github.com/gocuntian/go@v0.0.0-20160610041250-fee02d270bf8/src/crypto/tls/conn.go (about)

     1  // Copyright 2010 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // TLS low level connection and record layer
     6  
     7  package tls
     8  
     9  import (
    10  	"bytes"
    11  	"crypto/cipher"
    12  	"crypto/subtle"
    13  	"crypto/x509"
    14  	"errors"
    15  	"fmt"
    16  	"io"
    17  	"net"
    18  	"sync"
    19  	"sync/atomic"
    20  	"time"
    21  )
    22  
    23  // A Conn represents a secured connection.
    24  // It implements the net.Conn interface.
    25  type Conn struct {
    26  	// constant
    27  	conn     net.Conn
    28  	isClient bool
    29  
    30  	// constant after handshake; protected by handshakeMutex
    31  	handshakeMutex sync.Mutex // handshakeMutex < in.Mutex, out.Mutex, errMutex
    32  	handshakeErr   error      // error resulting from handshake
    33  	vers           uint16     // TLS version
    34  	haveVers       bool       // version has been negotiated
    35  	config         *Config    // configuration passed to constructor
    36  	// handshakeComplete is true if the connection is currently transfering
    37  	// application data (i.e. is not currently processing a handshake).
    38  	handshakeComplete bool
    39  	// handshakes counts the number of handshakes performed on the
    40  	// connection so far. If renegotiation is disabled then this is either
    41  	// zero or one.
    42  	handshakes       int
    43  	didResume        bool // whether this connection was a session resumption
    44  	cipherSuite      uint16
    45  	ocspResponse     []byte   // stapled OCSP response
    46  	scts             [][]byte // signed certificate timestamps from server
    47  	peerCertificates []*x509.Certificate
    48  	// verifiedChains contains the certificate chains that we built, as
    49  	// opposed to the ones presented by the server.
    50  	verifiedChains [][]*x509.Certificate
    51  	// serverName contains the server name indicated by the client, if any.
    52  	serverName string
    53  	// secureRenegotiation is true if the server echoed the secure
    54  	// renegotiation extension. (This is meaningless as a server because
    55  	// renegotiation is not supported in that case.)
    56  	secureRenegotiation bool
    57  
    58  	// clientFinishedIsFirst is true if the client sent the first Finished
    59  	// message during the most recent handshake. This is recorded because
    60  	// the first transmitted Finished message is the tls-unique
    61  	// channel-binding value.
    62  	clientFinishedIsFirst bool
    63  	// clientFinished and serverFinished contain the Finished message sent
    64  	// by the client or server in the most recent handshake. This is
    65  	// retained to support the renegotiation extension and tls-unique
    66  	// channel-binding.
    67  	clientFinished [12]byte
    68  	serverFinished [12]byte
    69  
    70  	clientProtocol         string
    71  	clientProtocolFallback bool
    72  
    73  	// input/output
    74  	in, out   halfConn     // in.Mutex < out.Mutex
    75  	rawInput  *block       // raw input, right off the wire
    76  	input     *block       // application data waiting to be read
    77  	hand      bytes.Buffer // handshake data waiting to be read
    78  	buffering bool         // whether records are buffered in sendBuf
    79  	sendBuf   []byte       // a buffer of records waiting to be sent
    80  
    81  	// bytesSent counts the bytes of application data sent.
    82  	// packetsSent counts packets.
    83  	bytesSent   int64
    84  	packetsSent int64
    85  
    86  	// activeCall is an atomic int32; the low bit is whether Close has
    87  	// been called. the rest of the bits are the number of goroutines
    88  	// in Conn.Write.
    89  	activeCall int32
    90  
    91  	tmp [16]byte
    92  }
    93  
    94  // Access to net.Conn methods.
    95  // Cannot just embed net.Conn because that would
    96  // export the struct field too.
    97  
    98  // LocalAddr returns the local network address.
    99  func (c *Conn) LocalAddr() net.Addr {
   100  	return c.conn.LocalAddr()
   101  }
   102  
   103  // RemoteAddr returns the remote network address.
