github.com/gocuntian/go@v0.0.0-20160610041250-fee02d270bf8/src/cmd/link/internal/ld/data.go (about)

     1  // Derived from Inferno utils/6l/obj.c and utils/6l/span.c
     2  // http://code.google.com/p/inferno-os/source/browse/utils/6l/obj.c
     3  // http://code.google.com/p/inferno-os/source/browse/utils/6l/span.c
     4  //
     5  //	Copyright © 1994-1999 Lucent Technologies Inc.  All rights reserved.
     6  //	Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
     7  //	Portions Copyright © 1997-1999 Vita Nuova Limited
     8  //	Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
     9  //	Portions Copyright © 2004,2006 Bruce Ellis
    10  //	Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
    11  //	Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
    12  //	Portions Copyright © 2009 The Go Authors. All rights reserved.
    13  //
    14  // Permission is hereby granted, free of charge, to any person obtaining a copy
    15  // of this software and associated documentation files (the "Software"), to deal
    16  // in the Software without restriction, including without limitation the rights
    17  // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    18  // copies of the Software, and to permit persons to whom the Software is
    19  // furnished to do so, subject to the following conditions:
    20  //
    21  // The above copyright notice and this permission notice shall be included in
    22  // all copies or substantial portions of the Software.
    23  //
    24  // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    25  // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    26  // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
    27  // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    28  // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    29  // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    30  // THE SOFTWARE.
    31  
    32  package ld
    33  
    34  import (
    35  	"cmd/internal/gcprog"
    36  	"cmd/internal/obj"
    37  	"cmd/internal/sys"
    38  	"fmt"
    39  	"log"
    40  	"os"
    41  	"sort"
    42  	"strconv"
    43  	"strings"
    44  	"sync"
    45  )
    46  
    47  func Symgrow(ctxt *Link, s *LSym, siz int64) {
    48  	if int64(int(siz)) != siz {
    49  		log.Fatalf("symgrow size %d too long", siz)
    50  	}
    51  	if int64(len(s.P)) >= siz {
    52  		return
    53  	}
    54  	if cap(s.P) < int(siz) {
    55  		p := make([]byte, 2*(siz+1))
    56  		s.P = append(p[:0], s.P...)
    57  	}
    58  	s.P = s.P[:siz]
    59  }
    60  
    61  func Addrel(s *LSym) *Reloc {
    62  	s.R = append(s.R, Reloc{})
    63  	return &s.R[len(s.R)-1]
    64  }
    65  
    66  func setuintxx(ctxt *Link, s *LSym, off int64, v uint64, wid int64) int64 {
    67  	if s.Type == 0 {
    68  		s.Type = obj.SDATA
    69  	}
    70  	s.Attr |= AttrReachable
    71  	if s.Size < off+wid {
    72  		s.Size = off + wid
    73  		Symgrow(ctxt, s, s.Size)
    74  	}
    75  
    76  	switch wid {
    77  	case 1:
    78  		s.P[off] = uint8(v)
    79  	case 2:
    80  		ctxt.Arch.ByteOrder.PutUint16(s.P[off:], uint16(v))
    81  	case 4:
    82  		ctxt.Arch.ByteOrder.PutUint32(s.P[off:], uint32(v))
    83  	case 8:
    84  		ctxt.Arch.ByteOrder.PutUint64(s.P[off:], v)
    85  	}
    86  
    87  	return off + wid
    88  }
    89  
    90  func Addbytes(ctxt *Link, s *LSym, bytes []byte) int64 {
    91  	if s.Type == 0 {
    92  		s.Type = obj.SDATA
    93  	}
    94  	s.Attr |= AttrReachable
    95  	s.P = append(s.P, bytes...)
    96  	s.Size = int64(len(s.P))
    97  
    98  	return s.Size
    99  }
   100  
   101  func adduintxx(ctxt *Link, s *LSym, v uint64, wid int) int64 {
   102  	off := s.Size
   103  	setuintxx(ctxt, s, off, v, int64(wid))
   104  	return off
   105  }
   106  
   107  func Adduint8(ctxt *Link, s *LSym, v uint8) int64 {
   108  	off := s.Size
   109  	if s.Type == 0 {
   110  		s.Type = obj.SDATA
   111  	}
   112  	s.Attr |= AttrReachable
   113  	s.Size++
   114  	s.P = append(s.P, v)
   115  
   116  	return off
   117  }
   118  
   119  func Adduint16(ctxt *Link, s *LSym, v uint16) int64 {
   120  	return adduintxx(ctxt, s, uint64(v), 2)
   121  }
   122  
   123  func Adduint32(ctxt *Link, s *LSym, v uint32) int64 {
   124  	return adduintxx(ctxt, s, uint64(v), 4)
   125  }
   126  
   127  func Adduint64(ctxt *Link, s *LSym, v uint64) int64 {
   128  	return adduintxx(ctxt, s, v, 8)
   129  }
   130  
   131  func adduint(ctxt *Link, s *LSym, v uint64) int64 {
   132  	return adduintxx(ctxt, s, v, SysArch.IntSize)
   133  }
   134  
   135  func setuint8(ctxt *Link, s *LSym, r int64, v uint8) int64 {
   136  	return setuintxx(ctxt, s, r, uint64(v), 1)
   137  }
   138  
   139  func setuint32(ctxt *Link, s *LSym, r int64, v uint32) int64 {
   140  	return setuintxx(ctxt, s, r, uint64(v), 4)
   141  }
   142  
   143  func Addaddrplus(ctxt *Link, s *LSym, t *LSym, add int64) int64 {
   144  	if s.Type == 0 {
   145  		s.Type = obj.SDATA
   146  	}
   147  	s.Attr |= AttrReachable
   148  	i := s.Size
   149  	s.Size += int64(ctxt.Arch.PtrSize)
   150  	Symgrow(ctxt, s, s.Size)
   151  	r := Addrel(s)
   152  	r.Sym = t
   153  	r.Off = int32(i)
   154  	r.Siz = uint8(ctxt.Arch.PtrSize)
   155  	r.Type = obj.R_ADDR
   156  	r.Add = add
   157  	return i + int64(r.Siz)
   158  }
   159  
   160  func Addpcrelplus(ctxt *Link, s *LSym, t *LSym, add int64) int64 {
   161  	if s.Type == 0 {
   162  		s.Type = obj.SDATA
   163  	}
   164  	s.Attr |= AttrReachable
   165  	i := s.Size
   166  	s.Size += 4
   167  	Symgrow(ctxt, s, s.Size)
   168  	r := Addrel(s)
   169  	r.Sym = t
   170  	r.Off = int32(i)
   171  	r.Add = add
   172  	r.Type = obj.R_PCREL
   173  	r.Siz = 4
   174  	if SysArch.Family == sys.S390X {
   175  		r.Variant = RV_390_DBL
   176  	}
   177  	return i + int64(r.Siz)
   178  }
   179  
   180  func Addaddr(ctxt *Link, s *LSym, t *LSym) int64 {
   181  	return Addaddrplus(ctxt, s, t, 0)
   182  }
   183  
   184  func setaddrplus(ctxt *Link, s *LSym, off int64, t *LSym, add int64) int64 {
   185  	if s.Type == 0 {
   186  		s.Type = obj.SDATA
   187  	}
   188  	s.Attr |= AttrReachable
   189  	if off+int64(ctxt.Arch.PtrSize) > s.Size {
   190  		s.Size = off + int64(ctxt.Arch.PtrSize)
   191  		Symgrow(ctxt, s, s.Size)
   192  	}
   193  
   194  	r := Addrel(s)
   195  	r.Sym = t
   196  	r.Off = int32(off)
   197  	r.Siz = uint8(ctxt.Arch.PtrSize)
   198  	r.Type = obj.R_ADDR
   199  	r.Add = add
   200  	return off + int64(r.Siz)
   201  }
   202  
   203  func setaddr(ctxt *Link, s *LSym, off int64, t *LSym) int64 {
   204  	return setaddrplus(ctxt, s, off, t, 0)
   205  }
   206  
   207  func addsize(ctxt *Link, s *LSym, t *LSym) int64 {
   208  	if s.Type == 0 {
   209  		s.Type = obj.SDATA
   210  	}
   211  	s.Attr |= AttrReachable
   212  	i := s.Size
   213  	s.Size += int64(ctxt.Arch.PtrSize)
   214  	Symgrow(ctxt, s, s.Size)
   215  	r := Addrel(s)
   216  	r.Sym = t
   217  	r.Off = int32(i)
   218  	r.Siz = uint8(ctxt.Arch.PtrSize)
   219  	r.Type = obj.R_SIZE
   220  	return i + int64(r.Siz)
   221  }
   222  
   223  func addaddrplus4(ctxt *Link, s *LSym, t *LSym, add int64) int64 {
   224  	if s.Type == 0 {
   225  		s.Type = obj.SDATA
   226  	}
   227  	s.Attr |= AttrReachable
   228  	i := s.Size
   229  	s.Size += 4
   230  	Symgrow(ctxt, s, s.Size)
   231  	r := Addrel(s)
   232  	r.Sym = t
   233  	r.Off = int32(i)
   234  	r.Siz = 4
   235  	r.Type = obj.R_ADDR
   236  	r.Add = add
   237  	return i + int64(r.Siz)
   238  }
   239  
   240  /*
   241   * divide-and-conquer list-link
   242   * sort of LSym* structures.
   243   * Used for the data block.
   244   */
   245  
   246  func listsubp(s *LSym) **LSym {
   247  	return &s.Sub
   248  }
   249  
   250  func listsort(l *LSym, cmp func(*LSym, *LSym) int, nextp func(*LSym) **LSym) *LSym {
   251  	if l == nil || *nextp(l) == nil {
   252  		return l
   253  	}
   254  
   255  	l1 := l
   256  	l2 := l
   257  	for {
   258  		l2 = *nextp(l2)
   259  		if l2 == nil {
   260  			break
   261  		}
   262  		l2 = *nextp(l2)
   263  		if l2 == nil {
   264  			break
   265  		}
   266  		l1 = *nextp(l1)
   267  	}
   268  
   269  	l2 = *nextp(l1)
   270  	*nextp(l1) = nil
   271  	l1 = listsort(l, cmp, nextp)
   272  	l2 = listsort(l2, cmp, nextp)
   273  
   274  	/* set up lead element */
   275  	if cmp(l1, l2) < 0 {
   276  		l = l1
   277  		l1 = *nextp(l1)
   278  	} else {
   279  		l = l2
   280  		l2 = *nextp(l2)
   281  	}
   282  
   283  	le := l
   284  
   285  	for {
   286  		if l1 == nil {
   287  			for l2 != nil {
   288  				*nextp(le) = l2
   289  				le = l2
   290  				l2 = *nextp(l2)
   291  			}
   292  
   293  			*nextp(le) = nil
   294  			break
   295  		}
   296  
   297  		if l2 == nil {
   298  			for l1 != nil {
   299  				*nextp(le) = l1
   300  				le = l1
   301  				l1 = *nextp(l1)
   302  			}
   303  
   304  			break
   305  		}
   306  
   307  		if cmp(l1, l2) < 0 {
   308  			*nextp(le) = l1
   309  			le = l1
   310  			l1 = *nextp(l1)
   311  		} else {
   312  			*nextp(le) = l2
   313  			le = l2
   314  			l2 = *nextp(l2)
   315  		}
   316  	}
   317  
   318  	*nextp(le) = nil
   319  	return l
   320  }
   321  
   322  func relocsym(s *LSym) {
   323  	var r *Reloc
   324  	var rs *LSym
   325  	var i16 int16
   326  	var off int32
   327  	var siz int32
   328  	var fl int32
   329  	var o int64
   330  
   331  	Ctxt.Cursym = s
   332  	for ri := int32(0); ri < int32(len(s.R)); ri++ {
   333  		r = &s.R[ri]
   334  		r.Done = 1
   335  		off = r.Off
   336  		siz = int32(r.Siz)
   337  		if off < 0 || off+siz > int32(len(s.P)) {
   338  			Diag("%s: invalid relocation %d+%d not in [%d,%d)", s.Name, off, siz, 0, len(s.P))
   339  			continue
   340  		}
   341  
   342  		if r.Sym != nil && (r.Sym.Type&(obj.SMASK|obj.SHIDDEN) == 0 || r.Sym.Type&obj.SMASK == obj.SXREF) {
   343  			// When putting the runtime but not main into a shared library
   344  			// these symbols are undefined and that's OK.
