github.com/gocuntian/go@v0.0.0-20160610041250-fee02d270bf8/src/cmd/vet/print.go (about)

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // This file contains the printf-checker.
     6  
     7  package main
     8  
     9  import (
    10  	"bytes"
    11  	"flag"
    12  	"go/ast"
    13  	"go/constant"
    14  	"go/token"
    15  	"go/types"
    16  	"strconv"
    17  	"strings"
    18  	"unicode/utf8"
    19  )
    20  
    21  var printfuncs = flag.String("printfuncs", "", "comma-separated list of print function names to check")
    22  
    23  func init() {
    24  	register("printf",
    25  		"check printf-like invocations",
    26  		checkFmtPrintfCall,
    27  		funcDecl, callExpr)
    28  }
    29  
    30  func initPrintFlags() {
    31  	if *printfuncs == "" {
    32  		return
    33  	}
    34  	for _, name := range strings.Split(*printfuncs, ",") {
    35  		if len(name) == 0 {
    36  			flag.Usage()
    37  		}
    38  
    39  		// Backwards compatibility: skip optional first argument
    40  		// index after the colon.
    41  		if colon := strings.LastIndex(name, ":"); colon > 0 {
    42  			name = name[:colon]
    43  		}
    44  
    45  		name = strings.ToLower(name)
    46  		if name[len(name)-1] == 'f' {
    47  			isFormattedPrint[name] = true
    48  		} else {
    49  			isPrint[name] = true
    50  		}
    51  	}
    52  }
    53  
    54  // isFormattedPrint records the formatted-print functions. Names are
    55  // lower-cased so the lookup is case insensitive.
    56  var isFormattedPrint = map[string]bool{
    57  	"errorf":  true,
    58  	"fatalf":  true,
    59  	"fprintf": true,
    60  	"logf":    true,
    61  	"panicf":  true,
    62  	"printf":  true,
    63  	"sprintf": true,
    64  }
    65  
    66  // isPrint records the unformatted-print functions. Names are lower-cased
    67  // so the lookup is case insensitive.
    68  var isPrint = map[string]bool{
    69  	"error":    true,
    70  	"fatal":    true,
    71  	"fprint":   true,
    72  	"fprintln": true,
    73  	"log":      true,
    74  	"panic":    true,
    75  	"panicln":  true,
    76  	"print":    true,
    77  	"println":  true,
    78  	"sprint":   true,
    79  	"sprintln": true,
    80  }
    81  
    82  // formatString returns the format string argument and its index within
    83  // the given printf-like call expression.
    84  //
    85  // The last parameter before variadic arguments is assumed to be
    86  // a format string.
    87  //
    88  // The first string literal or string constant is assumed to be a format string
    89  // if the call's signature cannot be determined.
    90  //
    91  // If it cannot find any format string parameter, it returns  ("", -1).
    92  func formatString(f *File, call *ast.CallExpr) (string, int) {
    93  	typ := f.pkg.types[call.Fun].Type
    94  	if typ != nil {
    95  		if sig, ok := typ.(*types.Signature); ok {
    96  			if !sig.Variadic() {
    97  				// Skip checking non-variadic functions
    98  				return "", -1
    99  			}
   100  			idx := sig.Params().Len() - 2
   101  			if idx < 0 {
   102  				// Skip checking variadic functions without
   103  				// fixed arguments.
   104  				return "", -1
   105  			}
   106  			s, ok := stringLiteralArg(f, call, idx)
   107  			if !ok {
   108  				// The last argument before variadic args isn't a string
   109  				return "", -1
   110  			}
   111  			return s, idx
   112  		}
   113  	}
   114  
   115  	// Cannot determine call's signature. Fallback to scanning for the first
   116  	// string argument in the call
   117  	for idx := range call.Args {
   118  		if s, ok := stringLiteralArg(f, call, idx); ok {
   119  			return s, idx
   120  		}
   121  	}
   122  	return "", -1
   123  }
   124  
   125  // stringLiteralArg returns call's string constant argument at the index idx.
   126  //
   127  // ("", false) is returned if call's argument at the index idx isn't a string
   128  // literal.
