
  2092  	//
  2093  	// ptr, len, cap := s
  2094  	// newlen := len + 3
  2095  	// if newlen > cap {
  2096  	//     ptr, len, cap = growslice(s, newlen)
  2097  	//     newlen = len + 3 // recalculate to avoid a spill
  2098  	// }
  2099  	// // with write barriers, if needed:
  2100  	// *(ptr+len) = e1
  2101  	// *(ptr+len+1) = e2
  2102  	// *(ptr+len+2) = e3
  2103  	// return makeslice(ptr, newlen, cap)
  2104  	//
  2105  	//
  2106  	// If inplace is true, process as statement "s = append(s, e1, e2, e3)":
  2107  	//
  2108  	// a := &s
  2109  	// ptr, len, cap := s
  2110  	// newlen := len + 3
  2111  	// if newlen > cap {
  2112  	//    newptr, len, newcap = growslice(ptr, len, cap, newlen)
  2113  	//    vardef(a)       // if necessary, advise liveness we are writing a new a
  2114  	//    *a.cap = newcap // write before ptr to avoid a spill
  2115  	//    *a.ptr = newptr // with write barrier
  2116  	// }
  2117  	// newlen = len + 3 // recalculate to avoid a spill
  2118  	// *a.len = newlen
  2119  	// // with write barriers, if needed:
  2120  	// *(ptr+len) = e1
  2121  	// *(ptr+len+1) = e2
  2122  	// *(ptr+len+2) = e3
  2123  
  2124  	et := n.Type.Elem()
  2125  	pt := Ptrto(et)
  2126  
  2127  	// Evaluate slice
  2128  	sn := n.List.First() // the slice node is the first in the list
  2129  
  2130  	var slice, addr *ssa.Value
  2131  	if inplace {
  2132  		addr, _ = s.addr(sn, false)
  2133  		slice = s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  2134  	} else {
  2135  		slice = s.expr(sn)
  2136  	}
  2137  
  2138  	// Allocate new blocks
  2139  	grow := s.f.NewBlock(ssa.BlockPlain)
  2140  	assign := s.f.NewBlock(ssa.BlockPlain)
  2141  
  2142  	// Decide if we need to grow
  2143  	nargs := int64(n.List.Len() - 1)
  2144  	p := s.newValue1(ssa.OpSlicePtr, pt, slice)
  2145  	l := s.newValue1(ssa.OpSliceLen, Types[TINT], slice)
  2146  	c := s.newValue1(ssa.OpSliceCap, Types[TINT], slice)
  2147  	nl := s.newValue2(s.ssaOp(OADD, Types[TINT]), Types[TINT], l, s.constInt(Types[TINT], nargs))
  2148  
  2149  	cmp := s.newValue2(s.ssaOp(OGT, Types[TINT]), Types[TBOOL], nl, c)
  2150  	s.vars[&ptrVar] = p
  2151  
  2152  	if !inplace {
  2153  		s.vars[&newlenVar] = nl
  2154  		s.vars[&capVar] = c
  2155  	} else {
  2156  		s.vars[&lenVar] = l
  2157  	}
  2158  
  2159  	b := s.endBlock()
  2160  	b.Kind = ssa.BlockIf
  2161  	b.Likely = ssa.BranchUnlikely
  2162  	b.SetControl(cmp)
  2163  	b.AddEdgeTo(grow)
  2164  	b.AddEdgeTo(assign)
  2165  
  2166  	// Call growslice
  2167  	s.startBlock(grow)
  2168  	taddr := s.newValue1A(ssa.OpAddr, Types[TUINTPTR], &ssa.ExternSymbol{Typ: Types[TUINTPTR], Sym: typenamesym(n.Type.Elem())}, s.sb)
  2169  
  2170  	r := s.rtcall(growslice, true, []*Type{pt, Types[TINT], Types[TINT]}, taddr, p, l, c, nl)
  2171  
  2172  	if inplace {
  2173  		if sn.Op == ONAME {
  2174  			// Tell liveness we're about to build a new slice
  2175  			s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, sn, s.mem())
  2176  		}
  2177  		capaddr := s.newValue1I(ssa.OpOffPtr, pt, int64(Array_cap), addr)
  2178  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, capaddr, r[2], s.mem())
  2179  		s.insertWBstore(pt, addr, r[0], n.Lineno, 0)
  2180  		// load the value we just stored to avoid having to spill it
  2181  		s.vars[&ptrVar] = s.newValue2(ssa.OpLoad, pt, addr, s.mem())
  2182  		s.vars[&lenVar] = r[1] // avoid a spill in the fast path
  2183  	} else {
  2184  		s.vars[&ptrVar] = r[0]
  2185  		s.vars[&newlenVar] = s.newValue2(s.ssaOp(OADD, Types[TINT]), Types[TINT], r[1], s.constInt(Types[TINT], nargs))
  2186  		s.vars[&capVar] = r[2]
  2187  	}
  2188  
  2189  	b = s.endBlock()
  2190  	b.AddEdgeTo(assign)
  2191  
  2192  	// assign new elements to slots
  2193  	s.startBlock(assign)
  2194  
  2195  	if inplace {
  2196  		l = s.variable(&lenVar, Types[TINT]) // generates phi for len
  2197  		nl = s.newValue2(s.ssaOp(OADD, Types[TINT]), Types[TINT], l, s.constInt(Types[TINT], nargs))
  2198  		lenaddr := s.newValue1I(ssa.OpOffPtr, pt, int64(Array_nel), addr)
  2199  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, lenaddr, nl, s.mem())
  2200  	}
  2201  
  2202  	// Evaluate args
  2203  	type argRec struct {
  2204  		// if store is true, we're appending the value v.  If false, we're appending the
  2205  		// value at *v.  If store==false, isVolatile reports whether the source
  2206  		// is in the outargs section of the stack frame.
  2207  		v          *ssa.Value
  2208  		store      bool
  2209  		isVolatile bool
  2210  	}
  2211  	args := make([]argRec, 0, nargs)
  2212  	for _, n := range n.List.Slice()[1:] {
  2213  		if canSSAType(n.Type) {
  2214  			args = append(args, argRec{v: s.expr(n), store: true})
  2215  		} else {
  2216  			v, isVolatile := s.addr(n, false)
  2217  			args = append(args, argRec{v: v, isVolatile: isVolatile})
  2218  		}
  2219  	}
  2220  
  2221  	p = s.variable(&ptrVar, pt) // generates phi for ptr
  2222  	if !inplace {
  2223  		nl = s.variable(&newlenVar, Types[TINT]) // generates phi for nl
  2224  		c = s.variable(&capVar, Types[TINT])     // generates phi for cap
  2225  	}
  2226  	p2 := s.newValue2(ssa.OpPtrIndex, pt, p, l)
  2227  	// TODO: just one write barrier call for all of these writes?
  2228  	// TODO: maybe just one writeBarrier.enabled check?
  2229  	for i, arg := range args {
  2230  		addr := s.newValue2(ssa.OpPtrIndex, pt, p2, s.constInt(Types[TINT], int64(i)))
  2231  		if arg.store {
  2232  			if haspointers(et) {
  2233  				s.insertWBstore(et, addr, arg.v, n.Lineno, 0)
  2234  			} else {
  2235  				s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, et.Size(), addr, arg.v, s.mem())
  2236  			}
  2237  		} else {
  2238  			if haspointers(et) {
  2239  				s.insertWBmove(et, addr, arg.v, n.Lineno, arg.isVolatile)
  2240  			} else {
  2241  				s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, et.Size(), addr, arg.v, s.mem())
  2242  			}
  2243  		}
  2244  	}
  2245  
  2246  	delete(s.vars, &ptrVar)
  2247  	if inplace {
  2248  		delete(s.vars, &lenVar)
  2249  		return nil
  2250  	}
  2251  	delete(s.vars, &newlenVar)
  2252  	delete(s.vars, &capVar)
  2253  	// make result
  2254  	return s.newValue3(ssa.OpSliceMake, n.Type, p, nl, c)
  2255  }
  2256  
  2257  // condBranch evaluates the boolean expression cond and branches to yes
  2258  // if cond is true and no if cond is false.
  2259  // This function is intended to handle && and || better than just calling
  2260  // s.expr(cond) and branching on the result.
  2261  func (s *state) condBranch(cond *Node, yes, no *ssa.Block, likely int8) {
  2262  	if cond.Op == OANDAND {
  2263  		mid := s.f.NewBlock(ssa.BlockPlain)
  2264  		s.stmtList(cond.Ninit)
  2265  		s.condBranch(cond.Left, mid, no, max8(likely, 0))
  2266  		s.startBlock(mid)
  2267  		s.condBranch(cond.Right, yes, no, likely)
  2268  		return
  2269  		// Note: if likely==1, then both recursive calls pass 1.
  2270  		// If likely==-1, then we don't have enough information to decide
  2271  		// whether the first branch is likely or not. So we pass 0 for
  2272  		// the likeliness of the first branch.
  2273  		// TODO: have the frontend give us branch prediction hints for
  2274  		// OANDAND and OOROR nodes (if it ever has such info).
  2275  	}
  2276  	if cond.Op == OOROR {
  2277  		mid := s.f.NewBlock(ssa.BlockPlain)
  2278  		s.stmtList(cond.Ninit)
  2279  		s.condBranch(cond.Left, yes, mid, min8(likely, 0))
  2280  		s.startBlock(mid)
  2281  		s.condBranch(cond.Right, yes, no, likely)
  2282  		return
  2283  		// Note: if likely==-1, then both recursive calls pass -1.
  2284  		// If likely==1, then we don't have enough info to decide
  2285  		// the likelihood of the first branch.
  2286  	}
  2287  	if cond.Op == ONOT {
  2288  		s.stmtList(cond.Ninit)
  2289  		s.condBranch(cond.Left, no, yes, -likely)
  2290  		return
  2291  	}
  2292  	c := s.expr(cond)
  2293  	b := s.endBlock()
  2294  	b.Kind = ssa.BlockIf
  2295  	b.SetControl(c)
  2296  	b.Likely = ssa.BranchPrediction(likely) // gc and ssa both use -1/0/+1 for likeliness
  2297  	b.AddEdgeTo(yes)
  2298  	b.AddEdgeTo(no)
  2299  }
  2300  
  2301  type skipMask uint8
  2302  
  2303  const (
  2304  	skipPtr skipMask = 1 << iota
  2305  	skipLen
  2306  	skipCap
  2307  )
  2308  
  2309  // assign does left = right.
  2310  // Right has already been evaluated to ssa, left has not.
  2311  // If deref is true, then we do left = *right instead (and right has already been nil-checked).
  2312  // If deref is true and right == nil, just do left = 0.
  2313  // If deref is true, rightIsVolatile reports whether right points to volatile (clobbered by a call) storage.
  2314  // Include a write barrier if wb is true.
  2315  // skip indicates assignments (at the top level) that can be avoided.
  2316  func (s *state) assign(left *Node, right *ssa.Value, wb, deref bool, line int32, skip skipMask, rightIsVolatile bool) {
  2317  	if left.Op == ONAME && isblank(left) {
  2318  		return
  2319  	}
  2320  	t := left.Type
  2321  	dowidth(t)
  2322  	if s.canSSA(left) {
  2323  		if deref {
  2324  			s.Fatalf("can SSA LHS %s but not RHS %s", left, right)
  2325  		}
  2326  		if left.Op == ODOT {
  2327  			// We're assigning to a field of an ssa-able value.
  2328  			// We need to build a new structure with the new value for the
  2329  			// field we're assigning and the old values for the other fields.
  2330  			// For instance:
  2331  			//   type T struct {a, b, c int}
  2332  			//   var T x
  2333  			//   x.b = 5
  2334  			// For the x.b = 5 assignment we want to generate x = T{x.a, 5, x.c}
  2335  
  2336  			// Grab information about the structure type.
  2337  			t := left.Left.Type
  2338  			nf := t.NumFields()
  2339  			idx := fieldIdx(left)
  2340  
  2341  			// Grab old value of structure.
  2342  			old := s.expr(left.Left)
  2343  
  2344  			// Make new structure.
  2345  			new := s.newValue0(ssa.StructMakeOp(t.NumFields()), t)
  2346  
  2347  			// Add fields as args.
  2348  			for i := 0; i < nf; i++ {
  2349  				if i == idx {
  2350  					new.AddArg(right)
  2351  				} else {
  2352  					new.AddArg(s.newValue1I(ssa.OpStructSelect, t.FieldType(i), int64(i), old))
  2353  				}
  2354  			}
  2355  
  2356  			// Recursively assign the new value we've made to the base of the dot op.
  2357  			s.assign(left.Left, new, false, false, line, 0, rightIsVolatile)
  2358  			// TODO: do we need to update named values here?
  2359  			return
  2360  		}
  2361  		// Update variable assignment.
  2362  		s.vars[left] = right
  2363  		s.addNamedValue(left, right)
  2364  		return
  2365  	}
  2366  	// Left is not ssa-able. Compute its address.
  2367  	addr, _ := s.addr(left, false)
  2368  	if left.Op == ONAME && skip == 0 {
  2369  		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, left, s.mem())
  2370  	}
  2371  	if deref {
  2372  		// Treat as a mem->mem move.
  2373  		if right == nil {
  2374  			s.vars[&memVar] = s.newValue2I(ssa.OpZero, ssa.TypeMem, t.Size(), addr, s.mem())
  2375  			return
  2376  		}
  2377  		if wb {
  2378  			s.insertWBmove(t, addr, right, line, rightIsVolatile)
  2379  			return
  2380  		}
  2381  		s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, t.Size(), addr, right, s.mem())
  2382  		return
  2383  	}
  2384  	// Treat as a store.
  2385  	if wb {
  2386  		if skip&skipPtr != 0 {
  2387  			// Special case: if we don't write back the pointers, don't bother
  2388  			// doing the write barrier check.
