github.com/gocuntian/go@v0.0.0-20160610041250-fee02d270bf8/src/cmd/compile/internal/gc/subr.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package gc
     6  
     7  import (
     8  	"bytes"
     9  	"cmd/internal/obj"
    10  	"crypto/md5"
    11  	"encoding/binary"
    12  	"fmt"
    13  	"os"
    14  	"runtime/debug"
    15  	"sort"
    16  	"strconv"
    17  	"strings"
    18  	"unicode"
    19  	"unicode/utf8"
    20  )
    21  
    22  type Error struct {
    23  	lineno int32
    24  	msg    string
    25  }
    26  
    27  var errors []Error
    28  
    29  func errorexit() {
    30  	Flusherrors()
    31  	if outfile != "" {
    32  		os.Remove(outfile)
    33  	}
    34  	os.Exit(2)
    35  }
    36  
    37  func adderrorname(n *Node) {
    38  	if n.Op != ODOT {
    39  		return
    40  	}
    41  	old := fmt.Sprintf("%v: undefined: %v\n", n.Line(), n.Left)
    42  	if len(errors) > 0 && errors[len(errors)-1].lineno == n.Lineno && errors[len(errors)-1].msg == old {
    43  		errors[len(errors)-1].msg = fmt.Sprintf("%v: undefined: %v in %v\n", n.Line(), n.Left, n)
    44  	}
    45  }
    46  
    47  func adderr(line int32, format string, args ...interface{}) {
    48  	errors = append(errors, Error{
    49  		lineno: line,
    50  		msg:    fmt.Sprintf("%v: %s\n", linestr(line), fmt.Sprintf(format, args...)),
    51  	})
    52  }
    53  
    54  // byLineno sorts errors by lineno.
    55  type byLineno []Error
    56  
    57  func (x byLineno) Len() int           { return len(x) }
    58  func (x byLineno) Less(i, j int) bool { return x[i].lineno < x[j].lineno }
    59  func (x byLineno) Swap(i, j int)      { x[i], x[j] = x[j], x[i] }
    60  
    61  func Flusherrors() {
    62  	bstdout.Flush()
    63  	if len(errors) == 0 {
    64  		return
    65  	}
    66  	sort.Stable(byLineno(errors))
    67  	for i := 0; i < len(errors); i++ {
    68  		if i == 0 || errors[i].msg != errors[i-1].msg {
    69  			fmt.Printf("%s", errors[i].msg)
    70  		}
    71  	}
    72  	errors = errors[:0]
    73  }
    74  
    75  func hcrash() {
    76  	if Debug['h'] != 0 {
    77  		Flusherrors()
    78  		if outfile != "" {
    79  			os.Remove(outfile)
    80  		}
    81  		var x *int
    82  		*x = 0
    83  	}
    84  }
    85  
    86  func linestr(line int32) string {
    87  	return Ctxt.Line(int(line))
    88  }
    89  
    90  // lasterror keeps track of the most recently issued error.
    91  // It is used to avoid multiple error messages on the same
    92  // line.
    93  var lasterror struct {
    94  	syntax int32  // line of last syntax error
    95  	other  int32  // line of last non-syntax error
    96  	msg    string // error message of last non-syntax error
    97  }
    98  
    99  func yyerrorl(line int32, format string, args ...interface{}) {
   100  	msg := fmt.Sprintf(format, args...)
   101  
   102  	if strings.HasPrefix(msg, "syntax error") {
   103  		nsyntaxerrors++
   104  		// only one syntax error per line, no matter what error
   105  		if lasterror.syntax == line {
   106  			return
   107  		}
   108  		lasterror.syntax = line
   109  	} else {
   110  		// only one of multiple equal non-syntax errors per line
   111  		// (Flusherrors shows only one of them, so we filter them
   112  		// here as best as we can (they may not appear in order)
   113  		// so that we don't count them here and exit early, and
   114  		// then have nothing to show for.)
   115  		if lasterror.other == line && lasterror.msg == msg {
   116  			return
   117  		}
   118  		lasterror.other = line
   119  		lasterror.msg = msg
   120  	}
   121  
   122  	adderr(line, "%s", msg)
   123  
   124  	hcrash()
   125  	nerrors++
   126  	if nsavederrors+nerrors >= 10 && Debug['e'] == 0 {
   127  		Flusherrors()
   128  		fmt.Printf("%v: too many errors\n", linestr(line))
   129  		errorexit()
   130  	}
   131  }
   132  
   133  func Yyerror(format string, args ...interface{}) {
   134  	yyerrorl(lineno, format, args...)
   135  }
   136  
   137  func Warn(fmt_ string, args ...interface{}) {
   138  	adderr(lineno, fmt_, args...)
   139  
   140  	hcrash()
   141  }
   142  
   143  func Warnl(line int32, fmt_ string, args ...interface{}) {
   144  	adderr(line, fmt_, args...)
   145  	if Debug['m'] != 0 {
   146  		Flusherrors()
   147  	}
   148  }
   149  
   150  func Fatalf(fmt_ string, args ...interface{}) {
   151  	Flusherrors()
   152  
   153  	fmt.Printf("%v: internal compiler error: ", linestr(lineno))
   154  	fmt.Printf(fmt_, args...)
   155  	fmt.Printf("\n")
   156  
   157  	// If this is a released compiler version, ask for a bug report.
   158  	if strings.HasPrefix(obj.Getgoversion(), "release") {
   159  		fmt.Printf("\n")
   160  		fmt.Printf("Please file a bug report including a short program that triggers the error.\n")
   161  		fmt.Printf("https://golang.org/issue/new\n")
   162  	} else {
   163  		// Not a release; dump a stack trace, too.
   164  		fmt.Println()
   165  		os.Stdout.Write(debug.Stack())
   166  		fmt.Println()
   167  	}
   168  
   169  	hcrash()
   170  	errorexit()
   171  }
   172  
   173  func linehistpragma(file string) {
   174  	if Debug['i'] != 0 {
   175  		fmt.Printf("pragma %s at line %v\n", file, linestr(lexlineno))
   176  	}
   177  	Ctxt.AddImport(file)
   178  }
   179  
   180  func linehistpush(file string) {
   181  	if Debug['i'] != 0 {
   182  		fmt.Printf("import %s at line %v\n", file, linestr(lexlineno))
   183  	}
   184  	Ctxt.LineHist.Push(int(lexlineno), file)
   185  }
   186  
   187  func linehistpop() {
   188  	if Debug['i'] != 0 {
   189  		fmt.Printf("end of import at line %v\n", linestr(lexlineno))
   190  	}
   191  	Ctxt.LineHist.Pop(int(lexlineno))
   192  }
   193  
   194  func linehistupdate(file string, off int) {
   195  	if Debug['i'] != 0 {
   196  		fmt.Printf("line %s at line %v\n", file, linestr(lexlineno))
   197  	}
   198  	Ctxt.LineHist.Update(int(lexlineno), file, off)
   199  }
   200  
   201  func setlineno(n *Node) int32 {
   202  	lno := lineno
   203  	if n != nil {
   204  		switch n.Op {
   205  		case ONAME, OTYPE, OPACK:
   206  			break
   207  
   208  		case OLITERAL:
   209  			if n.Sym != nil {
   210  				break
   211  			}
   212  			fallthrough
   213  
   214  		default:
   215  			lineno = n.Lineno
   216  			if lineno == 0 {
   217  				if Debug['K'] != 0 {
   218  					Warn("setlineno: line 0")
   219  				}
   220  				lineno = lno
   221  			}
   222  		}
   223  	}
   224  
   225  	return lno
   226  }
   227  
   228  func Lookup(name string) *Sym {
   229  	return localpkg.Lookup(name)
   230  }
   231  
   232  func Lookupf(format string, a ...interface{}) *Sym {
   233  	return Lookup(fmt.Sprintf(format, a...))
   234  }
   235  
   236  func LookupBytes(name []byte) *Sym {
   237  	return localpkg.LookupBytes(name)
   238  }
   239  
   240  // LookupN looks up the symbol starting with prefix and ending with
   241  // the decimal n. If prefix is too long, LookupN panics.
   242  func LookupN(prefix string, n int) *Sym {
   243  	var buf [20]byte // plenty long enough for all current users
   244  	copy(buf[:], prefix)
   245  	b := strconv.AppendInt(buf[:len(prefix)], int64(n), 10)
   246  	return LookupBytes(b)
   247  }
   248  
   249  var initSyms []*Sym
   250  
   251  var nopkg = &Pkg{
   252  	Syms: make(map[string]*Sym),
   253  }
   254  
   255  func (pkg *Pkg) Lookup(name string) *Sym {
   256  	if pkg == nil {
   257  		pkg = nopkg
   258  	}
   259  	if s := pkg.Syms[name]; s != nil {
   260  		return s
   261  	}
   262  
   263  	s := &Sym{
   264  		Name: name,
   265  		Pkg:  pkg,
   266  	}
   267  	if name == "init" {
   268  		initSyms = append(initSyms, s)
   269  	}
   270  	pkg.Syms[name] = s
   271  	return s
   272  }
   273  
   274  func (pkg *Pkg) LookupBytes(name []byte) *Sym {
   275  	if pkg == nil {
   276  		pkg = nopkg
   277  	}
   278  	if s := pkg.Syms[string(name)]; s != nil {
   279  		return s
   280  	}
   281  	str := internString(name)
   282  	return pkg.Lookup(str)
   283  }
   284  
   285  func Pkglookup(name string, pkg *Pkg) *Sym {
   286  	return pkg.Lookup(name)
   287  }
   288  
   289  func restrictlookup(name string, pkg *Pkg) *Sym {
   290  	if !exportname(name) && pkg != localpkg {
   291  		Yyerror("cannot refer to unexported name %s.%s", pkg.Name, name)
   292  	}
   293  	return Pkglookup(name, pkg)
   294  }
   295  
   296  // find all the exported symbols in package opkg
   297  // and make them available in the current package
   298  func importdot(opkg *Pkg, pack *Node) {
   299  	var s1 *Sym
   300  	var pkgerror string
   301  
   302  	n := 0
   303  	for _, s := range opkg.Syms {
   304  		if s.Def == nil {
   305  			continue
   306  		}
   307  		if !exportname(s.Name) || strings.ContainsRune(s.Name, 0xb7) { // 0xb7 = center dot
   308  			continue
   309  		}
   310  		s1 = Lookup(s.Name)
   311  		if s1.Def != nil {
   312  			pkgerror = fmt.Sprintf("during import %q", opkg.Path)
   313  			redeclare(s1, pkgerror)
   314  			continue
   315  		}
   316  
   317  		s1.Def = s.Def
   318  		s1.Block = s.Block
   319  		if s1.Def.Name == nil {
   320  			Dump("s1def", s1.Def)
   321  			Fatalf("missing Name")
   322  		}
   323  		s1.Def.Name.Pack = pack
   324  		s1.Origpkg = opkg
   325  		n++
   326  	}
   327  
   328  	if n == 0 {
   329  		// can't possibly be used - there were no symbols
   330  		yyerrorl(pack.Lineno, "imported and not used: %q", opkg.Path)
   331  	}
   332  }
   333  
   334  func Nod(op Op, nleft *Node, nright *Node) *Node {
   335  	n := new(Node)
   336  	n.Op = op
   337  	n.Left = nleft
   338  	n.Right = nright
   339  	n.Lineno = lineno
   340  	n.Xoffset = BADWIDTH
   341  	n.Orig = n
   342  	switch op {
   343  	case OCLOSURE, ODCLFUNC:
   344  		n.Func = new(Func)
   345  		n.Func.FCurfn = Curfn
   346  	case ONAME:
   347  		n.Name = new(Name)
   348  		n.Name.Param = new(Param)
   349  	case OLABEL, OPACK:
   350  		n.Name = new(Name)
   351  	case ODCLFIELD:
   352  		if nleft != nil {
   353  			n.Name = nleft.Name
   354  		} else {
   355  			n.Name = new(Name)
   356  			n.Name.Param = new(Param)
   357  		}
   358  	}
   359  	if n.Name != nil {
   360  		n.Name.Curfn = Curfn
   361  	}
   362  	return n
   363  }
   364  
   365  // NodSym makes a Node with Op op and with the Left field set to left
   366  // and the Sym field set to sym. This is for ODOT and friends.