   104  func (c *Conn) RemoteAddr() net.Addr {
   105  	return c.conn.RemoteAddr()
   106  }
   107  
   108  // SetDeadline sets the read and write deadlines associated with the connection.
   109  // A zero value for t means Read and Write will not time out.
   110  // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
   111  func (c *Conn) SetDeadline(t time.Time) error {
   112  	return c.conn.SetDeadline(t)
   113  }
   114  
   115  // SetReadDeadline sets the read deadline on the underlying connection.
   116  // A zero value for t means Read will not time out.
   117  func (c *Conn) SetReadDeadline(t time.Time) error {
   118  	return c.conn.SetReadDeadline(t)
   119  }
   120  
   121  // SetWriteDeadline sets the write deadline on the underlying connection.
   122  // A zero value for t means Write will not time out.
   123  // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error.
   124  func (c *Conn) SetWriteDeadline(t time.Time) error {
   125  	return c.conn.SetWriteDeadline(t)
   126  }
   127  
   128  // A halfConn represents one direction of the record layer
   129  // connection, either sending or receiving.
   130  type halfConn struct {
   131  	sync.Mutex
   132  
   133  	err            error       // first permanent error
   134  	version        uint16      // protocol version
   135  	cipher         interface{} // cipher algorithm
   136  	mac            macFunction
   137  	seq            [8]byte  // 64-bit sequence number
   138  	bfree          *block   // list of free blocks
   139  	additionalData [13]byte // to avoid allocs; interface method args escape
   140  
   141  	nextCipher interface{} // next encryption state
   142  	nextMac    macFunction // next MAC algorithm
   143  
   144  	// used to save allocating a new buffer for each MAC.
   145  	inDigestBuf, outDigestBuf []byte
   146  }
   147  
   148  func (hc *halfConn) setErrorLocked(err error) error {
   149  	hc.err = err
   150  	return err
   151  }
   152  
   153  // prepareCipherSpec sets the encryption and MAC states
   154  // that a subsequent changeCipherSpec will use.
   155  func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) {
   156  	hc.version = version
   157  	hc.nextCipher = cipher
   158  	hc.nextMac = mac
   159  }
   160  
   161  // changeCipherSpec changes the encryption and MAC states
   162  // to the ones previously passed to prepareCipherSpec.
   163  func (hc *halfConn) changeCipherSpec() error {
   164  	if hc.nextCipher == nil {
   165  		return alertInternalError
   166  	}
   167  	hc.cipher = hc.nextCipher
   168  	hc.mac = hc.nextMac
   169  	hc.nextCipher = nil
   170  	hc.nextMac = nil
   171  	for i := range hc.seq {
   172  		hc.seq[i] = 0
   173  	}
   174  	return nil
   175  }
   176  
   177  // incSeq increments the sequence number.
   178  func (hc *halfConn) incSeq() {
   179  	for i := 7; i >= 0; i-- {
   180  		hc.seq[i]++
   181  		if hc.seq[i] != 0 {
   182  			return
   183  		}
   184  	}
   185  
   186  	// Not allowed to let sequence number wrap.
   187  	// Instead, must renegotiate before it does.
   188  	// Not likely enough to bother.
   189  	panic("TLS: sequence number wraparound")
   190  }
   191  
   192  // removePadding returns an unpadded slice, in constant time, which is a prefix
   193  // of the input. It also returns a byte which is equal to 255 if the padding
   194  // was valid and 0 otherwise. See RFC 2246, section 6.2.3.2
   195  func removePadding(payload []byte) ([]byte, byte) {
   196  	if len(payload) < 1 {
   197  		return payload, 0
   198  	}
   199  
   200  	paddingLen := payload[len(payload)-1]
   201  	t := uint(len(payload)-1) - uint(paddingLen)
   202  	// if len(payload) >= (paddingLen - 1) then the MSB of t is zero
   203  	good := byte(int32(^t) >> 31)
   204  
   205  	toCheck := 255 // the maximum possible padding length
   206  	// The length of the padded data is public, so we can use an if here
   207  	if toCheck+1 > len(payload) {
   208  		toCheck = len(payload) - 1
   209  	}
   210  
   211  	for i := 0; i < toCheck; i++ {
   212  		t := uint(paddingLen) - uint(i)
   213  		// if i <= paddingLen then the MSB of t is zero
   214  		mask := byte(int32(^t) >> 31)
   215  		b := payload[len(payload)-1-i]
   216  		good &^= mask&paddingLen ^ mask&b
   217  	}
   218  
   219  	// We AND together the bits of good and replicate the result across
   220  	// all the bits.
