github.com/gocuntian/go@v0.0.0-20160610041250-fee02d270bf8/src/crypto/cipher/gcm.go (about) 1 // Copyright 2013 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package cipher 6 7 import ( 8 "crypto/subtle" 9 "errors" 10 ) 11 12 // AEAD is a cipher mode providing authenticated encryption with associated 13 // data. For a description of the methodology, see 14 // https://en.wikipedia.org/wiki/Authenticated_encryption 15 type AEAD interface { 16 // NonceSize returns the size of the nonce that must be passed to Seal 17 // and Open. 18 NonceSize() int 19 20 // Overhead returns the maximum difference between the lengths of a 21 // plaintext and its ciphertext. 22 Overhead() int 23 24 // Seal encrypts and authenticates plaintext, authenticates the 25 // additional data and appends the result to dst, returning the updated 26 // slice. The nonce must be NonceSize() bytes long and unique for all 27 // time, for a given key. 28 // 29 // The plaintext and dst may alias exactly or not at all. To reuse 30 // plaintext's storage for the encrypted output, use plaintext[:0] as dst. 31 Seal(dst, nonce, plaintext, additionalData []byte) []byte 32 33 // Open decrypts and authenticates ciphertext, authenticates the 34 // additional data and, if successful, appends the resulting plaintext 35 // to dst, returning the updated slice. The nonce must be NonceSize() 36 // bytes long and both it and the additional data must match the 37 // value passed to Seal. 38 // 39 // The ciphertext and dst may alias exactly or not at all. To reuse 40 // ciphertext's storage for the decrypted output, use ciphertext[:0] as dst. 41 // 42 // Even if the function fails, the contents of dst, up to its capacity, 43 // may be overwritten. 44 Open(dst, nonce, ciphertext, additionalData []byte) ([]byte, error) 45 } 46 47 // gcmAble is an interface implemented by ciphers that have a specific optimized 48 // implementation of GCM, like crypto/aes. NewGCM will check for this interface 49 // and return the specific AEAD if found. 50 type gcmAble interface { 51 NewGCM(int) (AEAD, error) 52 } 53 54 // gcmFieldElement represents a value in GF(2¹²⁸). In order to reflect the GCM 55 // standard and make getUint64 suitable for marshaling these values, the bits 56 // are stored backwards. For example: 57 // the coefficient of x⁰ can be obtained by v.low >> 63. 58 // the coefficient of x⁶³ can be obtained by v.low & 1. 59 // the coefficient of x⁶⁴ can be obtained by v.high >> 63. 60 // the coefficient of x¹²⁷ can be obtained by v.high & 1. 61 type gcmFieldElement struct { 62 low, high uint64 63 } 64 65 // gcm represents a Galois Counter Mode with a specific key. See 66 // http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf 67 type gcm struct { 68 cipher Block 69 nonceSize int 70 // productTable contains the first sixteen powers of the key, H. 71 // However, they are in bit reversed order. See NewGCMWithNonceSize. 72 productTable [16]gcmFieldElement 73 } 74 75 // NewGCM returns the given 128-bit, block cipher wrapped in Galois Counter Mode 76 // with the standard nonce length. 77 func NewGCM(cipher Block) (AEAD, error) { 78 return NewGCMWithNonceSize(cipher, gcmStandardNonceSize) 79 } 80 81 // NewGCMWithNonceSize returns the given 128-bit, block cipher wrapped in Galois 82 // Counter Mode, which accepts nonces of the given length. 83 // 84 // Only use this function if you require compatibility with an existing 85 // cryptosystem that uses non-standard nonce lengths. All other users should use 86 // NewGCM, which is faster and more resistant to misuse. 87 func NewGCMWithNonceSize(cipher Block, size int) (AEAD, error) { 88 if cipher, ok := cipher.(gcmAble); ok { 89 return cipher.NewGCM(size) 90 } 91 92 if cipher.BlockSize() != gcmBlockSize { 93 return nil, errors.New("cipher: NewGCM requires 128-bit block cipher") 94 } 95 96 var key [gcmBlockSize]byte 97 cipher.Encrypt(key[:], key[:]) 98 99 g := &gcm{cipher: cipher, nonceSize: size} 100 101 // We precompute 16 multiples of |key|. However, when we do lookups 102 // into this table we'll be using bits from a field element and 103 // therefore the bits will be in the reverse order. So normally one 104 // would expect, say, 4*key to be in index 4 of the table but due to 105 // this bit ordering it will actually be in index 0010 (base 2) = 2. 