   129  func stringLiteralArg(f *File, call *ast.CallExpr, idx int) (string, bool) {
   130  	if idx >= len(call.Args) {
   131  		return "", false
   132  	}
   133  	arg := call.Args[idx]
   134  	lit := f.pkg.types[arg].Value
   135  	if lit != nil && lit.Kind() == constant.String {
   136  		return constant.StringVal(lit), true
   137  	}
   138  	return "", false
   139  }
   140  
   141  // checkCall triggers the print-specific checks if the call invokes a print function.
   142  func checkFmtPrintfCall(f *File, node ast.Node) {
   143  	if d, ok := node.(*ast.FuncDecl); ok && isStringer(f, d) {
   144  		// Remember we saw this.
   145  		if f.stringers == nil {
   146  			f.stringers = make(map[*ast.Object]bool)
   147  		}
   148  		if l := d.Recv.List; len(l) == 1 {
   149  			if n := l[0].Names; len(n) == 1 {
   150  				f.stringers[n[0].Obj] = true
   151  			}
   152  		}
   153  		return
   154  	}
   155  
   156  	call, ok := node.(*ast.CallExpr)
   157  	if !ok {
   158  		return
   159  	}
   160  	var Name string
   161  	switch x := call.Fun.(type) {
   162  	case *ast.Ident:
   163  		Name = x.Name
   164  	case *ast.SelectorExpr:
   165  		Name = x.Sel.Name
   166  	default:
   167  		return
   168  	}
   169  
   170  	name := strings.ToLower(Name)
   171  	if _, ok := isFormattedPrint[name]; ok {
   172  		f.checkPrintf(call, Name)
   173  		return
   174  	}
   175  	if _, ok := isPrint[name]; ok {
   176  		f.checkPrint(call, Name)
   177  		return
   178  	}
   179  }
   180  
   181  // isStringer returns true if the provided declaration is a "String() string"
   182  // method, an implementation of fmt.Stringer.
   183  func isStringer(f *File, d *ast.FuncDecl) bool {
   184  	return d.Recv != nil && d.Name.Name == "String" && d.Type.Results != nil &&
   185  		len(d.Type.Params.List) == 0 && len(d.Type.Results.List) == 1 &&
   186  		f.pkg.types[d.Type.Results.List[0].Type].Type == types.Typ[types.String]
   187  }
   188  
   189  // formatState holds the parsed representation of a printf directive such as "%3.*[4]d".
   190  // It is constructed by parsePrintfVerb.
   191  type formatState struct {
   192  	verb     rune   // the format verb: 'd' for "%d"
   193  	format   string // the full format directive from % through verb, "%.3d".
   194  	name     string // Printf, Sprintf etc.
   195  	flags    []byte // the list of # + etc.
   196  	argNums  []int  // the successive argument numbers that are consumed, adjusted to refer to actual arg in call
   197  	indexed  bool   // whether an indexing expression appears: %[1]d.
   198  	firstArg int    // Index of first argument after the format in the Printf call.
   199  	// Used only during parse.
   200  	file         *File
   201  	call         *ast.CallExpr
   202  	argNum       int  // Which argument we're expecting to format now.
   203  	indexPending bool // Whether we have an indexed argument that has not resolved.
   204  	nbytes       int  // number of bytes of the format string consumed.
   205  }
   206  
   207  // checkPrintf checks a call to a formatted print routine such as Printf.
   208  func (f *File) checkPrintf(call *ast.CallExpr, name string) {
   209  	format, idx := formatString(f, call)
   210  	if idx < 0 {
   211  		if *verbose {
   212  			f.Warn(call.Pos(), "can't check non-constant format in call to", name)
   213  		}
   214  		return
   215  	}
   216  
   217  	firstArg := idx + 1 // Arguments are immediately after format string.
   218  	if !strings.Contains(format, "%") {
   219  		if len(call.Args) > firstArg {
   220  			f.Badf(call.Pos(), "no formatting directive in %s call", name)
   221  		}
   222  		return
   223  	}
   224  	// Hard part: check formats against args.
   225  	argNum := firstArg
   226  	indexed := false
   227  	for i, w := 0, 0; i < len(format); i += w {
   228  		w = 1
   229  		if format[i] == '%' {
   230  			state := f.parsePrintfVerb(call, name, format[i:], firstArg, argNum)
   231  			if state == nil {
   232  				return
   233  			}
   234  			w = len(state.format)
   235  			if state.indexed {
   236  				indexed = true
   237  			}
   238  			if !f.okPrintfArg(call, state) { // One error per format is enough.