  2389  			s.storeTypeScalars(t, addr, right, skip)
  2390  			return
  2391  		}
  2392  		s.insertWBstore(t, addr, right, line, skip)
  2393  		return
  2394  	}
  2395  	if skip != 0 {
  2396  		if skip&skipPtr == 0 {
  2397  			s.storeTypePtrs(t, addr, right)
  2398  		}
  2399  		s.storeTypeScalars(t, addr, right, skip)
  2400  		return
  2401  	}
  2402  	s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, t.Size(), addr, right, s.mem())
  2403  }
  2404  
  2405  // zeroVal returns the zero value for type t.
  2406  func (s *state) zeroVal(t *Type) *ssa.Value {
  2407  	switch {
  2408  	case t.IsInteger():
  2409  		switch t.Size() {
  2410  		case 1:
  2411  			return s.constInt8(t, 0)
  2412  		case 2:
  2413  			return s.constInt16(t, 0)
  2414  		case 4:
  2415  			return s.constInt32(t, 0)
  2416  		case 8:
  2417  			return s.constInt64(t, 0)
  2418  		default:
  2419  			s.Fatalf("bad sized integer type %s", t)
  2420  		}
  2421  	case t.IsFloat():
  2422  		switch t.Size() {
  2423  		case 4:
  2424  			return s.constFloat32(t, 0)
  2425  		case 8:
  2426  			return s.constFloat64(t, 0)
  2427  		default:
  2428  			s.Fatalf("bad sized float type %s", t)
  2429  		}
  2430  	case t.IsComplex():
  2431  		switch t.Size() {
  2432  		case 8:
  2433  			z := s.constFloat32(Types[TFLOAT32], 0)
  2434  			return s.entryNewValue2(ssa.OpComplexMake, t, z, z)
  2435  		case 16:
  2436  			z := s.constFloat64(Types[TFLOAT64], 0)
  2437  			return s.entryNewValue2(ssa.OpComplexMake, t, z, z)
  2438  		default:
  2439  			s.Fatalf("bad sized complex type %s", t)
  2440  		}
  2441  
  2442  	case t.IsString():
  2443  		return s.constEmptyString(t)
  2444  	case t.IsPtrShaped():
  2445  		return s.constNil(t)
  2446  	case t.IsBoolean():
  2447  		return s.constBool(false)
  2448  	case t.IsInterface():
  2449  		return s.constInterface(t)
  2450  	case t.IsSlice():
  2451  		return s.constSlice(t)
  2452  	case t.IsStruct():
  2453  		n := t.NumFields()
  2454  		v := s.entryNewValue0(ssa.StructMakeOp(t.NumFields()), t)
  2455  		for i := 0; i < n; i++ {
  2456  			v.AddArg(s.zeroVal(t.FieldType(i).(*Type)))
  2457  		}
  2458  		return v
  2459  	}
  2460  	s.Unimplementedf("zero for type %v not implemented", t)
  2461  	return nil
  2462  }
  2463  
  2464  type callKind int8
  2465  
  2466  const (
  2467  	callNormal callKind = iota
  2468  	callDefer
  2469  	callGo
  2470  )
  2471  
  2472  // isSSAIntrinsic1 returns true if n is a call to a recognized 1-arg intrinsic
  2473  // that can be handled by the SSA backend.
  2474  // SSA uses this, but so does the front end to see if should not
  2475  // inline a function because it is a candidate for intrinsic
  2476  // substitution.
  2477  func isSSAIntrinsic1(s *Sym) bool {
  2478  	// The test below is not quite accurate -- in the event that
  2479  	// a function is disabled on a per-function basis, for example
  2480  	// because of hash-keyed binary failure search, SSA might be
  2481  	// disabled for that function but it would not be noted here,
  2482  	// and thus an inlining would not occur (in practice, inlining
  2483  	// so far has only been noticed for Bswap32 and the 16-bit count
  2484  	// leading/trailing instructions, but heuristics might change
  2485  	// in the future or on different architectures).
  2486  	if !ssaEnabled || ssa.IntrinsicsDisable || Thearch.LinkArch.Family != sys.AMD64 {
  2487  		return false
  2488  	}
  2489  	if s != nil && s.Pkg != nil && s.Pkg.Path == "runtime/internal/sys" {
  2490  		switch s.Name {
  2491  		case
  2492  			"Ctz64", "Ctz32", "Ctz16",
  2493  			"Bswap64", "Bswap32":
  2494  			return true
  2495  		}
  2496  	}
  2497  	return false
  2498  }
  2499  
  2500  func isIntrinsicCall1(n *Node) bool {
  2501  	if n == nil || n.Left == nil {
  2502  		return false
  2503  	}
  2504  	return isSSAIntrinsic1(n.Left.Sym)
  2505  }
  2506  
  2507  // intrinsicFirstArg extracts arg from n.List and eval
  2508  func (s *state) intrinsicFirstArg(n *Node) *ssa.Value {
  2509  	x := n.List.First()
  2510  	if x.Op == OAS {
  2511  		x = x.Right
  2512  	}
  2513  	return s.expr(x)
  2514  }
  2515  
  2516  // intrinsicCall1 converts a call to a recognized 1-arg intrinsic
  2517  // into the intrinsic
  2518  func (s *state) intrinsicCall1(n *Node) *ssa.Value {
  2519  	var result *ssa.Value
  2520  	switch n.Left.Sym.Name {
  2521  	case "Ctz64":
  2522  		result = s.newValue1(ssa.OpCtz64, Types[TUINT64], s.intrinsicFirstArg(n))
  2523  	case "Ctz32":
  2524  		result = s.newValue1(ssa.OpCtz32, Types[TUINT32], s.intrinsicFirstArg(n))
  2525  	case "Ctz16":
  2526  		result = s.newValue1(ssa.OpCtz16, Types[TUINT16], s.intrinsicFirstArg(n))
  2527  	case "Bswap64":
  2528  		result = s.newValue1(ssa.OpBswap64, Types[TUINT64], s.intrinsicFirstArg(n))
  2529  	case "Bswap32":
  2530  		result = s.newValue1(ssa.OpBswap32, Types[TUINT32], s.intrinsicFirstArg(n))
  2531  	}
  2532  	if result == nil {
  2533  		Fatalf("Unknown special call: %v", n.Left.Sym)
  2534  	}
  2535  	if ssa.IntrinsicsDebug > 0 {
  2536  		Warnl(n.Lineno, "intrinsic substitution for %v with %s", n.Left.Sym.Name, result.LongString())
  2537  	}
  2538  	return result
  2539  }
  2540  
  2541  // Calls the function n using the specified call type.
  2542  // Returns the address of the return value (or nil if none).
  2543  func (s *state) call(n *Node, k callKind) *ssa.Value {
  2544  	var sym *Sym           // target symbol (if static)
  2545  	var closure *ssa.Value // ptr to closure to run (if dynamic)
  2546  	var codeptr *ssa.Value // ptr to target code (if dynamic)
  2547  	var rcvr *ssa.Value    // receiver to set
  2548  	fn := n.Left
  2549  	switch n.Op {
  2550  	case OCALLFUNC:
  2551  		if k == callNormal && fn.Op == ONAME && fn.Class == PFUNC {
  2552  			sym = fn.Sym
  2553  			break
  2554  		}
  2555  		closure = s.expr(fn)
  2556  	case OCALLMETH:
  2557  		if fn.Op != ODOTMETH {
  2558  			Fatalf("OCALLMETH: n.Left not an ODOTMETH: %v", fn)
  2559  		}
  2560  		if k == callNormal {
  2561  			sym = fn.Sym
  2562  			break
  2563  		}
  2564  		n2 := newname(fn.Sym)
  2565  		n2.Class = PFUNC
  2566  		n2.Lineno = fn.Lineno
  2567  		closure = s.expr(n2)
  2568  		// Note: receiver is already assigned in n.List, so we don't
  2569  		// want to set it here.
  2570  	case OCALLINTER:
  2571  		if fn.Op != ODOTINTER {
  2572  			Fatalf("OCALLINTER: n.Left not an ODOTINTER: %v", fn.Op)
  2573  		}
  2574  		i := s.expr(fn.Left)
  2575  		itab := s.newValue1(ssa.OpITab, Types[TUINTPTR], i)
  2576  		if k != callNormal {
  2577  			s.nilCheck(itab)
  2578  		}
  2579  		itabidx := fn.Xoffset + 3*int64(Widthptr) + 8 // offset of fun field in runtime.itab
  2580  		itab = s.newValue1I(ssa.OpOffPtr, Types[TUINTPTR], itabidx, itab)
  2581  		if k == callNormal {
  2582  			codeptr = s.newValue2(ssa.OpLoad, Types[TUINTPTR], itab, s.mem())
  2583  		} else {
  2584  			closure = itab
  2585  		}
  2586  		rcvr = s.newValue1(ssa.OpIData, Types[TUINTPTR], i)
  2587  	}
  2588  	dowidth(fn.Type)
  2589  	stksize := fn.Type.ArgWidth() // includes receiver
  2590  
  2591  	// Run all argument assignments. The arg slots have already
  2592  	// been offset by the appropriate amount (+2*widthptr for go/defer,
  2593  	// +widthptr for interface calls).
  2594  	// For OCALLMETH, the receiver is set in these statements.
  2595  	s.stmtList(n.List)
  2596  
  2597  	// Set receiver (for interface calls)
  2598  	if rcvr != nil {
  2599  		argStart := Ctxt.FixedFrameSize()
  2600  		if k != callNormal {
  2601  			argStart += int64(2 * Widthptr)
  2602  		}
  2603  		addr := s.entryNewValue1I(ssa.OpOffPtr, Types[TUINTPTR], argStart, s.sp)
  2604  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, int64(Widthptr), addr, rcvr, s.mem())
  2605  	}
  2606  
  2607  	// Defer/go args
  2608  	if k != callNormal {
  2609  		// Write argsize and closure (args to Newproc/Deferproc).
  2610  		argsize := s.constInt32(Types[TUINT32], int32(stksize))
  2611  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, 4, s.sp, argsize, s.mem())
  2612  		addr := s.entryNewValue1I(ssa.OpOffPtr, Ptrto(Types[TUINTPTR]), int64(Widthptr), s.sp)
  2613  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, int64(Widthptr), addr, closure, s.mem())
  2614  		stksize += 2 * int64(Widthptr)
  2615  	}
  2616  
  2617  	// call target
  2618  	bNext := s.f.NewBlock(ssa.BlockPlain)
  2619  	var call *ssa.Value
  2620  	switch {
  2621  	case k == callDefer:
  2622  		call = s.newValue1(ssa.OpDeferCall, ssa.TypeMem, s.mem())
  2623  	case k == callGo:
  2624  		call = s.newValue1(ssa.OpGoCall, ssa.TypeMem, s.mem())
  2625  	case closure != nil:
  2626  		codeptr = s.newValue2(ssa.OpLoad, Types[TUINTPTR], closure, s.mem())
  2627  		call = s.newValue3(ssa.OpClosureCall, ssa.TypeMem, codeptr, closure, s.mem())
  2628  	case codeptr != nil:
  2629  		call = s.newValue2(ssa.OpInterCall, ssa.TypeMem, codeptr, s.mem())
  2630  	case sym != nil:
  2631  		call = s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, sym, s.mem())
  2632  	default:
  2633  		Fatalf("bad call type %s %v", n.Op, n)
  2634  	}
  2635  	call.AuxInt = stksize // Call operations carry the argsize of the callee along with them
  2636  
  2637  	// Finish call block
  2638  	s.vars[&memVar] = call
  2639  	b := s.endBlock()
  2640  	b.Kind = ssa.BlockCall
  2641  	b.SetControl(call)
  2642  	b.AddEdgeTo(bNext)
  2643  	if k == callDefer {
  2644  		// Add recover edge to exit code.
  2645  		b.Kind = ssa.BlockDefer
  2646  		r := s.f.NewBlock(ssa.BlockPlain)
  2647  		s.startBlock(r)
  2648  		s.exit()
  2649  		b.AddEdgeTo(r)
  2650  		b.Likely = ssa.BranchLikely
  2651  	}
  2652  
  2653  	// Start exit block, find address of result.
  2654  	s.startBlock(bNext)
  2655  	// Keep input pointer args live across calls.  This is a bandaid until 1.8.
  2656  	for _, n := range s.ptrargs {
  2657  		s.vars[&memVar] = s.newValue2(ssa.OpKeepAlive, ssa.TypeMem, s.variable(n, n.Type), s.mem())
  2658  	}
  2659  	res := n.Left.Type.Results()
  2660  	if res.NumFields() == 0 || k != callNormal {
  2661  		// call has no return value. Continue with the next statement.
  2662  		return nil
  2663  	}
  2664  	fp := res.Field(0)
  2665  	return s.entryNewValue1I(ssa.OpOffPtr, Ptrto(fp.Type), fp.Offset+Ctxt.FixedFrameSize(), s.sp)
  2666  }
  2667  
  2668  // etypesign returns the signed-ness of e, for integer/pointer etypes.
  2669  // -1 means signed, +1 means unsigned, 0 means non-integer/non-pointer.
  2670  func etypesign(e EType) int8 {
  2671  	switch e {
  2672  	case TINT8, TINT16, TINT32, TINT64, TINT:
  2673  		return -1
  2674  	case TUINT8, TUINT16, TUINT32, TUINT64, TUINT, TUINTPTR, TUNSAFEPTR:
  2675  		return +1
  2676  	}
  2677  	return 0
  2678  }
  2679  
  2680  // lookupSymbol is used to retrieve the symbol (Extern, Arg or Auto) used for a particular node.
  2681  // This improves the effectiveness of cse by using the same Aux values for the
  2682  // same symbols.
