github.com/gocuntian/go@v0.0.0-20160610041250-fee02d270bf8/src/cmd/compile/internal/ssa/schedule.go (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package ssa 6 7 import "container/heap" 8 9 const ( 10 ScorePhi = iota // towards top of block 11 ScoreVarDef 12 ScoreMemory 13 ScoreDefault 14 ScoreFlags 15 ScoreControl // towards bottom of block 16 ) 17 18 type ValHeap struct { 19 a []*Value 20 score []int8 21 } 22 23 func (h ValHeap) Len() int { return len(h.a) } 24 func (h ValHeap) Swap(i, j int) { a := h.a; a[i], a[j] = a[j], a[i] } 25 26 func (h *ValHeap) Push(x interface{}) { 27 // Push and Pop use pointer receivers because they modify the slice's length, 28 // not just its contents. 29 v := x.(*Value) 30 h.a = append(h.a, v) 31 } 32 func (h *ValHeap) Pop() interface{} { 33 old := h.a 34 n := len(old) 35 x := old[n-1] 36 h.a = old[0 : n-1] 37 return x 38 } 39 func (h ValHeap) Less(i, j int) bool { 40 x := h.a[i] 41 y := h.a[j] 42 sx := h.score[x.ID] 43 sy := h.score[y.ID] 44 if c := sx - sy; c != 0 { 45 return c > 0 // higher score comes later. 46 } 47 if x.Line != y.Line { // Favor in-order line stepping 48 return x.Line > y.Line 49 } 50 if x.Op != OpPhi { 51 if c := len(x.Args) - len(y.Args); c != 0 { 52 return c < 0 // smaller args comes later 53 } 54 } 55 return x.ID > y.ID 56 } 57 58 // Schedule the Values in each Block. After this phase returns, the 59 // order of b.Values matters and is the order in which those values 60 // will appear in the assembly output. For now it generates a 61 // reasonable valid schedule using a priority queue. TODO(khr): 62 // schedule smarter. 63 func schedule(f *Func) { 64 // For each value, the number of times it is used in the block 65 // by values that have not been scheduled yet. 66 uses := make([]int32, f.NumValues()) 67 68 // reusable priority queue 69 priq := new(ValHeap) 70 71 // "priority" for a value 72 score := make([]int8, f.NumValues()) 73 74 // scheduling order. We queue values in this list in reverse order. 75 var order []*Value 76 77 // maps mem values to the next live memory value 78 nextMem := make([]*Value, f.NumValues()) 79 // additional pretend arguments for each Value. Used to enforce load/store ordering. 80 additionalArgs := make([][]*Value, f.NumValues()) 81 82 for _, b := range f.Blocks { 83 // Compute score. Larger numbers are scheduled closer to the end of the block. 84 for _, v := range b.Values { 85 switch { 86 case v.Op == OpAMD64LoweredGetClosurePtr: 87 // We also score GetLoweredClosurePtr as early as possible to ensure that the 88 // context register is not stomped. GetLoweredClosurePtr should only appear 89 // in the entry block where there are no phi functions, so there is no 90 // conflict or ambiguity here. 91 if b != f.Entry { 92 f.Fatalf("LoweredGetClosurePtr appeared outside of entry block, b=%s", b.String()) 93 } 94 score[v.ID] = ScorePhi 95 case v.Op == OpPhi: 96 // We want all the phis first. 97 score[v.ID] = ScorePhi 98 case v.Op == OpVarDef: 99 // We want all the vardefs next. 100 score[v.ID] = ScoreVarDef 101 case v.Type.IsMemory(): 102 // Schedule stores as early as possible. This tends to 103 // reduce register pressure. It also helps make sure 104 // VARDEF ops are scheduled before the corresponding LEA. 105 score[v.ID] = ScoreMemory 106 case v.Type.IsFlags(): 107 // Schedule flag register generation as late as possible. 108 // This makes sure that we only have one live flags 109 // value at a time. 110 score[v.ID] = ScoreFlags 111 default: 112 score[v.ID] = ScoreDefault 113 } 114 } 115 } 116 117 for _, b := range f.Blocks { 118 // Find store chain for block. 119 // Store chains for different blocks overwrite each other, so 120 // the calculated store chain is good only for this block. 121 for _, v := range b.Values { 122 if v.Op != OpPhi && v.Type.IsMemory() { 123 for _, w := range v.Args { 124 if w.Type.IsMemory() { 125 nextMem[w.ID] = v 126 } 127 } 128 } 129 } 130 131 // Compute uses. 132 for _, v := range b.Values { 133 if v.Op == OpPhi { 134 // If a value is used by a phi, it does not induce 135 // a scheduling edge because that use is from the 136 // previous iteration. 137 continue 138 } 139 for _, w := range v.Args { 140 if w.Block == b { 141 uses[w.ID]++ 142 } 143 // Any load must come before the following store. 144 if v.Type.IsMemory() || !w.Type.IsMemory() { 145 continue // not a load 146 } 147 s := nextMem[w.ID] 148 if s == nil || s.Block != b { 149 continue 150 } 151 additionalArgs[s.ID] = append(additionalArgs[s.ID], v) 152 uses[v.ID]++ 153 } 154 } 155 156 if b.Control != nil && b.Control.Op != OpPhi { 157 // Force the control value to be scheduled at the end, 158 // unless it is a phi value (which must be first). 159 score[b.Control.ID] = ScoreControl 160 161 // Schedule values dependent on the control value at the end. 162 // This reduces the number of register spills. We don't find 163 // all values that depend on the control, just values with a 164 // direct dependency. This is cheaper and in testing there 165 // was no difference in the number of spills. 166 for _, v := range b.Values { 167 if v.Op != OpPhi { 168 for _, a := range v.Args { 169 if a == b.Control { 170 score[v.ID] = ScoreControl 171 } 172 } 173 } 174 } 175 } 176 177 // To put things into a priority queue 178 // The values that should come last are least. 179 priq.score = score 180 priq.a = priq.a[:0] 181 182 // Initialize priority queue with schedulable values. 183 for _, v := range b.Values { 184 if uses[v.ID] == 0 { 185 heap.Push(priq, v) 186 } 187 } 188 189 // Schedule highest priority value, update use counts, repeat. 190 order = order[:0] 191 for { 192 // Find highest priority schedulable value. 193 // Note that schedule is assembled backwards. 194 195 if priq.Len() == 0 { 196 break 197 } 198 199 v := heap.Pop(priq).(*Value) 200 201 // Add it to the schedule. 202 order = append(order, v) 203 204 // Update use counts of arguments. 205 for _, w := range v.Args { 206 if w.Block != b { 207 continue 208 } 209 uses[w.ID]-- 210 if uses[w.ID] == 0 { 211 // All uses scheduled, w is now schedulable. 212 heap.Push(priq, w) 213 } 214 } 215 for _, w := range additionalArgs[v.ID] { 216 uses[w.ID]-- 217 if uses[w.ID] == 0 { 218 // All uses scheduled, w is now schedulable. 219 heap.Push(priq, w) 220 } 221 } 222 } 223 if len(order) != len(b.Values) { 224 f.Fatalf("schedule does not include all values") 225 } 226 for i := 0; i < len(b.Values); i++ { 227 b.Values[i] = order[len(b.Values)-1-i] 228 } 229 } 230 231 f.scheduled = true 232 }