   345  			if Buildmode == BuildmodeShared && (r.Sym.Name == "main.main" || r.Sym.Name == "main.init") {
   346  				r.Sym.Type = obj.SDYNIMPORT
   347  			} else {
   348  				Diag("%s: not defined", r.Sym.Name)
   349  				continue
   350  			}
   351  		}
   352  
   353  		if r.Type >= 256 {
   354  			continue
   355  		}
   356  		if r.Siz == 0 { // informational relocation - no work to do
   357  			continue
   358  		}
   359  
   360  		// We need to be able to reference dynimport symbols when linking against
   361  		// shared libraries, and Solaris needs it always
   362  		if HEADTYPE != obj.Hsolaris && r.Sym != nil && r.Sym.Type == obj.SDYNIMPORT && !DynlinkingGo() {
   363  			if !(SysArch.Family == sys.PPC64 && Linkmode == LinkExternal && r.Sym.Name == ".TOC.") {
   364  				Diag("unhandled relocation for %s (type %d rtype %d)", r.Sym.Name, r.Sym.Type, r.Type)
   365  			}
   366  		}
   367  		if r.Sym != nil && r.Sym.Type != obj.STLSBSS && !r.Sym.Attr.Reachable() {
   368  			Diag("unreachable sym in relocation: %s %s", s.Name, r.Sym.Name)
   369  		}
   370  
   371  		// TODO(mundaym): remove this special case - see issue 14218.
   372  		if SysArch.Family == sys.S390X {
   373  			switch r.Type {
   374  			case obj.R_PCRELDBL:
   375  				r.Type = obj.R_PCREL
   376  				r.Variant = RV_390_DBL
   377  			case obj.R_CALL:
   378  				r.Variant = RV_390_DBL
   379  			}
   380  		}
   381  
   382  		switch r.Type {
   383  		default:
   384  			switch siz {
   385  			default:
   386  				Diag("bad reloc size %#x for %s", uint32(siz), r.Sym.Name)
   387  			case 1:
   388  				o = int64(s.P[off])
   389  			case 2:
   390  				o = int64(Ctxt.Arch.ByteOrder.Uint16(s.P[off:]))
   391  			case 4:
   392  				o = int64(Ctxt.Arch.ByteOrder.Uint32(s.P[off:]))
   393  			case 8:
   394  				o = int64(Ctxt.Arch.ByteOrder.Uint64(s.P[off:]))
   395  			}
   396  			if Thearch.Archreloc(r, s, &o) < 0 {
   397  				Diag("unknown reloc %d", r.Type)
   398  			}
   399  
   400  		case obj.R_TLS_LE:
   401  			isAndroidX86 := goos == "android" && (SysArch.InFamily(sys.AMD64, sys.I386))
   402  
   403  			if Linkmode == LinkExternal && Iself && HEADTYPE != obj.Hopenbsd && !isAndroidX86 {
   404  				r.Done = 0
   405  				if r.Sym == nil {
   406  					r.Sym = Ctxt.Tlsg
   407  				}
   408  				r.Xsym = r.Sym
   409  				r.Xadd = r.Add
   410  				o = 0
   411  				if SysArch.Family != sys.AMD64 {
   412  					o = r.Add
   413  				}
   414  				break
   415  			}
   416  
   417  			if Iself && SysArch.Family == sys.ARM {
   418  				// On ELF ARM, the thread pointer is 8 bytes before
   419  				// the start of the thread-local data block, so add 8
   420  				// to the actual TLS offset (r->sym->value).
   421  				// This 8 seems to be a fundamental constant of
   422  				// ELF on ARM (or maybe Glibc on ARM); it is not
   423  				// related to the fact that our own TLS storage happens
   424  				// to take up 8 bytes.
   425  				o = 8 + r.Sym.Value
   426  			} else if Iself || Ctxt.Headtype == obj.Hplan9 || Ctxt.Headtype == obj.Hdarwin || isAndroidX86 {
   427  				o = int64(Ctxt.Tlsoffset) + r.Add
   428  			} else if Ctxt.Headtype == obj.Hwindows {
   429  				o = r.Add
   430  			} else {
   431  				log.Fatalf("unexpected R_TLS_LE relocation for %s", Headstr(Ctxt.Headtype))
   432  			}
   433  
   434  		case obj.R_TLS_IE:
   435  			isAndroidX86 := goos == "android" && (SysArch.InFamily(sys.AMD64, sys.I386))
   436  
   437  			if Linkmode == LinkExternal && Iself && HEADTYPE != obj.Hopenbsd && !isAndroidX86 {
   438  				r.Done = 0
   439  				if r.Sym == nil {
   440  					r.Sym = Ctxt.Tlsg
   441  				}
   442  				r.Xsym = r.Sym
   443  				r.Xadd = r.Add
   444  				o = 0
   445  				if SysArch.Family != sys.AMD64 {
   446  					o = r.Add
   447  				}
   448  				break
   449  			}
   450  			log.Fatalf("cannot handle R_TLS_IE when linking internally")
   451  
   452  		case obj.R_ADDR:
   453  			if Linkmode == LinkExternal && r.Sym.Type != obj.SCONST {
   454  				r.Done = 0
   455  
   456  				// set up addend for eventual relocation via outer symbol.
   457  				rs = r.Sym
   458  
   459  				r.Xadd = r.Add
   460  				for rs.Outer != nil {
   461  					r.Xadd += Symaddr(rs) - Symaddr(rs.Outer)
   462  					rs = rs.Outer
   463  				}
   464  
   465  				if rs.Type != obj.SHOSTOBJ && rs.Type != obj.SDYNIMPORT && rs.Sect == nil {
   466  					Diag("missing section for %s", rs.Name)
   467  				}
   468  				r.Xsym = rs
   469  
   470  				o = r.Xadd
   471  				if Iself {
   472  					if SysArch.Family == sys.AMD64 {
   473  						o = 0
   474  					}
   475  				} else if HEADTYPE == obj.Hdarwin {
   476  					// ld64 for arm64 has a bug where if the address pointed to by o exists in the
   477  					// symbol table (dynid >= 0), or is inside a symbol that exists in the symbol
   478  					// table, then it will add o twice into the relocated value.
   479  					// The workaround is that on arm64 don't ever add symaddr to o and always use
   480  					// extern relocation by requiring rs->dynid >= 0.
   481  					if rs.Type != obj.SHOSTOBJ {
   482  						if SysArch.Family == sys.ARM64 && rs.Dynid < 0 {
   483  							Diag("R_ADDR reloc to %s+%d is not supported on darwin/arm64", rs.Name, o)
   484  						}
   485  						if SysArch.Family != sys.ARM64 {
   486  							o += Symaddr(rs)
   487  						}
   488  					}
   489  				} else if HEADTYPE == obj.Hwindows {
   490  					// nothing to do
   491  				} else {
   492  					Diag("unhandled pcrel relocation for %s", headstring)
   493  				}
   494  
   495  				break
   496  			}
   497  
   498  			o = Symaddr(r.Sym) + r.Add
   499  
   500  			// On amd64, 4-byte offsets will be sign-extended, so it is impossible to
   501  			// access more than 2GB of static data; fail at link time is better than
   502  			// fail at runtime. See https://golang.org/issue/7980.
   503  			// Instead of special casing only amd64, we treat this as an error on all
   504  			// 64-bit architectures so as to be future-proof.
   505  			if int32(o) < 0 && SysArch.PtrSize > 4 && siz == 4 {
   506  				Diag("non-pc-relative relocation address is too big: %#x (%#x + %#x)", uint64(o), Symaddr(r.Sym), r.Add)
   507  				errorexit()
   508  			}
   509  
   510  		case obj.R_DWARFREF:
   511  			if r.Sym.Sect == nil {
   512  				Diag("missing DWARF section: %s from %s", r.Sym.Name, s.Name)
   513  			}
   514  			if Linkmode == LinkExternal {
   515  				r.Done = 0
   516  				r.Type = obj.R_ADDR
   517  
   518  				r.Xsym = Linkrlookup(Ctxt, r.Sym.Sect.Name, 0)
   519  				r.Xadd = r.Add + Symaddr(r.Sym) - int64(r.Sym.Sect.Vaddr)
   520  				o = r.Xadd
   521  				rs = r.Xsym
   522  				if Iself && SysArch.Family == sys.AMD64 {
   523  					o = 0
   524  				}
   525  				break
   526  			}
   527  			o = Symaddr(r.Sym) + r.Add - int64(r.Sym.Sect.Vaddr)
   528  
   529  		case obj.R_ADDROFF:
   530  			o = Symaddr(r.Sym) - int64(r.Sym.Sect.Vaddr) + r.Add
   531  
   532  			// r->sym can be null when CALL $(constant) is transformed from absolute PC to relative PC call.
   533  		case obj.R_CALL, obj.R_GOTPCREL, obj.R_PCREL:
   534  			if Linkmode == LinkExternal && r.Sym != nil && r.Sym.Type != obj.SCONST && (r.Sym.Sect != Ctxt.Cursym.Sect || r.Type == obj.R_GOTPCREL) {
   535  				r.Done = 0
   536  
   537  				// set up addend for eventual relocation via outer symbol.
   538  				rs = r.Sym
   539  
   540  				r.Xadd = r.Add
   541  				for rs.Outer != nil {
   542  					r.Xadd += Symaddr(rs) - Symaddr(rs.Outer)
   543  					rs = rs.Outer
   544  				}
   545  
   546  				r.Xadd -= int64(r.Siz) // relative to address after the relocated chunk
   547  				if rs.Type != obj.SHOSTOBJ && rs.Type != obj.SDYNIMPORT && rs.Sect == nil {
   548  					Diag("missing section for %s", rs.Name)
   549  				}
   550  				r.Xsym = rs
   551  
   552  				o = r.Xadd
   553  				if Iself {
   554  					if SysArch.Family == sys.AMD64 {
   555  						o = 0
   556  					}
   557  				} else if HEADTYPE == obj.Hdarwin {
   558  					if r.Type == obj.R_CALL {
   559  						if rs.Type != obj.SHOSTOBJ {
   560  							o += int64(uint64(Symaddr(rs)) - rs.Sect.Vaddr)
   561  						}
   562  						o -= int64(r.Off) // relative to section offset, not symbol
   563  					} else if SysArch.Family == sys.ARM {
   564  						// see ../arm/asm.go:/machoreloc1
   565  						o += Symaddr(rs) - int64(Ctxt.Cursym.Value) - int64(r.Off)
   566  					} else {
   567  						o += int64(r.Siz)
   568  					}
   569  				} else if HEADTYPE == obj.Hwindows && SysArch.Family == sys.AMD64 { // only amd64 needs PCREL
   570  					// PE/COFF's PC32 relocation uses the address after the relocated
   571  					// bytes as the base. Compensate by skewing the addend.