   367  func NodSym(op Op, left *Node, sym *Sym) *Node {
   368  	n := Nod(op, left, nil)
   369  	n.Sym = sym
   370  	return n
   371  }
   372  
   373  func saveorignode(n *Node) {
   374  	if n.Orig != nil {
   375  		return
   376  	}
   377  	norig := Nod(n.Op, nil, nil)
   378  	*norig = *n
   379  	n.Orig = norig
   380  }
   381  
   382  // methcmp sorts by symbol, then by package path for unexported symbols.
   383  type methcmp []*Field
   384  
   385  func (x methcmp) Len() int      { return len(x) }
   386  func (x methcmp) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
   387  func (x methcmp) Less(i, j int) bool {
   388  	a := x[i]
   389  	b := x[j]
   390  	if a.Sym == nil && b.Sym == nil {
   391  		return false
   392  	}
   393  	if a.Sym == nil {
   394  		return true
   395  	}
   396  	if b.Sym == nil {
   397  		return false
   398  	}
   399  	if a.Sym.Name != b.Sym.Name {
   400  		return a.Sym.Name < b.Sym.Name
   401  	}
   402  	if !exportname(a.Sym.Name) {
   403  		if a.Sym.Pkg.Path != b.Sym.Pkg.Path {
   404  			return a.Sym.Pkg.Path < b.Sym.Pkg.Path
   405  		}
   406  	}
   407  
   408  	return false
   409  }
   410  
   411  func Nodintconst(v int64) *Node {
   412  	c := Nod(OLITERAL, nil, nil)
   413  	c.Addable = true
   414  	c.SetVal(Val{new(Mpint)})
   415  	c.Val().U.(*Mpint).SetInt64(v)
   416  	c.Type = Types[TIDEAL]
   417  	ullmancalc(c)
   418  	return c
   419  }
   420  
   421  func nodfltconst(v *Mpflt) *Node {
   422  	c := Nod(OLITERAL, nil, nil)
   423  	c.Addable = true
   424  	c.SetVal(Val{newMpflt()})
   425  	c.Val().U.(*Mpflt).Set(v)
   426  	c.Type = Types[TIDEAL]
   427  	ullmancalc(c)
   428  	return c
   429  }
   430  
   431  func Nodconst(n *Node, t *Type, v int64) {
   432  	*n = Node{}
   433  	n.Op = OLITERAL
   434  	n.Addable = true
   435  	ullmancalc(n)
   436  	n.SetVal(Val{new(Mpint)})
   437  	n.Val().U.(*Mpint).SetInt64(v)
   438  	n.Type = t
   439  
   440  	if t.IsFloat() {
   441  		Fatalf("nodconst: bad type %v", t)
   442  	}
   443  }
   444  
   445  func nodnil() *Node {
   446  	c := Nodintconst(0)
   447  	c.SetVal(Val{new(NilVal)})
   448  	c.Type = Types[TNIL]
   449  	return c
   450  }
   451  
   452  func Nodbool(b bool) *Node {
   453  	c := Nodintconst(0)
   454  	c.SetVal(Val{b})
   455  	c.Type = idealbool
   456  	return c
   457  }
   458  
   459  func aindex(b *Node, t *Type) *Type {
   460  	hasbound := false
   461  	var bound int64
   462  	b = typecheck(b, Erv)
   463  	if b != nil {
   464  		switch consttype(b) {
   465  		default:
   466  			Yyerror("array bound must be an integer expression")
   467  
   468  		case CTINT, CTRUNE:
   469  			hasbound = true
   470  			bound = b.Int64()
   471  			if bound < 0 {
   472  				Yyerror("array bound must be non negative")
   473  			}
   474  		}
   475  	}
   476  
   477  	if !hasbound {
   478  		return typSlice(t)
   479  	}
   480  	return typArray(t, bound)
   481  }
   482  
   483  // treecopy recursively copies n, with the exception of
   484  // ONAME, OLITERAL, OTYPE, and non-iota ONONAME leaves.
   485  // Copies of iota ONONAME nodes are assigned the current
   486  // value of iota_. If lineno != 0, it sets the line number
   487  // of newly allocated nodes to lineno.
   488  func treecopy(n *Node, lineno int32) *Node {
   489  	if n == nil {
   490  		return nil
   491  	}
   492  
   493  	switch n.Op {
   494  	default:
   495  		m := *n
   496  		m.Orig = &m
   497  		m.Left = treecopy(n.Left, lineno)
   498  		m.Right = treecopy(n.Right, lineno)
   499  		m.List.Set(listtreecopy(n.List.Slice(), lineno))
   500  		if lineno != 0 {
   501  			m.Lineno = lineno
   502  		}
   503  		if m.Name != nil && n.Op != ODCLFIELD {
   504  			Dump("treecopy", n)
   505  			Fatalf("treecopy Name")
   506  		}
   507  		return &m
   508  
   509  	case ONONAME:
   510  		if n.Sym == Lookup("iota") {
   511  			// Not sure yet whether this is the real iota,
   512  			// but make a copy of the Node* just in case,
   513  			// so that all the copies of this const definition
   514  			// don't have the same iota value.
   515  			m := *n
   516  			if lineno != 0 {
   517  				m.Lineno = lineno
   518  			}
   519  			m.Name = new(Name)
   520  			*m.Name = *n.Name
   521  			m.Name.Iota = iota_
   522  			return &m
   523  		}
   524  		return n
   525  
   526  	case OPACK:
   527  		// OPACK nodes are never valid in const value declarations,
   528  		// but allow them like any other declared symbol to avoid
   529  		// crashing (golang.org/issue/11361).
   530  		fallthrough
   531  
   532  	case ONAME, OLITERAL, OTYPE:
   533  		return n
   534  
   535  	}
   536  }
   537  
   538  // isnil reports whether n represents the universal untyped zero value "nil".
   539  func isnil(n *Node) bool {
   540  	// Check n.Orig because constant propagation may produce typed nil constants,
   541  	// which don't exist in the Go spec.
   542  	return Isconst(n.Orig, CTNIL)
   543  }
   544  
   545  func isptrto(t *Type, et EType) bool {
   546  	if t == nil {
   547  		return false
   548  	}
   549  	if !t.IsPtr() {
   550  		return false
   551  	}
   552  	t = t.Elem()
   553  	if t == nil {
   554  		return false
   555  	}
   556  	if t.Etype != et {
   557  		return false
   558  	}
   559  	return true
   560  }
   561  
   562  func isblank(n *Node) bool {
   563  	if n == nil {
   564  		return false
   565  	}
   566  	return isblanksym(n.Sym)
   567  }
   568  
   569  func isblanksym(s *Sym) bool {
   570  	return s != nil && s.Name == "_"
   571  }
   572  
   573  // given receiver of type t (t == r or t == *r)
   574  // return type to hang methods off (r).
   575  func methtype(t *Type, mustname int) *Type {
   576  	if t == nil {
   577  		return nil
   578  	}
   579  
   580  	// strip away pointer if it's there
   581  	if t.IsPtr() {
   582  		if t.Sym != nil {
   583  			return nil
   584  		}
   585  		t = t.Elem()
   586  		if t == nil {
   587  			return nil
   588  		}
   589  	}
   590  
   591  	// need a type name
   592  	if t.Sym == nil && (mustname != 0 || !t.IsStruct()) {
   593  		return nil
   594  	}
   595  
   596  	// check types
   597  	if !issimple[t.Etype] {
   598  		switch t.Etype {
   599  		default:
   600  			return nil
   601  
   602  		case TSTRUCT,
   603  			TARRAY,
   604  			TSLICE,
   605  			TMAP,
   606  			TCHAN,
   607  			TSTRING,
   608  			TFUNC:
   609  			break
   610  		}
   611  	}
   612  
   613  	return t
   614  }
   615  
   616  func cplxsubtype(et EType) EType {
   617  	switch et {
   618  	case TCOMPLEX64:
   619  		return TFLOAT32
   620  
   621  	case TCOMPLEX128:
   622  		return TFLOAT64
   623  	}
   624  
   625  	Fatalf("cplxsubtype: %v\n", et)
   626  	return 0
   627  }
   628  
   629  // Eqtype reports whether t1 and t2 are identical, following the spec rules.
   630  //
   631  // Any cyclic type must go through a named type, and if one is
   632  // named, it is only identical to the other if they are the same
   633  // pointer (t1 == t2), so there's no chance of chasing cycles
   634  // ad infinitum, so no need for a depth counter.