   221  	good &= good << 4
   222  	good &= good << 2
   223  	good &= good << 1
   224  	good = uint8(int8(good) >> 7)
   225  
   226  	toRemove := good&paddingLen + 1
   227  	return payload[:len(payload)-int(toRemove)], good
   228  }
   229  
   230  // removePaddingSSL30 is a replacement for removePadding in the case that the
   231  // protocol version is SSLv3. In this version, the contents of the padding
   232  // are random and cannot be checked.
   233  func removePaddingSSL30(payload []byte) ([]byte, byte) {
   234  	if len(payload) < 1 {
   235  		return payload, 0
   236  	}
   237  
   238  	paddingLen := int(payload[len(payload)-1]) + 1
   239  	if paddingLen > len(payload) {
   240  		return payload, 0
   241  	}
   242  
   243  	return payload[:len(payload)-paddingLen], 255
   244  }
   245  
   246  func roundUp(a, b int) int {
   247  	return a + (b-a%b)%b
   248  }
   249  
   250  // cbcMode is an interface for block ciphers using cipher block chaining.
   251  type cbcMode interface {
   252  	cipher.BlockMode
   253  	SetIV([]byte)
   254  }
   255  
   256  // decrypt checks and strips the mac and decrypts the data in b. Returns a
   257  // success boolean, the number of bytes to skip from the start of the record in
   258  // order to get the application payload, and an optional alert value.
   259  func (hc *halfConn) decrypt(b *block) (ok bool, prefixLen int, alertValue alert) {
   260  	// pull out payload
   261  	payload := b.data[recordHeaderLen:]
   262  
   263  	macSize := 0
   264  	if hc.mac != nil {
   265  		macSize = hc.mac.Size()
   266  	}
   267  
   268  	paddingGood := byte(255)
   269  	explicitIVLen := 0
   270  
   271  	// decrypt
   272  	if hc.cipher != nil {
   273  		switch c := hc.cipher.(type) {
   274  		case cipher.Stream:
   275  			c.XORKeyStream(payload, payload)
   276  		case cipher.AEAD:
   277  			explicitIVLen = 8
   278  			if len(payload) < explicitIVLen {
   279  				return false, 0, alertBadRecordMAC
   280  			}
   281  			nonce := payload[:8]
   282  			payload = payload[8:]
   283  
   284  			copy(hc.additionalData[:], hc.seq[:])
   285  			copy(hc.additionalData[8:], b.data[:3])
   286  			n := len(payload) - c.Overhead()
   287  			hc.additionalData[11] = byte(n >> 8)
   288  			hc.additionalData[12] = byte(n)
   289  			var err error
   290  			payload, err = c.Open(payload[:0], nonce, payload, hc.additionalData[:])
   291  			if err != nil {
   292  				return false, 0, alertBadRecordMAC
   293  			}
   294  			b.resize(recordHeaderLen + explicitIVLen + len(payload))
   295  		case cbcMode:
   296  			blockSize := c.BlockSize()
   297  			if hc.version >= VersionTLS11 {
   298  				explicitIVLen = blockSize
   299  			}
   300  
   301  			if len(payload)%blockSize != 0 || len(payload) < roundUp(explicitIVLen+macSize+1, blockSize) {
   302  				return false, 0, alertBadRecordMAC
   303  			}
   304  
   305  			if explicitIVLen > 0 {
   306  				c.SetIV(payload[:explicitIVLen])
   307  				payload = payload[explicitIVLen:]
   308  			}
   309  			c.CryptBlocks(payload, payload)
   310  			if hc.version == VersionSSL30 {
   311  				payload, paddingGood = removePaddingSSL30(payload)
   312  			} else {
   313  				payload, paddingGood = removePadding(payload)
   314  			}
   315  			b.resize(recordHeaderLen + explicitIVLen + len(payload))
   316  
   317  			// note that we still have a timing side-channel in the
   318  			// MAC check, below. An attacker can align the record
   319  			// so that a correct padding will cause one less hash
   320  			// block to be calculated. Then they can iteratively
   321  			// decrypt a record by breaking each byte. See
   322  			// "Password Interception in a SSL/TLS Channel", Brice
   323  			// Canvel et al.