   572  					o += int64(r.Siz)
   573  					// GNU ld always add VirtualAddress of the .text section to the
   574  					// relocated address, compensate that.
   575  					o -= int64(s.Sect.Vaddr - PEBASE)
   576  				} else {
   577  					Diag("unhandled pcrel relocation for %s", headstring)
   578  				}
   579  
   580  				break
   581  			}
   582  
   583  			o = 0
   584  			if r.Sym != nil {
   585  				o += Symaddr(r.Sym)
   586  			}
   587  
   588  			// NOTE: The (int32) cast on the next line works around a bug in Plan 9's 8c
   589  			// compiler. The expression s->value + r->off + r->siz is int32 + int32 +
   590  			// uchar, and Plan 9 8c incorrectly treats the expression as type uint32
   591  			// instead of int32, causing incorrect values when sign extended for adding
   592  			// to o. The bug only occurs on Plan 9, because this C program is compiled by
   593  			// the standard host compiler (gcc on most other systems).
   594  			o += r.Add - (s.Value + int64(r.Off) + int64(int32(r.Siz)))
   595  
   596  		case obj.R_SIZE:
   597  			o = r.Sym.Size + r.Add
   598  		}
   599  
   600  		if r.Variant != RV_NONE {
   601  			o = Thearch.Archrelocvariant(r, s, o)
   602  		}
   603  
   604  		if false {
   605  			nam := "<nil>"
   606  			if r.Sym != nil {
   607  				nam = r.Sym.Name
   608  			}
   609  			fmt.Printf("relocate %s %#x (%#x+%#x, size %d) => %s %#x +%#x [type %d/%d, %x]\n", s.Name, s.Value+int64(off), s.Value, r.Off, r.Siz, nam, Symaddr(r.Sym), r.Add, r.Type, r.Variant, o)
   610  		}
   611  		switch siz {
   612  		default:
   613  			Ctxt.Cursym = s
   614  			Diag("bad reloc size %#x for %s", uint32(siz), r.Sym.Name)
   615  			fallthrough
   616  
   617  			// TODO(rsc): Remove.
   618  		case 1:
   619  			s.P[off] = byte(int8(o))
   620  
   621  		case 2:
   622  			if o != int64(int16(o)) {
   623  				Diag("relocation address is too big: %#x", o)
   624  			}
   625  			i16 = int16(o)
   626  			Ctxt.Arch.ByteOrder.PutUint16(s.P[off:], uint16(i16))
   627  
   628  		case 4:
   629  			if r.Type == obj.R_PCREL || r.Type == obj.R_CALL {
   630  				if o != int64(int32(o)) {
   631  					Diag("pc-relative relocation address is too big: %#x", o)
   632  				}
   633  			} else {
   634  				if o != int64(int32(o)) && o != int64(uint32(o)) {
   635  					Diag("non-pc-relative relocation address is too big: %#x", uint64(o))
   636  				}
   637  			}
   638  
   639  			fl = int32(o)
   640  			Ctxt.Arch.ByteOrder.PutUint32(s.P[off:], uint32(fl))
   641  
   642  		case 8:
   643  			Ctxt.Arch.ByteOrder.PutUint64(s.P[off:], uint64(o))
   644  		}
   645  	}
   646  }
   647  
   648  func reloc() {
   649  	if Debug['v'] != 0 {
   650  		fmt.Fprintf(Bso, "%5.2f reloc\n", obj.Cputime())
   651  	}
   652  	Bso.Flush()
   653  
   654  	for _, s := range Ctxt.Textp {
   655  		relocsym(s)
   656  	}
   657  	for _, sym := range datap {
   658  		relocsym(sym)
   659  	}
   660  	for s := dwarfp; s != nil; s = s.Next {
   661  		relocsym(s)
   662  	}
   663  }
   664  
   665  func dynrelocsym(s *LSym) {
   666  	if HEADTYPE == obj.Hwindows && Linkmode != LinkExternal {
   667  		rel := Linklookup(Ctxt, ".rel", 0)
   668  		if s == rel {
   669  			return
   670  		}
   671  		for ri := 0; ri < len(s.R); ri++ {
   672  			r := &s.R[ri]
   673  			targ := r.Sym
   674  			if targ == nil {
   675  				continue
   676  			}
   677  			if !targ.Attr.Reachable() {
   678  				Diag("internal inconsistency: dynamic symbol %s is not reachable.", targ.Name)
   679  			}
   680  			if r.Sym.Plt == -2 && r.Sym.Got != -2 { // make dynimport JMP table for PE object files.
   681  				targ.Plt = int32(rel.Size)
   682  				r.Sym = rel
   683  				r.Add = int64(targ.Plt)
   684  
   685  				// jmp *addr
   686  				if SysArch.Family == sys.I386 {
   687  					Adduint8(Ctxt, rel, 0xff)
   688  					Adduint8(Ctxt, rel, 0x25)
   689  					Addaddr(Ctxt, rel, targ)
   690  					Adduint8(Ctxt, rel, 0x90)
   691  					Adduint8(Ctxt, rel, 0x90)
   692  				} else {
   693  					Adduint8(Ctxt, rel, 0xff)
   694  					Adduint8(Ctxt, rel, 0x24)
   695  					Adduint8(Ctxt, rel, 0x25)
   696  					addaddrplus4(Ctxt, rel, targ, 0)
   697  					Adduint8(Ctxt, rel, 0x90)
   698  				}
   699  			} else if r.Sym.Plt >= 0 {
   700  				r.Sym = rel
   701  				r.Add = int64(targ.Plt)
   702  			}
   703  		}
   704  
   705  		return
   706  	}
   707  
   708  	for ri := 0; ri < len(s.R); ri++ {
   709  		r := &s.R[ri]
   710  		if r.Sym != nil && r.Sym.Type == obj.SDYNIMPORT || r.Type >= 256 {
   711  			if r.Sym != nil && !r.Sym.Attr.Reachable() {
   712  				Diag("internal inconsistency: dynamic symbol %s is not reachable.", r.Sym.Name)
   713  			}
   714  			Thearch.Adddynrel(s, r)
   715  		}
   716  	}
   717  }
   718  
   719  func dynreloc(data *[obj.SXREF][]*LSym) {
   720  	// -d suppresses dynamic loader format, so we may as well not
   721  	// compute these sections or mark their symbols as reachable.
   722  	if Debug['d'] != 0 && HEADTYPE != obj.Hwindows {
   723  		return
   724  	}
   725  	if Debug['v'] != 0 {
   726  		fmt.Fprintf(Bso, "%5.2f reloc\n", obj.Cputime())
   727  	}
   728  	Bso.Flush()
   729  
   730  	for _, s := range Ctxt.Textp {
   731  		dynrelocsym(s)
   732  	}
   733  	for _, syms := range data {
   734  		for _, sym := range syms {
   735  			dynrelocsym(sym)
   736  		}
   737  	}
   738  	if Iself {
   739  		elfdynhash()
   740  	}
   741  }
   742  
   743  func blk(start *LSym, addr int64, size int64) {
   744  	var sym *LSym
   745  
   746  	for sym = start; sym != nil; sym = sym.Next {
   747  		if sym.Type&obj.SSUB == 0 && sym.Value >= addr {
   748  			break
   749  		}
   750  	}
   751  
   752  	eaddr := addr + size
   753  	for ; sym != nil; sym = sym.Next {
   754  		if sym.Type&obj.SSUB != 0 {
   755  			continue
   756  		}
   757  		if sym.Value >= eaddr {
   758  			break
   759  		}
   760  		Ctxt.Cursym = sym
   761  		if sym.Value < addr {
   762  			Diag("phase error: addr=%#x but sym=%#x type=%d", addr, sym.Value, sym.Type)
   763  			errorexit()
   764  		}
   765  
   766  		if addr < sym.Value {
   767  			strnput("", int(sym.Value-addr))
   768  			addr = sym.Value
   769  		}
   770  		Cwrite(sym.P)
   771  		addr += int64(len(sym.P))
   772  		if addr < sym.Value+sym.Size {
   773  			strnput("", int(sym.Value+sym.Size-addr))
   774  			addr = sym.Value + sym.Size
   775  		}
   776  		if addr != sym.Value+sym.Size {
   777  			Diag("phase error: addr=%#x value+size=%#x", addr, sym.Value+sym.Size)
   778  			errorexit()
   779  		}
   780  
   781  		if sym.Value+sym.Size >= eaddr {
   782  			break
   783  		}
   784  	}
   785  
   786  	if addr < eaddr {
   787  		strnput("", int(eaddr-addr))
   788  	}
   789  	Cflush()
   790  }
   791  
   792  func Codeblk(addr int64, size int64) {
   793  	if Debug['a'] != 0 {
   794  		fmt.Fprintf(Bso, "codeblk [%#x,%#x) at offset %#x\n", addr, addr+size, Cpos())
   795  	}
   796  
   797  	blkSlice(Ctxt.Textp, addr, size)
   798  
   799  	/* again for printing */
   800  	if Debug['a'] == 0 {
   801  		return
   802  	}
   803  
   804  	syms := Ctxt.Textp
   805  	for i, sym := range syms {
   806  		if !sym.Attr.Reachable() {
   807  			continue
   808  		}
   809  		if sym.Value >= addr {
   810  			syms = syms[i:]
   811  			break
   812  		}
   813  	}
   814  
   815  	eaddr := addr + size
   816  	var q []byte
   817  	for _, sym := range syms {
   818  		if !sym.Attr.Reachable() {
   819  			continue
   820  		}
   821  		if sym.Value >= eaddr {
   822  			break
   823  		}
   824  
   825  		if addr < sym.Value {
   826  			fmt.Fprintf(Bso, "%-20s %.8x|", "_", uint64(addr))
   827  			for ; addr < sym.Value; addr++ {
   828  				fmt.Fprintf(Bso, " %.2x", 0)
   829  			}
   830  			fmt.Fprintf(Bso, "\n")
   831  		}
   832  
   833  		fmt.Fprintf(Bso, "%.6x\t%-20s\n", uint64(addr), sym.Name)
   834  		q = sym.P
   835  
   836  		for len(q) >= 16 {
   837  			fmt.Fprintf(Bso, "%.6x\t% x\n", uint64(addr), q[:16])
   838  			addr += 16
   839  			q = q[16:]
   840  		}
   841  
   842  		if len(q) > 0 {
   843  			fmt.Fprintf(Bso, "%.6x\t% x\n", uint64(addr), q)
   844  			addr += int64(len(q))
   845  		}
   846  	}
   847  
   848  	if addr < eaddr {
   849  		fmt.Fprintf(Bso, "%-20s %.8x|", "_", uint64(addr))
   850  		for ; addr < eaddr; addr++ {
   851  			fmt.Fprintf(Bso, " %.2x", 0)
   852  		}
   853  	}
   854  
   855  	Bso.Flush()
   856  }
   857  
   858  // blkSlice is a variant of blk that processes slices.
   859  // After text symbols are converted from a linked list to a slice,
   860  // delete blk and give this function its name.