   635  func Eqtype(t1, t2 *Type) bool {
   636  	return eqtype1(t1, t2, nil)
   637  }
   638  
   639  type typePair struct {
   640  	t1 *Type
   641  	t2 *Type
   642  }
   643  
   644  func eqtype1(t1, t2 *Type, assumedEqual map[typePair]struct{}) bool {
   645  	if t1 == t2 {
   646  		return true
   647  	}
   648  	if t1 == nil || t2 == nil || t1.Etype != t2.Etype || t1.Broke || t2.Broke {
   649  		return false
   650  	}
   651  	if t1.Sym != nil || t2.Sym != nil {
   652  		// Special case: we keep byte/uint8 and rune/int32
   653  		// separate for error messages. Treat them as equal.
   654  		switch t1.Etype {
   655  		case TUINT8:
   656  			return (t1 == Types[TUINT8] || t1 == bytetype) && (t2 == Types[TUINT8] || t2 == bytetype)
   657  		case TINT32:
   658  			return (t1 == Types[TINT32] || t1 == runetype) && (t2 == Types[TINT32] || t2 == runetype)
   659  		default:
   660  			return false
   661  		}
   662  	}
   663  
   664  	if assumedEqual == nil {
   665  		assumedEqual = make(map[typePair]struct{})
   666  	} else if _, ok := assumedEqual[typePair{t1, t2}]; ok {
   667  		return true
   668  	}
   669  	assumedEqual[typePair{t1, t2}] = struct{}{}
   670  
   671  	switch t1.Etype {
   672  	case TINTER, TSTRUCT:
   673  		t1, i1 := IterFields(t1)
   674  		t2, i2 := IterFields(t2)
   675  		for ; t1 != nil && t2 != nil; t1, t2 = i1.Next(), i2.Next() {
   676  			if t1.Sym != t2.Sym || t1.Embedded != t2.Embedded || !eqtype1(t1.Type, t2.Type, assumedEqual) || t1.Note != t2.Note {
   677  				return false
   678  			}
   679  		}
   680  
   681  		if t1 == nil && t2 == nil {
   682  			return true
   683  		}
   684  		return false
   685  
   686  	case TFUNC:
   687  		// Check parameters and result parameters for type equality.
   688  		// We intentionally ignore receiver parameters for type
   689  		// equality, because they're never relevant.
   690  		for _, f := range paramsResults {
   691  			// Loop over fields in structs, ignoring argument names.
   692  			ta, ia := IterFields(f(t1))
   693  			tb, ib := IterFields(f(t2))
   694  			for ; ta != nil && tb != nil; ta, tb = ia.Next(), ib.Next() {
   695  				if ta.Isddd != tb.Isddd || !eqtype1(ta.Type, tb.Type, assumedEqual) {
   696  					return false
   697  				}
   698  			}
   699  			if ta != nil || tb != nil {
   700  				return false
   701  			}
   702  		}
   703  		return true
   704  
   705  	case TARRAY:
   706  		if t1.NumElem() != t2.NumElem() {
   707  			return false
   708  		}
   709  
   710  	case TCHAN:
   711  		if t1.ChanDir() != t2.ChanDir() {
   712  			return false
   713  		}
   714  
   715  	case TMAP:
   716  		if !eqtype1(t1.Key(), t2.Key(), assumedEqual) {
   717  			return false
   718  		}
   719  		return eqtype1(t1.Val(), t2.Val(), assumedEqual)
   720  	}
   721  
   722  	return eqtype1(t1.Elem(), t2.Elem(), assumedEqual)
   723  }
   724  
   725  // Are t1 and t2 equal struct types when field names are ignored?
   726  // For deciding whether the result struct from g can be copied
   727  // directly when compiling f(g()).
   728  func eqtypenoname(t1 *Type, t2 *Type) bool {
   729  	if t1 == nil || t2 == nil || !t1.IsStruct() || !t2.IsStruct() {
   730  		return false
   731  	}
   732  
   733  	f1, i1 := IterFields(t1)
   734  	f2, i2 := IterFields(t2)
   735  	for {
   736  		if !Eqtype(f1.Type, f2.Type) {
   737  			return false
   738  		}
   739  		if f1 == nil {
   740  			return true
   741  		}
   742  		f1 = i1.Next()
   743  		f2 = i2.Next()
   744  	}
   745  }
   746  
   747  // Is type src assignment compatible to type dst?
   748  // If so, return op code to use in conversion.
   749  // If not, return 0.
   750  func assignop(src *Type, dst *Type, why *string) Op {
   751  	if why != nil {
   752  		*why = ""
   753  	}
   754  
   755  	// TODO(rsc,lvd): This behaves poorly in the presence of inlining.
   756  	// https://golang.org/issue/2795
   757  	if safemode && importpkg == nil && src != nil && src.Etype == TUNSAFEPTR {
   758  		Yyerror("cannot use unsafe.Pointer")
   759  		errorexit()
   760  	}
   761  
   762  	if src == dst {
   763  		return OCONVNOP
   764  	}
   765  	if src == nil || dst == nil || src.Etype == TFORW || dst.Etype == TFORW || src.Orig == nil || dst.Orig == nil {
   766  		return 0
   767  	}
   768  
   769  	// 1. src type is identical to dst.
   770  	if Eqtype(src, dst) {
   771  		return OCONVNOP
   772  	}
   773  
   774  	// 2. src and dst have identical underlying types
   775  	// and either src or dst is not a named type or
   776  	// both are empty interface types.
   777  	// For assignable but different non-empty interface types,
   778  	// we want to recompute the itab.
   779  	if Eqtype(src.Orig, dst.Orig) && (src.Sym == nil || dst.Sym == nil || src.IsEmptyInterface()) {
   780  		return OCONVNOP
   781  	}
   782  
   783  	// 3. dst is an interface type and src implements dst.
   784  	if dst.IsInterface() && src.Etype != TNIL {
   785  		var missing, have *Field
   786  		var ptr int
   787  		if implements(src, dst, &missing, &have, &ptr) {
   788  			return OCONVIFACE
   789  		}
   790  
   791  		// we'll have complained about this method anyway, suppress spurious messages.
   792  		if have != nil && have.Sym == missing.Sym && (have.Type.Broke || missing.Type.Broke) {
   793  			return OCONVIFACE
   794  		}
   795  
   796  		if why != nil {
   797  			if isptrto(src, TINTER) {
   798  				*why = fmt.Sprintf(":\n\t%v is pointer to interface, not interface", src)
   799  			} else if have != nil && have.Sym == missing.Sym && have.Nointerface {
   800  				*why = fmt.Sprintf(":\n\t%v does not implement %v (%v method is marked 'nointerface')", src, dst, missing.Sym)
   801  			} else if have != nil && have.Sym == missing.Sym {
   802  				*why = fmt.Sprintf(":\n\t%v does not implement %v (wrong type for %v method)\n"+"\t\thave %v%v\n\t\twant %v%v", src, dst, missing.Sym, have.Sym, Tconv(have.Type, FmtShort|FmtByte), missing.Sym, Tconv(missing.Type, FmtShort|FmtByte))
   803  			} else if ptr != 0 {
   804  				*why = fmt.Sprintf(":\n\t%v does not implement %v (%v method has pointer receiver)", src, dst, missing.Sym)
   805  			} else if have != nil {
   806  				*why = fmt.Sprintf(":\n\t%v does not implement %v (missing %v method)\n"+"\t\thave %v%v\n\t\twant %v%v", src, dst, missing.Sym, have.Sym, Tconv(have.Type, FmtShort|FmtByte), missing.Sym, Tconv(missing.Type, FmtShort|FmtByte))
   807  			} else {
   808  				*why = fmt.Sprintf(":\n\t%v does not implement %v (missing %v method)", src, dst, missing.Sym)
   809  			}
   810  		}
   811  
   812  		return 0
   813  	}
   814  
   815  	if isptrto(dst, TINTER) {
   816  		if why != nil {
   817  			*why = fmt.Sprintf(":\n\t%v is pointer to interface, not interface", dst)
   818  		}
   819  		return 0
   820  	}
   821  
   822  	if src.IsInterface() && dst.Etype != TBLANK {
   823  		var missing, have *Field
   824  		var ptr int
   825  		if why != nil && implements(dst, src, &missing, &have, &ptr) {
   826  			*why = ": need type assertion"
   827  		}
   828  		return 0
   829  	}
   830  
   831  	// 4. src is a bidirectional channel value, dst is a channel type,
   832  	// src and dst have identical element types, and
   833  	// either src or dst is not a named type.
   834  	if src.IsChan() && src.ChanDir() == Cboth && dst.IsChan() {
   835  		if Eqtype(src.Elem(), dst.Elem()) && (src.Sym == nil || dst.Sym == nil) {
   836  			return OCONVNOP
   837  		}
   838  	}
   839  
   840  	// 5. src is the predeclared identifier nil and dst is a nillable type.
   841  	if src.Etype == TNIL {
   842  		switch dst.Etype {
   843  		case TPTR32,
   844  			TPTR64,
   845  			TFUNC,
   846  			TMAP,
   847  			TCHAN,
   848  			TINTER,
   849  			TSLICE:
   850  			return OCONVNOP
   851  		}
   852  	}
   853  
   854  	// 6. rule about untyped constants - already converted by defaultlit.
   855  
   856  	// 7. Any typed value can be assigned to the blank identifier.
   857  	if dst.Etype == TBLANK {
   858  		return OCONVNOP
   859  	}
   860  
   861  	return 0
   862  }
   863  
   864  // Can we convert a value of type src to a value of type dst?
   865  // If so, return op code to use in conversion (maybe OCONVNOP).
   866  // If not, return 0.
   867  func convertop(src *Type, dst *Type, why *string) Op {
   868  	if why != nil {
   869  		*why = ""
   870  	}
   871  
   872  	if src == dst {
   873  		return OCONVNOP
   874  	}
   875  	if src == nil || dst == nil {
   876  		return 0
   877  	}
   878  
   879  	// 1. src can be assigned to dst.
   880  	op := assignop(src, dst, why)
   881  	if op != 0 {
   882  		return op
   883  	}
   884  
   885  	// The rules for interfaces are no different in conversions
   886  	// than assignments. If interfaces are involved, stop now
   887  	// with the good message from assignop.
   888  	// Otherwise clear the error.
   889  	if src.IsInterface() || dst.IsInterface() {
   890  		return 0
   891  	}
   892  	if why != nil {
   893  		*why = ""
   894  	}
   895  
   896  	// 2. src and dst have identical underlying types.