106 x := gcmFieldElement{ 107 getUint64(key[:8]), 108 getUint64(key[8:]), 109 } 110 g.productTable[reverseBits(1)] = x 111 112 for i := 2; i < 16; i += 2 { 113 g.productTable[reverseBits(i)] = gcmDouble(&g.productTable[reverseBits(i/2)]) 114 g.productTable[reverseBits(i+1)] = gcmAdd(&g.productTable[reverseBits(i)], &x) 115 } 116 117 return g, nil 118 } 119 120 const ( 121 gcmBlockSize = 16 122 gcmTagSize = 16 123 gcmStandardNonceSize = 12 124 ) 125 126 func (g *gcm) NonceSize() int { 127 return g.nonceSize 128 } 129 130 func (*gcm) Overhead() int { 131 return gcmTagSize 132 } 133 134 func (g *gcm) Seal(dst, nonce, plaintext, data []byte) []byte { 135 if len(nonce) != g.nonceSize { 136 panic("cipher: incorrect nonce length given to GCM") 137 } 138 ret, out := sliceForAppend(dst, len(plaintext)+gcmTagSize) 139 140 var counter, tagMask [gcmBlockSize]byte 141 g.deriveCounter(&counter, nonce) 142 143 g.cipher.Encrypt(tagMask[:], counter[:]) 144 gcmInc32(&counter) 145 146 g.counterCrypt(out, plaintext, &counter) 147 g.auth(out[len(plaintext):], out[:len(plaintext)], data, &tagMask) 148 149 return ret 150 } 151 152 var errOpen = errors.New("cipher: message authentication failed") 153 154 func (g *gcm) Open(dst, nonce, ciphertext, data []byte) ([]byte, error) { 155 if len(nonce) != g.nonceSize { 156 panic("cipher: incorrect nonce length given to GCM") 157 } 158 159 if len(ciphertext) < gcmTagSize { 160 return nil, errOpen 161 } 162 tag := ciphertext[len(ciphertext)-gcmTagSize:] 163 ciphertext = ciphertext[:len(ciphertext)-gcmTagSize] 164 165 var counter, tagMask [gcmBlockSize]byte 166 g.deriveCounter(&counter, nonce) 167 168 g.cipher.Encrypt(tagMask[:], counter[:]) 169 gcmInc32(&counter) 170 171 var expectedTag [gcmTagSize]byte 172 g.auth(expectedTag[:], ciphertext, data, &tagMask) 173 174 ret, out := sliceForAppend(dst, len(ciphertext)) 175 176 if subtle.ConstantTimeCompare(expectedTag[:], tag) != 1 { 177 // The AESNI code decrypts and authenticates concurrently, and 178 // so overwrites dst in the event of a tag mismatch. That 179 // behaviour is mimicked here in order to be consistent across 180 // platforms. 181 for i := range out { 182 out[i] = 0 183 } 184 return nil, errOpen 185 } 186 187 g.counterCrypt(out, ciphertext, &counter) 188 189 return ret, nil 190 } 191 192 // reverseBits reverses the order of the bits of 4-bit number in i. 193 func reverseBits(i int) int { 194 i = ((i << 2) & 0xc) | ((i >> 2) & 0x3) 195 i = ((i << 1) & 0xa) | ((i >> 1) & 0x5) 196 return i 197 } 198 199 // gcmAdd adds two elements of GF(2¹²⁸) and returns the sum. 200 func gcmAdd(x, y *gcmFieldElement) gcmFieldElement { 201 // Addition in a characteristic 2 field is just XOR. 202 return gcmFieldElement{x.low ^ y.low, x.high ^ y.high} 203 } 204 205 // gcmDouble returns the result of doubling an element of GF(2¹²⁸). 206 func gcmDouble(x *gcmFieldElement) (double gcmFieldElement) { 207 msbSet := x.high&1 == 1 208 209 // Because of the bit-ordering, doubling is actually a right shift. 210 double.high = x.high >> 1 211 double.high |= x.low << 63 212 double.low = x.low >> 1 213 214 // If the most-significant bit was set before shifting then it, 215 // conceptually, becomes a term of x^128. This is greater than the 216 // irreducible polynomial so the result has to be reduced. The 217 // irreducible polynomial is 1+x+x^2+x^7+x^128. We can subtract that to 218 // eliminate the term at x^128 which also means subtracting the other 219 // four terms. In characteristic 2 fields, subtraction == addition == 220 // XOR. 221 if msbSet { 222 double.low ^= 0xe100000000000000 223 } 224 225 return 226 } 227 228 var gcmReductionTable = []uint16{ 229 0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0, 230 0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0, 231 } 232 233 // mul sets y to y*H, where H is the GCM key, fixed during NewGCMWithNonceSize. 234 func (g *gcm) mul(y *gcmFieldElement) { 235 var z gcmFieldElement 236 237 for i := 0; i < 2; i++ { 238 word := y.high 239 if i == 1 { 240 word = y.low 241 } 242 243 // Multiplication works by multiplying z by 16 and adding in 244 // one of the precomputed multiples of H. 245 for j := 0; j < 64; j += 4 { 246 msw := z.high & 0xf 247 z.high >>= 4 248 z.high |= z.low << 60 249 z.low >>= 4 250 z.low ^= uint64(gcmReductionTable[msw]) << 48 251 252 // the values in |table| are ordered for 253 // little-endian bit positions. See the comment 254 // in NewGCMWithNonceSize. 