   324  			//
   325  			// However, our behavior matches OpenSSL, so we leak
   326  			// only as much as they do.
   327  		default:
   328  			panic("unknown cipher type")
   329  		}
   330  	}
   331  
   332  	// check, strip mac
   333  	if hc.mac != nil {
   334  		if len(payload) < macSize {
   335  			return false, 0, alertBadRecordMAC
   336  		}
   337  
   338  		// strip mac off payload, b.data
   339  		n := len(payload) - macSize
   340  		b.data[3] = byte(n >> 8)
   341  		b.data[4] = byte(n)
   342  		b.resize(recordHeaderLen + explicitIVLen + n)
   343  		remoteMAC := payload[n:]
   344  		localMAC := hc.mac.MAC(hc.inDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], payload[:n])
   345  
   346  		if subtle.ConstantTimeCompare(localMAC, remoteMAC) != 1 || paddingGood != 255 {
   347  			return false, 0, alertBadRecordMAC
   348  		}
   349  		hc.inDigestBuf = localMAC
   350  	}
   351  	hc.incSeq()
   352  
   353  	return true, recordHeaderLen + explicitIVLen, 0
   354  }
   355  
   356  // padToBlockSize calculates the needed padding block, if any, for a payload.
   357  // On exit, prefix aliases payload and extends to the end of the last full
   358  // block of payload. finalBlock is a fresh slice which contains the contents of
   359  // any suffix of payload as well as the needed padding to make finalBlock a
   360  // full block.
   361  func padToBlockSize(payload []byte, blockSize int) (prefix, finalBlock []byte) {
   362  	overrun := len(payload) % blockSize
   363  	paddingLen := blockSize - overrun
   364  	prefix = payload[:len(payload)-overrun]
   365  	finalBlock = make([]byte, blockSize)
   366  	copy(finalBlock, payload[len(payload)-overrun:])
   367  	for i := overrun; i < blockSize; i++ {
   368  		finalBlock[i] = byte(paddingLen - 1)
   369  	}
   370  	return
   371  }
   372  
   373  // encrypt encrypts and macs the data in b.
   374  func (hc *halfConn) encrypt(b *block, explicitIVLen int) (bool, alert) {
   375  	// mac
   376  	if hc.mac != nil {
   377  		mac := hc.mac.MAC(hc.outDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], b.data[recordHeaderLen+explicitIVLen:])
   378  
   379  		n := len(b.data)
   380  		b.resize(n + len(mac))
   381  		copy(b.data[n:], mac)
   382  		hc.outDigestBuf = mac
   383  	}
   384  
   385  	payload := b.data[recordHeaderLen:]
   386  
   387  	// encrypt
   388  	if hc.cipher != nil {
   389  		switch c := hc.cipher.(type) {
   390  		case cipher.Stream:
   391  			c.XORKeyStream(payload, payload)
   392  		case cipher.AEAD:
   393  			payloadLen := len(b.data) - recordHeaderLen - explicitIVLen
   394  			b.resize(len(b.data) + c.Overhead())
   395  			nonce := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
   396  			payload := b.data[recordHeaderLen+explicitIVLen:]
   397  			payload = payload[:payloadLen]
   398  
   399  			copy(hc.additionalData[:], hc.seq[:])
   400  			copy(hc.additionalData[8:], b.data[:3])
   401  			hc.additionalData[11] = byte(payloadLen >> 8)
   402  			hc.additionalData[12] = byte(payloadLen)
   403  
   404  			c.Seal(payload[:0], nonce, payload, hc.additionalData[:])
   405  		case cbcMode:
   406  			blockSize := c.BlockSize()
   407  			if explicitIVLen > 0 {
   408  				c.SetIV(payload[:explicitIVLen])
   409  				payload = payload[explicitIVLen:]
   410  			}
   411  			prefix, finalBlock := padToBlockSize(payload, blockSize)
   412  			b.resize(recordHeaderLen + explicitIVLen + len(prefix) + len(finalBlock))
   413  			c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen:], prefix)
   414  			c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen+len(prefix):], finalBlock)
   415  		default:
   416  			panic("unknown cipher type")
   417  		}
   418  	}
   419  
   420  	// update length to include MAC and any block padding needed.