  2683  func (s *state) lookupSymbol(n *Node, sym interface{}) interface{} {
  2684  	switch sym.(type) {
  2685  	default:
  2686  		s.Fatalf("sym %v is of uknown type %T", sym, sym)
  2687  	case *ssa.ExternSymbol, *ssa.ArgSymbol, *ssa.AutoSymbol:
  2688  		// these are the only valid types
  2689  	}
  2690  
  2691  	if lsym, ok := s.varsyms[n]; ok {
  2692  		return lsym
  2693  	} else {
  2694  		s.varsyms[n] = sym
  2695  		return sym
  2696  	}
  2697  }
  2698  
  2699  // addr converts the address of the expression n to SSA, adds it to s and returns the SSA result.
  2700  // Also returns a bool reporting whether the returned value is "volatile", that is it
  2701  // points to the outargs section and thus the referent will be clobbered by any call.
  2702  // The value that the returned Value represents is guaranteed to be non-nil.
  2703  // If bounded is true then this address does not require a nil check for its operand
  2704  // even if that would otherwise be implied.
  2705  func (s *state) addr(n *Node, bounded bool) (*ssa.Value, bool) {
  2706  	t := Ptrto(n.Type)
  2707  	switch n.Op {
  2708  	case ONAME:
  2709  		switch n.Class {
  2710  		case PEXTERN:
  2711  			// global variable
  2712  			aux := s.lookupSymbol(n, &ssa.ExternSymbol{Typ: n.Type, Sym: n.Sym})
  2713  			v := s.entryNewValue1A(ssa.OpAddr, t, aux, s.sb)
  2714  			// TODO: Make OpAddr use AuxInt as well as Aux.
  2715  			if n.Xoffset != 0 {
  2716  				v = s.entryNewValue1I(ssa.OpOffPtr, v.Type, n.Xoffset, v)
  2717  			}
  2718  			return v, false
  2719  		case PPARAM:
  2720  			// parameter slot
  2721  			v := s.decladdrs[n]
  2722  			if v != nil {
  2723  				return v, false
  2724  			}
  2725  			if n.String() == ".fp" {
  2726  				// Special arg that points to the frame pointer.
  2727  				// (Used by the race detector, others?)
  2728  				aux := s.lookupSymbol(n, &ssa.ArgSymbol{Typ: n.Type, Node: n})
  2729  				return s.entryNewValue1A(ssa.OpAddr, t, aux, s.sp), false
  2730  			}
  2731  			s.Fatalf("addr of undeclared ONAME %v. declared: %v", n, s.decladdrs)
  2732  			return nil, false
  2733  		case PAUTO:
  2734  			aux := s.lookupSymbol(n, &ssa.AutoSymbol{Typ: n.Type, Node: n})
  2735  			return s.newValue1A(ssa.OpAddr, t, aux, s.sp), false
  2736  		case PPARAMOUT: // Same as PAUTO -- cannot generate LEA early.
  2737  			// ensure that we reuse symbols for out parameters so
  2738  			// that cse works on their addresses
  2739  			aux := s.lookupSymbol(n, &ssa.ArgSymbol{Typ: n.Type, Node: n})
  2740  			return s.newValue1A(ssa.OpAddr, t, aux, s.sp), false
  2741  		default:
  2742  			s.Unimplementedf("variable address class %v not implemented", classnames[n.Class])
  2743  			return nil, false
  2744  		}
  2745  	case OINDREG:
  2746  		// indirect off a register
  2747  		// used for storing/loading arguments/returns to/from callees
  2748  		if int(n.Reg) != Thearch.REGSP {
  2749  			s.Unimplementedf("OINDREG of non-SP register %s in addr: %v", obj.Rconv(int(n.Reg)), n)
  2750  			return nil, false
  2751  		}
  2752  		return s.entryNewValue1I(ssa.OpOffPtr, t, n.Xoffset, s.sp), true
  2753  	case OINDEX:
  2754  		if n.Left.Type.IsSlice() {
  2755  			a := s.expr(n.Left)
  2756  			i := s.expr(n.Right)
  2757  			i = s.extendIndex(i)
  2758  			len := s.newValue1(ssa.OpSliceLen, Types[TINT], a)
  2759  			if !n.Bounded {
  2760  				s.boundsCheck(i, len)
  2761  			}
  2762  			p := s.newValue1(ssa.OpSlicePtr, t, a)
  2763  			return s.newValue2(ssa.OpPtrIndex, t, p, i), false
  2764  		} else { // array
  2765  			a, isVolatile := s.addr(n.Left, bounded)
  2766  			i := s.expr(n.Right)
  2767  			i = s.extendIndex(i)
  2768  			len := s.constInt(Types[TINT], n.Left.Type.NumElem())
  2769  			if !n.Bounded {
  2770  				s.boundsCheck(i, len)
  2771  			}
  2772  			return s.newValue2(ssa.OpPtrIndex, Ptrto(n.Left.Type.Elem()), a, i), isVolatile
  2773  		}
  2774  	case OIND:
  2775  		return s.exprPtr(n.Left, bounded, n.Lineno), false
  2776  	case ODOT:
  2777  		p, isVolatile := s.addr(n.Left, bounded)
  2778  		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p), isVolatile
  2779  	case ODOTPTR:
  2780  		p := s.exprPtr(n.Left, bounded, n.Lineno)
  2781  		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p), false
  2782  	case OCLOSUREVAR:
  2783  		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset,
  2784  			s.entryNewValue0(ssa.OpGetClosurePtr, Ptrto(Types[TUINT8]))), false
  2785  	case OCONVNOP:
  2786  		addr, isVolatile := s.addr(n.Left, bounded)
  2787  		return s.newValue1(ssa.OpCopy, t, addr), isVolatile // ensure that addr has the right type
  2788  	case OCALLFUNC, OCALLINTER, OCALLMETH:
  2789  		return s.call(n, callNormal), true
  2790  
  2791  	default:
  2792  		s.Unimplementedf("unhandled addr %v", n.Op)
  2793  		return nil, false
  2794  	}
  2795  }
  2796  
  2797  // canSSA reports whether n is SSA-able.
  2798  // n must be an ONAME (or an ODOT sequence with an ONAME base).
  2799  func (s *state) canSSA(n *Node) bool {
  2800  	if Debug['N'] != 0 {
  2801  		return false
  2802  	}
  2803  	for n.Op == ODOT {
  2804  		n = n.Left
  2805  	}
  2806  	if n.Op != ONAME {
  2807  		return false
  2808  	}
  2809  	if n.Addrtaken {
  2810  		return false
  2811  	}
  2812  	if n.isParamHeapCopy() {
  2813  		return false
  2814  	}
  2815  	if n.Class == PAUTOHEAP {
  2816  		Fatalf("canSSA of PAUTOHEAP %v", n)
  2817  	}
  2818  	switch n.Class {
  2819  	case PEXTERN:
  2820  		return false
  2821  	case PPARAMOUT:
  2822  		if hasdefer {
  2823  			// TODO: handle this case?  Named return values must be
  2824  			// in memory so that the deferred function can see them.
  2825  			// Maybe do: if !strings.HasPrefix(n.String(), "~") { return false }
  2826  			return false
  2827  		}
  2828  		if s.cgoUnsafeArgs {
  2829  			// Cgo effectively takes the address of all result args,
  2830  			// but the compiler can't see that.
  2831  			return false
  2832  		}
  2833  	}
  2834  	if n.Class == PPARAM && n.String() == ".this" {
  2835  		// wrappers generated by genwrapper need to update
  2836  		// the .this pointer in place.
  2837  		// TODO: treat as a PPARMOUT?
  2838  		return false
  2839  	}
  2840  	return canSSAType(n.Type)
  2841  	// TODO: try to make more variables SSAable?
  2842  }
  2843  
  2844  // canSSA reports whether variables of type t are SSA-able.
  2845  func canSSAType(t *Type) bool {
  2846  	dowidth(t)
  2847  	if t.Width > int64(4*Widthptr) {
  2848  		// 4*Widthptr is an arbitrary constant. We want it
  2849  		// to be at least 3*Widthptr so slices can be registerized.
  2850  		// Too big and we'll introduce too much register pressure.
  2851  		return false
  2852  	}
  2853  	switch t.Etype {
  2854  	case TARRAY:
  2855  		// We can't do arrays because dynamic indexing is
  2856  		// not supported on SSA variables.
  2857  		// TODO: maybe allow if length is <=1?  All indexes
  2858  		// are constant?  Might be good for the arrays
  2859  		// introduced by the compiler for variadic functions.
  2860  		return false
  2861  	case TSTRUCT:
  2862  		if t.NumFields() > ssa.MaxStruct {
  2863  			return false
  2864  		}
  2865  		for _, t1 := range t.Fields().Slice() {
  2866  			if !canSSAType(t1.Type) {
  2867  				return false
  2868  			}
  2869  		}
  2870  		return true
  2871  	default:
  2872  		return true
  2873  	}
  2874  }
  2875  
  2876  // exprPtr evaluates n to a pointer and nil-checks it.
  2877  func (s *state) exprPtr(n *Node, bounded bool, lineno int32) *ssa.Value {
  2878  	p := s.expr(n)
  2879  	if bounded || n.NonNil {
  2880  		if s.f.Config.Debug_checknil() && lineno > 1 {
  2881  			s.f.Config.Warnl(lineno, "removed nil check")
  2882  		}
  2883  		return p
  2884  	}
  2885  	s.nilCheck(p)
  2886  	return p
  2887  }
  2888  
  2889  // nilCheck generates nil pointer checking code.
  2890  // Starts a new block on return, unless nil checks are disabled.
  2891  // Used only for automatically inserted nil checks,
  2892  // not for user code like 'x != nil'.
  2893  func (s *state) nilCheck(ptr *ssa.Value) {
  2894  	if Disable_checknil != 0 {
  2895  		return
  2896  	}
  2897  	chk := s.newValue2(ssa.OpNilCheck, ssa.TypeVoid, ptr, s.mem())
  2898  	b := s.endBlock()
  2899  	b.Kind = ssa.BlockCheck
  2900  	b.SetControl(chk)
  2901  	bNext := s.f.NewBlock(ssa.BlockPlain)
  2902  	b.AddEdgeTo(bNext)
  2903  	s.startBlock(bNext)
  2904  }
  2905  
  2906  // boundsCheck generates bounds checking code. Checks if 0 <= idx < len, branches to exit if not.
  2907  // Starts a new block on return.
  2908  func (s *state) boundsCheck(idx, len *ssa.Value) {
  2909  	if Debug['B'] != 0 {
  2910  		return
  2911  	}
  2912  	// TODO: convert index to full width?
  2913  	// TODO: if index is 64-bit and we're compiling to 32-bit, check that high 32 bits are zero.
  2914  
  2915  	// bounds check
  2916  	cmp := s.newValue2(ssa.OpIsInBounds, Types[TBOOL], idx, len)
  2917  	s.check(cmp, Panicindex)
  2918  }
  2919  
  2920  // sliceBoundsCheck generates slice bounds checking code. Checks if 0 <= idx <= len, branches to exit if not.
  2921  // Starts a new block on return.
  2922  func (s *state) sliceBoundsCheck(idx, len *ssa.Value) {
  2923  	if Debug['B'] != 0 {
  2924  		return
  2925  	}
  2926  	// TODO: convert index to full width?
  2927  	// TODO: if index is 64-bit and we're compiling to 32-bit, check that high 32 bits are zero.
  2928  
  2929  	// bounds check
  2930  	cmp := s.newValue2(ssa.OpIsSliceInBounds, Types[TBOOL], idx, len)
  2931  	s.check(cmp, panicslice)
  2932  }
  2933  
  2934  // If cmp (a bool) is true, panic using the given function.
  2935  func (s *state) check(cmp *ssa.Value, fn *Node) {
  2936  	b := s.endBlock()
  2937  	b.Kind = ssa.BlockIf
  2938  	b.SetControl(cmp)
  2939  	b.Likely = ssa.BranchLikely
  2940  	bNext := s.f.NewBlock(ssa.BlockPlain)
  2941  	line := s.peekLine()
  2942  	bPanic := s.panics[funcLine{fn, line}]
  2943  	if bPanic == nil {
  2944  		bPanic = s.f.NewBlock(ssa.BlockPlain)
  2945  		s.panics[funcLine{fn, line}] = bPanic
  2946  		s.startBlock(bPanic)
  2947  		// The panic call takes/returns memory to ensure that the right
  2948  		// memory state is observed if the panic happens.
  2949  		s.rtcall(fn, false, nil)
  2950  	}
  2951  	b.AddEdgeTo(bNext)
  2952  	b.AddEdgeTo(bPanic)
  2953  	s.startBlock(bNext)
  2954  }
  2955  
  2956  // rtcall issues a call to the given runtime function fn with the listed args.
  2957  // Returns a slice of results of the given result types.
  2958  // The call is added to the end of the current block.
  2959  // If returns is false, the block is marked as an exit block.
  2960  // If returns is true, the block is marked as a call block. A new block
  2961  // is started to load the return values.
  2962  func (s *state) rtcall(fn *Node, returns bool, results []*Type, args ...*ssa.Value) []*ssa.Value {
  2963  	// Write args to the stack
  2964  	var off int64 // TODO: arch-dependent starting offset?