   897  	if Eqtype(src.Orig, dst.Orig) {
   898  		return OCONVNOP
   899  	}
   900  
   901  	// 3. src and dst are unnamed pointer types
   902  	// and their base types have identical underlying types.
   903  	if src.IsPtr() && dst.IsPtr() && src.Sym == nil && dst.Sym == nil {
   904  		if Eqtype(src.Elem().Orig, dst.Elem().Orig) {
   905  			return OCONVNOP
   906  		}
   907  	}
   908  
   909  	// 4. src and dst are both integer or floating point types.
   910  	if (src.IsInteger() || src.IsFloat()) && (dst.IsInteger() || dst.IsFloat()) {
   911  		if Simtype[src.Etype] == Simtype[dst.Etype] {
   912  			return OCONVNOP
   913  		}
   914  		return OCONV
   915  	}
   916  
   917  	// 5. src and dst are both complex types.
   918  	if src.IsComplex() && dst.IsComplex() {
   919  		if Simtype[src.Etype] == Simtype[dst.Etype] {
   920  			return OCONVNOP
   921  		}
   922  		return OCONV
   923  	}
   924  
   925  	// 6. src is an integer or has type []byte or []rune
   926  	// and dst is a string type.
   927  	if src.IsInteger() && dst.IsString() {
   928  		return ORUNESTR
   929  	}
   930  
   931  	if src.IsSlice() && dst.IsString() {
   932  		if src.Elem().Etype == bytetype.Etype {
   933  			return OARRAYBYTESTR
   934  		}
   935  		if src.Elem().Etype == runetype.Etype {
   936  			return OARRAYRUNESTR
   937  		}
   938  	}
   939  
   940  	// 7. src is a string and dst is []byte or []rune.
   941  	// String to slice.
   942  	if src.IsString() && dst.IsSlice() {
   943  		if dst.Elem().Etype == bytetype.Etype {
   944  			return OSTRARRAYBYTE
   945  		}
   946  		if dst.Elem().Etype == runetype.Etype {
   947  			return OSTRARRAYRUNE
   948  		}
   949  	}
   950  
   951  	// 8. src is a pointer or uintptr and dst is unsafe.Pointer.
   952  	if (src.IsPtr() || src.Etype == TUINTPTR) && dst.Etype == TUNSAFEPTR {
   953  		return OCONVNOP
   954  	}
   955  
   956  	// 9. src is unsafe.Pointer and dst is a pointer or uintptr.
   957  	if src.Etype == TUNSAFEPTR && (dst.IsPtr() || dst.Etype == TUINTPTR) {
   958  		return OCONVNOP
   959  	}
   960  
   961  	return 0
   962  }
   963  
   964  func assignconv(n *Node, t *Type, context string) *Node {
   965  	return assignconvfn(n, t, func() string { return context })
   966  }
   967  
   968  // Convert node n for assignment to type t.
   969  func assignconvfn(n *Node, t *Type, context func() string) *Node {
   970  	if n == nil || n.Type == nil || n.Type.Broke {
   971  		return n
   972  	}
   973  
   974  	if t.Etype == TBLANK && n.Type.Etype == TNIL {
   975  		Yyerror("use of untyped nil")
   976  	}
   977  
   978  	old := n
   979  	old.Diag++ // silence errors about n; we'll issue one below
   980  	n = defaultlit(n, t)
   981  	old.Diag--
   982  	if t.Etype == TBLANK {
   983  		return n
   984  	}
   985  
   986  	// Convert ideal bool from comparison to plain bool
   987  	// if the next step is non-bool (like interface{}).
   988  	if n.Type == idealbool && !t.IsBoolean() {
   989  		if n.Op == ONAME || n.Op == OLITERAL {
   990  			r := Nod(OCONVNOP, n, nil)
   991  			r.Type = Types[TBOOL]
   992  			r.Typecheck = 1
   993  			r.Implicit = true
   994  			n = r
   995  		}
   996  	}
   997  
   998  	if Eqtype(n.Type, t) {
   999  		return n
  1000  	}
  1001  
  1002  	var why string
  1003  	op := assignop(n.Type, t, &why)
  1004  	if op == 0 {
  1005  		Yyerror("cannot use %v as type %v in %s%s", Nconv(n, FmtLong), t, context(), why)
  1006  		op = OCONV
  1007  	}
  1008  
  1009  	r := Nod(op, n, nil)
  1010  	r.Type = t
  1011  	r.Typecheck = 1
  1012  	r.Implicit = true
  1013  	r.Orig = n.Orig
  1014  	return r
  1015  }
  1016  
  1017  // Is this a 64-bit type?
  1018  func Is64(t *Type) bool {
  1019  	if t == nil {
  1020  		return false
  1021  	}
  1022  	switch Simtype[t.Etype] {
  1023  	case TINT64, TUINT64, TPTR64:
  1024  		return true
  1025  	}
  1026  
  1027  	return false
  1028  }
  1029  
  1030  // SliceBounds returns n's slice bounds: low, high, and max in expr[low:high:max].
  1031  // n must be a slice expression. max is nil if n is a simple slice expression.
  1032  func (n *Node) SliceBounds() (low, high, max *Node) {
  1033  	switch n.Op {
  1034  	case OSLICE, OSLICEARR, OSLICESTR:
  1035  		if n.Right == nil {
  1036  			return nil, nil, nil
  1037  		}
  1038  		if n.Right.Op != OKEY {
  1039  			Fatalf("SliceBounds right %s", opnames[n.Right.Op])
  1040  		}
  1041  		return n.Right.Left, n.Right.Right, nil
  1042  	case OSLICE3, OSLICE3ARR:
  1043  		if n.Right.Op != OKEY || n.Right.Right.Op != OKEY {
  1044  			Fatalf("SliceBounds right %s %s", opnames[n.Right.Op], opnames[n.Right.Right.Op])
  1045  		}
  1046  		return n.Right.Left, n.Right.Right.Left, n.Right.Right.Right
  1047  	}
  1048  	Fatalf("SliceBounds op %s: %v", n.Op, n)
  1049  	return nil, nil, nil
  1050  }
  1051  
  1052  // SetSliceBounds sets n's slice bounds, where n is a slice expression.
  1053  // n must be a slice expression. If max is non-nil, n must be a full slice expression.
  1054  func (n *Node) SetSliceBounds(low, high, max *Node) {
  1055  	switch n.Op {
  1056  	case OSLICE, OSLICEARR, OSLICESTR:
  1057  		if max != nil {
  1058  			Fatalf("SetSliceBounds %s given three bounds", n.Op)
  1059  		}
  1060  		if n.Right == nil {
  1061  			n.Right = Nod(OKEY, low, high)
  1062  			return
  1063  		}
  1064  		n.Right.Left = low
  1065  		n.Right.Right = high
  1066  		return
  1067  	case OSLICE3, OSLICE3ARR:
  1068  		if n.Right == nil {
  1069  			n.Right = Nod(OKEY, low, Nod(OKEY, high, max))
  1070  		}
  1071  		n.Right.Left = low
  1072  		n.Right.Right.Left = high
  1073  		n.Right.Right.Right = max
  1074  		return
  1075  	}
  1076  	Fatalf("SetSliceBounds op %s: %v", n.Op, n)
  1077  }
  1078  
  1079  // IsSlice3 reports whether o is a slice3 op (OSLICE3, OSLICE3ARR).
  1080  // o must be a slicing op.
  1081  func (o Op) IsSlice3() bool {
  1082  	switch o {
  1083  	case OSLICE, OSLICEARR, OSLICESTR:
  1084  		return false
  1085  	case OSLICE3, OSLICE3ARR:
  1086  		return true
  1087  	}
  1088  	Fatalf("IsSlice3 op %v", o)
  1089  	return false
  1090  }
  1091  
  1092  // Is a conversion between t1 and t2 a no-op?
  1093  func Noconv(t1 *Type, t2 *Type) bool {
  1094  	e1 := Simtype[t1.Etype]
  1095  	e2 := Simtype[t2.Etype]
  1096  
  1097  	switch e1 {
  1098  	case TINT8, TUINT8:
  1099  		return e2 == TINT8 || e2 == TUINT8
  1100  
  1101  	case TINT16, TUINT16:
  1102  		return e2 == TINT16 || e2 == TUINT16
  1103  
  1104  	case TINT32, TUINT32, TPTR32:
  1105  		return e2 == TINT32 || e2 == TUINT32 || e2 == TPTR32
  1106  
  1107  	case TINT64, TUINT64, TPTR64:
  1108  		return e2 == TINT64 || e2 == TUINT64 || e2 == TPTR64
  1109  
  1110  	case TFLOAT32:
  1111  		return e2 == TFLOAT32
  1112  
  1113  	case TFLOAT64:
  1114  		return e2 == TFLOAT64
  1115  	}
  1116  
  1117  	return false
  1118  }
  1119  
  1120  func syslook(name string) *Node {
  1121  	s := Pkglookup(name, Runtimepkg)
  1122  	if s == nil || s.Def == nil {
  1123  		Fatalf("syslook: can't find runtime.%s", name)
  1124  	}
  1125  	return s.Def
  1126  }
  1127  
  1128  // typehash computes a hash value for type t to use in type switch
  1129  // statements.
  1130  func typehash(t *Type) uint32 {
  1131  	// Tconv already contains all the necessary logic to generate
  1132  	// a representation that completely describes the type, so using
  1133  	// it here avoids duplicating that code.
  1134  	p := Tconv(t, FmtLeft|FmtUnsigned)
  1135  
  1136  	// Using MD5 is overkill, but reduces accidental collisions.
  1137  	h := md5.Sum([]byte(p))
  1138  	return binary.LittleEndian.Uint32(h[:4])
  1139  }
  1140  
  1141  var initPtrtoDone bool
  1142  
  1143  var (
  1144  	ptrToUint8  *Type
  1145  	ptrToAny    *Type
  1146  	ptrToString *Type
  1147  	ptrToBool   *Type
  1148  	ptrToInt32  *Type
  1149  )
  1150  
  1151  func initPtrto() {
  1152  	ptrToUint8 = typPtr(Types[TUINT8])
  1153  	ptrToAny = typPtr(Types[TANY])
  1154  	ptrToString = typPtr(Types[TSTRING])
  1155  	ptrToBool = typPtr(Types[TBOOL])
  1156  	ptrToInt32 = typPtr(Types[TINT32])
  1157  }
  1158  
  1159  // Ptrto returns the Type *t.