   861  func blkSlice(syms []*LSym, addr, size int64) {
   862  	for i, s := range syms {
   863  		if s.Type&obj.SSUB == 0 && s.Value >= addr {
   864  			syms = syms[i:]
   865  			break
   866  		}
   867  	}
   868  
   869  	eaddr := addr + size
   870  	for _, s := range syms {
   871  		if s.Type&obj.SSUB != 0 {
   872  			continue
   873  		}
   874  		if s.Value >= eaddr {
   875  			break
   876  		}
   877  		Ctxt.Cursym = s
   878  		if s.Value < addr {
   879  			Diag("phase error: addr=%#x but sym=%#x type=%d", addr, s.Value, s.Type)
   880  			errorexit()
   881  		}
   882  		if addr < s.Value {
   883  			strnput("", int(s.Value-addr))
   884  			addr = s.Value
   885  		}
   886  		Cwrite(s.P)
   887  		addr += int64(len(s.P))
   888  		if addr < s.Value+s.Size {
   889  			strnput("", int(s.Value+s.Size-addr))
   890  			addr = s.Value + s.Size
   891  		}
   892  		if addr != s.Value+s.Size {
   893  			Diag("phase error: addr=%#x value+size=%#x", addr, s.Value+s.Size)
   894  			errorexit()
   895  		}
   896  		if s.Value+s.Size >= eaddr {
   897  			break
   898  		}
   899  	}
   900  
   901  	if addr < eaddr {
   902  		strnput("", int(eaddr-addr))
   903  	}
   904  	Cflush()
   905  }
   906  
   907  func Datblk(addr int64, size int64) {
   908  	if Debug['a'] != 0 {
   909  		fmt.Fprintf(Bso, "datblk [%#x,%#x) at offset %#x\n", addr, addr+size, Cpos())
   910  	}
   911  
   912  	blkSlice(datap, addr, size)
   913  
   914  	/* again for printing */
   915  	if Debug['a'] == 0 {
   916  		return
   917  	}
   918  
   919  	syms := datap
   920  	for i, sym := range syms {
   921  		if sym.Value >= addr {
   922  			syms = syms[i:]
   923  			break
   924  		}
   925  	}
   926  
   927  	eaddr := addr + size
   928  	for _, sym := range syms {
   929  		if sym.Value >= eaddr {
   930  			break
   931  		}
   932  		if addr < sym.Value {
   933  			fmt.Fprintf(Bso, "\t%.8x| 00 ...\n", uint64(addr))
   934  			addr = sym.Value
   935  		}
   936  
   937  		fmt.Fprintf(Bso, "%s\n\t%.8x|", sym.Name, uint64(addr))
   938  		for i, b := range sym.P {
   939  			if i > 0 && i%16 == 0 {
   940  				fmt.Fprintf(Bso, "\n\t%.8x|", uint64(addr)+uint64(i))
   941  			}
   942  			fmt.Fprintf(Bso, " %.2x", b)
   943  		}
   944  
   945  		addr += int64(len(sym.P))
   946  		for ; addr < sym.Value+sym.Size; addr++ {
   947  			fmt.Fprintf(Bso, " %.2x", 0)
   948  		}
   949  		fmt.Fprintf(Bso, "\n")
   950  
   951  		if Linkmode != LinkExternal {
   952  			continue
   953  		}
   954  		for _, r := range sym.R {
   955  			rsname := ""
   956  			if r.Sym != nil {
   957  				rsname = r.Sym.Name
   958  			}
   959  			typ := "?"
   960  			switch r.Type {
   961  			case obj.R_ADDR:
   962  				typ = "addr"
   963  			case obj.R_PCREL:
   964  				typ = "pcrel"
   965  			case obj.R_CALL:
   966  				typ = "call"
   967  			}
   968  			fmt.Fprintf(Bso, "\treloc %.8x/%d %s %s+%#x [%#x]\n", uint(sym.Value+int64(r.Off)), r.Siz, typ, rsname, r.Add, r.Sym.Value+r.Add)
   969  		}
   970  	}
   971  
   972  	if addr < eaddr {
   973  		fmt.Fprintf(Bso, "\t%.8x| 00 ...\n", uint(addr))
   974  	}
   975  	fmt.Fprintf(Bso, "\t%.8x|\n", uint(eaddr))
   976  }
   977  
   978  func Dwarfblk(addr int64, size int64) {
   979  	if Debug['a'] != 0 {
   980  		fmt.Fprintf(Bso, "dwarfblk [%#x,%#x) at offset %#x\n", addr, addr+size, Cpos())
   981  	}
   982  
   983  	blk(dwarfp, addr, size)
   984  }
   985  
   986  var zeros [512]byte
   987  
   988  // strnput writes the first n bytes of s.
   989  // If n is larger then len(s),
   990  // it is padded with NUL bytes.
   991  func strnput(s string, n int) {
   992  	if len(s) >= n {
   993  		Cwritestring(s[:n])
   994  	} else {
   995  		Cwritestring(s)
   996  		n -= len(s)
   997  		for n > 0 {
   998  			if len(zeros) >= n {
   999  				Cwrite(zeros[:n])
  1000  				return
  1001  			} else {
  1002  				Cwrite(zeros[:])
  1003  				n -= len(zeros)
  1004  			}
  1005  		}
  1006  	}
  1007  }
  1008  
  1009  var strdata []*LSym
  1010  
  1011  func addstrdata1(arg string) {
  1012  	i := strings.Index(arg, "=")
  1013  	if i < 0 {
  1014  		Exitf("-X flag requires argument of the form importpath.name=value")
  1015  	}
  1016  	addstrdata(arg[:i], arg[i+1:])
  1017  }
  1018  
  1019  func addstrdata(name string, value string) {
  1020  	p := fmt.Sprintf("%s.str", name)
  1021  	sp := Linklookup(Ctxt, p, 0)
  1022  
  1023  	Addstring(sp, value)
  1024  	sp.Type = obj.SRODATA
  1025  
  1026  	s := Linklookup(Ctxt, name, 0)
  1027  	s.Size = 0
  1028  	s.Attr |= AttrDuplicateOK
  1029  	reachable := s.Attr.Reachable()
  1030  	Addaddr(Ctxt, s, sp)
  1031  	adduintxx(Ctxt, s, uint64(len(value)), SysArch.PtrSize)
  1032  
  1033  	// addstring, addaddr, etc., mark the symbols as reachable.
  1034  	// In this case that is not necessarily true, so stick to what
  1035  	// we know before entering this function.
  1036  	s.Attr.Set(AttrReachable, reachable)
  1037  
  1038  	strdata = append(strdata, s)
  1039  
  1040  	sp.Attr.Set(AttrReachable, reachable)
  1041  }
  1042  
  1043  func checkstrdata() {
  1044  	for _, s := range strdata {
  1045  		if s.Type == obj.STEXT {
  1046  			Diag("cannot use -X with text symbol %s", s.Name)
  1047  		} else if s.Gotype != nil && s.Gotype.Name != "type.string" {
  1048  			Diag("cannot use -X with non-string symbol %s", s.Name)
  1049  		}
  1050  	}
  1051  }
  1052  
  1053  func Addstring(s *LSym, str string) int64 {
  1054  	if s.Type == 0 {
  1055  		s.Type = obj.SNOPTRDATA
  1056  	}
  1057  	s.Attr |= AttrReachable
  1058  	r := s.Size
  1059  	if s.Name == ".shstrtab" {
  1060  		elfsetstring(str, int(r))
  1061  	}
  1062  	s.P = append(s.P, str...)
  1063  	s.P = append(s.P, 0)
  1064  	s.Size = int64(len(s.P))
  1065  	return r
  1066  }
  1067  
  1068  // addgostring adds str, as a Go string value, to s. symname is the name of the
  1069  // symbol used to define the string data and must be unique per linked object.
  1070  func addgostring(s *LSym, symname, str string) {
  1071  	sym := Linklookup(Ctxt, symname, 0)
  1072  	if sym.Type != obj.Sxxx {
  1073  		Diag("duplicate symname in addgostring: %s", symname)
  1074  	}
  1075  	sym.Attr |= AttrReachable
  1076  	sym.Attr |= AttrLocal
  1077  	sym.Type = obj.SRODATA
  1078  	sym.Size = int64(len(str))
  1079  	sym.P = []byte(str)
  1080  	Addaddr(Ctxt, s, sym)
  1081  	adduint(Ctxt, s, uint64(len(str)))
  1082  }
  1083  
  1084  func addinitarrdata(s *LSym) {
  1085  	p := s.Name + ".ptr"
  1086  	sp := Linklookup(Ctxt, p, 0)
  1087  	sp.Type = obj.SINITARR
  1088  	sp.Size = 0
  1089  	sp.Attr |= AttrDuplicateOK
  1090  	Addaddr(Ctxt, sp, s)
  1091  }
  1092  
  1093  func dosymtype() {
  1094  	for _, s := range Ctxt.Allsym {
  1095  		if len(s.P) > 0 {
  1096  			if s.Type == obj.SBSS {
  1097  				s.Type = obj.SDATA
  1098  			}
  1099  			if s.Type == obj.SNOPTRBSS {
  1100  				s.Type = obj.SNOPTRDATA
  1101  			}
  1102  		}
  1103  		// Create a new entry in the .init_array section that points to the
  1104  		// library initializer function.
  1105  		switch Buildmode {
  1106  		case BuildmodeCArchive, BuildmodeCShared:
  1107  			if s.Name == INITENTRY {
  1108  				addinitarrdata(s)
  1109  			}
  1110  		}
  1111  	}
  1112  }
  1113  
  1114  // symalign returns the required alignment for the given symbol s.
  1115  func symalign(s *LSym) int32 {
  1116  	min := int32(Thearch.Minalign)
  1117  	if s.Align >= min {
  1118  		return s.Align
  1119  	} else if s.Align != 0 {
  1120  		return min
  1121  	}
  1122  	if (strings.HasPrefix(s.Name, "go.string.") && !strings.HasPrefix(s.Name, "go.string.hdr.")) || strings.HasPrefix(s.Name, "type..namedata.") {
  1123  		// String data is just bytes.
  1124  		// If we align it, we waste a lot of space to padding.
  1125  		return min
  1126  	}
  1127  	align := int32(Thearch.Maxalign)
  1128  	for int64(align) > s.Size && align > min {
  1129  		align >>= 1
  1130  	}
  1131  	return align
  1132  }
  1133  
  1134  func aligndatsize(datsize int64, s *LSym) int64 {
  1135  	return Rnd(datsize, int64(symalign(s)))
  1136  }
  1137  
  1138  const debugGCProg = false
  1139  
  1140  type GCProg struct {
  1141  	sym *LSym
  1142  	w   gcprog.Writer
  1143  }
  1144  
  1145  func (p *GCProg) Init(name string) {
  1146  	p.sym = Linklookup(Ctxt, name, 0)
  1147  	p.w.Init(p.writeByte)
  1148  	if debugGCProg {
  1149  		fmt.Fprintf(os.Stderr, "ld: start GCProg %s\n", name)
  1150  		p.w.Debug(os.Stderr)
  1151  	}
  1152  }
  1153  
  1154  func (p *GCProg) writeByte(x byte) {
  1155  	Adduint8(Ctxt, p.sym, x)
  1156  }
  1157  
  1158  func (p *GCProg) End(size int64) {
  1159  	p.w.ZeroUntil(size / int64(SysArch.PtrSize))
  1160  	p.w.End()
  1161  	if debugGCProg {
  1162  		fmt.Fprintf(os.Stderr, "ld: end GCProg\n")
  1163  	}
  1164  }
  1165  
  1166  func (p *GCProg) AddSym(s *LSym) {
  1167  	typ := s.Gotype
  1168  	// Things without pointers should be in SNOPTRDATA or SNOPTRBSS;
  1169  	// everything we see should have pointers and should therefore have a type.