  2965  	for _, arg := range args {
  2966  		t := arg.Type
  2967  		off = Rnd(off, t.Alignment())
  2968  		ptr := s.sp
  2969  		if off != 0 {
  2970  			ptr = s.newValue1I(ssa.OpOffPtr, Types[TUINTPTR], off, s.sp)
  2971  		}
  2972  		size := t.Size()
  2973  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, size, ptr, arg, s.mem())
  2974  		off += size
  2975  	}
  2976  	off = Rnd(off, int64(Widthptr))
  2977  
  2978  	// Issue call
  2979  	call := s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, fn.Sym, s.mem())
  2980  	s.vars[&memVar] = call
  2981  
  2982  	// Finish block
  2983  	b := s.endBlock()
  2984  	if !returns {
  2985  		b.Kind = ssa.BlockExit
  2986  		b.SetControl(call)
  2987  		call.AuxInt = off
  2988  		if len(results) > 0 {
  2989  			Fatalf("panic call can't have results")
  2990  		}
  2991  		return nil
  2992  	}
  2993  	b.Kind = ssa.BlockCall
  2994  	b.SetControl(call)
  2995  	bNext := s.f.NewBlock(ssa.BlockPlain)
  2996  	b.AddEdgeTo(bNext)
  2997  	s.startBlock(bNext)
  2998  
  2999  	// Keep input pointer args live across calls.  This is a bandaid until 1.8.
  3000  	for _, n := range s.ptrargs {
  3001  		s.vars[&memVar] = s.newValue2(ssa.OpKeepAlive, ssa.TypeMem, s.variable(n, n.Type), s.mem())
  3002  	}
  3003  
  3004  	// Load results
  3005  	res := make([]*ssa.Value, len(results))
  3006  	for i, t := range results {
  3007  		off = Rnd(off, t.Alignment())
  3008  		ptr := s.sp
  3009  		if off != 0 {
  3010  			ptr = s.newValue1I(ssa.OpOffPtr, Types[TUINTPTR], off, s.sp)
  3011  		}
  3012  		res[i] = s.newValue2(ssa.OpLoad, t, ptr, s.mem())
  3013  		off += t.Size()
  3014  	}
  3015  	off = Rnd(off, int64(Widthptr))
  3016  
  3017  	// Remember how much callee stack space we needed.
  3018  	call.AuxInt = off
  3019  
  3020  	return res
  3021  }
  3022  
  3023  // insertWBmove inserts the assignment *left = *right including a write barrier.
  3024  // t is the type being assigned.
  3025  func (s *state) insertWBmove(t *Type, left, right *ssa.Value, line int32, rightIsVolatile bool) {
  3026  	// if writeBarrier.enabled {
  3027  	//   typedmemmove(&t, left, right)
  3028  	// } else {
  3029  	//   *left = *right
  3030  	// }
  3031  
  3032  	if s.noWB {
  3033  		s.Fatalf("write barrier prohibited")
  3034  	}
  3035  	if s.WBLineno == 0 {
  3036  		s.WBLineno = left.Line
  3037  	}
  3038  	bThen := s.f.NewBlock(ssa.BlockPlain)
  3039  	bElse := s.f.NewBlock(ssa.BlockPlain)
  3040  	bEnd := s.f.NewBlock(ssa.BlockPlain)
  3041  
  3042  	aux := &ssa.ExternSymbol{Typ: Types[TBOOL], Sym: syslook("writeBarrier").Sym}
  3043  	flagaddr := s.newValue1A(ssa.OpAddr, Ptrto(Types[TUINT32]), aux, s.sb)
  3044  	// TODO: select the .enabled field. It is currently first, so not needed for now.
  3045  	// Load word, test byte, avoiding partial register write from load byte.
  3046  	flag := s.newValue2(ssa.OpLoad, Types[TUINT32], flagaddr, s.mem())
  3047  	flag = s.newValue1(ssa.OpTrunc64to8, Types[TBOOL], flag)
  3048  	b := s.endBlock()
  3049  	b.Kind = ssa.BlockIf
  3050  	b.Likely = ssa.BranchUnlikely
  3051  	b.SetControl(flag)
  3052  	b.AddEdgeTo(bThen)
  3053  	b.AddEdgeTo(bElse)
  3054  
  3055  	s.startBlock(bThen)
  3056  
  3057  	if !rightIsVolatile {
  3058  		// Issue typedmemmove call.
  3059  		taddr := s.newValue1A(ssa.OpAddr, Types[TUINTPTR], &ssa.ExternSymbol{Typ: Types[TUINTPTR], Sym: typenamesym(t)}, s.sb)
  3060  		s.rtcall(typedmemmove, true, nil, taddr, left, right)
  3061  	} else {
  3062  		// Copy to temp location if the source is volatile (will be clobbered by
  3063  		// a function call).  Marshaling the args to typedmemmove might clobber the
  3064  		// value we're trying to move.
  3065  		tmp := temp(t)
  3066  		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, tmp, s.mem())
  3067  		tmpaddr, _ := s.addr(tmp, true)
  3068  		s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, t.Size(), tmpaddr, right, s.mem())
  3069  		// Issue typedmemmove call.
  3070  		taddr := s.newValue1A(ssa.OpAddr, Types[TUINTPTR], &ssa.ExternSymbol{Typ: Types[TUINTPTR], Sym: typenamesym(t)}, s.sb)
  3071  		s.rtcall(typedmemmove, true, nil, taddr, left, tmpaddr)
  3072  		// Mark temp as dead.
  3073  		s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, ssa.TypeMem, tmp, s.mem())
  3074  	}
  3075  	s.endBlock().AddEdgeTo(bEnd)
  3076  
  3077  	s.startBlock(bElse)
  3078  	s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, t.Size(), left, right, s.mem())
  3079  	s.endBlock().AddEdgeTo(bEnd)
  3080  
  3081  	s.startBlock(bEnd)
  3082  
  3083  	if Debug_wb > 0 {
  3084  		Warnl(line, "write barrier")
  3085  	}
  3086  }
  3087  
  3088  // insertWBstore inserts the assignment *left = right including a write barrier.
  3089  // t is the type being assigned.
  3090  func (s *state) insertWBstore(t *Type, left, right *ssa.Value, line int32, skip skipMask) {
  3091  	// store scalar fields
  3092  	// if writeBarrier.enabled {
  3093  	//   writebarrierptr for pointer fields
  3094  	// } else {
  3095  	//   store pointer fields
  3096  	// }
  3097  
  3098  	if s.noWB {
  3099  		s.Fatalf("write barrier prohibited")
  3100  	}
  3101  	if s.WBLineno == 0 {
  3102  		s.WBLineno = left.Line
  3103  	}
  3104  	s.storeTypeScalars(t, left, right, skip)
  3105  
  3106  	bThen := s.f.NewBlock(ssa.BlockPlain)
  3107  	bElse := s.f.NewBlock(ssa.BlockPlain)
  3108  	bEnd := s.f.NewBlock(ssa.BlockPlain)
  3109  
  3110  	aux := &ssa.ExternSymbol{Typ: Types[TBOOL], Sym: syslook("writeBarrier").Sym}
  3111  	flagaddr := s.newValue1A(ssa.OpAddr, Ptrto(Types[TUINT32]), aux, s.sb)
  3112  	// TODO: select the .enabled field. It is currently first, so not needed for now.
  3113  	// Load word, test byte, avoiding partial register write from load byte.
  3114  	flag := s.newValue2(ssa.OpLoad, Types[TUINT32], flagaddr, s.mem())
  3115  	flag = s.newValue1(ssa.OpTrunc64to8, Types[TBOOL], flag)
  3116  	b := s.endBlock()
  3117  	b.Kind = ssa.BlockIf
  3118  	b.Likely = ssa.BranchUnlikely
  3119  	b.SetControl(flag)
  3120  	b.AddEdgeTo(bThen)
  3121  	b.AddEdgeTo(bElse)
  3122  
  3123  	// Issue write barriers for pointer writes.
  3124  	s.startBlock(bThen)
  3125  	s.storeTypePtrsWB(t, left, right)
  3126  	s.endBlock().AddEdgeTo(bEnd)
  3127  
  3128  	// Issue regular stores for pointer writes.
  3129  	s.startBlock(bElse)
  3130  	s.storeTypePtrs(t, left, right)
  3131  	s.endBlock().AddEdgeTo(bEnd)
  3132  
  3133  	s.startBlock(bEnd)
  3134  
  3135  	if Debug_wb > 0 {
  3136  		Warnl(line, "write barrier")
  3137  	}
  3138  }
  3139  
  3140  // do *left = right for all scalar (non-pointer) parts of t.
  3141  func (s *state) storeTypeScalars(t *Type, left, right *ssa.Value, skip skipMask) {
  3142  	switch {
  3143  	case t.IsBoolean() || t.IsInteger() || t.IsFloat() || t.IsComplex():
  3144  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, t.Size(), left, right, s.mem())
  3145  	case t.IsPtrShaped():
  3146  		// no scalar fields.
  3147  	case t.IsString():
  3148  		if skip&skipLen != 0 {
  3149  			return
  3150  		}
  3151  		len := s.newValue1(ssa.OpStringLen, Types[TINT], right)
  3152  		lenAddr := s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TINT]), s.config.IntSize, left)
  3153  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, lenAddr, len, s.mem())
  3154  	case t.IsSlice():
  3155  		if skip&skipLen == 0 {
  3156  			len := s.newValue1(ssa.OpSliceLen, Types[TINT], right)
  3157  			lenAddr := s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TINT]), s.config.IntSize, left)
  3158  			s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, lenAddr, len, s.mem())
  3159  		}
  3160  		if skip&skipCap == 0 {
  3161  			cap := s.newValue1(ssa.OpSliceCap, Types[TINT], right)
  3162  			capAddr := s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TINT]), 2*s.config.IntSize, left)
  3163  			s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, capAddr, cap, s.mem())
  3164  		}
  3165  	case t.IsInterface():
  3166  		// itab field doesn't need a write barrier (even though it is a pointer).
  3167  		itab := s.newValue1(ssa.OpITab, Ptrto(Types[TUINT8]), right)
  3168  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, left, itab, s.mem())
  3169  	case t.IsStruct():
  3170  		n := t.NumFields()
  3171  		for i := 0; i < n; i++ {
  3172  			ft := t.FieldType(i)
  3173  			addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
  3174  			val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
  3175  			s.storeTypeScalars(ft.(*Type), addr, val, 0)
  3176  		}
  3177  	default:
  3178  		s.Fatalf("bad write barrier type %s", t)
  3179  	}
  3180  }
  3181  
  3182  // do *left = right for all pointer parts of t.
  3183  func (s *state) storeTypePtrs(t *Type, left, right *ssa.Value) {
  3184  	switch {
  3185  	case t.IsPtrShaped():
  3186  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, left, right, s.mem())
  3187  	case t.IsString():
  3188  		ptr := s.newValue1(ssa.OpStringPtr, Ptrto(Types[TUINT8]), right)
  3189  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, left, ptr, s.mem())
  3190  	case t.IsSlice():
  3191  		ptr := s.newValue1(ssa.OpSlicePtr, Ptrto(Types[TUINT8]), right)
  3192  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, left, ptr, s.mem())
  3193  	case t.IsInterface():
  3194  		// itab field is treated as a scalar.
  3195  		idata := s.newValue1(ssa.OpIData, Ptrto(Types[TUINT8]), right)
  3196  		idataAddr := s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TUINT8]), s.config.PtrSize, left)
  3197  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, idataAddr, idata, s.mem())
  3198  	case t.IsStruct():
  3199  		n := t.NumFields()
  3200  		for i := 0; i < n; i++ {
  3201  			ft := t.FieldType(i)
  3202  			if !haspointers(ft.(*Type)) {
  3203  				continue
  3204  			}
  3205  			addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
  3206  			val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
  3207  			s.storeTypePtrs(ft.(*Type), addr, val)
  3208  		}
  3209  	default:
  3210  		s.Fatalf("bad write barrier type %s", t)
  3211  	}
  3212  }
  3213  
  3214  // do *left = right with a write barrier for all pointer parts of t.
  3215  func (s *state) storeTypePtrsWB(t *Type, left, right *ssa.Value) {
  3216  	switch {
  3217  	case t.IsPtrShaped():
  3218  		s.rtcall(writebarrierptr, true, nil, left, right)
  3219  	case t.IsString():
  3220  		ptr := s.newValue1(ssa.OpStringPtr, Ptrto(Types[TUINT8]), right)
  3221  		s.rtcall(writebarrierptr, true, nil, left, ptr)
  3222  	case t.IsSlice():
  3223  		ptr := s.newValue1(ssa.OpSlicePtr, Ptrto(Types[TUINT8]), right)
  3224  		s.rtcall(writebarrierptr, true, nil, left, ptr)
  3225  	case t.IsInterface():
  3226  		idata := s.newValue1(ssa.OpIData, Ptrto(Types[TUINT8]), right)
  3227  		idataAddr := s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TUINT8]), s.config.PtrSize, left)
  3228  		s.rtcall(writebarrierptr, true, nil, idataAddr, idata)
  3229  	case t.IsStruct():
  3230  		n := t.NumFields()
  3231  		for i := 0; i < n; i++ {
  3232  			ft := t.FieldType(i)
  3233  			if !haspointers(ft.(*Type)) {
  3234  				continue
  3235  			}
  3236  			addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
  3237  			val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
  3238  			s.storeTypePtrsWB(ft.(*Type), addr, val)
  3239  		}
  3240  	default:
  3241  		s.Fatalf("bad write barrier type %s", t)
  3242  	}
  3243  }
  3244  
  3245  // slice computes the slice v[i:j:k] and returns ptr, len, and cap of result.
  3246  // i,j,k may be nil, in which case they are set to their default value.
  3247  // t is a slice, ptr to array, or string type.