  1160  // The returned struct must not be modified.
  1161  func Ptrto(t *Type) *Type {
  1162  	if Tptr == 0 {
  1163  		Fatalf("ptrto: no tptr")
  1164  	}
  1165  	// Reduce allocations by pre-creating common cases.
  1166  	if !initPtrtoDone {
  1167  		initPtrto()
  1168  		initPtrtoDone = true
  1169  	}
  1170  	switch t {
  1171  	case Types[TUINT8]:
  1172  		return ptrToUint8
  1173  	case Types[TINT32]:
  1174  		return ptrToInt32
  1175  	case Types[TANY]:
  1176  		return ptrToAny
  1177  	case Types[TSTRING]:
  1178  		return ptrToString
  1179  	case Types[TBOOL]:
  1180  		return ptrToBool
  1181  	}
  1182  	return typPtr(t)
  1183  }
  1184  
  1185  func frame(context int) {
  1186  	if context != 0 {
  1187  		fmt.Printf("--- external frame ---\n")
  1188  		for _, n := range externdcl {
  1189  			printframenode(n)
  1190  		}
  1191  		return
  1192  	}
  1193  
  1194  	if Curfn != nil {
  1195  		fmt.Printf("--- %v frame ---\n", Curfn.Func.Nname.Sym)
  1196  		for _, ln := range Curfn.Func.Dcl {
  1197  			printframenode(ln)
  1198  		}
  1199  	}
  1200  }
  1201  
  1202  func printframenode(n *Node) {
  1203  	w := int64(-1)
  1204  	if n.Type != nil {
  1205  		w = n.Type.Width
  1206  	}
  1207  	switch n.Op {
  1208  	case ONAME:
  1209  		fmt.Printf("%v %v G%d %v width=%d\n", n.Op, n.Sym, n.Name.Vargen, n.Type, w)
  1210  	case OTYPE:
  1211  		fmt.Printf("%v %v width=%d\n", n.Op, n.Type, w)
  1212  	}
  1213  }
  1214  
  1215  // calculate sethi/ullman number
  1216  // roughly how many registers needed to
  1217  // compile a node. used to compile the
  1218  // hardest side first to minimize registers.
  1219  func ullmancalc(n *Node) {
  1220  	if n == nil {
  1221  		return
  1222  	}
  1223  
  1224  	var ul int
  1225  	var ur int
  1226  	if n.Ninit.Len() != 0 {
  1227  		ul = UINF
  1228  		goto out
  1229  	}
  1230  
  1231  	switch n.Op {
  1232  	case OREGISTER, OLITERAL, ONAME:
  1233  		ul = 1
  1234  		if n.Class == PAUTOHEAP {
  1235  			ul++
  1236  		}
  1237  		goto out
  1238  
  1239  	case OCALL, OCALLFUNC, OCALLMETH, OCALLINTER, OASWB:
  1240  		ul = UINF
  1241  		goto out
  1242  
  1243  		// hard with instrumented code
  1244  	case OANDAND, OOROR:
  1245  		if instrumenting {
  1246  			ul = UINF
  1247  			goto out
  1248  		}
  1249  	}
  1250  
  1251  	ul = 1
  1252  	if n.Left != nil {
  1253  		ul = int(n.Left.Ullman)
  1254  	}
  1255  	ur = 1
  1256  	if n.Right != nil {
  1257  		ur = int(n.Right.Ullman)
  1258  	}
  1259  	if ul == ur {
  1260  		ul += 1
  1261  	}
  1262  	if ur > ul {
  1263  		ul = ur
  1264  	}
  1265  
  1266  out:
  1267  	if ul > 200 {
  1268  		ul = 200 // clamp to uchar with room to grow
  1269  	}
  1270  	n.Ullman = uint8(ul)
  1271  }
  1272  
  1273  func badtype(op Op, tl *Type, tr *Type) {
  1274  	fmt_ := ""
  1275  	if tl != nil {
  1276  		fmt_ += fmt.Sprintf("\n\t%v", tl)
  1277  	}
  1278  	if tr != nil {
  1279  		fmt_ += fmt.Sprintf("\n\t%v", tr)
  1280  	}
  1281  
  1282  	// common mistake: *struct and *interface.
  1283  	if tl != nil && tr != nil && tl.IsPtr() && tr.IsPtr() {
  1284  		if tl.Elem().IsStruct() && tr.Elem().IsInterface() {
  1285  			fmt_ += "\n\t(*struct vs *interface)"
  1286  		} else if tl.Elem().IsInterface() && tr.Elem().IsStruct() {
  1287  			fmt_ += "\n\t(*interface vs *struct)"
  1288  		}
  1289  	}
  1290  
  1291  	s := fmt_
  1292  	Yyerror("illegal types for operand: %v%s", op, s)
  1293  }
  1294  
  1295  // Brcom returns !(op).
  1296  // For example, Brcom(==) is !=.
  1297  func Brcom(op Op) Op {
  1298  	switch op {
  1299  	case OEQ:
  1300  		return ONE
  1301  	case ONE:
  1302  		return OEQ
  1303  	case OLT:
  1304  		return OGE
  1305  	case OGT:
  1306  		return OLE
  1307  	case OLE:
  1308  		return OGT
  1309  	case OGE:
  1310  		return OLT
  1311  	}
  1312  	Fatalf("brcom: no com for %v\n", op)
  1313  	return op
  1314  }
  1315  
  1316  // Brrev returns reverse(op).
  1317  // For example, Brrev(<) is >.
  1318  func Brrev(op Op) Op {
  1319  	switch op {
  1320  	case OEQ:
  1321  		return OEQ
  1322  	case ONE:
  1323  		return ONE
  1324  	case OLT:
  1325  		return OGT
  1326  	case OGT:
  1327  		return OLT
  1328  	case OLE:
  1329  		return OGE
  1330  	case OGE:
  1331  		return OLE
  1332  	}
  1333  	Fatalf("brrev: no rev for %v\n", op)
  1334  	return op
  1335  }
  1336  
  1337  // return side effect-free n, appending side effects to init.
  1338  // result is assignable if n is.
  1339  func safeexpr(n *Node, init *Nodes) *Node {
  1340  	if n == nil {
  1341  		return nil
  1342  	}
  1343  
  1344  	if n.Ninit.Len() != 0 {
  1345  		walkstmtlist(n.Ninit.Slice())
  1346  		init.AppendNodes(&n.Ninit)
  1347  	}
  1348  
  1349  	switch n.Op {
  1350  	case ONAME, OLITERAL:
  1351  		return n
  1352  
  1353  	case ODOT, OLEN, OCAP:
  1354  		l := safeexpr(n.Left, init)
  1355  		if l == n.Left {
  1356  			return n
  1357  		}
  1358  		r := Nod(OXXX, nil, nil)
  1359  		*r = *n
  1360  		r.Left = l
  1361  		r = typecheck(r, Erv)
  1362  		r = walkexpr(r, init)
  1363  		return r
  1364  
  1365  	case ODOTPTR, OIND:
  1366  		l := safeexpr(n.Left, init)
  1367  		if l == n.Left {
  1368  			return n
  1369  		}
  1370  		a := Nod(OXXX, nil, nil)
  1371  		*a = *n
  1372  		a.Left = l
  1373  		a = walkexpr(a, init)
  1374  		return a
  1375  
  1376  	case OINDEX, OINDEXMAP:
  1377  		l := safeexpr(n.Left, init)
  1378  		r := safeexpr(n.Right, init)
  1379  		if l == n.Left && r == n.Right {
  1380  			return n
  1381  		}
  1382  		a := Nod(OXXX, nil, nil)
  1383  		*a = *n
  1384  		a.Left = l
  1385  		a.Right = r
  1386  		a = walkexpr(a, init)
  1387  		return a
  1388  
  1389  	case OSTRUCTLIT, OARRAYLIT:
  1390  		if isStaticCompositeLiteral(n) {
  1391  			return n
  1392  		}
  1393  	}
  1394  
  1395  	// make a copy; must not be used as an lvalue
  1396  	if islvalue(n) {
  1397  		Fatalf("missing lvalue case in safeexpr: %v", n)
  1398  	}
  1399  	return cheapexpr(n, init)
  1400  }
  1401  
  1402  func copyexpr(n *Node, t *Type, init *Nodes) *Node {
  1403  	l := temp(t)
  1404  	a := Nod(OAS, l, n)
  1405  	a = typecheck(a, Etop)
  1406  	a = walkexpr(a, init)
  1407  	init.Append(a)
  1408  	return l
  1409  }
  1410  
  1411  // return side-effect free and cheap n, appending side effects to init.
  1412  // result may not be assignable.
  1413  func cheapexpr(n *Node, init *Nodes) *Node {
  1414  	switch n.Op {
  1415  	case ONAME, OLITERAL:
  1416  		return n
  1417  	}
  1418  
  1419  	return copyexpr(n, n.Type, init)
  1420  }
  1421  
  1422  func Setmaxarg(t *Type, extra int32) {
  1423  	dowidth(t)
  1424  	w := t.ArgWidth()
  1425  	if w >= Thearch.MAXWIDTH {
  1426  		Fatalf("bad argwid %v", t)
  1427  	}
  1428  	w += int64(extra)
  1429  	if w >= Thearch.MAXWIDTH {
  1430  		Fatalf("bad argwid %d + %v", extra, t)
  1431  	}
  1432  	if w > Maxarg {
  1433  		Maxarg = w
  1434  	}
  1435  }
  1436  
  1437  // Code to resolve elided DOTs in embedded types.
  1438  
  1439  // A Dlist stores a pointer to a TFIELD Type embedded within
  1440  // a TSTRUCT or TINTER Type.
  1441  type Dlist struct {
  1442  	field *Field
  1443  }
  1444  
  1445  // dotlist is used by adddot1 to record the path of embedded fields
  1446  // used to access a target field or method.
  1447  // Must be non-nil so that dotpath returns a non-nil slice even if d is zero.
  1448  var dotlist = make([]Dlist, 10)
  1449  
  1450  // lookdot0 returns the number of fields or methods named s associated
  1451  // with Type t. If exactly one exists, it will be returned in *save
  1452  // (if save is not nil).