  1170  	if typ == nil {
  1171  		Diag("missing Go type information for global symbol: %s size %d", s.Name, int(s.Size))
  1172  		return
  1173  	}
  1174  
  1175  	ptrsize := int64(SysArch.PtrSize)
  1176  	nptr := decodetype_ptrdata(typ) / ptrsize
  1177  
  1178  	if debugGCProg {
  1179  		fmt.Fprintf(os.Stderr, "gcprog sym: %s at %d (ptr=%d+%d)\n", s.Name, s.Value, s.Value/ptrsize, nptr)
  1180  	}
  1181  
  1182  	if decodetype_usegcprog(typ) == 0 {
  1183  		// Copy pointers from mask into program.
  1184  		mask := decodetype_gcmask(typ)
  1185  		for i := int64(0); i < nptr; i++ {
  1186  			if (mask[i/8]>>uint(i%8))&1 != 0 {
  1187  				p.w.Ptr(s.Value/ptrsize + i)
  1188  			}
  1189  		}
  1190  		return
  1191  	}
  1192  
  1193  	// Copy program.
  1194  	prog := decodetype_gcprog(typ)
  1195  	p.w.ZeroUntil(s.Value / ptrsize)
  1196  	p.w.Append(prog[4:], nptr)
  1197  }
  1198  
  1199  // dataSortKey is used to sort a slice of data symbol *LSym pointers.
  1200  // The sort keys are kept inline to improve cache behaviour while sorting.
  1201  type dataSortKey struct {
  1202  	size int64
  1203  	name string
  1204  	lsym *LSym
  1205  }
  1206  
  1207  type bySizeAndName []dataSortKey
  1208  
  1209  func (d bySizeAndName) Len() int      { return len(d) }
  1210  func (d bySizeAndName) Swap(i, j int) { d[i], d[j] = d[j], d[i] }
  1211  func (d bySizeAndName) Less(i, j int) bool {
  1212  	s1, s2 := d[i], d[j]
  1213  	if s1.size != s2.size {
  1214  		return s1.size < s2.size
  1215  	}
  1216  	return s1.name < s2.name
  1217  }
  1218  
  1219  const cutoff int64 = 2e9 // 2 GB (or so; looks better in errors than 2^31)
  1220  
  1221  func checkdatsize(datsize int64, symn int) {
  1222  	if datsize > cutoff {
  1223  		Diag("too much data in section %v (over %d bytes)", symn, cutoff)
  1224  	}
  1225  }
  1226  
  1227  func list2slice(s *LSym) []*LSym {
  1228  	var syms []*LSym
  1229  	for ; s != nil; s = s.Next {
  1230  		syms = append(syms, s)
  1231  	}
  1232  	return syms
  1233  }
  1234  
  1235  // datap is a collection of reachable data symbols in address order.
  1236  // Generated by dodata.
  1237  var datap []*LSym
  1238  
  1239  func dodata() {
  1240  	if Debug['v'] != 0 {
  1241  		fmt.Fprintf(Bso, "%5.2f dodata\n", obj.Cputime())
  1242  	}
  1243  	Bso.Flush()
  1244  
  1245  	// Collect data symbols by type into data.
  1246  	var data [obj.SXREF][]*LSym
  1247  	for _, s := range Ctxt.Allsym {
  1248  		if !s.Attr.Reachable() || s.Attr.Special() {
  1249  			continue
  1250  		}
  1251  		if s.Type <= obj.STEXT || s.Type >= obj.SXREF {
  1252  			continue
  1253  		}
  1254  		data[s.Type] = append(data[s.Type], s)
  1255  	}
  1256  
  1257  	// Now that we have the data symbols, but before we start
  1258  	// to assign addresses, record all the necessary
  1259  	// dynamic relocations. These will grow the relocation
  1260  	// symbol, which is itself data.
  1261  	//
  1262  	// On darwin, we need the symbol table numbers for dynreloc.
  1263  	if HEADTYPE == obj.Hdarwin {
  1264  		machosymorder()
  1265  	}
  1266  	dynreloc(&data)
  1267  
  1268  	if UseRelro() {
  1269  		// "read only" data with relocations needs to go in its own section
  1270  		// when building a shared library. We do this by boosting objects of
  1271  		// type SXXX with relocations to type SXXXRELRO.
  1272  		for symnro := int16(obj.STYPE); symnro < obj.STYPERELRO; symnro++ {
  1273  			symnrelro := symnro + obj.STYPERELRO - obj.STYPE
  1274  
  1275  			ro := []*LSym{}
  1276  			relro := data[symnrelro]
  1277  
  1278  			for _, s := range data[symnro] {
  1279  				isRelro := len(s.R) > 0
  1280  				switch s.Type {
  1281  				case obj.STYPE, obj.SGOSTRINGHDR, obj.STYPERELRO, obj.SGOSTRINGHDRRELRO:
  1282  					// Symbols are not sorted yet, so it is possible
  1283  					// that an Outer symbol has been changed to a
  1284  					// relro Type before it reaches here.
  1285  					isRelro = true
  1286  				}
  1287  				if isRelro {
  1288  					s.Type = symnrelro
  1289  					if s.Outer != nil {
  1290  						s.Outer.Type = s.Type
  1291  					}
  1292  					relro = append(relro, s)
  1293  				} else {
  1294  					ro = append(ro, s)
  1295  				}
  1296  			}
  1297  
  1298  			// Check that we haven't made two symbols with the same .Outer into
  1299  			// different types (because references two symbols with non-nil Outer
  1300  			// become references to the outer symbol + offset it's vital that the
  1301  			// symbol and the outer end up in the same section).
  1302  			for _, s := range relro {
  1303  				if s.Outer != nil && s.Outer.Type != s.Type {
  1304  					Diag("inconsistent types for %s and its Outer %s (%d != %d)",
  1305  						s.Name, s.Outer.Name, s.Type, s.Outer.Type)
  1306  				}
  1307  			}
  1308  
  1309  			data[symnro] = ro
  1310  			data[symnrelro] = relro
  1311  		}
  1312  	}
  1313  
  1314  	// Sort symbols.
  1315  	var dataMaxAlign [obj.SXREF]int32
  1316  	var wg sync.WaitGroup
  1317  	for symn := range data {
  1318  		symn := symn
  1319  		wg.Add(1)
  1320  		go func() {
  1321  			data[symn], dataMaxAlign[symn] = dodataSect(symn, data[symn])
  1322  			wg.Done()
  1323  		}()
  1324  	}
  1325  	wg.Wait()
  1326  
  1327  	// Allocate sections.
  1328  	// Data is processed before segtext, because we need
  1329  	// to see all symbols in the .data and .bss sections in order
  1330  	// to generate garbage collection information.
  1331  	datsize := int64(0)
  1332  
  1333  	// Writable sections.
  1334  	writableSects := []int{
  1335  		obj.SELFSECT,
  1336  		obj.SMACHO,
  1337  		obj.SMACHOGOT,
  1338  		obj.SWINDOWS,
  1339  	}
  1340  	for _, symn := range writableSects {
  1341  		for _, s := range data[symn] {
  1342  			sect := addsection(&Segdata, s.Name, 06)
  1343  			sect.Align = symalign(s)
  1344  			datsize = Rnd(datsize, int64(sect.Align))
  1345  			sect.Vaddr = uint64(datsize)
  1346  			s.Sect = sect
  1347  			s.Type = obj.SDATA
  1348  			s.Value = int64(uint64(datsize) - sect.Vaddr)
  1349  			datsize += s.Size
  1350  			sect.Length = uint64(datsize) - sect.Vaddr
  1351  		}
  1352  		checkdatsize(datsize, symn)
  1353  	}
  1354  
  1355  	// .got (and .toc on ppc64)
  1356  	if len(data[obj.SELFGOT]) > 0 {
  1357  		sect := addsection(&Segdata, ".got", 06)
  1358  		sect.Align = dataMaxAlign[obj.SELFGOT]
  1359  		datsize = Rnd(datsize, int64(sect.Align))
  1360  		sect.Vaddr = uint64(datsize)
  1361  		var toc *LSym
  1362  		for _, s := range data[obj.SELFGOT] {
  1363  			datsize = aligndatsize(datsize, s)
  1364  			s.Sect = sect
  1365  			s.Type = obj.SDATA
  1366  			s.Value = int64(uint64(datsize) - sect.Vaddr)
  1367  
  1368  			// Resolve .TOC. symbol for this object file (ppc64)
  1369  			toc = Linkrlookup(Ctxt, ".TOC.", int(s.Version))
  1370  			if toc != nil {
  1371  				toc.Sect = sect
  1372  				toc.Outer = s
  1373  				toc.Sub = s.Sub
  1374  				s.Sub = toc
  1375  
  1376  				toc.Value = 0x8000
  1377  			}
  1378  
  1379  			datsize += s.Size
  1380  		}
  1381  		checkdatsize(datsize, obj.SELFGOT)
  1382  		sect.Length = uint64(datsize) - sect.Vaddr
  1383  	}
  1384  
  1385  	/* pointer-free data */
  1386  	sect := addsection(&Segdata, ".noptrdata", 06)
  1387  	sect.Align = dataMaxAlign[obj.SNOPTRDATA]
  1388  	datsize = Rnd(datsize, int64(sect.Align))
  1389  	sect.Vaddr = uint64(datsize)
  1390  	Linklookup(Ctxt, "runtime.noptrdata", 0).Sect = sect
  1391  	Linklookup(Ctxt, "runtime.enoptrdata", 0).Sect = sect
  1392  	for _, s := range data[obj.SNOPTRDATA] {
  1393  		datsize = aligndatsize(datsize, s)
  1394  		s.Sect = sect
  1395  		s.Type = obj.SDATA
  1396  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1397  		datsize += s.Size
  1398  	}
  1399  	checkdatsize(datsize, obj.SNOPTRDATA)
  1400  	sect.Length = uint64(datsize) - sect.Vaddr
  1401  
  1402  	hasinitarr := Linkshared
  1403  
  1404  	/* shared library initializer */
  1405  	switch Buildmode {
  1406  	case BuildmodeCArchive, BuildmodeCShared, BuildmodeShared:
  1407  		hasinitarr = true
  1408  	}
  1409  	if hasinitarr {
  1410  		sect := addsection(&Segdata, ".init_array", 06)
  1411  		sect.Align = dataMaxAlign[obj.SINITARR]
  1412  		datsize = Rnd(datsize, int64(sect.Align))
  1413  		sect.Vaddr = uint64(datsize)
  1414  		for _, s := range data[obj.SINITARR] {
  1415  			datsize = aligndatsize(datsize, s)
  1416  			s.Sect = sect
  1417  			s.Value = int64(uint64(datsize) - sect.Vaddr)
  1418  			datsize += s.Size
  1419  		}
  1420  		sect.Length = uint64(datsize) - sect.Vaddr
  1421  		checkdatsize(datsize, obj.SINITARR)
  1422  	}
  1423  
  1424  	/* data */
  1425  	sect = addsection(&Segdata, ".data", 06)
  1426  	sect.Align = dataMaxAlign[obj.SDATA]