  3248  func (s *state) slice(t *Type, v, i, j, k *ssa.Value) (p, l, c *ssa.Value) {
  3249  	var elemtype *Type
  3250  	var ptrtype *Type
  3251  	var ptr *ssa.Value
  3252  	var len *ssa.Value
  3253  	var cap *ssa.Value
  3254  	zero := s.constInt(Types[TINT], 0)
  3255  	switch {
  3256  	case t.IsSlice():
  3257  		elemtype = t.Elem()
  3258  		ptrtype = Ptrto(elemtype)
  3259  		ptr = s.newValue1(ssa.OpSlicePtr, ptrtype, v)
  3260  		len = s.newValue1(ssa.OpSliceLen, Types[TINT], v)
  3261  		cap = s.newValue1(ssa.OpSliceCap, Types[TINT], v)
  3262  	case t.IsString():
  3263  		elemtype = Types[TUINT8]
  3264  		ptrtype = Ptrto(elemtype)
  3265  		ptr = s.newValue1(ssa.OpStringPtr, ptrtype, v)
  3266  		len = s.newValue1(ssa.OpStringLen, Types[TINT], v)
  3267  		cap = len
  3268  	case t.IsPtr():
  3269  		if !t.Elem().IsArray() {
  3270  			s.Fatalf("bad ptr to array in slice %v\n", t)
  3271  		}
  3272  		elemtype = t.Elem().Elem()
  3273  		ptrtype = Ptrto(elemtype)
  3274  		s.nilCheck(v)
  3275  		ptr = v
  3276  		len = s.constInt(Types[TINT], t.Elem().NumElem())
  3277  		cap = len
  3278  	default:
  3279  		s.Fatalf("bad type in slice %v\n", t)
  3280  	}
  3281  
  3282  	// Set default values
  3283  	if i == nil {
  3284  		i = zero
  3285  	}
  3286  	if j == nil {
  3287  		j = len
  3288  	}
  3289  	if k == nil {
  3290  		k = cap
  3291  	}
  3292  
  3293  	// Panic if slice indices are not in bounds.
  3294  	s.sliceBoundsCheck(i, j)
  3295  	if j != k {
  3296  		s.sliceBoundsCheck(j, k)
  3297  	}
  3298  	if k != cap {
  3299  		s.sliceBoundsCheck(k, cap)
  3300  	}
  3301  
  3302  	// Generate the following code assuming that indexes are in bounds.
  3303  	// The conditional is to make sure that we don't generate a slice
  3304  	// that points to the next object in memory.
  3305  	// rlen = j-i
  3306  	// rcap = k-i
  3307  	// delta = i*elemsize
  3308  	// if rcap == 0 {
  3309  	//    delta = 0
  3310  	// }
  3311  	// rptr = p+delta
  3312  	// result = (SliceMake rptr rlen rcap)
  3313  	subOp := s.ssaOp(OSUB, Types[TINT])
  3314  	eqOp := s.ssaOp(OEQ, Types[TINT])
  3315  	mulOp := s.ssaOp(OMUL, Types[TINT])
  3316  	rlen := s.newValue2(subOp, Types[TINT], j, i)
  3317  	var rcap *ssa.Value
  3318  	switch {
  3319  	case t.IsString():
  3320  		// Capacity of the result is unimportant. However, we use
  3321  		// rcap to test if we've generated a zero-length slice.
  3322  		// Use length of strings for that.
  3323  		rcap = rlen
  3324  	case j == k:
  3325  		rcap = rlen
  3326  	default:
  3327  		rcap = s.newValue2(subOp, Types[TINT], k, i)
  3328  	}
  3329  
  3330  	// delta = # of elements to offset pointer by.
  3331  	s.vars[&deltaVar] = i
  3332  
  3333  	// Generate code to set delta=0 if the resulting capacity is zero.
  3334  	if !((i.Op == ssa.OpConst64 && i.AuxInt == 0) ||
  3335  		(i.Op == ssa.OpConst32 && int32(i.AuxInt) == 0)) {
  3336  		cmp := s.newValue2(eqOp, Types[TBOOL], rcap, zero)
  3337  
  3338  		b := s.endBlock()
  3339  		b.Kind = ssa.BlockIf
  3340  		b.Likely = ssa.BranchUnlikely
  3341  		b.SetControl(cmp)
  3342  
  3343  		// Generate block which zeros the delta variable.
  3344  		nz := s.f.NewBlock(ssa.BlockPlain)
  3345  		b.AddEdgeTo(nz)
  3346  		s.startBlock(nz)
  3347  		s.vars[&deltaVar] = zero
  3348  		s.endBlock()
  3349  
  3350  		// All done.
  3351  		merge := s.f.NewBlock(ssa.BlockPlain)
  3352  		b.AddEdgeTo(merge)
  3353  		nz.AddEdgeTo(merge)
  3354  		s.startBlock(merge)
  3355  
  3356  		// TODO: use conditional moves somehow?
  3357  	}
  3358  
  3359  	// Compute rptr = ptr + delta * elemsize
  3360  	rptr := s.newValue2(ssa.OpAddPtr, ptrtype, ptr, s.newValue2(mulOp, Types[TINT], s.variable(&deltaVar, Types[TINT]), s.constInt(Types[TINT], elemtype.Width)))
  3361  	delete(s.vars, &deltaVar)
  3362  	return rptr, rlen, rcap
  3363  }
  3364  
  3365  type u2fcvtTab struct {
  3366  	geq, cvt2F, and, rsh, or, add ssa.Op
  3367  	one                           func(*state, ssa.Type, int64) *ssa.Value
  3368  }
  3369  
  3370  var u64_f64 u2fcvtTab = u2fcvtTab{
  3371  	geq:   ssa.OpGeq64,
  3372  	cvt2F: ssa.OpCvt64to64F,
  3373  	and:   ssa.OpAnd64,
  3374  	rsh:   ssa.OpRsh64Ux64,
  3375  	or:    ssa.OpOr64,
  3376  	add:   ssa.OpAdd64F,
  3377  	one:   (*state).constInt64,
  3378  }
  3379  
  3380  var u64_f32 u2fcvtTab = u2fcvtTab{
  3381  	geq:   ssa.OpGeq64,
  3382  	cvt2F: ssa.OpCvt64to32F,
  3383  	and:   ssa.OpAnd64,
  3384  	rsh:   ssa.OpRsh64Ux64,
  3385  	or:    ssa.OpOr64,
  3386  	add:   ssa.OpAdd32F,
  3387  	one:   (*state).constInt64,
  3388  }
  3389  
  3390  // Excess generality on a machine with 64-bit integer registers.
  3391  // Not used on AMD64.
  3392  var u32_f32 u2fcvtTab = u2fcvtTab{
  3393  	geq:   ssa.OpGeq32,
  3394  	cvt2F: ssa.OpCvt32to32F,
  3395  	and:   ssa.OpAnd32,
  3396  	rsh:   ssa.OpRsh32Ux32,
  3397  	or:    ssa.OpOr32,
  3398  	add:   ssa.OpAdd32F,
  3399  	one: func(s *state, t ssa.Type, x int64) *ssa.Value {
  3400  		return s.constInt32(t, int32(x))
  3401  	},
  3402  }
  3403  
  3404  func (s *state) uint64Tofloat64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
  3405  	return s.uintTofloat(&u64_f64, n, x, ft, tt)
  3406  }
  3407  
  3408  func (s *state) uint64Tofloat32(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
  3409  	return s.uintTofloat(&u64_f32, n, x, ft, tt)
  3410  }
  3411  
  3412  func (s *state) uintTofloat(cvttab *u2fcvtTab, n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
  3413  	// if x >= 0 {
  3414  	//    result = (floatY) x
  3415  	// } else {
  3416  	// 	  y = uintX(x) ; y = x & 1
  3417  	// 	  z = uintX(x) ; z = z >> 1
  3418  	// 	  z = z >> 1
  3419  	// 	  z = z | y
  3420  	// 	  result = floatY(z)
  3421  	// 	  result = result + result
  3422  	// }
  3423  	//
  3424  	// Code borrowed from old code generator.
  3425  	// What's going on: large 64-bit "unsigned" looks like
  3426  	// negative number to hardware's integer-to-float
  3427  	// conversion. However, because the mantissa is only
  3428  	// 63 bits, we don't need the LSB, so instead we do an
  3429  	// unsigned right shift (divide by two), convert, and
  3430  	// double. However, before we do that, we need to be
  3431  	// sure that we do not lose a "1" if that made the
  3432  	// difference in the resulting rounding. Therefore, we
  3433  	// preserve it, and OR (not ADD) it back in. The case
  3434  	// that matters is when the eleven discarded bits are
  3435  	// equal to 10000000001; that rounds up, and the 1 cannot
  3436  	// be lost else it would round down if the LSB of the
  3437  	// candidate mantissa is 0.
  3438  	cmp := s.newValue2(cvttab.geq, Types[TBOOL], x, s.zeroVal(ft))
  3439  	b := s.endBlock()
  3440  	b.Kind = ssa.BlockIf
  3441  	b.SetControl(cmp)
  3442  	b.Likely = ssa.BranchLikely
  3443  
  3444  	bThen := s.f.NewBlock(ssa.BlockPlain)
  3445  	bElse := s.f.NewBlock(ssa.BlockPlain)
  3446  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  3447  
  3448  	b.AddEdgeTo(bThen)
  3449  	s.startBlock(bThen)
  3450  	a0 := s.newValue1(cvttab.cvt2F, tt, x)
  3451  	s.vars[n] = a0
  3452  	s.endBlock()
  3453  	bThen.AddEdgeTo(bAfter)
  3454  
  3455  	b.AddEdgeTo(bElse)
  3456  	s.startBlock(bElse)
  3457  	one := cvttab.one(s, ft, 1)
  3458  	y := s.newValue2(cvttab.and, ft, x, one)
  3459  	z := s.newValue2(cvttab.rsh, ft, x, one)
  3460  	z = s.newValue2(cvttab.or, ft, z, y)
  3461  	a := s.newValue1(cvttab.cvt2F, tt, z)
  3462  	a1 := s.newValue2(cvttab.add, tt, a, a)
  3463  	s.vars[n] = a1
  3464  	s.endBlock()
  3465  	bElse.AddEdgeTo(bAfter)
  3466  
  3467  	s.startBlock(bAfter)
  3468  	return s.variable(n, n.Type)
  3469  }
  3470  
  3471  // referenceTypeBuiltin generates code for the len/cap builtins for maps and channels.
  3472  func (s *state) referenceTypeBuiltin(n *Node, x *ssa.Value) *ssa.Value {
  3473  	if !n.Left.Type.IsMap() && !n.Left.Type.IsChan() {
  3474  		s.Fatalf("node must be a map or a channel")
  3475  	}
  3476  	// if n == nil {
  3477  	//   return 0
  3478  	// } else {
  3479  	//   // len
  3480  	//   return *((*int)n)
  3481  	//   // cap
  3482  	//   return *(((*int)n)+1)
  3483  	// }
  3484  	lenType := n.Type
  3485  	nilValue := s.constNil(Types[TUINTPTR])
  3486  	cmp := s.newValue2(ssa.OpEqPtr, Types[TBOOL], x, nilValue)
  3487  	b := s.endBlock()
  3488  	b.Kind = ssa.BlockIf
  3489  	b.SetControl(cmp)
  3490  	b.Likely = ssa.BranchUnlikely
  3491  
  3492  	bThen := s.f.NewBlock(ssa.BlockPlain)
  3493  	bElse := s.f.NewBlock(ssa.BlockPlain)
  3494  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  3495  
  3496  	// length/capacity of a nil map/chan is zero
  3497  	b.AddEdgeTo(bThen)
  3498  	s.startBlock(bThen)
  3499  	s.vars[n] = s.zeroVal(lenType)
  3500  	s.endBlock()
  3501  	bThen.AddEdgeTo(bAfter)
  3502  
  3503  	b.AddEdgeTo(bElse)
  3504  	s.startBlock(bElse)
  3505  	if n.Op == OLEN {
  3506  		// length is stored in the first word for map/chan
  3507  		s.vars[n] = s.newValue2(ssa.OpLoad, lenType, x, s.mem())
  3508  	} else if n.Op == OCAP {
  3509  		// capacity is stored in the second word for chan
  3510  		sw := s.newValue1I(ssa.OpOffPtr, lenType.PtrTo(), lenType.Width, x)
  3511  		s.vars[n] = s.newValue2(ssa.OpLoad, lenType, sw, s.mem())
  3512  	} else {
  3513  		s.Fatalf("op must be OLEN or OCAP")
  3514  	}
  3515  	s.endBlock()
  3516  	bElse.AddEdgeTo(bAfter)
  3517  
  3518  	s.startBlock(bAfter)
  3519  	return s.variable(n, lenType)
  3520  }
  3521  
  3522  type f2uCvtTab struct {
  3523  	ltf, cvt2U, subf ssa.Op
  3524  	value            func(*state, ssa.Type, float64) *ssa.Value
  3525  }
  3526  
  3527  var f32_u64 f2uCvtTab = f2uCvtTab{
  3528  	ltf:   ssa.OpLess32F,
  3529  	cvt2U: ssa.OpCvt32Fto64,
  3530  	subf:  ssa.OpSub32F,
  3531  	value: (*state).constFloat32,
  3532  }
  3533  
  3534  var f64_u64 f2uCvtTab = f2uCvtTab{
  3535  	ltf:   ssa.OpLess64F,
  3536  	cvt2U: ssa.OpCvt64Fto64,
  3537  	subf:  ssa.OpSub64F,
  3538  	value: (*state).constFloat64,
  3539  }
  3540  
  3541  func (s *state) float32ToUint64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
  3542  	return s.floatToUint(&f32_u64, n, x, ft, tt)
  3543  }
  3544  func (s *state) float64ToUint64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
  3545  	return s.floatToUint(&f64_u64, n, x, ft, tt)
  3546  }
  3547  
  3548  func (s *state) floatToUint(cvttab *f2uCvtTab, n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
  3549  	// if x < 9223372036854775808.0 {
  3550  	// 	result = uintY(x)
  3551  	// } else {
  3552  	// 	y = x - 9223372036854775808.0
  3553  	// 	z = uintY(y)
  3554  	// 	result = z | -9223372036854775808
  3555  	// }
  3556  	twoToThe63 := cvttab.value(s, ft, 9223372036854775808.0)
  3557  	cmp := s.newValue2(cvttab.ltf, Types[TBOOL], x, twoToThe63)
  3558  	b := s.endBlock()
  3559  	b.Kind = ssa.BlockIf
  3560  	b.SetControl(cmp)
  3561  	b.Likely = ssa.BranchLikely
  3562  
  3563  	bThen := s.f.NewBlock(ssa.BlockPlain)
  3564  	bElse := s.f.NewBlock(ssa.BlockPlain)
  3565  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  3566  
  3567  	b.AddEdgeTo(bThen)
  3568  	s.startBlock(bThen)
  3569  	a0 := s.newValue1(cvttab.cvt2U, tt, x)
  3570  	s.vars[n] = a0
  3571  	s.endBlock()
  3572  	bThen.AddEdgeTo(bAfter)
  3573  
  3574  	b.AddEdgeTo(bElse)
  3575  	s.startBlock(bElse)
  3576  	y := s.newValue2(cvttab.subf, ft, x, twoToThe63)
  3577  	y = s.newValue1(cvttab.cvt2U, tt, y)
  3578  	z := s.constInt64(tt, -9223372036854775808)
  3579  	a1 := s.newValue2(ssa.OpOr64, tt, y, z)
  3580  	s.vars[n] = a1
  3581  	s.endBlock()
  3582  	bElse.AddEdgeTo(bAfter)
  3583  
  3584  	s.startBlock(bAfter)
  3585  	return s.variable(n, n.Type)
  3586  }
  3587  
  3588  // ifaceType returns the value for the word containing the type.