255 t := &g.productTable[word&0xf] 256 257 z.low ^= t.low 258 z.high ^= t.high 259 word >>= 4 260 } 261 } 262 263 *y = z 264 } 265 266 // updateBlocks extends y with more polynomial terms from blocks, based on 267 // Horner's rule. There must be a multiple of gcmBlockSize bytes in blocks. 268 func (g *gcm) updateBlocks(y *gcmFieldElement, blocks []byte) { 269 for len(blocks) > 0 { 270 y.low ^= getUint64(blocks) 271 y.high ^= getUint64(blocks[8:]) 272 g.mul(y) 273 blocks = blocks[gcmBlockSize:] 274 } 275 } 276 277 // update extends y with more polynomial terms from data. If data is not a 278 // multiple of gcmBlockSize bytes long then the remainder is zero padded. 279 func (g *gcm) update(y *gcmFieldElement, data []byte) { 280 fullBlocks := (len(data) >> 4) << 4 281 g.updateBlocks(y, data[:fullBlocks]) 282 283 if len(data) != fullBlocks { 284 var partialBlock [gcmBlockSize]byte 285 copy(partialBlock[:], data[fullBlocks:]) 286 g.updateBlocks(y, partialBlock[:]) 287 } 288 } 289 290 // gcmInc32 treats the final four bytes of counterBlock as a big-endian value 291 // and increments it. 292 func gcmInc32(counterBlock *[16]byte) { 293 for i := gcmBlockSize - 1; i >= gcmBlockSize-4; i-- { 294 counterBlock[i]++ 295 if counterBlock[i] != 0 { 296 break 297 } 298 } 299 } 300 301 // sliceForAppend takes a slice and a requested number of bytes. It returns a 302 // slice with the contents of the given slice followed by that many bytes and a 303 // second slice that aliases into it and contains only the extra bytes. If the 304 // original slice has sufficient capacity then no allocation is performed. 305 func sliceForAppend(in []byte, n int) (head, tail []byte) { 306 if total := len(in) + n; cap(in) >= total { 307 head = in[:total] 308 } else { 309 head = make([]byte, total) 310 copy(head, in) 311 } 312 tail = head[len(in):] 313 return 314 } 315 316 // counterCrypt crypts in to out using g.cipher in counter mode. 317 func (g *gcm) counterCrypt(out, in []byte, counter *[gcmBlockSize]byte) { 318 var mask [gcmBlockSize]byte 319 320 for len(in) >= gcmBlockSize { 321 g.cipher.Encrypt(mask[:], counter[:]) 322 gcmInc32(counter) 323 324 xorWords(out, in, mask[:]) 325 out = out[gcmBlockSize:] 326 in = in[gcmBlockSize:] 327 } 328 329 if len(in) > 0 { 330 g.cipher.Encrypt(mask[:], counter[:]) 331 gcmInc32(counter) 332 xorBytes(out, in, mask[:]) 333 } 334 } 335 336 // deriveCounter computes the initial GCM counter state from the given nonce. 337 // See NIST SP 800-38D, section 7.1. This assumes that counter is filled with 338 // zeros on entry. 339 func (g *gcm) deriveCounter(counter *[gcmBlockSize]byte, nonce []byte) { 340 // GCM has two modes of operation with respect to the initial counter 341 // state: a "fast path" for 96-bit (12-byte) nonces, and a "slow path" 342 // for nonces of other lengths. For a 96-bit nonce, the nonce, along 343 // with a four-byte big-endian counter starting at one, is used 344 // directly as the starting counter. For other nonce sizes, the counter 345 // is computed by passing it through the GHASH function. 346 if len(nonce) == gcmStandardNonceSize { 347 copy(counter[:], nonce) 348 counter[gcmBlockSize-1] = 1 349 } else { 350 var y gcmFieldElement 351 g.update(&y, nonce) 352 y.high ^= uint64(len(nonce)) * 8 353 g.mul(&y) 354 putUint64(counter[:8], y.low) 355 putUint64(counter[8:], y.high) 356 } 357 } 358 359 // auth calculates GHASH(ciphertext, additionalData), masks the result with 360 // tagMask and writes the result to out. 361 func (g *gcm) auth(out, ciphertext, additionalData []byte, tagMask *[gcmTagSize]byte) { 362 var y gcmFieldElement 363 g.update(&y, additionalData) 364 g.update(&y, ciphertext) 365 366 y.low ^= uint64(len(additionalData)) * 8 367 y.high ^= uint64(len(ciphertext)) * 8 368 369 g.mul(&y) 370 371 putUint64(out, y.low) 372 putUint64(out[8:], y.high) 373 374 xorWords(out, out, tagMask[:]) 375 } 376 377 func getUint64(data []byte) uint64 { 378 r := uint64(data[0])<<56 | 379 uint64(data[1])<<48 | 380 uint64(data[2])<<40 | 381 uint64(data[3])<<32 | 382 uint64(data[4])<<24 | 383 uint64(data[5])<<16 | 384 uint64(data[6])<<8 | 385 uint64(data[7]) 386 return r 387 } 388 389 func putUint64(out []byte, v uint64) { 390 out[0] = byte(v >> 56) 391 out[1] = byte(v >> 48) 392 out[2] = byte(v >> 40) 393 out[3] = byte(v >> 32) 394 out[4] = byte(v >> 24) 395 out[5] = byte(v >> 16) 396 out[6] = byte(v >> 8) 397 out[7] = byte(v) 398 }