  1427  	datsize = Rnd(datsize, int64(sect.Align))
  1428  	sect.Vaddr = uint64(datsize)
  1429  	Linklookup(Ctxt, "runtime.data", 0).Sect = sect
  1430  	Linklookup(Ctxt, "runtime.edata", 0).Sect = sect
  1431  	var gc GCProg
  1432  	gc.Init("runtime.gcdata")
  1433  	for _, s := range data[obj.SDATA] {
  1434  		s.Sect = sect
  1435  		s.Type = obj.SDATA
  1436  		datsize = aligndatsize(datsize, s)
  1437  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1438  		gc.AddSym(s)
  1439  		datsize += s.Size
  1440  	}
  1441  	checkdatsize(datsize, obj.SDATA)
  1442  	sect.Length = uint64(datsize) - sect.Vaddr
  1443  	gc.End(int64(sect.Length))
  1444  
  1445  	/* bss */
  1446  	sect = addsection(&Segdata, ".bss", 06)
  1447  	sect.Align = dataMaxAlign[obj.SBSS]
  1448  	datsize = Rnd(datsize, int64(sect.Align))
  1449  	sect.Vaddr = uint64(datsize)
  1450  	Linklookup(Ctxt, "runtime.bss", 0).Sect = sect
  1451  	Linklookup(Ctxt, "runtime.ebss", 0).Sect = sect
  1452  	gc = GCProg{}
  1453  	gc.Init("runtime.gcbss")
  1454  	for _, s := range data[obj.SBSS] {
  1455  		s.Sect = sect
  1456  		datsize = aligndatsize(datsize, s)
  1457  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1458  		gc.AddSym(s)
  1459  		datsize += s.Size
  1460  	}
  1461  	checkdatsize(datsize, obj.SBSS)
  1462  	sect.Length = uint64(datsize) - sect.Vaddr
  1463  	gc.End(int64(sect.Length))
  1464  
  1465  	/* pointer-free bss */
  1466  	sect = addsection(&Segdata, ".noptrbss", 06)
  1467  	sect.Align = dataMaxAlign[obj.SNOPTRBSS]
  1468  	datsize = Rnd(datsize, int64(sect.Align))
  1469  	sect.Vaddr = uint64(datsize)
  1470  	Linklookup(Ctxt, "runtime.noptrbss", 0).Sect = sect
  1471  	Linklookup(Ctxt, "runtime.enoptrbss", 0).Sect = sect
  1472  	for _, s := range data[obj.SNOPTRBSS] {
  1473  		datsize = aligndatsize(datsize, s)
  1474  		s.Sect = sect
  1475  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1476  		datsize += s.Size
  1477  	}
  1478  
  1479  	sect.Length = uint64(datsize) - sect.Vaddr
  1480  	Linklookup(Ctxt, "runtime.end", 0).Sect = sect
  1481  	checkdatsize(datsize, obj.SNOPTRBSS)
  1482  
  1483  	if len(data[obj.STLSBSS]) > 0 {
  1484  		var sect *Section
  1485  		if Iself && (Linkmode == LinkExternal || Debug['d'] == 0) && HEADTYPE != obj.Hopenbsd {
  1486  			sect = addsection(&Segdata, ".tbss", 06)
  1487  			sect.Align = int32(SysArch.PtrSize)
  1488  			sect.Vaddr = 0
  1489  		}
  1490  		datsize = 0
  1491  
  1492  		for _, s := range data[obj.STLSBSS] {
  1493  			datsize = aligndatsize(datsize, s)
  1494  			s.Sect = sect
  1495  			s.Value = datsize
  1496  			datsize += s.Size
  1497  		}
  1498  		checkdatsize(datsize, obj.STLSBSS)
  1499  
  1500  		if sect != nil {
  1501  			sect.Length = uint64(datsize)
  1502  		}
  1503  	}
  1504  
  1505  	/*
  1506  	 * We finished data, begin read-only data.
  1507  	 * Not all systems support a separate read-only non-executable data section.
  1508  	 * ELF systems do.
  1509  	 * OS X and Plan 9 do not.
  1510  	 * Windows PE may, but if so we have not implemented it.
  1511  	 * And if we're using external linking mode, the point is moot,
  1512  	 * since it's not our decision; that code expects the sections in
  1513  	 * segtext.
  1514  	 */
  1515  	var segro *Segment
  1516  	if Iself && Linkmode == LinkInternal {
  1517  		segro = &Segrodata
  1518  	} else {
  1519  		segro = &Segtext
  1520  	}
  1521  
  1522  	datsize = 0
  1523  
  1524  	/* read-only executable ELF, Mach-O sections */
  1525  	if len(data[obj.STEXT]) != 0 {
  1526  		Diag("dodata found an STEXT symbol: %s", data[obj.STEXT][0].Name)
  1527  	}
  1528  	for _, s := range data[obj.SELFRXSECT] {
  1529  		sect := addsection(&Segtext, s.Name, 04)
  1530  		sect.Align = symalign(s)
  1531  		datsize = Rnd(datsize, int64(sect.Align))
  1532  		sect.Vaddr = uint64(datsize)
  1533  		s.Sect = sect
  1534  		s.Type = obj.SRODATA
  1535  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1536  		datsize += s.Size
  1537  		sect.Length = uint64(datsize) - sect.Vaddr
  1538  		checkdatsize(datsize, obj.SELFRXSECT)
  1539  	}
  1540  
  1541  	/* read-only data */
  1542  	sect = addsection(segro, ".rodata", 04)
  1543  
  1544  	sect.Vaddr = 0
  1545  	Linklookup(Ctxt, "runtime.rodata", 0).Sect = sect
  1546  	Linklookup(Ctxt, "runtime.erodata", 0).Sect = sect
  1547  	if !UseRelro() {
  1548  		Linklookup(Ctxt, "runtime.types", 0).Sect = sect
  1549  		Linklookup(Ctxt, "runtime.etypes", 0).Sect = sect
  1550  	}
  1551  	roSects := []int{
  1552  		obj.STYPE,
  1553  		obj.SSTRING,
  1554  		obj.SGOSTRING,
  1555  		obj.SGOSTRINGHDR,
  1556  		obj.SGOFUNC,
  1557  		obj.SGCBITS,
  1558  		obj.SRODATA,
  1559  		obj.SFUNCTAB,
  1560  	}
  1561  	for _, symn := range roSects {
  1562  		align := dataMaxAlign[symn]
  1563  		if sect.Align < align {
  1564  			sect.Align = align
  1565  		}
  1566  	}
  1567  	datsize = Rnd(datsize, int64(sect.Align))
  1568  	for _, symn := range roSects {
  1569  		for _, s := range data[symn] {
  1570  			datsize = aligndatsize(datsize, s)
  1571  			s.Sect = sect
  1572  			s.Type = obj.SRODATA
  1573  			s.Value = int64(uint64(datsize) - sect.Vaddr)
  1574  			datsize += s.Size
  1575  		}
  1576  		checkdatsize(datsize, symn)
  1577  	}
  1578  	sect.Length = uint64(datsize) - sect.Vaddr
  1579  
  1580  	// There is some data that are conceptually read-only but are written to by
  1581  	// relocations. On GNU systems, we can arrange for the dynamic linker to
  1582  	// mprotect sections after relocations are applied by giving them write
  1583  	// permissions in the object file and calling them ".data.rel.ro.FOO". We
  1584  	// divide the .rodata section between actual .rodata and .data.rel.ro.rodata,
  1585  	// but for the other sections that this applies to, we just write a read-only
  1586  	// .FOO section or a read-write .data.rel.ro.FOO section depending on the
  1587  	// situation.
  1588  	// TODO(mwhudson): It would make sense to do this more widely, but it makes
  1589  	// the system linker segfault on darwin.
  1590  	relro_perms := 04
  1591  	relro_prefix := ""
  1592  
  1593  	if UseRelro() {
  1594  		relro_perms = 06
  1595  		relro_prefix = ".data.rel.ro"
  1596  		/* data only written by relocations */
  1597  		sect = addsection(segro, ".data.rel.ro", 06)
  1598  
  1599  		sect.Vaddr = 0
  1600  		Linklookup(Ctxt, "runtime.types", 0).Sect = sect
  1601  		Linklookup(Ctxt, "runtime.etypes", 0).Sect = sect
  1602  		relroSects := []int{
  1603  			obj.STYPERELRO,
  1604  			obj.SSTRINGRELRO,
  1605  			obj.SGOSTRINGRELRO,
  1606  			obj.SGOSTRINGHDRRELRO,
  1607  			obj.SGOFUNCRELRO,
  1608  			obj.SGCBITSRELRO,
  1609  			obj.SRODATARELRO,
  1610  			obj.SFUNCTABRELRO,
  1611  		}
  1612  		for _, symn := range relroSects {
  1613  			align := dataMaxAlign[symn]
  1614  			if sect.Align < align {
  1615  				sect.Align = align
  1616  			}
  1617  		}
  1618  		datsize = Rnd(datsize, int64(sect.Align))
  1619  		for _, symn := range relroSects {
  1620  			for _, s := range data[symn] {
  1621  				datsize = aligndatsize(datsize, s)
  1622  				if s.Outer != nil && s.Outer.Sect != nil && s.Outer.Sect != sect {
  1623  					Diag("s.Outer (%s) in different section from s (%s)", s.Outer.Name, s.Name)
  1624  				}
  1625  				s.Sect = sect
  1626  				s.Type = obj.SRODATA
  1627  				s.Value = int64(uint64(datsize) - sect.Vaddr)
  1628  				datsize += s.Size
  1629  			}
  1630  			checkdatsize(datsize, symn)
  1631  		}
  1632  
  1633  		sect.Length = uint64(datsize) - sect.Vaddr
  1634  
  1635  	}
  1636  
  1637  	/* typelink */
  1638  	sect = addsection(segro, relro_prefix+".typelink", relro_perms)
  1639  	sect.Align = dataMaxAlign[obj.STYPELINK]
  1640  	datsize = Rnd(datsize, int64(sect.Align))
  1641  	sect.Vaddr = uint64(datsize)
  1642  	Linklookup(Ctxt, "runtime.typelink", 0).Sect = sect
  1643  	Linklookup(Ctxt, "runtime.etypelink", 0).Sect = sect
  1644  	for _, s := range data[obj.STYPELINK] {
  1645  		datsize = aligndatsize(datsize, s)
  1646  		s.Sect = sect
  1647  		s.Type = obj.SRODATA
  1648  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1649  		datsize += s.Size
  1650  	}
  1651  	checkdatsize(datsize, obj.STYPELINK)
  1652  	sect.Length = uint64(datsize) - sect.Vaddr
  1653  
  1654  	/* itablink */
  1655  	sect = addsection(segro, relro_prefix+".itablink", relro_perms)
  1656  	sect.Align = dataMaxAlign[obj.SITABLINK]
  1657  	datsize = Rnd(datsize, int64(sect.Align))
  1658  	sect.Vaddr = uint64(datsize)
  1659  	Linklookup(Ctxt, "runtime.itablink", 0).Sect = sect
  1660  	Linklookup(Ctxt, "runtime.eitablink", 0).Sect = sect
  1661  	for _, s := range data[obj.SITABLINK] {
  1662  		datsize = aligndatsize(datsize, s)
  1663  		s.Sect = sect