  3589  // n is the node for the interface expression.
  3590  // v is the corresponding value.
  3591  func (s *state) ifaceType(n *Node, v *ssa.Value) *ssa.Value {
  3592  	byteptr := Ptrto(Types[TUINT8]) // type used in runtime prototypes for runtime type (*byte)
  3593  
  3594  	if n.Type.IsEmptyInterface() {
  3595  		// Have *eface. The type is the first word in the struct.
  3596  		return s.newValue1(ssa.OpITab, byteptr, v)
  3597  	}
  3598  
  3599  	// Have *iface.
  3600  	// The first word in the struct is the *itab.
  3601  	// If the *itab is nil, return 0.
  3602  	// Otherwise, the second word in the *itab is the type.
  3603  
  3604  	tab := s.newValue1(ssa.OpITab, byteptr, v)
  3605  	s.vars[&typVar] = tab
  3606  	isnonnil := s.newValue2(ssa.OpNeqPtr, Types[TBOOL], tab, s.constNil(byteptr))
  3607  	b := s.endBlock()
  3608  	b.Kind = ssa.BlockIf
  3609  	b.SetControl(isnonnil)
  3610  	b.Likely = ssa.BranchLikely
  3611  
  3612  	bLoad := s.f.NewBlock(ssa.BlockPlain)
  3613  	bEnd := s.f.NewBlock(ssa.BlockPlain)
  3614  
  3615  	b.AddEdgeTo(bLoad)
  3616  	b.AddEdgeTo(bEnd)
  3617  	bLoad.AddEdgeTo(bEnd)
  3618  
  3619  	s.startBlock(bLoad)
  3620  	off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), tab)
  3621  	s.vars[&typVar] = s.newValue2(ssa.OpLoad, byteptr, off, s.mem())
  3622  	s.endBlock()
  3623  
  3624  	s.startBlock(bEnd)
  3625  	typ := s.variable(&typVar, byteptr)
  3626  	delete(s.vars, &typVar)
  3627  	return typ
  3628  }
  3629  
  3630  // dottype generates SSA for a type assertion node.
  3631  // commaok indicates whether to panic or return a bool.
  3632  // If commaok is false, resok will be nil.
  3633  func (s *state) dottype(n *Node, commaok bool) (res, resok *ssa.Value) {
  3634  	iface := s.expr(n.Left)
  3635  	typ := s.ifaceType(n.Left, iface)  // actual concrete type
  3636  	target := s.expr(typename(n.Type)) // target type
  3637  	if !isdirectiface(n.Type) {
  3638  		// walk rewrites ODOTTYPE/OAS2DOTTYPE into runtime calls except for this case.
  3639  		Fatalf("dottype needs a direct iface type %s", n.Type)
  3640  	}
  3641  
  3642  	if Debug_typeassert > 0 {
  3643  		Warnl(n.Lineno, "type assertion inlined")
  3644  	}
  3645  
  3646  	// TODO:  If we have a nonempty interface and its itab field is nil,
  3647  	// then this test is redundant and ifaceType should just branch directly to bFail.
  3648  	cond := s.newValue2(ssa.OpEqPtr, Types[TBOOL], typ, target)
  3649  	b := s.endBlock()
  3650  	b.Kind = ssa.BlockIf
  3651  	b.SetControl(cond)
  3652  	b.Likely = ssa.BranchLikely
  3653  
  3654  	byteptr := Ptrto(Types[TUINT8])
  3655  
  3656  	bOk := s.f.NewBlock(ssa.BlockPlain)
  3657  	bFail := s.f.NewBlock(ssa.BlockPlain)
  3658  	b.AddEdgeTo(bOk)
  3659  	b.AddEdgeTo(bFail)
  3660  
  3661  	if !commaok {
  3662  		// on failure, panic by calling panicdottype
  3663  		s.startBlock(bFail)
  3664  		taddr := s.newValue1A(ssa.OpAddr, byteptr, &ssa.ExternSymbol{Typ: byteptr, Sym: typenamesym(n.Left.Type)}, s.sb)
  3665  		s.rtcall(panicdottype, false, nil, typ, target, taddr)
  3666  
  3667  		// on success, return idata field
  3668  		s.startBlock(bOk)
  3669  		return s.newValue1(ssa.OpIData, n.Type, iface), nil
  3670  	}
  3671  
  3672  	// commaok is the more complicated case because we have
  3673  	// a control flow merge point.
  3674  	bEnd := s.f.NewBlock(ssa.BlockPlain)
  3675  
  3676  	// type assertion succeeded
  3677  	s.startBlock(bOk)
  3678  	s.vars[&idataVar] = s.newValue1(ssa.OpIData, n.Type, iface)
  3679  	s.vars[&okVar] = s.constBool(true)
  3680  	s.endBlock()
  3681  	bOk.AddEdgeTo(bEnd)
  3682  
  3683  	// type assertion failed
  3684  	s.startBlock(bFail)
  3685  	s.vars[&idataVar] = s.constNil(byteptr)
  3686  	s.vars[&okVar] = s.constBool(false)
  3687  	s.endBlock()
  3688  	bFail.AddEdgeTo(bEnd)
  3689  
  3690  	// merge point
  3691  	s.startBlock(bEnd)
  3692  	res = s.variable(&idataVar, byteptr)
  3693  	resok = s.variable(&okVar, Types[TBOOL])
  3694  	delete(s.vars, &idataVar)
  3695  	delete(s.vars, &okVar)
  3696  	return res, resok
  3697  }
  3698  
  3699  // checkgoto checks that a goto from from to to does not
  3700  // jump into a block or jump over variable declarations.
  3701  // It is a copy of checkgoto in the pre-SSA backend,
  3702  // modified only for line number handling.
  3703  // TODO: document how this works and why it is designed the way it is.
  3704  func (s *state) checkgoto(from *Node, to *Node) {
  3705  	if from.Sym == to.Sym {
  3706  		return
  3707  	}
  3708  
  3709  	nf := 0
  3710  	for fs := from.Sym; fs != nil; fs = fs.Link {
  3711  		nf++
  3712  	}
  3713  	nt := 0
  3714  	for fs := to.Sym; fs != nil; fs = fs.Link {
  3715  		nt++
  3716  	}
  3717  	fs := from.Sym
  3718  	for ; nf > nt; nf-- {
  3719  		fs = fs.Link
  3720  	}
  3721  	if fs != to.Sym {
  3722  		// decide what to complain about.
  3723  		// prefer to complain about 'into block' over declarations,
  3724  		// so scan backward to find most recent block or else dcl.
  3725  		var block *Sym
  3726  
  3727  		var dcl *Sym
  3728  		ts := to.Sym
  3729  		for ; nt > nf; nt-- {
  3730  			if ts.Pkg == nil {
  3731  				block = ts
  3732  			} else {
  3733  				dcl = ts
  3734  			}
  3735  			ts = ts.Link
  3736  		}
  3737  
  3738  		for ts != fs {
  3739  			if ts.Pkg == nil {
  3740  				block = ts
  3741  			} else {
  3742  				dcl = ts
  3743  			}
  3744  			ts = ts.Link
  3745  			fs = fs.Link
  3746  		}
  3747  
  3748  		lno := from.Left.Lineno
  3749  		if block != nil {
  3750  			yyerrorl(lno, "goto %v jumps into block starting at %v", from.Left.Sym, linestr(block.Lastlineno))
  3751  		} else {
  3752  			yyerrorl(lno, "goto %v jumps over declaration of %v at %v", from.Left.Sym, dcl, linestr(dcl.Lastlineno))
  3753  		}
  3754  	}
  3755  }
  3756  
  3757  // variable returns the value of a variable at the current location.
  3758  func (s *state) variable(name *Node, t ssa.Type) *ssa.Value {
  3759  	v := s.vars[name]
  3760  	if v == nil {
  3761  		v = s.newValue0A(ssa.OpFwdRef, t, name)
  3762  		s.fwdRefs = append(s.fwdRefs, v)
  3763  		s.vars[name] = v
  3764  		s.addNamedValue(name, v)
  3765  	}
  3766  	return v
  3767  }
  3768  
  3769  func (s *state) mem() *ssa.Value {
  3770  	return s.variable(&memVar, ssa.TypeMem)
  3771  }
  3772  
  3773  func (s *state) linkForwardReferences(dm *sparseDefState) {
  3774  
  3775  	// Build SSA graph. Each variable on its first use in a basic block
  3776  	// leaves a FwdRef in that block representing the incoming value
  3777  	// of that variable. This function links that ref up with possible definitions,
  3778  	// inserting Phi values as needed. This is essentially the algorithm
  3779  	// described by Braun, Buchwald, Hack, Leißa, Mallon, and Zwinkau:
  3780  	// http://pp.info.uni-karlsruhe.de/uploads/publikationen/braun13cc.pdf
  3781  	// Differences:
  3782  	//   - We use FwdRef nodes to postpone phi building until the CFG is
  3783  	//     completely built. That way we can avoid the notion of "sealed"
  3784  	//     blocks.
  3785  	//   - Phi optimization is a separate pass (in ../ssa/phielim.go).
  3786  	for len(s.fwdRefs) > 0 {
  3787  		v := s.fwdRefs[len(s.fwdRefs)-1]
  3788  		s.fwdRefs = s.fwdRefs[:len(s.fwdRefs)-1]
  3789  		s.resolveFwdRef(v, dm)
  3790  	}
  3791  }
  3792  
  3793  // resolveFwdRef modifies v to be the variable's value at the start of its block.
  3794  // v must be a FwdRef op.
  3795  func (s *state) resolveFwdRef(v *ssa.Value, dm *sparseDefState) {
  3796  	b := v.Block
  3797  	name := v.Aux.(*Node)
  3798  	v.Aux = nil
  3799  	if b == s.f.Entry {
  3800  		// Live variable at start of function.
  3801  		if s.canSSA(name) {
  3802  			if strings.HasPrefix(name.Sym.Name, "autotmp_") {
  3803  				// It's likely that this is an uninitialized variable in the entry block.
  3804  				s.Fatalf("Treating auto as if it were arg, func %s, node %v, value %v", b.Func.Name, name, v)
  3805  			}
  3806  			v.Op = ssa.OpArg
  3807  			v.Aux = name
  3808  			return
  3809  		}
  3810  		// Not SSAable. Load it.
  3811  		addr := s.decladdrs[name]
  3812  		if addr == nil {
  3813  			// TODO: closure args reach here.
  3814  			s.Unimplementedf("unhandled closure arg %s at entry to function %s", name, b.Func.Name)
  3815  		}
  3816  		if _, ok := addr.Aux.(*ssa.ArgSymbol); !ok {
  3817  			s.Fatalf("variable live at start of function %s is not an argument %s", b.Func.Name, name)
  3818  		}
  3819  		v.Op = ssa.OpLoad
  3820  		v.AddArgs(addr, s.startmem)
  3821  		return
  3822  	}
  3823  	if len(b.Preds) == 0 {
  3824  		// This block is dead; we have no predecessors and we're not the entry block.
  3825  		// It doesn't matter what we use here as long as it is well-formed.
  3826  		v.Op = ssa.OpUnknown
  3827  		return
  3828  	}
  3829  	// Find variable value on each predecessor.
  3830  	var argstore [4]*ssa.Value
  3831  	args := argstore[:0]
  3832  	for _, e := range b.Preds {
  3833  		p := e.Block()
  3834  		p = dm.FindBetterDefiningBlock(name, p) // try sparse improvement on p
  3835  		args = append(args, s.lookupVarOutgoing(p, v.Type, name, v.Line))
  3836  	}
  3837  
  3838  	// Decide if we need a phi or not. We need a phi if there
  3839  	// are two different args (which are both not v).
  3840  	var w *ssa.Value
  3841  	for _, a := range args {
  3842  		if a == v {
  3843  			continue // self-reference
  3844  		}
  3845  		if a == w {
  3846  			continue // already have this witness
  3847  		}
  3848  		if w != nil {
  3849  			// two witnesses, need a phi value
  3850  			v.Op = ssa.OpPhi
  3851  			v.AddArgs(args...)
  3852  			return
  3853  		}
  3854  		w = a // save witness
  3855  	}
  3856  	if w == nil {
  3857  		s.Fatalf("no witness for reachable phi %s", v)
  3858  	}
  3859  	// One witness. Make v a copy of w.
  3860  	v.Op = ssa.OpCopy
  3861  	v.AddArg(w)
  3862  }
  3863  
  3864  // lookupVarOutgoing finds the variable's value at the end of block b.