   239  				return
   240  			}
   241  			if len(state.argNums) > 0 {
   242  				// Continue with the next sequential argument.
   243  				argNum = state.argNums[len(state.argNums)-1] + 1
   244  			}
   245  		}
   246  	}
   247  	// Dotdotdot is hard.
   248  	if call.Ellipsis.IsValid() && argNum >= len(call.Args)-1 {
   249  		return
   250  	}
   251  	// If the arguments were direct indexed, we assume the programmer knows what's up.
   252  	// Otherwise, there should be no leftover arguments.
   253  	if !indexed && argNum != len(call.Args) {
   254  		expect := argNum - firstArg
   255  		numArgs := len(call.Args) - firstArg
   256  		f.Badf(call.Pos(), "wrong number of args for format in %s call: %d needed but %d args", name, expect, numArgs)
   257  	}
   258  }
   259  
   260  // parseFlags accepts any printf flags.
   261  func (s *formatState) parseFlags() {
   262  	for s.nbytes < len(s.format) {
   263  		switch c := s.format[s.nbytes]; c {
   264  		case '#', '0', '+', '-', ' ':
   265  			s.flags = append(s.flags, c)
   266  			s.nbytes++
   267  		default:
   268  			return
   269  		}
   270  	}
   271  }
   272  
   273  // scanNum advances through a decimal number if present.
   274  func (s *formatState) scanNum() {
   275  	for ; s.nbytes < len(s.format); s.nbytes++ {
   276  		c := s.format[s.nbytes]
   277  		if c < '0' || '9' < c {
   278  			return
   279  		}
   280  	}
   281  }
   282  
   283  // parseIndex scans an index expression. It returns false if there is a syntax error.
   284  func (s *formatState) parseIndex() bool {
   285  	if s.nbytes == len(s.format) || s.format[s.nbytes] != '[' {
   286  		return true
   287  	}
   288  	// Argument index present.
   289  	s.indexed = true
   290  	s.nbytes++ // skip '['
   291  	start := s.nbytes
   292  	s.scanNum()
   293  	if s.nbytes == len(s.format) || s.nbytes == start || s.format[s.nbytes] != ']' {
   294  		s.file.Badf(s.call.Pos(), "illegal syntax for printf argument index")
   295  		return false
   296  	}
   297  	arg32, err := strconv.ParseInt(s.format[start:s.nbytes], 10, 32)
   298  	if err != nil {
   299  		s.file.Badf(s.call.Pos(), "illegal syntax for printf argument index: %s", err)
   300  		return false
   301  	}
   302  	s.nbytes++ // skip ']'
   303  	arg := int(arg32)
   304  	arg += s.firstArg - 1 // We want to zero-index the actual arguments.
   305  	s.argNum = arg
   306  	s.indexPending = true
   307  	return true
   308  }
   309  
   310  // parseNum scans a width or precision (or *). It returns false if there's a bad index expression.
   311  func (s *formatState) parseNum() bool {
   312  	if s.nbytes < len(s.format) && s.format[s.nbytes] == '*' {
   313  		if s.indexPending { // Absorb it.
   314  			s.indexPending = false
   315  		}
   316  		s.nbytes++
   317  		s.argNums = append(s.argNums, s.argNum)
   318  		s.argNum++
   319  	} else {
   320  		s.scanNum()
   321  	}
   322  	return true
   323  }
   324  
   325  // parsePrecision scans for a precision. It returns false if there's a bad index expression.
   326  func (s *formatState) parsePrecision() bool {
   327  	// If there's a period, there may be a precision.
   328  	if s.nbytes < len(s.format) && s.format[s.nbytes] == '.' {
   329  		s.flags = append(s.flags, '.') // Treat precision as a flag.
   330  		s.nbytes++
   331  		if !s.parseIndex() {
   332  			return false
   333  		}
   334  		if !s.parseNum() {
   335  			return false
   336  		}
   337  	}
   338  	return true
   339  }
   340  
   341  // parsePrintfVerb looks the formatting directive that begins the format string
   342  // and returns a formatState that encodes what the directive wants, without looking
   343  // at the actual arguments present in the call. The result is nil if there is an error.