   421  	n := len(b.data) - recordHeaderLen
   422  	b.data[3] = byte(n >> 8)
   423  	b.data[4] = byte(n)
   424  	hc.incSeq()
   425  
   426  	return true, 0
   427  }
   428  
   429  // A block is a simple data buffer.
   430  type block struct {
   431  	data []byte
   432  	off  int // index for Read
   433  	link *block
   434  }
   435  
   436  // resize resizes block to be n bytes, growing if necessary.
   437  func (b *block) resize(n int) {
   438  	if n > cap(b.data) {
   439  		b.reserve(n)
   440  	}
   441  	b.data = b.data[0:n]
   442  }
   443  
   444  // reserve makes sure that block contains a capacity of at least n bytes.
   445  func (b *block) reserve(n int) {
   446  	if cap(b.data) >= n {
   447  		return
   448  	}
   449  	m := cap(b.data)
   450  	if m == 0 {
   451  		m = 1024
   452  	}
   453  	for m < n {
   454  		m *= 2
   455  	}
   456  	data := make([]byte, len(b.data), m)
   457  	copy(data, b.data)
   458  	b.data = data
   459  }
   460  
   461  // readFromUntil reads from r into b until b contains at least n bytes
   462  // or else returns an error.
   463  func (b *block) readFromUntil(r io.Reader, n int) error {
   464  	// quick case
   465  	if len(b.data) >= n {
   466  		return nil
   467  	}
   468  
   469  	// read until have enough.
   470  	b.reserve(n)
   471  	for {
   472  		m, err := r.Read(b.data[len(b.data):cap(b.data)])
   473  		b.data = b.data[0 : len(b.data)+m]
   474  		if len(b.data) >= n {
   475  			// TODO(bradfitz,agl): slightly suspicious
   476  			// that we're throwing away r.Read's err here.
   477  			break
   478  		}
   479  		if err != nil {
   480  			return err
   481  		}
   482  	}
   483  	return nil
   484  }
   485  
   486  func (b *block) Read(p []byte) (n int, err error) {
   487  	n = copy(p, b.data[b.off:])
   488  	b.off += n
   489  	return
   490  }
   491  
   492  // newBlock allocates a new block, from hc's free list if possible.
   493  func (hc *halfConn) newBlock() *block {
   494  	b := hc.bfree
   495  	if b == nil {
   496  		return new(block)
   497  	}
   498  	hc.bfree = b.link
   499  	b.link = nil
   500  	b.resize(0)
   501  	return b
   502  }
   503  
   504  // freeBlock returns a block to hc's free list.
   505  // The protocol is such that each side only has a block or two on
   506  // its free list at a time, so there's no need to worry about
   507  // trimming the list, etc.
   508  func (hc *halfConn) freeBlock(b *block) {
   509  	b.link = hc.bfree
   510  	hc.bfree = b
   511  }
   512  
   513  // splitBlock splits a block after the first n bytes,
   514  // returning a block with those n bytes and a
   515  // block with the remainder.  the latter may be nil.
   516  func (hc *halfConn) splitBlock(b *block, n int) (*block, *block) {
   517  	if len(b.data) <= n {
   518  		return b, nil
   519  	}
   520  	bb := hc.newBlock()
   521  	bb.resize(len(b.data) - n)
   522  	copy(bb.data, b.data[n:])
   523  	b.data = b.data[0:n]
   524  	return b, bb
   525  }
   526  
   527  // RecordHeaderError results when a TLS record header is invalid.