  1664  		s.Type = obj.SRODATA
  1665  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1666  		datsize += s.Size
  1667  	}
  1668  	checkdatsize(datsize, obj.SITABLINK)
  1669  	sect.Length = uint64(datsize) - sect.Vaddr
  1670  
  1671  	/* gosymtab */
  1672  	sect = addsection(segro, relro_prefix+".gosymtab", relro_perms)
  1673  	sect.Align = dataMaxAlign[obj.SSYMTAB]
  1674  	datsize = Rnd(datsize, int64(sect.Align))
  1675  	sect.Vaddr = uint64(datsize)
  1676  	Linklookup(Ctxt, "runtime.symtab", 0).Sect = sect
  1677  	Linklookup(Ctxt, "runtime.esymtab", 0).Sect = sect
  1678  	for _, s := range data[obj.SSYMTAB] {
  1679  		datsize = aligndatsize(datsize, s)
  1680  		s.Sect = sect
  1681  		s.Type = obj.SRODATA
  1682  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1683  		datsize += s.Size
  1684  	}
  1685  	checkdatsize(datsize, obj.SSYMTAB)
  1686  	sect.Length = uint64(datsize) - sect.Vaddr
  1687  
  1688  	/* gopclntab */
  1689  	sect = addsection(segro, relro_prefix+".gopclntab", relro_perms)
  1690  	sect.Align = dataMaxAlign[obj.SPCLNTAB]
  1691  	datsize = Rnd(datsize, int64(sect.Align))
  1692  	sect.Vaddr = uint64(datsize)
  1693  	Linklookup(Ctxt, "runtime.pclntab", 0).Sect = sect
  1694  	Linklookup(Ctxt, "runtime.epclntab", 0).Sect = sect
  1695  	for _, s := range data[obj.SPCLNTAB] {
  1696  		datsize = aligndatsize(datsize, s)
  1697  		s.Sect = sect
  1698  		s.Type = obj.SRODATA
  1699  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1700  		datsize += s.Size
  1701  	}
  1702  	checkdatsize(datsize, obj.SRODATA)
  1703  	sect.Length = uint64(datsize) - sect.Vaddr
  1704  
  1705  	/* read-only ELF, Mach-O sections */
  1706  	for _, s := range data[obj.SELFROSECT] {
  1707  		sect = addsection(segro, s.Name, 04)
  1708  		sect.Align = symalign(s)
  1709  		datsize = Rnd(datsize, int64(sect.Align))
  1710  		sect.Vaddr = uint64(datsize)
  1711  		s.Sect = sect
  1712  		s.Type = obj.SRODATA
  1713  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1714  		datsize += s.Size
  1715  		sect.Length = uint64(datsize) - sect.Vaddr
  1716  	}
  1717  	checkdatsize(datsize, obj.SELFROSECT)
  1718  
  1719  	for _, s := range data[obj.SMACHOPLT] {
  1720  		sect = addsection(segro, s.Name, 04)
  1721  		sect.Align = symalign(s)
  1722  		datsize = Rnd(datsize, int64(sect.Align))
  1723  		sect.Vaddr = uint64(datsize)
  1724  		s.Sect = sect
  1725  		s.Type = obj.SRODATA
  1726  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1727  		datsize += s.Size
  1728  		sect.Length = uint64(datsize) - sect.Vaddr
  1729  	}
  1730  	checkdatsize(datsize, obj.SMACHOPLT)
  1731  
  1732  	// 6g uses 4-byte relocation offsets, so the entire segment must fit in 32 bits.
  1733  	if datsize != int64(uint32(datsize)) {
  1734  		Diag("read-only data segment too large")
  1735  	}
  1736  
  1737  	for symn := obj.SELFRXSECT; symn < obj.SXREF; symn++ {
  1738  		datap = append(datap, data[symn]...)
  1739  	}
  1740  
  1741  	dwarfgeneratedebugsyms()
  1742  
  1743  	var s *LSym
  1744  	for s = dwarfp; s != nil && s.Type == obj.SDWARFSECT; s = s.Next {
  1745  		sect = addsection(&Segdwarf, s.Name, 04)
  1746  		sect.Align = 1
  1747  		datsize = Rnd(datsize, int64(sect.Align))
  1748  		sect.Vaddr = uint64(datsize)
  1749  		s.Sect = sect
  1750  		s.Type = obj.SRODATA
  1751  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1752  		datsize += s.Size
  1753  		sect.Length = uint64(datsize) - sect.Vaddr
  1754  	}
  1755  	checkdatsize(datsize, obj.SDWARFSECT)
  1756  
  1757  	if s != nil {
  1758  		sect = addsection(&Segdwarf, ".debug_info", 04)
  1759  		sect.Align = 1
  1760  		datsize = Rnd(datsize, int64(sect.Align))
  1761  		sect.Vaddr = uint64(datsize)
  1762  		for ; s != nil && s.Type == obj.SDWARFINFO; s = s.Next {
  1763  			s.Sect = sect
  1764  			s.Type = obj.SRODATA
  1765  			s.Value = int64(uint64(datsize) - sect.Vaddr)
  1766  			s.Attr |= AttrLocal
  1767  			datsize += s.Size
  1768  		}
  1769  		sect.Length = uint64(datsize) - sect.Vaddr
  1770  		checkdatsize(datsize, obj.SDWARFINFO)
  1771  	}
  1772  
  1773  	/* number the sections */
  1774  	n := int32(1)
  1775  
  1776  	for sect := Segtext.Sect; sect != nil; sect = sect.Next {
  1777  		sect.Extnum = int16(n)
  1778  		n++
  1779  	}
  1780  	for sect := Segrodata.Sect; sect != nil; sect = sect.Next {
  1781  		sect.Extnum = int16(n)
  1782  		n++
  1783  	}
  1784  	for sect := Segdata.Sect; sect != nil; sect = sect.Next {
  1785  		sect.Extnum = int16(n)
  1786  		n++
  1787  	}
  1788  	for sect := Segdwarf.Sect; sect != nil; sect = sect.Next {
  1789  		sect.Extnum = int16(n)
  1790  		n++
  1791  	}
  1792  }
  1793  
  1794  func dodataSect(symn int, syms []*LSym) (result []*LSym, maxAlign int32) {
  1795  	if HEADTYPE == obj.Hdarwin {
  1796  		// Some symbols may no longer belong in syms
  1797  		// due to movement in machosymorder.
  1798  		newSyms := make([]*LSym, 0, len(syms))
  1799  		for _, s := range syms {
  1800  			if int(s.Type) == symn {
  1801  				newSyms = append(newSyms, s)
  1802  			}
  1803  		}
  1804  		syms = newSyms
  1805  	}
  1806  
  1807  	symsSort := make([]dataSortKey, len(syms))
  1808  	for i, s := range syms {
  1809  		if s.Attr.OnList() {
  1810  			log.Fatalf("symbol %s listed multiple times", s.Name)
  1811  		}
  1812  		s.Attr |= AttrOnList
  1813  		switch {
  1814  		case s.Size < int64(len(s.P)):
  1815  			Diag("%s: initialize bounds (%d < %d)", s.Name, s.Size, len(s.P))
  1816  		case s.Size < 0:
  1817  			Diag("%s: negative size (%d bytes)", s.Name, s.Size)
  1818  		case s.Size > cutoff:
  1819  			Diag("%s: symbol too large (%d bytes)", s.Name, s.Size)
  1820  		}
  1821  
  1822  		symsSort[i] = dataSortKey{
  1823  			size: s.Size,
  1824  			name: s.Name,
  1825  			lsym: s,
  1826  		}
  1827  
  1828  		switch s.Type {
  1829  		case obj.SELFGOT:
  1830  			// For ppc64, we want to interleave the .got and .toc sections
  1831  			// from input files. Both are type SELFGOT, so in that case
  1832  			// we skip size comparison and fall through to the name
  1833  			// comparison (conveniently, .got sorts before .toc).
  1834  			symsSort[i].size = 0
  1835  		case obj.STYPELINK:
  1836  			// Sort typelinks by the rtype.string field so the reflect
  1837  			// package can binary search type links.
  1838  			symsSort[i].name = string(decodetype_str(s.R[0].Sym))
  1839  		}
  1840  	}
  1841  
  1842  	sort.Sort(bySizeAndName(symsSort))
  1843  
  1844  	for i, symSort := range symsSort {
  1845  		syms[i] = symSort.lsym
  1846  		align := symalign(symSort.lsym)
  1847  		if maxAlign < align {
  1848  			maxAlign = align
  1849  		}
  1850  	}
  1851  
  1852  	if Iself && symn == obj.SELFROSECT {
  1853  		// Make .rela and .rela.plt contiguous, the ELF ABI requires this
  1854  		// and Solaris actually cares.
  1855  		reli, plti := -1, -1
  1856  		for i, s := range syms {
  1857  			switch s.Name {
  1858  			case ".rel.plt", ".rela.plt":
  1859  				plti = i
  1860  			case ".rel", ".rela":
  1861  				reli = i
  1862  			}
  1863  		}
  1864  		if reli >= 0 && plti >= 0 && plti != reli+1 {
  1865  			var first, second int
  1866  			if plti > reli {
  1867  				first, second = reli, plti
  1868  			} else {
  1869  				first, second = plti, reli
  1870  			}
  1871  			rel, plt := syms[reli], syms[plti]
  1872  			copy(syms[first+2:], syms[first+1:second])
  1873  			syms[first+0] = rel
  1874  			syms[first+1] = plt
  1875  		}
  1876  	}
  1877  
  1878  	return syms, maxAlign
  1879  }
  1880  
  1881  // Add buildid to beginning of text segment, on non-ELF systems.
  1882  // Non-ELF binary formats are not always flexible enough to
  1883  // give us a place to put the Go build ID. On those systems, we put it
  1884  // at the very beginning of the text segment.
  1885  // This ``header'' is read by cmd/go.
  1886  func textbuildid() {
  1887  	if Iself || buildid == "" {
  1888  		return
  1889  	}
  1890  
  1891  	sym := Linklookup(Ctxt, "go.buildid", 0)
  1892  	sym.Attr |= AttrReachable
  1893  	// The \xff is invalid UTF-8, meant to make it less likely
  1894  	// to find one of these accidentally.
  1895  	data := "\xff Go build ID: " + strconv.Quote(buildid) + "\n \xff"
  1896  	sym.Type = obj.STEXT
  1897  	sym.P = []byte(data)
  1898  	sym.Size = int64(len(sym.P))
  1899  
  1900  	Ctxt.Textp = append(Ctxt.Textp, nil)
  1901  	copy(Ctxt.Textp[1:], Ctxt.Textp)
  1902  	Ctxt.Textp[0] = sym
  1903  }
  1904  
  1905  // assign addresses to text
  1906  func textaddress() {
  1907  	addsection(&Segtext, ".text", 05)
  1908  
  1909  	// Assign PCs in text segment.
  1910  	// Could parallelize, by assigning to text
  1911  	// and then letting threads copy down, but probably not worth it.