   344  func (f *File) parsePrintfVerb(call *ast.CallExpr, name, format string, firstArg, argNum int) *formatState {
   345  	state := &formatState{
   346  		format:   format,
   347  		name:     name,
   348  		flags:    make([]byte, 0, 5),
   349  		argNum:   argNum,
   350  		argNums:  make([]int, 0, 1),
   351  		nbytes:   1, // There's guaranteed to be a percent sign.
   352  		indexed:  false,
   353  		firstArg: firstArg,
   354  		file:     f,
   355  		call:     call,
   356  	}
   357  	// There may be flags.
   358  	state.parseFlags()
   359  	indexPending := false
   360  	// There may be an index.
   361  	if !state.parseIndex() {
   362  		return nil
   363  	}
   364  	// There may be a width.
   365  	if !state.parseNum() {
   366  		return nil
   367  	}
   368  	// There may be a precision.
   369  	if !state.parsePrecision() {
   370  		return nil
   371  	}
   372  	// Now a verb, possibly prefixed by an index (which we may already have).
   373  	if !indexPending && !state.parseIndex() {
   374  		return nil
   375  	}
   376  	if state.nbytes == len(state.format) {
   377  		f.Badf(call.Pos(), "missing verb at end of format string in %s call", name)
   378  		return nil
   379  	}
   380  	verb, w := utf8.DecodeRuneInString(state.format[state.nbytes:])
   381  	state.verb = verb
   382  	state.nbytes += w
   383  	if verb != '%' {
   384  		state.argNums = append(state.argNums, state.argNum)
   385  	}
   386  	state.format = state.format[:state.nbytes]
   387  	return state
   388  }
   389  
   390  // printfArgType encodes the types of expressions a printf verb accepts. It is a bitmask.
   391  type printfArgType int
   392  
   393  const (
   394  	argBool printfArgType = 1 << iota
   395  	argInt
   396  	argRune
   397  	argString
   398  	argFloat
   399  	argComplex
   400  	argPointer
   401  	anyType printfArgType = ^0
   402  )
   403  
   404  type printVerb struct {
   405  	verb  rune   // User may provide verb through Formatter; could be a rune.
   406  	flags string // known flags are all ASCII
   407  	typ   printfArgType
   408  }
   409  
   410  // Common flag sets for printf verbs.
   411  const (
   412  	noFlag       = ""
   413  	numFlag      = " -+.0"
   414  	sharpNumFlag = " -+.0#"
   415  	allFlags     = " -+.0#"
   416  )
   417  
   418  // printVerbs identifies which flags are known to printf for each verb.
   419  // TODO: A type that implements Formatter may do what it wants, and vet
   420  // will complain incorrectly.
   421  var printVerbs = []printVerb{
   422  	// '-' is a width modifier, always valid.
   423  	// '.' is a precision for float, max width for strings.
   424  	// '+' is required sign for numbers, Go format for %v.
   425  	// '#' is alternate format for several verbs.
   426  	// ' ' is spacer for numbers
   427  	{'%', noFlag, 0},
   428  	{'b', numFlag, argInt | argFloat | argComplex},
   429  	{'c', "-", argRune | argInt},
   430  	{'d', numFlag, argInt},
   431  	{'e', numFlag, argFloat | argComplex},
   432  	{'E', numFlag, argFloat | argComplex},
   433  	{'f', numFlag, argFloat | argComplex},
   434  	{'F', numFlag, argFloat | argComplex},
   435  	{'g', numFlag, argFloat | argComplex},
   436  	{'G', numFlag, argFloat | argComplex},
   437  	{'o', sharpNumFlag, argInt},
   438  	{'p', "-#", argPointer},
   439  	{'q', " -+.0#", argRune | argInt | argString},
   440  	{'s', " -+.0", argString},
   441  	{'t', "-", argBool},
   442  	{'T', "-", anyType},
   443  	{'U', "-#", argRune | argInt},
   444  	{'v', allFlags, anyType},
   445  	{'x', sharpNumFlag, argRune | argInt | argString},
   446  	{'X', sharpNumFlag, argRune | argInt | argString},
   447  }
   448  
   449  // okPrintfArg compares the formatState to the arguments actually present,
   450  // reporting any discrepancies it can discern. If the final argument is ellipsissed,
   451  // there's little it can do for that.
   452  func (f *File) okPrintfArg(call *ast.CallExpr, state *formatState) (ok bool) {
   453  	var v printVerb
   454  	found := false
   455  	// Linear scan is fast enough for a small list.