   528  type RecordHeaderError struct {
   529  	// Msg contains a human readable string that describes the error.
   530  	Msg string
   531  	// RecordHeader contains the five bytes of TLS record header that
   532  	// triggered the error.
   533  	RecordHeader [5]byte
   534  }
   535  
   536  func (e RecordHeaderError) Error() string { return "tls: " + e.Msg }
   537  
   538  func (c *Conn) newRecordHeaderError(msg string) (err RecordHeaderError) {
   539  	err.Msg = msg
   540  	copy(err.RecordHeader[:], c.rawInput.data)
   541  	return err
   542  }
   543  
   544  // readRecord reads the next TLS record from the connection
   545  // and updates the record layer state.
   546  // c.in.Mutex <= L; c.input == nil.
   547  func (c *Conn) readRecord(want recordType) error {
   548  	// Caller must be in sync with connection:
   549  	// handshake data if handshake not yet completed,
   550  	// else application data.
   551  	switch want {
   552  	default:
   553  		c.sendAlert(alertInternalError)
   554  		return c.in.setErrorLocked(errors.New("tls: unknown record type requested"))
   555  	case recordTypeHandshake, recordTypeChangeCipherSpec:
   556  		if c.handshakeComplete {
   557  			c.sendAlert(alertInternalError)
   558  			return c.in.setErrorLocked(errors.New("tls: handshake or ChangeCipherSpec requested while not in handshake"))
   559  		}
   560  	case recordTypeApplicationData:
   561  		if !c.handshakeComplete {
   562  			c.sendAlert(alertInternalError)
   563  			return c.in.setErrorLocked(errors.New("tls: application data record requested while in handshake"))
   564  		}
   565  	}
   566  
   567  Again:
   568  	if c.rawInput == nil {
   569  		c.rawInput = c.in.newBlock()
   570  	}
   571  	b := c.rawInput
   572  
   573  	// Read header, payload.
   574  	if err := b.readFromUntil(c.conn, recordHeaderLen); err != nil {
   575  		// RFC suggests that EOF without an alertCloseNotify is
   576  		// an error, but popular web sites seem to do this,
   577  		// so we can't make it an error.
   578  		// if err == io.EOF {
   579  		// 	err = io.ErrUnexpectedEOF
   580  		// }
   581  		if e, ok := err.(net.Error); !ok || !e.Temporary() {
   582  			c.in.setErrorLocked(err)
   583  		}
   584  		return err
   585  	}
   586  	typ := recordType(b.data[0])
   587  
   588  	// No valid TLS record has a type of 0x80, however SSLv2 handshakes
   589  	// start with a uint16 length where the MSB is set and the first record
   590  	// is always < 256 bytes long. Therefore typ == 0x80 strongly suggests
   591  	// an SSLv2 client.
   592  	if want == recordTypeHandshake && typ == 0x80 {
   593  		c.sendAlert(alertProtocolVersion)
   594  		return c.in.setErrorLocked(c.newRecordHeaderError("unsupported SSLv2 handshake received"))
   595  	}
   596  
   597  	vers := uint16(b.data[1])<<8 | uint16(b.data[2])
   598  	n := int(b.data[3])<<8 | int(b.data[4])
   599  	if c.haveVers && vers != c.vers {
   600  		c.sendAlert(alertProtocolVersion)
   601  		msg := fmt.Sprintf("received record with version %x when expecting version %x", vers, c.vers)
   602  		return c.in.setErrorLocked(c.newRecordHeaderError(msg))
   603  	}
   604  	if n > maxCiphertext {
   605  		c.sendAlert(alertRecordOverflow)
   606  		msg := fmt.Sprintf("oversized record received with length %d", n)
   607  		return c.in.setErrorLocked(c.newRecordHeaderError(msg))
   608  	}
   609  	if !c.haveVers {
   610  		// First message, be extra suspicious: this might not be a TLS
   611  		// client. Bail out before reading a full 'body', if possible.
   612  		// The current max version is 3.3 so if the version is >= 16.0,
   613  		// it's probably not real.