  1453  func lookdot0(s *Sym, t *Type, save **Field, ignorecase bool) int {
  1454  	u := t
  1455  	if u.IsPtr() {
  1456  		u = u.Elem()
  1457  	}
  1458  
  1459  	c := 0
  1460  	if u.IsStruct() || u.IsInterface() {
  1461  		for _, f := range u.Fields().Slice() {
  1462  			if f.Sym == s || (ignorecase && f.Type.Etype == TFUNC && f.Type.Recv() != nil && strings.EqualFold(f.Sym.Name, s.Name)) {
  1463  				if save != nil {
  1464  					*save = f
  1465  				}
  1466  				c++
  1467  			}
  1468  		}
  1469  	}
  1470  
  1471  	u = methtype(t, 0)
  1472  	if u != nil {
  1473  		for _, f := range u.Methods().Slice() {
  1474  			if f.Embedded == 0 && (f.Sym == s || (ignorecase && strings.EqualFold(f.Sym.Name, s.Name))) {
  1475  				if save != nil {
  1476  					*save = f
  1477  				}
  1478  				c++
  1479  			}
  1480  		}
  1481  	}
  1482  
  1483  	return c
  1484  }
  1485  
  1486  // adddot1 returns the number of fields or methods named s at depth d in Type t.
  1487  // If exactly one exists, it will be returned in *save (if save is not nil),
  1488  // and dotlist will contain the path of embedded fields traversed to find it,
  1489  // in reverse order. If none exist, more will indicate whether t contains any
  1490  // embedded fields at depth d, so callers can decide whether to retry at
  1491  // a greater depth.
  1492  func adddot1(s *Sym, t *Type, d int, save **Field, ignorecase bool) (c int, more bool) {
  1493  	if t.Trecur != 0 {
  1494  		return
  1495  	}
  1496  	t.Trecur = 1
  1497  
  1498  	var u *Type
  1499  	d--
  1500  	if d < 0 {
  1501  		// We've reached our target depth. If t has any fields/methods
  1502  		// named s, then we're done. Otherwise, we still need to check
  1503  		// below for embedded fields.
  1504  		c = lookdot0(s, t, save, ignorecase)
  1505  		if c != 0 {
  1506  			goto out
  1507  		}
  1508  	}
  1509  
  1510  	u = t
  1511  	if u.IsPtr() {
  1512  		u = u.Elem()
  1513  	}
  1514  	if !u.IsStruct() && !u.IsInterface() {
  1515  		goto out
  1516  	}
  1517  
  1518  	for _, f := range u.Fields().Slice() {
  1519  		if f.Embedded == 0 || f.Sym == nil {
  1520  			continue
  1521  		}
  1522  		if d < 0 {
  1523  			// Found an embedded field at target depth.
  1524  			more = true
  1525  			goto out
  1526  		}
  1527  		a, more1 := adddot1(s, f.Type, d, save, ignorecase)
  1528  		if a != 0 && c == 0 {
  1529  			dotlist[d].field = f
  1530  		}
  1531  		c += a
  1532  		if more1 {
  1533  			more = true
  1534  		}
  1535  	}
  1536  
  1537  out:
  1538  	t.Trecur = 0
  1539  	return c, more
  1540  }
  1541  
  1542  // dotpath computes the unique shortest explicit selector path to fully qualify
  1543  // a selection expression x.f, where x is of type t and f is the symbol s.
  1544  // If no such path exists, dotpath returns nil.
  1545  // If there are multiple shortest paths to the same depth, ambig is true.
  1546  func dotpath(s *Sym, t *Type, save **Field, ignorecase bool) (path []Dlist, ambig bool) {
  1547  	// The embedding of types within structs imposes a tree structure onto
  1548  	// types: structs parent the types they embed, and types parent their
  1549  	// fields or methods. Our goal here is to find the shortest path to
  1550  	// a field or method named s in the subtree rooted at t. To accomplish
  1551  	// that, we iteratively perform depth-first searches of increasing depth
  1552  	// until we either find the named field/method or exhaust the tree.
  1553  	for d := 0; ; d++ {
  1554  		if d > len(dotlist) {
  1555  			dotlist = append(dotlist, Dlist{})
  1556  		}
  1557  		if c, more := adddot1(s, t, d, save, ignorecase); c == 1 {
  1558  			return dotlist[:d], false
  1559  		} else if c > 1 {
  1560  			return nil, true
  1561  		} else if !more {
  1562  			return nil, false
  1563  		}
  1564  	}
  1565  }
  1566  
  1567  // in T.field
  1568  // find missing fields that
  1569  // will give shortest unique addressing.
  1570  // modify the tree with missing type names.
  1571  func adddot(n *Node) *Node {
  1572  	n.Left = typecheck(n.Left, Etype|Erv)
  1573  	n.Diag |= n.Left.Diag
  1574  	t := n.Left.Type
  1575  	if t == nil {
  1576  		return n
  1577  	}
  1578  
  1579  	if n.Left.Op == OTYPE {
  1580  		return n
  1581  	}
  1582  
  1583  	s := n.Sym
  1584  	if s == nil {
  1585  		return n
  1586  	}
  1587  
  1588  	switch path, ambig := dotpath(s, t, nil, false); {
  1589  	case path != nil:
  1590  		// rebuild elided dots
  1591  		for c := len(path) - 1; c >= 0; c-- {
  1592  			n.Left = NodSym(ODOT, n.Left, path[c].field.Sym)
  1593  			n.Left.Implicit = true
  1594  		}
  1595  	case ambig:
  1596  		Yyerror("ambiguous selector %v", n)
  1597  		n.Left = nil
  1598  	}
  1599  
  1600  	return n
  1601  }
  1602  
  1603  // code to help generate trampoline
  1604  // functions for methods on embedded
  1605  // subtypes.
  1606  // these are approx the same as
  1607  // the corresponding adddot routines
  1608  // except that they expect to be called
  1609  // with unique tasks and they return
  1610  // the actual methods.
  1611  type Symlink struct {
  1612  	field     *Field
  1613  	followptr bool
  1614  }
  1615  
  1616  var slist []Symlink
  1617  
  1618  func expand0(t *Type, followptr bool) {
  1619  	u := t
  1620  	if u.IsPtr() {
  1621  		followptr = true
  1622  		u = u.Elem()
  1623  	}
  1624  
  1625  	if u.IsInterface() {
  1626  		for _, f := range u.Fields().Slice() {
  1627  			if f.Sym.Flags&SymUniq != 0 {
  1628  				continue
  1629  			}
  1630  			f.Sym.Flags |= SymUniq
  1631  			slist = append(slist, Symlink{field: f, followptr: followptr})
  1632  		}
  1633  
  1634  		return
  1635  	}
  1636  
  1637  	u = methtype(t, 0)
  1638  	if u != nil {
  1639  		for _, f := range u.Methods().Slice() {
  1640  			if f.Sym.Flags&SymUniq != 0 {
  1641  				continue
  1642  			}
  1643  			f.Sym.Flags |= SymUniq
  1644  			slist = append(slist, Symlink{field: f, followptr: followptr})
  1645  		}
  1646  	}
  1647  }
  1648  
  1649  func expand1(t *Type, top, followptr bool) {
  1650  	if t.Trecur != 0 {
  1651  		return
  1652  	}
  1653  	t.Trecur = 1
  1654  
  1655  	if !top {
  1656  		expand0(t, followptr)
  1657  	}
  1658  
  1659  	u := t
  1660  	if u.IsPtr() {
  1661  		followptr = true
  1662  		u = u.Elem()
  1663  	}
  1664  
  1665  	if !u.IsStruct() && !u.IsInterface() {
  1666  		goto out
  1667  	}
  1668  
  1669  	for _, f := range u.Fields().Slice() {
  1670  		if f.Embedded == 0 {
  1671  			continue
  1672  		}
  1673  		if f.Sym == nil {
  1674  			continue
  1675  		}
  1676  		expand1(f.Type, false, followptr)
  1677  	}
  1678  
  1679  out:
  1680  	t.Trecur = 0
  1681  }
  1682  
  1683  func expandmeth(t *Type) {
  1684  	if t == nil || t.AllMethods().Len() != 0 {
  1685  		return
  1686  	}
  1687  
  1688  	// mark top-level method symbols
  1689  	// so that expand1 doesn't consider them.
  1690  	for _, f := range t.Methods().Slice() {
  1691  		f.Sym.Flags |= SymUniq
  1692  	}
  1693  
  1694  	// generate all reachable methods
  1695  	slist = slist[:0]
  1696  	expand1(t, true, false)
  1697  
  1698  	// check each method to be uniquely reachable
  1699  	var ms []*Field
  1700  	for i, sl := range slist {
  1701  		slist[i].field = nil
  1702  		sl.field.Sym.Flags &^= SymUniq
  1703  
  1704  		var f *Field
  1705  		if path, _ := dotpath(sl.field.Sym, t, &f, false); path == nil {
  1706  			continue
  1707  		}
  1708  
  1709  		// dotpath may have dug out arbitrary fields, we only want methods.
  1710  		if f.Type.Etype != TFUNC || f.Type.Recv() == nil {
  1711  			continue
  1712  		}
  1713  
  1714  		// add it to the base type method list
  1715  		f = f.Copy()
  1716  		f.Embedded = 1 // needs a trampoline
  1717  		if sl.followptr {
  1718  			f.Embedded = 2
  1719  		}
  1720  		ms = append(ms, f)
  1721  	}
  1722  
  1723  	for _, f := range t.Methods().Slice() {
  1724  		f.Sym.Flags &^= SymUniq
  1725  	}
  1726  
  1727  	ms = append(ms, t.Methods().Slice()...)
  1728  	t.AllMethods().Set(ms)
  1729  }
  1730  
  1731  // Given funarg struct list, return list of ODCLFIELD Node fn args.
  1732  func structargs(tl *Type, mustname bool) []*Node {
  1733  	var args []*Node
  1734  	gen := 0
  1735  	for _, t := range tl.Fields().Slice() {
  1736  		var n *Node
  1737  		if mustname && (t.Sym == nil || t.Sym.Name == "_") {
  1738  			// invent a name so that we can refer to it in the trampoline
  1739  			buf := fmt.Sprintf(".anon%d", gen)
  1740  			gen++
  1741  			n = newname(Lookup(buf))
  1742  		} else if t.Sym != nil {
  1743  			n = newname(t.Sym)
  1744  		}
  1745  		a := Nod(ODCLFIELD, n, typenod(t.Type))
  1746  		a.Isddd = t.Isddd
  1747  		if n != nil {
  1748  			n.Isddd = t.Isddd
  1749  		}
  1750  		args = append(args, a)
  1751  	}
  1752  
  1753  	return args
  1754  }
  1755  
  1756  // Generate a wrapper function to convert from
  1757  // a receiver of type T to a receiver of type U.