  1912  	sect := Segtext.Sect
  1913  
  1914  	sect.Align = int32(Funcalign)
  1915  	Linklookup(Ctxt, "runtime.text", 0).Sect = sect
  1916  	Linklookup(Ctxt, "runtime.etext", 0).Sect = sect
  1917  	if HEADTYPE == obj.Hwindows {
  1918  		Linklookup(Ctxt, ".text", 0).Sect = sect
  1919  	}
  1920  	va := uint64(INITTEXT)
  1921  	sect.Vaddr = va
  1922  	for _, sym := range Ctxt.Textp {
  1923  		sym.Sect = sect
  1924  		if sym.Type&obj.SSUB != 0 {
  1925  			continue
  1926  		}
  1927  		if sym.Align != 0 {
  1928  			va = uint64(Rnd(int64(va), int64(sym.Align)))
  1929  		} else {
  1930  			va = uint64(Rnd(int64(va), int64(Funcalign)))
  1931  		}
  1932  		sym.Value = 0
  1933  		for sub := sym; sub != nil; sub = sub.Sub {
  1934  			sub.Value += int64(va)
  1935  		}
  1936  		if sym.Size == 0 && sym.Sub != nil {
  1937  			Ctxt.Cursym = sym
  1938  		}
  1939  		if sym.Size < MINFUNC {
  1940  			va += MINFUNC // spacing required for findfunctab
  1941  		} else {
  1942  			va += uint64(sym.Size)
  1943  		}
  1944  	}
  1945  
  1946  	sect.Length = va - sect.Vaddr
  1947  }
  1948  
  1949  // assign addresses
  1950  func address() {
  1951  	va := uint64(INITTEXT)
  1952  	Segtext.Rwx = 05
  1953  	Segtext.Vaddr = va
  1954  	Segtext.Fileoff = uint64(HEADR)
  1955  	for s := Segtext.Sect; s != nil; s = s.Next {
  1956  		va = uint64(Rnd(int64(va), int64(s.Align)))
  1957  		s.Vaddr = va
  1958  		va += s.Length
  1959  	}
  1960  
  1961  	Segtext.Length = va - uint64(INITTEXT)
  1962  	Segtext.Filelen = Segtext.Length
  1963  	if HEADTYPE == obj.Hnacl {
  1964  		va += 32 // room for the "halt sled"
  1965  	}
  1966  
  1967  	if Segrodata.Sect != nil {
  1968  		// align to page boundary so as not to mix
  1969  		// rodata and executable text.
  1970  		va = uint64(Rnd(int64(va), int64(INITRND)))
  1971  
  1972  		Segrodata.Rwx = 04
  1973  		Segrodata.Vaddr = va
  1974  		Segrodata.Fileoff = va - Segtext.Vaddr + Segtext.Fileoff
  1975  		Segrodata.Filelen = 0
  1976  		for s := Segrodata.Sect; s != nil; s = s.Next {
  1977  			va = uint64(Rnd(int64(va), int64(s.Align)))
  1978  			s.Vaddr = va
  1979  			va += s.Length
  1980  		}
  1981  
  1982  		Segrodata.Length = va - Segrodata.Vaddr
  1983  		Segrodata.Filelen = Segrodata.Length
  1984  	}
  1985  
  1986  	va = uint64(Rnd(int64(va), int64(INITRND)))
  1987  	Segdata.Rwx = 06
  1988  	Segdata.Vaddr = va
  1989  	Segdata.Fileoff = va - Segtext.Vaddr + Segtext.Fileoff
  1990  	Segdata.Filelen = 0
  1991  	if HEADTYPE == obj.Hwindows {
  1992  		Segdata.Fileoff = Segtext.Fileoff + uint64(Rnd(int64(Segtext.Length), PEFILEALIGN))
  1993  	}
  1994  	if HEADTYPE == obj.Hplan9 {
  1995  		Segdata.Fileoff = Segtext.Fileoff + Segtext.Filelen
  1996  	}
  1997  	var data *Section
  1998  	var noptr *Section
  1999  	var bss *Section
  2000  	var noptrbss *Section
  2001  	var vlen int64
  2002  	for s := Segdata.Sect; s != nil; s = s.Next {
  2003  		if Iself && s.Name == ".tbss" {
  2004  			continue
  2005  		}
  2006  		vlen = int64(s.Length)
  2007  		if s.Next != nil && !(Iself && s.Next.Name == ".tbss") {
  2008  			vlen = int64(s.Next.Vaddr - s.Vaddr)
  2009  		}
  2010  		s.Vaddr = va
  2011  		va += uint64(vlen)
  2012  		Segdata.Length = va - Segdata.Vaddr
  2013  		if s.Name == ".data" {
  2014  			data = s
  2015  		}
  2016  		if s.Name == ".noptrdata" {
  2017  			noptr = s
  2018  		}
  2019  		if s.Name == ".bss" {
  2020  			bss = s
  2021  		}
  2022  		if s.Name == ".noptrbss" {
  2023  			noptrbss = s
  2024  		}
  2025  	}
  2026  
  2027  	Segdata.Filelen = bss.Vaddr - Segdata.Vaddr
  2028  
  2029  	va = uint64(Rnd(int64(va), int64(INITRND)))
  2030  	Segdwarf.Rwx = 06
  2031  	Segdwarf.Vaddr = va
  2032  	Segdwarf.Fileoff = Segdata.Fileoff + uint64(Rnd(int64(Segdata.Filelen), int64(INITRND)))
  2033  	Segdwarf.Filelen = 0
  2034  	if HEADTYPE == obj.Hwindows {
  2035  		Segdwarf.Fileoff = Segdata.Fileoff + uint64(Rnd(int64(Segdata.Filelen), int64(PEFILEALIGN)))
  2036  	}
  2037  	for s := Segdwarf.Sect; s != nil; s = s.Next {
  2038  		vlen = int64(s.Length)
  2039  		if s.Next != nil {
  2040  			vlen = int64(s.Next.Vaddr - s.Vaddr)
  2041  		}
  2042  		s.Vaddr = va
  2043  		va += uint64(vlen)
  2044  		if HEADTYPE == obj.Hwindows {
  2045  			va = uint64(Rnd(int64(va), PEFILEALIGN))
  2046  		}
  2047  		Segdwarf.Length = va - Segdwarf.Vaddr
  2048  	}
  2049  
  2050  	Segdwarf.Filelen = va - Segdwarf.Vaddr
  2051  
  2052  	text := Segtext.Sect
  2053  	var rodata *Section
  2054  	if Segrodata.Sect != nil {
  2055  		rodata = Segrodata.Sect
  2056  	} else {
  2057  		rodata = text.Next
  2058  	}
  2059  	var relrodata *Section
  2060  	typelink := rodata.Next
  2061  	if UseRelro() {
  2062  		// There is another section (.data.rel.ro) when building a shared
  2063  		// object on elf systems.
  2064  		relrodata = typelink
  2065  		typelink = typelink.Next
  2066  	}
  2067  	itablink := typelink.Next
  2068  	symtab := itablink.Next
  2069  	pclntab := symtab.Next
  2070  
  2071  	for _, s := range datap {
  2072  		Ctxt.Cursym = s
  2073  		if s.Sect != nil {
  2074  			s.Value += int64(s.Sect.Vaddr)
  2075  		}
  2076  		for sub := s.Sub; sub != nil; sub = sub.Sub {
  2077  			sub.Value += s.Value
  2078  		}
  2079  	}
  2080  
  2081  	for sym := dwarfp; sym != nil; sym = sym.Next {
  2082  		Ctxt.Cursym = sym
  2083  		if sym.Sect != nil {
  2084  			sym.Value += int64(sym.Sect.Vaddr)
  2085  		}
  2086  		for sub := sym.Sub; sub != nil; sub = sub.Sub {
  2087  			sub.Value += sym.Value
  2088  		}
  2089  	}
  2090  
  2091  	if Buildmode == BuildmodeShared {
  2092  		s := Linklookup(Ctxt, "go.link.abihashbytes", 0)
  2093  		sectSym := Linklookup(Ctxt, ".note.go.abihash", 0)
  2094  		s.Sect = sectSym.Sect
  2095  		s.Value = int64(sectSym.Sect.Vaddr + 16)
  2096  	}
  2097  
  2098  	types := relrodata
  2099  	if types == nil {
  2100  		types = rodata
  2101  	}
  2102  
  2103  	xdefine("runtime.text", obj.STEXT, int64(text.Vaddr))
  2104  	xdefine("runtime.etext", obj.STEXT, int64(text.Vaddr+text.Length))
  2105  	if HEADTYPE == obj.Hwindows {
  2106  		xdefine(".text", obj.STEXT, int64(text.Vaddr))
  2107  	}
  2108  	xdefine("runtime.rodata", obj.SRODATA, int64(rodata.Vaddr))
  2109  	xdefine("runtime.erodata", obj.SRODATA, int64(rodata.Vaddr+rodata.Length))
  2110  	xdefine("runtime.types", obj.SRODATA, int64(types.Vaddr))
  2111  	xdefine("runtime.etypes", obj.SRODATA, int64(types.Vaddr+types.Length))
  2112  	xdefine("runtime.typelink", obj.SRODATA, int64(typelink.Vaddr))
  2113  	xdefine("runtime.etypelink", obj.SRODATA, int64(typelink.Vaddr+typelink.Length))
  2114  	xdefine("runtime.itablink", obj.SRODATA, int64(itablink.Vaddr))
  2115  	xdefine("runtime.eitablink", obj.SRODATA, int64(itablink.Vaddr+itablink.Length))
  2116  
  2117  	sym := Linklookup(Ctxt, "runtime.gcdata", 0)
  2118  	sym.Attr |= AttrLocal
  2119  	xdefine("runtime.egcdata", obj.SRODATA, Symaddr(sym)+sym.Size)
  2120  	Linklookup(Ctxt, "runtime.egcdata", 0).Sect = sym.Sect
  2121  
  2122  	sym = Linklookup(Ctxt, "runtime.gcbss", 0)
  2123  	sym.Attr |= AttrLocal
  2124  	xdefine("runtime.egcbss", obj.SRODATA, Symaddr(sym)+sym.Size)
  2125  	Linklookup(Ctxt, "runtime.egcbss", 0).Sect = sym.Sect
  2126  
  2127  	xdefine("runtime.symtab", obj.SRODATA, int64(symtab.Vaddr))
  2128  	xdefine("runtime.esymtab", obj.SRODATA, int64(symtab.Vaddr+symtab.Length))
  2129  	xdefine("runtime.pclntab", obj.SRODATA, int64(pclntab.Vaddr))
  2130  	xdefine("runtime.epclntab", obj.SRODATA, int64(pclntab.Vaddr+pclntab.Length))
  2131  	xdefine("runtime.noptrdata", obj.SNOPTRDATA, int64(noptr.Vaddr))
  2132  	xdefine("runtime.enoptrdata", obj.SNOPTRDATA, int64(noptr.Vaddr+noptr.Length))
  2133  	xdefine("runtime.bss", obj.SBSS, int64(bss.Vaddr))
  2134  	xdefine("runtime.ebss", obj.SBSS, int64(bss.Vaddr+bss.Length))
  2135  	xdefine("runtime.data", obj.SDATA, int64(data.Vaddr))
  2136  	xdefine("runtime.edata", obj.SDATA, int64(data.Vaddr+data.Length))
  2137  	xdefine("runtime.noptrbss", obj.SNOPTRBSS, int64(noptrbss.Vaddr))
  2138  	xdefine("runtime.enoptrbss", obj.SNOPTRBSS, int64(noptrbss.Vaddr+noptrbss.Length))
  2139  	xdefine("runtime.end", obj.SBSS, int64(Segdata.Vaddr+Segdata.Length))
  2140  }