   614  		if (typ != recordTypeAlert && typ != want) || vers >= 0x1000 {
   615  			c.sendAlert(alertUnexpectedMessage)
   616  			return c.in.setErrorLocked(c.newRecordHeaderError("first record does not look like a TLS handshake"))
   617  		}
   618  	}
   619  	if err := b.readFromUntil(c.conn, recordHeaderLen+n); err != nil {
   620  		if err == io.EOF {
   621  			err = io.ErrUnexpectedEOF
   622  		}
   623  		if e, ok := err.(net.Error); !ok || !e.Temporary() {
   624  			c.in.setErrorLocked(err)
   625  		}
   626  		return err
   627  	}
   628  
   629  	// Process message.
   630  	b, c.rawInput = c.in.splitBlock(b, recordHeaderLen+n)
   631  	ok, off, err := c.in.decrypt(b)
   632  	if !ok {
   633  		c.in.setErrorLocked(c.sendAlert(err))
   634  	}
   635  	b.off = off
   636  	data := b.data[b.off:]
   637  	if len(data) > maxPlaintext {
   638  		err := c.sendAlert(alertRecordOverflow)
   639  		c.in.freeBlock(b)
   640  		return c.in.setErrorLocked(err)
   641  	}
   642  
   643  	switch typ {
   644  	default:
   645  		c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   646  
   647  	case recordTypeAlert:
   648  		if len(data) != 2 {
   649  			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   650  			break
   651  		}
   652  		if alert(data[1]) == alertCloseNotify {
   653  			c.in.setErrorLocked(io.EOF)
   654  			break
   655  		}
   656  		switch data[0] {
   657  		case alertLevelWarning:
   658  			// drop on the floor
   659  			c.in.freeBlock(b)
   660  			goto Again
   661  		case alertLevelError:
   662  			c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])})
   663  		default:
   664  			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   665  		}
   666  
   667  	case recordTypeChangeCipherSpec:
   668  		if typ != want || len(data) != 1 || data[0] != 1 {
   669  			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   670  			break
   671  		}
   672  		err := c.in.changeCipherSpec()
   673  		if err != nil {
   674  			c.in.setErrorLocked(c.sendAlert(err.(alert)))
   675  		}
   676  
   677  	case recordTypeApplicationData:
   678  		if typ != want {
   679  			c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   680  			break
   681  		}
   682  		c.input = b
   683  		b = nil
   684  
   685  	case recordTypeHandshake:
   686  		// TODO(rsc): Should at least pick off connection close.
   687  		if typ != want && !(c.isClient && c.config.Renegotiation != RenegotiateNever) {
   688  			return c.in.setErrorLocked(c.sendAlert(alertNoRenegotiation))
   689  		}
   690  		c.hand.Write(data)
   691  	}
   692  
   693  	if b != nil {
   694  		c.in.freeBlock(b)
   695  	}
   696  	return c.in.err
   697  }
   698  
   699  // sendAlert sends a TLS alert message.
   700  // c.out.Mutex <= L.
   701  func (c *Conn) sendAlertLocked(err alert) error {
   702  	switch err {
   703  	case alertNoRenegotiation, alertCloseNotify:
   704  		c.tmp[0] = alertLevelWarning
   705  	default:
   706  		c.tmp[0] = alertLevelError
   707  	}
   708  	c.tmp[1] = byte(err)
   709  
   710  	_, writeErr := c.writeRecordLocked(recordTypeAlert, c.tmp[0:2])
   711  	if err == alertCloseNotify {
   712  		// closeNotify is a special case in that it isn't an error.
   713  		return writeErr
   714  	}
   715  
   716  	return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err})
   717  }
   718  
   719  // sendAlert sends a TLS alert message.
   720  // L < c.out.Mutex.