  1758  // That is,
  1759  //
  1760  //	func (t T) M() {
  1761  //		...
  1762  //	}
  1763  //
  1764  // already exists; this function generates
  1765  //
  1766  //	func (u U) M() {
  1767  //		u.M()
  1768  //	}
  1769  //
  1770  // where the types T and U are such that u.M() is valid
  1771  // and calls the T.M method.
  1772  // The resulting function is for use in method tables.
  1773  //
  1774  //	rcvr - U
  1775  //	method - M func (t T)(), a TFIELD type struct
  1776  //	newnam - the eventual mangled name of this function
  1777  
  1778  var genwrapper_linehistdone int = 0
  1779  
  1780  func genwrapper(rcvr *Type, method *Field, newnam *Sym, iface int) {
  1781  	if false && Debug['r'] != 0 {
  1782  		fmt.Printf("genwrapper rcvrtype=%v method=%v newnam=%v\n", rcvr, method, newnam)
  1783  	}
  1784  
  1785  	lexlineno++
  1786  	lineno = lexlineno
  1787  	if genwrapper_linehistdone == 0 {
  1788  		// All the wrappers can share the same linehist entry.
  1789  		linehistpush("<autogenerated>")
  1790  
  1791  		genwrapper_linehistdone = 1
  1792  	}
  1793  
  1794  	dclcontext = PEXTERN
  1795  	markdcl()
  1796  
  1797  	this := Nod(ODCLFIELD, newname(Lookup(".this")), typenod(rcvr))
  1798  	this.Left.Name.Param.Ntype = this.Right
  1799  	in := structargs(method.Type.Params(), true)
  1800  	out := structargs(method.Type.Results(), false)
  1801  
  1802  	t := Nod(OTFUNC, nil, nil)
  1803  	l := []*Node{this}
  1804  	if iface != 0 && rcvr.Width < Types[Tptr].Width {
  1805  		// Building method for interface table and receiver
  1806  		// is smaller than the single pointer-sized word
  1807  		// that the interface call will pass in.
  1808  		// Add a dummy padding argument after the
  1809  		// receiver to make up the difference.
  1810  		tpad := typArray(Types[TUINT8], Types[Tptr].Width-rcvr.Width)
  1811  		pad := Nod(ODCLFIELD, newname(Lookup(".pad")), typenod(tpad))
  1812  		l = append(l, pad)
  1813  	}
  1814  
  1815  	t.List.Set(append(l, in...))
  1816  	t.Rlist.Set(out)
  1817  
  1818  	fn := Nod(ODCLFUNC, nil, nil)
  1819  	fn.Func.Nname = newname(newnam)
  1820  	fn.Func.Nname.Name.Defn = fn
  1821  	fn.Func.Nname.Name.Param.Ntype = t
  1822  	declare(fn.Func.Nname, PFUNC)
  1823  	funchdr(fn)
  1824  
  1825  	// arg list
  1826  	var args []*Node
  1827  
  1828  	isddd := false
  1829  	for _, n := range in {
  1830  		args = append(args, n.Left)
  1831  		isddd = n.Left.Isddd
  1832  	}
  1833  
  1834  	methodrcvr := method.Type.Recv().Type
  1835  
  1836  	// generate nil pointer check for better error
  1837  	if rcvr.IsPtr() && rcvr.Elem() == methodrcvr {
  1838  		// generating wrapper from *T to T.
  1839  		n := Nod(OIF, nil, nil)
  1840  
  1841  		n.Left = Nod(OEQ, this.Left, nodnil())
  1842  
  1843  		// these strings are already in the reflect tables,
  1844  		// so no space cost to use them here.
  1845  		var l []*Node
  1846  
  1847  		var v Val
  1848  		v.U = rcvr.Elem().Sym.Pkg.Name // package name
  1849  		l = append(l, nodlit(v))
  1850  		v.U = rcvr.Elem().Sym.Name // type name
  1851  		l = append(l, nodlit(v))
  1852  		v.U = method.Sym.Name
  1853  		l = append(l, nodlit(v)) // method name
  1854  		call := Nod(OCALL, syslook("panicwrap"), nil)
  1855  		call.List.Set(l)
  1856  		n.Nbody.Set1(call)
  1857  		fn.Nbody.Append(n)
  1858  	}
  1859  
  1860  	dot := adddot(NodSym(OXDOT, this.Left, method.Sym))
  1861  
  1862  	// generate call
  1863  	// It's not possible to use a tail call when dynamic linking on ppc64le. The
  1864  	// bad scenario is when a local call is made to the wrapper: the wrapper will
  1865  	// call the implementation, which might be in a different module and so set
  1866  	// the TOC to the appropriate value for that module. But if it returns
  1867  	// directly to the wrapper's caller, nothing will reset it to the correct
  1868  	// value for that function.
  1869  	if !instrumenting && rcvr.IsPtr() && methodrcvr.IsPtr() && method.Embedded != 0 && !isifacemethod(method.Type) && !(Thearch.LinkArch.Name == "ppc64le" && Ctxt.Flag_dynlink) {
  1870  		// generate tail call: adjust pointer receiver and jump to embedded method.
  1871  		dot = dot.Left // skip final .M
  1872  		// TODO(mdempsky): Remove dependency on dotlist.
  1873  		if !dotlist[0].field.Type.IsPtr() {
  1874  			dot = Nod(OADDR, dot, nil)
  1875  		}
  1876  		as := Nod(OAS, this.Left, Nod(OCONVNOP, dot, nil))
  1877  		as.Right.Type = rcvr
  1878  		fn.Nbody.Append(as)
  1879  		n := Nod(ORETJMP, nil, nil)
  1880  		n.Left = newname(methodsym(method.Sym, methodrcvr, 0))
  1881  		fn.Nbody.Append(n)
  1882  	} else {
  1883  		fn.Func.Wrapper = true // ignore frame for panic+recover matching
  1884  		call := Nod(OCALL, dot, nil)
  1885  		call.List.Set(args)
  1886  		call.Isddd = isddd
  1887  		if method.Type.Results().NumFields() > 0 {
  1888  			n := Nod(ORETURN, nil, nil)
  1889  			n.List.Set1(call)
  1890  			call = n
  1891  		}
  1892  
  1893  		fn.Nbody.Append(call)
  1894  	}
  1895  
  1896  	if false && Debug['r'] != 0 {
  1897  		dumplist("genwrapper body", fn.Nbody)
  1898  	}
  1899  
  1900  	funcbody(fn)
  1901  	Curfn = fn
  1902  	popdcl()
  1903  	testdclstack()
  1904  
  1905  	// wrappers where T is anonymous (struct or interface) can be duplicated.
  1906  	if rcvr.IsStruct() || rcvr.IsInterface() || rcvr.IsPtr() && rcvr.Elem().IsStruct() {
  1907  		fn.Func.Dupok = true
  1908  	}
  1909  	fn = typecheck(fn, Etop)
  1910  	typecheckslice(fn.Nbody.Slice(), Etop)
  1911  
  1912  	inlcalls(fn)
  1913  	escAnalyze([]*Node{fn}, false)
  1914  
  1915  	Curfn = nil
  1916  	funccompile(fn)
  1917  }
  1918  
  1919  func hashmem(t *Type) *Node {
  1920  	sym := Pkglookup("memhash", Runtimepkg)
  1921  
  1922  	n := newname(sym)
  1923  	n.Class = PFUNC
  1924  	tfn := Nod(OTFUNC, nil, nil)
  1925  	tfn.List.Append(Nod(ODCLFIELD, nil, typenod(Ptrto(t))))
  1926  	tfn.List.Append(Nod(ODCLFIELD, nil, typenod(Types[TUINTPTR])))
  1927  	tfn.List.Append(Nod(ODCLFIELD, nil, typenod(Types[TUINTPTR])))
  1928  	tfn.Rlist.Append(Nod(ODCLFIELD, nil, typenod(Types[TUINTPTR])))
  1929  	tfn = typecheck(tfn, Etype)
  1930  	n.Type = tfn.Type
  1931  	return n
  1932  }
  1933  
  1934  func ifacelookdot(s *Sym, t *Type, followptr *bool, ignorecase bool) *Field {
  1935  	*followptr = false
  1936  
  1937  	if t == nil {
  1938  		return nil
  1939  	}
  1940  
  1941  	var m *Field
  1942  	path, ambig := dotpath(s, t, &m, ignorecase)
  1943  	if path == nil {
  1944  		if ambig {
  1945  			Yyerror("%v.%v is ambiguous", t, s)
  1946  		}
  1947  		return nil
  1948  	}
  1949  
  1950  	for _, d := range path {
  1951  		if d.field.Type.IsPtr() {
  1952  			*followptr = true
  1953  			break
  1954  		}
  1955  	}
  1956  
  1957  	if m.Type.Etype != TFUNC || m.Type.Recv() == nil {
  1958  		Yyerror("%v.%v is a field, not a method", t, s)
  1959  		return nil
  1960  	}
  1961  
  1962  	return m
  1963  }
  1964  
  1965  func implements(t, iface *Type, m, samename **Field, ptr *int) bool {
  1966  	t0 := t
  1967  	if t == nil {
  1968  		return false
  1969  	}
  1970  
  1971  	// if this is too slow,
  1972  	// could sort these first
  1973  	// and then do one loop.
  1974  
  1975  	if t.IsInterface() {
  1976  		for _, im := range iface.Fields().Slice() {
  1977  			for _, tm := range t.Fields().Slice() {
  1978  				if tm.Sym == im.Sym {
  1979  					if Eqtype(tm.Type, im.Type) {
  1980  						goto found
  1981  					}
  1982  					*m = im
  1983  					*samename = tm
  1984  					*ptr = 0
  1985  					return false
  1986  				}
  1987  			}
  1988  
  1989  			*m = im
  1990  			*samename = nil
  1991  			*ptr = 0
  1992  			return false
  1993  		found:
  1994  		}
  1995  
  1996  		return true
  1997  	}
  1998  
  1999  	t = methtype(t, 0)
  2000  	if t != nil {
  2001  		expandmeth(t)
  2002  	}
  2003  	for _, im := range iface.Fields().Slice() {
  2004  		if im.Broke {
  2005  			continue
  2006  		}
  2007  		var followptr bool
  2008  		tm := ifacelookdot(im.Sym, t, &followptr, false)
  2009  		if tm == nil || tm.Nointerface || !Eqtype(tm.Type, im.Type) {
  2010  			if tm == nil {
  2011  				tm = ifacelookdot(im.Sym, t, &followptr, true)
  2012  			}
  2013  			*m = im
  2014  			*samename = tm
  2015  			*ptr = 0
  2016  			return false
  2017  		}
  2018  
  2019  		// if pointer receiver in method,
  2020  		// the method does not exist for value types.