   456  	for _, v = range printVerbs {
   457  		if v.verb == state.verb {
   458  			found = true
   459  			break
   460  		}
   461  	}
   462  	if !found {
   463  		f.Badf(call.Pos(), "unrecognized printf verb %q", state.verb)
   464  		return false
   465  	}
   466  	for _, flag := range state.flags {
   467  		if !strings.ContainsRune(v.flags, rune(flag)) {
   468  			f.Badf(call.Pos(), "unrecognized printf flag for verb %q: %q", state.verb, flag)
   469  			return false
   470  		}
   471  	}
   472  	// Verb is good. If len(state.argNums)>trueArgs, we have something like %.*s and all
   473  	// but the final arg must be an integer.
   474  	trueArgs := 1
   475  	if state.verb == '%' {
   476  		trueArgs = 0
   477  	}
   478  	nargs := len(state.argNums)
   479  	for i := 0; i < nargs-trueArgs; i++ {
   480  		argNum := state.argNums[i]
   481  		if !f.argCanBeChecked(call, i, true, state) {
   482  			return
   483  		}
   484  		arg := call.Args[argNum]
   485  		if !f.matchArgType(argInt, nil, arg) {
   486  			f.Badf(call.Pos(), "arg %s for * in printf format not of type int", f.gofmt(arg))
   487  			return false
   488  		}
   489  	}
   490  	if state.verb == '%' {
   491  		return true
   492  	}
   493  	argNum := state.argNums[len(state.argNums)-1]
   494  	if !f.argCanBeChecked(call, len(state.argNums)-1, false, state) {
   495  		return false
   496  	}
   497  	arg := call.Args[argNum]
   498  	if f.isFunctionValue(arg) && state.verb != 'p' && state.verb != 'T' {
   499  		f.Badf(call.Pos(), "arg %s in printf call is a function value, not a function call", f.gofmt(arg))
   500  		return false
   501  	}
   502  	if !f.matchArgType(v.typ, nil, arg) {
   503  		typeString := ""
   504  		if typ := f.pkg.types[arg].Type; typ != nil {
   505  			typeString = typ.String()
   506  		}
   507  		f.Badf(call.Pos(), "arg %s for printf verb %%%c of wrong type: %s", f.gofmt(arg), state.verb, typeString)
   508  		return false
   509  	}
   510  	if v.typ&argString != 0 && v.verb != 'T' && !bytes.Contains(state.flags, []byte{'#'}) && f.recursiveStringer(arg) {
   511  		f.Badf(call.Pos(), "arg %s for printf causes recursive call to String method", f.gofmt(arg))
   512  		return false
   513  	}
   514  	return true
   515  }
   516  
   517  // recursiveStringer reports whether the provided argument is r or &r for the
   518  // fmt.Stringer receiver identifier r.
   519  func (f *File) recursiveStringer(e ast.Expr) bool {
   520  	if len(f.stringers) == 0 {
   521  		return false
   522  	}
   523  	var obj *ast.Object
   524  	switch e := e.(type) {
   525  	case *ast.Ident:
   526  		obj = e.Obj
   527  	case *ast.UnaryExpr:
   528  		if id, ok := e.X.(*ast.Ident); ok && e.Op == token.AND {
   529  			obj = id.Obj
   530  		}
   531  	}
   532  
   533  	// It's unlikely to be a recursive stringer if it has a Format method.
   534  	if typ := f.pkg.types[e].Type; typ != nil {
   535  		// Not a perfect match; see issue 6259.
   536  		if f.hasMethod(typ, "Format") {
   537  			return false
   538  		}
   539  	}
   540  
   541  	// We compare the underlying Object, which checks that the identifier
   542  	// is the one we declared as the receiver for the String method in
   543  	// which this printf appears.
   544  	return f.stringers[obj]
   545  }
   546  
   547  // isFunctionValue reports whether the expression is a function as opposed to a function call.
   548  // It is almost always a mistake to print a function value.
   549  func (f *File) isFunctionValue(e ast.Expr) bool {
   550  	if typ := f.pkg.types[e].Type; typ != nil {
   551  		_, ok := typ.(*types.Signature)
   552  		return ok
   553  	}
   554  	return false
   555  }
   556  
   557  // argCanBeChecked reports whether the specified argument is statically present;
   558  // it may be beyond the list of arguments or in a terminal slice... argument, which
   559  // means we can't see it.