  3865  func (s *state) lookupVarOutgoing(b *ssa.Block, t ssa.Type, name *Node, line int32) *ssa.Value {
  3866  	for {
  3867  		if v, ok := s.defvars[b.ID][name]; ok {
  3868  			return v
  3869  		}
  3870  		// The variable is not defined by b and we haven't looked it up yet.
  3871  		// If b has exactly one predecessor, loop to look it up there.
  3872  		// Otherwise, give up and insert a new FwdRef and resolve it later.
  3873  		if len(b.Preds) != 1 {
  3874  			break
  3875  		}
  3876  		b = b.Preds[0].Block()
  3877  	}
  3878  	// Generate a FwdRef for the variable and return that.
  3879  	v := b.NewValue0A(line, ssa.OpFwdRef, t, name)
  3880  	s.fwdRefs = append(s.fwdRefs, v)
  3881  	s.defvars[b.ID][name] = v
  3882  	s.addNamedValue(name, v)
  3883  	return v
  3884  }
  3885  
  3886  func (s *state) addNamedValue(n *Node, v *ssa.Value) {
  3887  	if n.Class == Pxxx {
  3888  		// Don't track our dummy nodes (&memVar etc.).
  3889  		return
  3890  	}
  3891  	if strings.HasPrefix(n.Sym.Name, "autotmp_") {
  3892  		// Don't track autotmp_ variables.
  3893  		return
  3894  	}
  3895  	if n.Class == PPARAMOUT {
  3896  		// Don't track named output values.  This prevents return values
  3897  		// from being assigned too early. See #14591 and #14762. TODO: allow this.
  3898  		return
  3899  	}
  3900  	if n.Class == PAUTO && n.Xoffset != 0 {
  3901  		s.Fatalf("AUTO var with offset %s %d", n, n.Xoffset)
  3902  	}
  3903  	loc := ssa.LocalSlot{N: n, Type: n.Type, Off: 0}
  3904  	values, ok := s.f.NamedValues[loc]
  3905  	if !ok {
  3906  		s.f.Names = append(s.f.Names, loc)
  3907  	}
  3908  	s.f.NamedValues[loc] = append(values, v)
  3909  }
  3910  
  3911  // Branch is an unresolved branch.
  3912  type Branch struct {
  3913  	P *obj.Prog  // branch instruction
  3914  	B *ssa.Block // target
  3915  }
  3916  
  3917  // SSAGenState contains state needed during Prog generation.
  3918  type SSAGenState struct {
  3919  	// Branches remembers all the branch instructions we've seen
  3920  	// and where they would like to go.
  3921  	Branches []Branch
  3922  
  3923  	// bstart remembers where each block starts (indexed by block ID)
  3924  	bstart []*obj.Prog
  3925  }
  3926  
  3927  // Pc returns the current Prog.
  3928  func (s *SSAGenState) Pc() *obj.Prog {
  3929  	return Pc
  3930  }
  3931  
  3932  // SetLineno sets the current source line number.
  3933  func (s *SSAGenState) SetLineno(l int32) {
  3934  	lineno = l
  3935  }
  3936  
  3937  // genssa appends entries to ptxt for each instruction in f.
  3938  // gcargs and gclocals are filled in with pointer maps for the frame.
  3939  func genssa(f *ssa.Func, ptxt *obj.Prog, gcargs, gclocals *Sym) {
  3940  	var s SSAGenState
  3941  
  3942  	e := f.Config.Frontend().(*ssaExport)
  3943  	// We're about to emit a bunch of Progs.
  3944  	// Since the only way to get here is to explicitly request it,
  3945  	// just fail on unimplemented instead of trying to unwind our mess.
  3946  	e.mustImplement = true
  3947  
  3948  	// Remember where each block starts.
  3949  	s.bstart = make([]*obj.Prog, f.NumBlocks())
  3950  
  3951  	var valueProgs map[*obj.Prog]*ssa.Value
  3952  	var blockProgs map[*obj.Prog]*ssa.Block
  3953  	var logProgs = e.log
  3954  	if logProgs {
  3955  		valueProgs = make(map[*obj.Prog]*ssa.Value, f.NumValues())
  3956  		blockProgs = make(map[*obj.Prog]*ssa.Block, f.NumBlocks())
  3957  		f.Logf("genssa %s\n", f.Name)
  3958  		blockProgs[Pc] = f.Blocks[0]
  3959  	}
  3960  
  3961  	// Emit basic blocks
  3962  	for i, b := range f.Blocks {
  3963  		s.bstart[b.ID] = Pc
  3964  		// Emit values in block
  3965  		Thearch.SSAMarkMoves(&s, b)
  3966  		for _, v := range b.Values {
  3967  			x := Pc
  3968  			Thearch.SSAGenValue(&s, v)
  3969  			if logProgs {
  3970  				for ; x != Pc; x = x.Link {
  3971  					valueProgs[x] = v
  3972  				}
  3973  			}
  3974  		}
  3975  		// Emit control flow instructions for block
  3976  		var next *ssa.Block
  3977  		if i < len(f.Blocks)-1 && (Debug['N'] == 0 || b.Kind == ssa.BlockCall) {
  3978  			// If -N, leave next==nil so every block with successors
  3979  			// ends in a JMP (except call blocks - plive doesn't like
  3980  			// select{send,recv} followed by a JMP call).  Helps keep
  3981  			// line numbers for otherwise empty blocks.
  3982  			next = f.Blocks[i+1]
  3983  		}
  3984  		x := Pc
  3985  		Thearch.SSAGenBlock(&s, b, next)
  3986  		if logProgs {
  3987  			for ; x != Pc; x = x.Link {
  3988  				blockProgs[x] = b
  3989  			}
  3990  		}
  3991  	}
  3992  
  3993  	// Resolve branches
  3994  	for _, br := range s.Branches {
  3995  		br.P.To.Val = s.bstart[br.B.ID]
  3996  	}
  3997  
  3998  	if logProgs {
  3999  		for p := ptxt; p != nil; p = p.Link {
  4000  			var s string
  4001  			if v, ok := valueProgs[p]; ok {
  4002  				s = v.String()
  4003  			} else if b, ok := blockProgs[p]; ok {
  4004  				s = b.String()
  4005  			} else {
  4006  				s = "   " // most value and branch strings are 2-3 characters long
  4007  			}
  4008  			f.Logf("%s\t%s\n", s, p)
  4009  		}
  4010  		if f.Config.HTML != nil {
  4011  			saved := ptxt.Ctxt.LineHist.PrintFilenameOnly
  4012  			ptxt.Ctxt.LineHist.PrintFilenameOnly = true
  4013  			var buf bytes.Buffer
  4014  			buf.WriteString("<code>")
  4015  			buf.WriteString("<dl class=\"ssa-gen\">")
  4016  			for p := ptxt; p != nil; p = p.Link {
  4017  				buf.WriteString("<dt class=\"ssa-prog-src\">")
  4018  				if v, ok := valueProgs[p]; ok {
  4019  					buf.WriteString(v.HTML())
  4020  				} else if b, ok := blockProgs[p]; ok {
  4021  					buf.WriteString(b.HTML())
  4022  				}
  4023  				buf.WriteString("</dt>")
  4024  				buf.WriteString("<dd class=\"ssa-prog\">")
  4025  				buf.WriteString(html.EscapeString(p.String()))
  4026  				buf.WriteString("</dd>")
  4027  				buf.WriteString("</li>")
  4028  			}
  4029  			buf.WriteString("</dl>")
  4030  			buf.WriteString("</code>")
  4031  			f.Config.HTML.WriteColumn("genssa", buf.String())
  4032  			ptxt.Ctxt.LineHist.PrintFilenameOnly = saved
  4033  		}
  4034  	}
  4035  
  4036  	// Emit static data
  4037  	if f.StaticData != nil {
  4038  		for _, n := range f.StaticData.([]*Node) {
  4039  			if !gen_as_init(n, false) {
  4040  				Fatalf("non-static data marked as static: %v\n\n", n)
  4041  			}
  4042  		}
  4043  	}
  4044  
  4045  	// Allocate stack frame
  4046  	allocauto(ptxt)
  4047  
  4048  	// Generate gc bitmaps.
  4049  	liveness(Curfn, ptxt, gcargs, gclocals)
  4050  
  4051  	// Add frame prologue. Zero ambiguously live variables.
  4052  	Thearch.Defframe(ptxt)
  4053  	if Debug['f'] != 0 {
  4054  		frame(0)
  4055  	}
  4056  
  4057  	// Remove leftover instrumentation from the instruction stream.
  4058  	removevardef(ptxt)
  4059  
  4060  	f.Config.HTML.Close()
  4061  }
  4062  
  4063  // movZero generates a register indirect move with a 0 immediate and keeps track of bytes left and next offset
  4064  func movZero(as obj.As, width int64, nbytes int64, offset int64, regnum int16) (nleft int64, noff int64) {
  4065  	p := Prog(as)
  4066  	// TODO: use zero register on archs that support it.
  4067  	p.From.Type = obj.TYPE_CONST
  4068  	p.From.Offset = 0
  4069  	p.To.Type = obj.TYPE_MEM
  4070  	p.To.Reg = regnum
  4071  	p.To.Offset = offset
  4072  	offset += width
  4073  	nleft = nbytes - width
  4074  	return nleft, offset
  4075  }
  4076  
  4077  type FloatingEQNEJump struct {
  4078  	Jump  obj.As
  4079  	Index int
  4080  }
  4081  
  4082  func oneFPJump(b *ssa.Block, jumps *FloatingEQNEJump, likely ssa.BranchPrediction, branches []Branch) []Branch {
  4083  	p := Prog(jumps.Jump)
  4084  	p.To.Type = obj.TYPE_BRANCH
  4085  	to := jumps.Index
  4086  	branches = append(branches, Branch{p, b.Succs[to].Block()})
  4087  	if to == 1 {
  4088  		likely = -likely
  4089  	}
  4090  	// liblink reorders the instruction stream as it sees fit.
  4091  	// Pass along what we know so liblink can make use of it.
  4092  	// TODO: Once we've fully switched to SSA,
  4093  	// make liblink leave our output alone.
  4094  	switch likely {
  4095  	case ssa.BranchUnlikely:
  4096  		p.From.Type = obj.TYPE_CONST
  4097  		p.From.Offset = 0
  4098  	case ssa.BranchLikely:
  4099  		p.From.Type = obj.TYPE_CONST
  4100  		p.From.Offset = 1
  4101  	}
  4102  	return branches
  4103  }
  4104  
  4105  func SSAGenFPJump(s *SSAGenState, b, next *ssa.Block, jumps *[2][2]FloatingEQNEJump) {
  4106  	likely := b.Likely
  4107  	switch next {
  4108  	case b.Succs[0].Block():
  4109  		s.Branches = oneFPJump(b, &jumps[0][0], likely, s.Branches)
  4110  		s.Branches = oneFPJump(b, &jumps[0][1], likely, s.Branches)
  4111  	case b.Succs[1].Block():
  4112  		s.Branches = oneFPJump(b, &jumps[1][0], likely, s.Branches)
  4113  		s.Branches = oneFPJump(b, &jumps[1][1], likely, s.Branches)
  4114  	default:
  4115  		s.Branches = oneFPJump(b, &jumps[1][0], likely, s.Branches)
  4116  		s.Branches = oneFPJump(b, &jumps[1][1], likely, s.Branches)
  4117  		q := Prog(obj.AJMP)
  4118  		q.To.Type = obj.TYPE_BRANCH
  4119  		s.Branches = append(s.Branches, Branch{q, b.Succs[1].Block()})
  4120  	}
  4121  }
  4122  
  4123  // AddAux adds the offset in the aux fields (AuxInt and Aux) of v to a.
  4124  func AddAux(a *obj.Addr, v *ssa.Value) {
  4125  	AddAux2(a, v, v.AuxInt)
  4126  }
  4127  func AddAux2(a *obj.Addr, v *ssa.Value, offset int64) {
  4128  	if a.Type != obj.TYPE_MEM {
  4129  		v.Fatalf("bad AddAux addr %v", a)
  4130  	}
  4131  	// add integer offset
  4132  	a.Offset += offset
  4133  
  4134  	// If no additional symbol offset, we're done.
  4135  	if v.Aux == nil {
  4136  		return
  4137  	}
  4138  	// Add symbol's offset from its base register.
  4139  	switch sym := v.Aux.(type) {
  4140  	case *ssa.ExternSymbol:
  4141  		a.Name = obj.NAME_EXTERN
  4142  		switch s := sym.Sym.(type) {
  4143  		case *Sym:
  4144  			a.Sym = Linksym(s)
  4145  		case *obj.LSym:
  4146  			a.Sym = s
  4147  		default:
  4148  			v.Fatalf("ExternSymbol.Sym is %T", s)
  4149  		}
  4150  	case *ssa.ArgSymbol:
  4151  		n := sym.Node.(*Node)
  4152  		a.Name = obj.NAME_PARAM
  4153  		a.Node = n
  4154  		a.Sym = Linksym(n.Orig.Sym)
  4155  		a.Offset += n.Xoffset // TODO: why do I have to add this here?  I don't for auto variables.
  4156  	case *ssa.AutoSymbol:
  4157  		n := sym.Node.(*Node)
  4158  		a.Name = obj.NAME_AUTO
  4159  		a.Node = n
  4160  		a.Sym = Linksym(n.Sym)
  4161  	default:
  4162  		v.Fatalf("aux in %s not implemented %#v", v, v.Aux)
  4163  	}
  4164  }
  4165  
  4166  // extendIndex extends v to a full int width.
  4167  func (s *state) extendIndex(v *ssa.Value) *ssa.Value {
  4168  	size := v.Type.Size()
  4169  	if size == s.config.IntSize {
  4170  		return v
  4171  	}
  4172  	if size > s.config.IntSize {
  4173  		// TODO: truncate 64-bit indexes on 32-bit pointer archs. We'd need to test
  4174  		// the high word and branch to out-of-bounds failure if it is not 0.