  2021  		rcvr := tm.Type.Recv().Type
  2022  
  2023  		if rcvr.IsPtr() && !t0.IsPtr() && !followptr && !isifacemethod(tm.Type) {
  2024  			if false && Debug['r'] != 0 {
  2025  				Yyerror("interface pointer mismatch")
  2026  			}
  2027  
  2028  			*m = im
  2029  			*samename = nil
  2030  			*ptr = 1
  2031  			return false
  2032  		}
  2033  	}
  2034  
  2035  	return true
  2036  }
  2037  
  2038  // even simpler simtype; get rid of ptr, bool.
  2039  // assuming that the front end has rejected
  2040  // all the invalid conversions (like ptr -> bool)
  2041  func Simsimtype(t *Type) EType {
  2042  	if t == nil {
  2043  		return 0
  2044  	}
  2045  
  2046  	et := Simtype[t.Etype]
  2047  	switch et {
  2048  	case TPTR32:
  2049  		et = TUINT32
  2050  
  2051  	case TPTR64:
  2052  		et = TUINT64
  2053  
  2054  	case TBOOL:
  2055  		et = TUINT8
  2056  	}
  2057  
  2058  	return et
  2059  }
  2060  
  2061  func listtreecopy(l []*Node, lineno int32) []*Node {
  2062  	var out []*Node
  2063  	for _, n := range l {
  2064  		out = append(out, treecopy(n, lineno))
  2065  	}
  2066  	return out
  2067  }
  2068  
  2069  func liststmt(l []*Node) *Node {
  2070  	n := Nod(OBLOCK, nil, nil)
  2071  	n.List.Set(l)
  2072  	if len(l) != 0 {
  2073  		n.Lineno = l[0].Lineno
  2074  	}
  2075  	return n
  2076  }
  2077  
  2078  // return power of 2 of the constant
  2079  // operand. -1 if it is not a power of 2.
  2080  // 1000+ if it is a -(power of 2)
  2081  func powtwo(n *Node) int {
  2082  	if n == nil || n.Op != OLITERAL || n.Type == nil {
  2083  		return -1
  2084  	}
  2085  	if !n.Type.IsInteger() {
  2086  		return -1
  2087  	}
  2088  
  2089  	v := uint64(n.Int64())
  2090  	b := uint64(1)
  2091  	for i := 0; i < 64; i++ {
  2092  		if b == v {
  2093  			return i
  2094  		}
  2095  		b = b << 1
  2096  	}
  2097  
  2098  	if !n.Type.IsSigned() {
  2099  		return -1
  2100  	}
  2101  
  2102  	v = -v
  2103  	b = 1
  2104  	for i := 0; i < 64; i++ {
  2105  		if b == v {
  2106  			return i + 1000
  2107  		}
  2108  		b = b << 1
  2109  	}
  2110  
  2111  	return -1
  2112  }
  2113  
  2114  // return the unsigned type for
  2115  // a signed integer type.
  2116  // returns T if input is not a
  2117  // signed integer type.
  2118  func tounsigned(t *Type) *Type {
  2119  	// this is types[et+1], but not sure
  2120  	// that this relation is immutable
  2121  	switch t.Etype {
  2122  	default:
  2123  		fmt.Printf("tounsigned: unknown type %v\n", t)
  2124  		t = nil
  2125  
  2126  	case TINT:
  2127  		t = Types[TUINT]
  2128  
  2129  	case TINT8:
  2130  		t = Types[TUINT8]
  2131  
  2132  	case TINT16:
  2133  		t = Types[TUINT16]
  2134  
  2135  	case TINT32:
  2136  		t = Types[TUINT32]
  2137  
  2138  	case TINT64:
  2139  		t = Types[TUINT64]
  2140  	}
  2141  
  2142  	return t
  2143  }
  2144  
  2145  func ngotype(n *Node) *Sym {
  2146  	if n.Type != nil {
  2147  		return typenamesym(n.Type)
  2148  	}
  2149  	return nil
  2150  }
  2151  
  2152  // Convert raw string to the prefix that will be used in the symbol
  2153  // table. All control characters, space, '%' and '"', as well as
  2154  // non-7-bit clean bytes turn into %xx. The period needs escaping
  2155  // only in the last segment of the path, and it makes for happier
  2156  // users if we escape that as little as possible.
  2157  //
  2158  // If you edit this, edit ../../debug/goobj/read.go:/importPathToPrefix too.
  2159  func pathtoprefix(s string) string {
  2160  	slash := strings.LastIndex(s, "/")
  2161  	for i := 0; i < len(s); i++ {
  2162  		c := s[i]
  2163  		if c <= ' ' || i >= slash && c == '.' || c == '%' || c == '"' || c >= 0x7F {
  2164  			var buf bytes.Buffer
  2165  			for i := 0; i < len(s); i++ {
  2166  				c := s[i]
  2167  				if c <= ' ' || i >= slash && c == '.' || c == '%' || c == '"' || c >= 0x7F {
  2168  					fmt.Fprintf(&buf, "%%%02x", c)
  2169  					continue
  2170  				}
  2171  				buf.WriteByte(c)
  2172  			}
  2173  			return buf.String()
  2174  		}
  2175  	}
  2176  	return s
  2177  }
  2178  
  2179  var pkgMap = make(map[string]*Pkg)
  2180  var pkgs []*Pkg
  2181  
  2182  func mkpkg(path string) *Pkg {
  2183  	if p := pkgMap[path]; p != nil {
  2184  		return p
  2185  	}
  2186  
  2187  	p := new(Pkg)
  2188  	p.Path = path
  2189  	p.Prefix = pathtoprefix(path)
  2190  	p.Syms = make(map[string]*Sym)
  2191  	pkgMap[path] = p
  2192  	pkgs = append(pkgs, p)
  2193  	return p
  2194  }
  2195  
  2196  // The result of addinit MUST be assigned back to n, e.g.
  2197  // 	n.Left = addinit(n.Left, init)
  2198  func addinit(n *Node, init []*Node) *Node {
  2199  	if len(init) == 0 {
  2200  		return n
  2201  	}
  2202  
  2203  	switch n.Op {
  2204  	// There may be multiple refs to this node;
  2205  	// introduce OCONVNOP to hold init list.
  2206  	case ONAME, OLITERAL:
  2207  		n = Nod(OCONVNOP, n, nil)
  2208  		n.Type = n.Left.Type
  2209  		n.Typecheck = 1
  2210  	}
  2211  
  2212  	n.Ninit.Set(append(init, n.Ninit.Slice()...))
  2213  	n.Ullman = UINF
  2214  	return n
  2215  }
  2216  
  2217  var reservedimports = []string{
  2218  	"go",
  2219  	"type",
  2220  }
  2221  
  2222  func isbadimport(path string) bool {
  2223  	if strings.Contains(path, "\x00") {
  2224  		Yyerror("import path contains NUL")
  2225  		return true
  2226  	}
  2227  
  2228  	for _, ri := range reservedimports {
  2229  		if path == ri {
  2230  			Yyerror("import path %q is reserved and cannot be used", path)
  2231  			return true
  2232  		}
  2233  	}
  2234  
  2235  	for _, r := range path {
  2236  		if r == utf8.RuneError {
  2237  			Yyerror("import path contains invalid UTF-8 sequence: %q", path)
  2238  			return true
  2239  		}
  2240  
  2241  		if r < 0x20 || r == 0x7f {
  2242  			Yyerror("import path contains control character: %q", path)
  2243  			return true
  2244  		}
  2245  
  2246  		if r == '\\' {
  2247  			Yyerror("import path contains backslash; use slash: %q", path)
  2248  			return true
  2249  		}
  2250  
  2251  		if unicode.IsSpace(r) {
  2252  			Yyerror("import path contains space character: %q", path)
  2253  			return true
  2254  		}
  2255  
  2256  		if strings.ContainsRune("!\"#$%&'()*,:;<=>?[]^`{|}", r) {
  2257  			Yyerror("import path contains invalid character '%c': %q", r, path)
  2258  			return true
  2259  		}
  2260  	}
  2261  
  2262  	return false
  2263  }
  2264  
  2265  func checknil(x *Node, init *Nodes) {
  2266  	x = walkexpr(x, nil) // caller has not done this yet
  2267  	if x.Type.IsInterface() {
  2268  		x = Nod(OITAB, x, nil)
  2269  		x = typecheck(x, Erv)
  2270  	}
  2271  
  2272  	n := Nod(OCHECKNIL, x, nil)
  2273  	n.Typecheck = 1
  2274  	init.Append(n)
  2275  }
  2276  
  2277  // Can this type be stored directly in an interface word?
  2278  // Yes, if the representation is a single pointer.
  2279  func isdirectiface(t *Type) bool {
  2280  	switch t.Etype {
  2281  	case TPTR32,
  2282  		TPTR64,
  2283  		TCHAN,
  2284  		TMAP,
  2285  		TFUNC,
  2286  		TUNSAFEPTR:
  2287  		return true
  2288  
  2289  	case TARRAY:
  2290  		// Array of 1 direct iface type can be direct.
  2291  		return t.NumElem() == 1 && isdirectiface(t.Elem())
  2292  
  2293  	case TSTRUCT:
  2294  		// Struct with 1 field of direct iface type can be direct.
  2295  		return t.NumFields() == 1 && isdirectiface(t.Field(0).Type)
  2296  	}
  2297  
  2298  	return false
  2299  }
  2300  
  2301  // iet returns 'T' if t is a concrete type,
  2302  // 'I' if t is an interface type, and 'E' if t is an empty interface type.
  2303  // It is used to build calls to the conv* and assert* runtime routines.
  2304  func (t *Type) iet() byte {
  2305  	if t.IsEmptyInterface() {
  2306  		return 'E'
  2307  	}
  2308  	if t.IsInterface() {
  2309  		return 'I'
  2310  	}
  2311  	return 'T'
  2312  }