   560  func (f *File) argCanBeChecked(call *ast.CallExpr, formatArg int, isStar bool, state *formatState) bool {
   561  	argNum := state.argNums[formatArg]
   562  	if argNum < 0 {
   563  		// Shouldn't happen, so catch it with prejudice.
   564  		panic("negative arg num")
   565  	}
   566  	if argNum == 0 {
   567  		f.Badf(call.Pos(), `index value [0] for %s("%s"); indexes start at 1`, state.name, state.format)
   568  		return false
   569  	}
   570  	if argNum < len(call.Args)-1 {
   571  		return true // Always OK.
   572  	}
   573  	if call.Ellipsis.IsValid() {
   574  		return false // We just can't tell; there could be many more arguments.
   575  	}
   576  	if argNum < len(call.Args) {
   577  		return true
   578  	}
   579  	// There are bad indexes in the format or there are fewer arguments than the format needs.
   580  	// This is the argument number relative to the format: Printf("%s", "hi") will give 1 for the "hi".
   581  	arg := argNum - state.firstArg + 1 // People think of arguments as 1-indexed.
   582  	f.Badf(call.Pos(), `missing argument for %s("%s"): format reads arg %d, have only %d args`, state.name, state.format, arg, len(call.Args)-state.firstArg)
   583  	return false
   584  }
   585  
   586  // checkPrint checks a call to an unformatted print routine such as Println.
   587  func (f *File) checkPrint(call *ast.CallExpr, name string) {
   588  	firstArg := 0
   589  	typ := f.pkg.types[call.Fun].Type
   590  	if typ == nil {
   591  		// Skip checking functions with unknown type.
   592  		return
   593  	}
   594  	if sig, ok := typ.(*types.Signature); ok {
   595  		if !sig.Variadic() {
   596  			// Skip checking non-variadic functions.
   597  			return
   598  		}
   599  		params := sig.Params()
   600  		firstArg = params.Len() - 1
   601  
   602  		typ := params.At(firstArg).Type()
   603  		typ = typ.(*types.Slice).Elem()
   604  		it, ok := typ.(*types.Interface)
   605  		if !ok || !it.Empty() {
   606  			// Skip variadic functions accepting non-interface{} args.
   607  			return
   608  		}
   609  	}
   610  	args := call.Args
   611  	if len(args) <= firstArg {
   612  		// Skip calls without variadic args.
   613  		return
   614  	}
   615  	args = args[firstArg:]
   616  
   617  	// check for Println(os.Stderr, ...)
   618  	if firstArg == 0 {
   619  		if sel, ok := args[0].(*ast.SelectorExpr); ok {
   620  			if x, ok := sel.X.(*ast.Ident); ok {
   621  				if x.Name == "os" && strings.HasPrefix(sel.Sel.Name, "Std") {
   622  					f.Badf(call.Pos(), "first argument to %s is %s.%s", name, x.Name, sel.Sel.Name)
   623  				}
   624  			}
   625  		}
   626  	}
   627  	arg := args[0]
   628  	if lit, ok := arg.(*ast.BasicLit); ok && lit.Kind == token.STRING {
   629  		if strings.Contains(lit.Value, "%") {
   630  			f.Badf(call.Pos(), "possible formatting directive in %s call", name)
   631  		}
   632  	}
   633  	if strings.HasSuffix(name, "ln") {
   634  		// The last item, if a string, should not have a newline.
   635  		arg = args[len(args)-1]
   636  		if lit, ok := arg.(*ast.BasicLit); ok && lit.Kind == token.STRING {
   637  			if strings.HasSuffix(lit.Value, `\n"`) {
   638  				f.Badf(call.Pos(), "%s call ends with newline", name)
   639  			}
   640  		}
   641  	}
   642  	for _, arg := range args {
   643  		if f.isFunctionValue(arg) {
   644  			f.Badf(call.Pos(), "arg %s in %s call is a function value, not a function call", f.gofmt(arg), name)
   645  		}
   646  		if f.recursiveStringer(arg) {
   647  			f.Badf(call.Pos(), "arg %s in %s call causes recursive call to String method", f.gofmt(arg), name)
   648  		}
   649  	}
   650  }