  4175  		s.Unimplementedf("64->32 index truncation not implemented")
  4176  		return v
  4177  	}
  4178  
  4179  	// Extend value to the required size
  4180  	var op ssa.Op
  4181  	if v.Type.IsSigned() {
  4182  		switch 10*size + s.config.IntSize {
  4183  		case 14:
  4184  			op = ssa.OpSignExt8to32
  4185  		case 18:
  4186  			op = ssa.OpSignExt8to64
  4187  		case 24:
  4188  			op = ssa.OpSignExt16to32
  4189  		case 28:
  4190  			op = ssa.OpSignExt16to64
  4191  		case 48:
  4192  			op = ssa.OpSignExt32to64
  4193  		default:
  4194  			s.Fatalf("bad signed index extension %s", v.Type)
  4195  		}
  4196  	} else {
  4197  		switch 10*size + s.config.IntSize {
  4198  		case 14:
  4199  			op = ssa.OpZeroExt8to32
  4200  		case 18:
  4201  			op = ssa.OpZeroExt8to64
  4202  		case 24:
  4203  			op = ssa.OpZeroExt16to32
  4204  		case 28:
  4205  			op = ssa.OpZeroExt16to64
  4206  		case 48:
  4207  			op = ssa.OpZeroExt32to64
  4208  		default:
  4209  			s.Fatalf("bad unsigned index extension %s", v.Type)
  4210  		}
  4211  	}
  4212  	return s.newValue1(op, Types[TINT], v)
  4213  }
  4214  
  4215  // SSARegNum returns the register (in cmd/internal/obj numbering) to
  4216  // which v has been allocated. Panics if v is not assigned to a
  4217  // register.
  4218  // TODO: Make this panic again once it stops happening routinely.
  4219  func SSARegNum(v *ssa.Value) int16 {
  4220  	reg := v.Block.Func.RegAlloc[v.ID]
  4221  	if reg == nil {
  4222  		v.Unimplementedf("nil regnum for value: %s\n%s\n", v.LongString(), v.Block.Func)
  4223  		return 0
  4224  	}
  4225  	return Thearch.SSARegToReg[reg.(*ssa.Register).Num]
  4226  }
  4227  
  4228  // AutoVar returns a *Node and int64 representing the auto variable and offset within it
  4229  // where v should be spilled.
  4230  func AutoVar(v *ssa.Value) (*Node, int64) {
  4231  	loc := v.Block.Func.RegAlloc[v.ID].(ssa.LocalSlot)
  4232  	if v.Type.Size() > loc.Type.Size() {
  4233  		v.Fatalf("spill/restore type %s doesn't fit in slot type %s", v.Type, loc.Type)
  4234  	}
  4235  	return loc.N.(*Node), loc.Off
  4236  }
  4237  
  4238  // fieldIdx finds the index of the field referred to by the ODOT node n.
  4239  func fieldIdx(n *Node) int {
  4240  	t := n.Left.Type
  4241  	f := n.Sym
  4242  	if !t.IsStruct() {
  4243  		panic("ODOT's LHS is not a struct")
  4244  	}
  4245  
  4246  	var i int
  4247  	for _, t1 := range t.Fields().Slice() {
  4248  		if t1.Sym != f {
  4249  			i++
  4250  			continue
  4251  		}
  4252  		if t1.Offset != n.Xoffset {
  4253  			panic("field offset doesn't match")
  4254  		}
  4255  		return i
  4256  	}
  4257  	panic(fmt.Sprintf("can't find field in expr %s\n", n))
  4258  
  4259  	// TODO: keep the result of this function somewhere in the ODOT Node
  4260  	// so we don't have to recompute it each time we need it.
  4261  }
  4262  
  4263  // ssaExport exports a bunch of compiler services for the ssa backend.
  4264  type ssaExport struct {
  4265  	log           bool
  4266  	unimplemented bool
  4267  	mustImplement bool
  4268  }
  4269  
  4270  func (s *ssaExport) TypeBool() ssa.Type    { return Types[TBOOL] }
  4271  func (s *ssaExport) TypeInt8() ssa.Type    { return Types[TINT8] }
  4272  func (s *ssaExport) TypeInt16() ssa.Type   { return Types[TINT16] }
  4273  func (s *ssaExport) TypeInt32() ssa.Type   { return Types[TINT32] }
  4274  func (s *ssaExport) TypeInt64() ssa.Type   { return Types[TINT64] }
  4275  func (s *ssaExport) TypeUInt8() ssa.Type   { return Types[TUINT8] }
  4276  func (s *ssaExport) TypeUInt16() ssa.Type  { return Types[TUINT16] }
  4277  func (s *ssaExport) TypeUInt32() ssa.Type  { return Types[TUINT32] }
  4278  func (s *ssaExport) TypeUInt64() ssa.Type  { return Types[TUINT64] }
  4279  func (s *ssaExport) TypeFloat32() ssa.Type { return Types[TFLOAT32] }
  4280  func (s *ssaExport) TypeFloat64() ssa.Type { return Types[TFLOAT64] }
  4281  func (s *ssaExport) TypeInt() ssa.Type     { return Types[TINT] }
  4282  func (s *ssaExport) TypeUintptr() ssa.Type { return Types[TUINTPTR] }
  4283  func (s *ssaExport) TypeString() ssa.Type  { return Types[TSTRING] }
  4284  func (s *ssaExport) TypeBytePtr() ssa.Type { return Ptrto(Types[TUINT8]) }
  4285  
  4286  // StringData returns a symbol (a *Sym wrapped in an interface) which
  4287  // is the data component of a global string constant containing s.
  4288  func (*ssaExport) StringData(s string) interface{} {
  4289  	// TODO: is idealstring correct?  It might not matter...
  4290  	_, data := stringsym(s)
  4291  	return &ssa.ExternSymbol{Typ: idealstring, Sym: data}
  4292  }
  4293  
  4294  func (e *ssaExport) Auto(t ssa.Type) ssa.GCNode {
  4295  	n := temp(t.(*Type))   // Note: adds new auto to Curfn.Func.Dcl list
  4296  	e.mustImplement = true // This modifies the input to SSA, so we want to make sure we succeed from here!
  4297  	return n
  4298  }
  4299  
  4300  func (e *ssaExport) SplitString(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  4301  	n := name.N.(*Node)
  4302  	ptrType := Ptrto(Types[TUINT8])
  4303  	lenType := Types[TINT]
  4304  	if n.Class == PAUTO && !n.Addrtaken {
  4305  		// Split this string up into two separate variables.
  4306  		p := e.namedAuto(n.Sym.Name+".ptr", ptrType)
  4307  		l := e.namedAuto(n.Sym.Name+".len", lenType)
  4308  		return ssa.LocalSlot{N: p, Type: ptrType, Off: 0}, ssa.LocalSlot{N: l, Type: lenType, Off: 0}
  4309  	}
  4310  	// Return the two parts of the larger variable.
  4311  	return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off}, ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)}
  4312  }
  4313  
  4314  func (e *ssaExport) SplitInterface(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  4315  	n := name.N.(*Node)
  4316  	t := Ptrto(Types[TUINT8])
  4317  	if n.Class == PAUTO && !n.Addrtaken {
  4318  		// Split this interface up into two separate variables.
  4319  		f := ".itab"
  4320  		if n.Type.IsEmptyInterface() {
  4321  			f = ".type"
  4322  		}
  4323  		c := e.namedAuto(n.Sym.Name+f, t)
  4324  		d := e.namedAuto(n.Sym.Name+".data", t)
  4325  		return ssa.LocalSlot{N: c, Type: t, Off: 0}, ssa.LocalSlot{N: d, Type: t, Off: 0}
  4326  	}
  4327  	// Return the two parts of the larger variable.
  4328  	return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + int64(Widthptr)}
  4329  }
  4330  
  4331  func (e *ssaExport) SplitSlice(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot, ssa.LocalSlot) {
  4332  	n := name.N.(*Node)
  4333  	ptrType := Ptrto(name.Type.ElemType().(*Type))
  4334  	lenType := Types[TINT]
  4335  	if n.Class == PAUTO && !n.Addrtaken {
  4336  		// Split this slice up into three separate variables.
  4337  		p := e.namedAuto(n.Sym.Name+".ptr", ptrType)
  4338  		l := e.namedAuto(n.Sym.Name+".len", lenType)
  4339  		c := e.namedAuto(n.Sym.Name+".cap", lenType)
  4340  		return ssa.LocalSlot{N: p, Type: ptrType, Off: 0}, ssa.LocalSlot{N: l, Type: lenType, Off: 0}, ssa.LocalSlot{N: c, Type: lenType, Off: 0}
  4341  	}
  4342  	// Return the three parts of the larger variable.
  4343  	return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off},
  4344  		ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)},
  4345  		ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(2*Widthptr)}
  4346  }
  4347  
  4348  func (e *ssaExport) SplitComplex(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  4349  	n := name.N.(*Node)
  4350  	s := name.Type.Size() / 2
  4351  	var t *Type
  4352  	if s == 8 {
  4353  		t = Types[TFLOAT64]
  4354  	} else {
  4355  		t = Types[TFLOAT32]
  4356  	}
  4357  	if n.Class == PAUTO && !n.Addrtaken {
  4358  		// Split this complex up into two separate variables.
  4359  		c := e.namedAuto(n.Sym.Name+".real", t)
  4360  		d := e.namedAuto(n.Sym.Name+".imag", t)
  4361  		return ssa.LocalSlot{N: c, Type: t, Off: 0}, ssa.LocalSlot{N: d, Type: t, Off: 0}
  4362  	}
  4363  	// Return the two parts of the larger variable.
  4364  	return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + s}
  4365  }
  4366  
  4367  func (e *ssaExport) SplitStruct(name ssa.LocalSlot, i int) ssa.LocalSlot {
  4368  	n := name.N.(*Node)
  4369  	st := name.Type
  4370  	ft := st.FieldType(i)
  4371  	if n.Class == PAUTO && !n.Addrtaken {
  4372  		// Note: the _ field may appear several times.  But
  4373  		// have no fear, identically-named but distinct Autos are
  4374  		// ok, albeit maybe confusing for a debugger.
  4375  		x := e.namedAuto(n.Sym.Name+"."+st.FieldName(i), ft)
  4376  		return ssa.LocalSlot{N: x, Type: ft, Off: 0}
  4377  	}
  4378  	return ssa.LocalSlot{N: n, Type: ft, Off: name.Off + st.FieldOff(i)}
  4379  }
  4380  
  4381  // namedAuto returns a new AUTO variable with the given name and type.
  4382  func (e *ssaExport) namedAuto(name string, typ ssa.Type) ssa.GCNode {
  4383  	t := typ.(*Type)
  4384  	s := &Sym{Name: name, Pkg: autopkg}
  4385  	n := Nod(ONAME, nil, nil)
  4386  	s.Def = n
  4387  	s.Def.Used = true
  4388  	n.Sym = s
  4389  	n.Type = t
  4390  	n.Class = PAUTO
  4391  	n.Addable = true
  4392  	n.Ullman = 1
  4393  	n.Esc = EscNever
  4394  	n.Xoffset = 0
  4395  	n.Name.Curfn = Curfn
  4396  	Curfn.Func.Dcl = append(Curfn.Func.Dcl, n)
  4397  
  4398  	dowidth(t)
  4399  	e.mustImplement = true
  4400  
  4401  	return n
  4402  }
  4403  
  4404  func (e *ssaExport) CanSSA(t ssa.Type) bool {
  4405  	return canSSAType(t.(*Type))
  4406  }
  4407  
  4408  func (e *ssaExport) Line(line int32) string {
  4409  	return linestr(line)
  4410  }
  4411  
  4412  // Log logs a message from the compiler.
  4413  func (e *ssaExport) Logf(msg string, args ...interface{}) {
  4414  	// If e was marked as unimplemented, anything could happen. Ignore.
  4415  	if e.log && !e.unimplemented {
  4416  		fmt.Printf(msg, args...)
  4417  	}
  4418  }
  4419  
  4420  func (e *ssaExport) Log() bool {
  4421  	return e.log
  4422  }
  4423  
  4424  // Fatal reports a compiler error and exits.
  4425  func (e *ssaExport) Fatalf(line int32, msg string, args ...interface{}) {
  4426  	// If e was marked as unimplemented, anything could happen. Ignore.
  4427  	if !e.unimplemented {
  4428  		lineno = line
  4429  		Fatalf(msg, args...)
  4430  	}
  4431  }
  4432  
  4433  // Unimplemented reports that the function cannot be compiled.
  4434  // It will be removed once SSA work is complete.
  4435  func (e *ssaExport) Unimplementedf(line int32, msg string, args ...interface{}) {
  4436  	if e.mustImplement {
  4437  		lineno = line
  4438  		Fatalf(msg, args...)
  4439  	}
  4440  	const alwaysLog = false // enable to calculate top unimplemented features
  4441  	if !e.unimplemented && (e.log || alwaysLog) {
  4442  		// first implementation failure, print explanation
  4443  		fmt.Printf("SSA unimplemented: "+msg+"\n", args...)
  4444  	}
  4445  	e.unimplemented = true
  4446  }
  4447  
  4448  // Warnl reports a "warning", which is usually flag-triggered
  4449  // logging output for the benefit of tests.
  4450  func (e *ssaExport) Warnl(line int32, fmt_ string, args ...interface{}) {
  4451  	Warnl(line, fmt_, args...)
  4452  }
  4453  
  4454  func (e *ssaExport) Debug_checknil() bool {
  4455  	return Debug_checknil != 0
  4456  }
  4457  
  4458  func (n *Node) Typ() ssa.Type {
  4459  	return n.Type
  4460  }