   721  func (c *Conn) sendAlert(err alert) error {
   722  	c.out.Lock()
   723  	defer c.out.Unlock()
   724  	return c.sendAlertLocked(err)
   725  }
   726  
   727  const (
   728  	// tcpMSSEstimate is a conservative estimate of the TCP maximum segment
   729  	// size (MSS). A constant is used, rather than querying the kernel for
   730  	// the actual MSS, to avoid complexity. The value here is the IPv6
   731  	// minimum MTU (1280 bytes) minus the overhead of an IPv6 header (40
   732  	// bytes) and a TCP header with timestamps (32 bytes).
   733  	tcpMSSEstimate = 1208
   734  
   735  	// recordSizeBoostThreshold is the number of bytes of application data
   736  	// sent after which the TLS record size will be increased to the
   737  	// maximum.
   738  	recordSizeBoostThreshold = 128 * 1024
   739  )
   740  
   741  // maxPayloadSizeForWrite returns the maximum TLS payload size to use for the
   742  // next application data record. There is the following trade-off:
   743  //
   744  //   - For latency-sensitive applications, such as web browsing, each TLS
   745  //     record should fit in one TCP segment.
   746  //   - For throughput-sensitive applications, such as large file transfers,
   747  //     larger TLS records better amortize framing and encryption overheads.
   748  //
   749  // A simple heuristic that works well in practice is to use small records for
   750  // the first 1MB of data, then use larger records for subsequent data, and
   751  // reset back to smaller records after the connection becomes idle. See "High
   752  // Performance Web Networking", Chapter 4, or:
   753  // https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency/
   754  //
   755  // In the interests of simplicity and determinism, this code does not attempt
   756  // to reset the record size once the connection is idle, however.
   757  //
   758  // c.out.Mutex <= L.
   759  func (c *Conn) maxPayloadSizeForWrite(typ recordType, explicitIVLen int) int {
   760  	if c.config.DynamicRecordSizingDisabled || typ != recordTypeApplicationData {
   761  		return maxPlaintext
   762  	}
   763  
   764  	if c.bytesSent >= recordSizeBoostThreshold {
   765  		return maxPlaintext
   766  	}
   767  
   768  	// Subtract TLS overheads to get the maximum payload size.
   769  	macSize := 0
   770  	if c.out.mac != nil {
   771  		macSize = c.out.mac.Size()
   772  	}
   773  
   774  	payloadBytes := tcpMSSEstimate - recordHeaderLen - explicitIVLen
   775  	if c.out.cipher != nil {
   776  		switch ciph := c.out.cipher.(type) {
   777  		case cipher.Stream:
   778  			payloadBytes -= macSize
   779  		case cipher.AEAD:
   780  			payloadBytes -= ciph.Overhead()
   781  		case cbcMode:
   782  			blockSize := ciph.BlockSize()
   783  			// The payload must fit in a multiple of blockSize, with
   784  			// room for at least one padding byte.
   785  			payloadBytes = (payloadBytes & ^(blockSize - 1)) - 1
   786  			// The MAC is appended before padding so affects the
   787  			// payload size directly.
   788  			payloadBytes -= macSize
   789  		default:
   790  			panic("unknown cipher type")
   791  		}
   792  	}
   793  
   794  	// Allow packet growth in arithmetic progression up to max.
   795  	pkt := c.packetsSent
   796  	c.packetsSent++
   797  	if pkt > 1000 {
   798  		return maxPlaintext // avoid overflow in multiply below
   799  	}
   800  
   801  	n := payloadBytes * int(pkt+1)
   802  	if n > maxPlaintext {
   803  		n = maxPlaintext
   804  	}
   805  	return n
   806  }
   807  
   808  // c.out.Mutex <= L.
   809  func (c *Conn) write(data []byte) (int, error) {
   810  	if c.buffering {
   811  		c.sendBuf = append(c.sendBuf, data...)
   812  		return len(data), nil
   813  	}
   814  
   815  	n, err := c.conn.Write(data)
   816  	c.bytesSent += int64(n)
   817  	return n, err
   818  }
   819  
   820  func (c *Conn) flush() (int, error) {
   821  	if len(c.sendBuf) == 0 {
   822  		return 0, nil
   823  	}
   824  
   825  	n, err := c.conn.Write(c.sendBuf)
   826  	c.bytesSent += int64(n)
   827  	c.sendBuf = nil
   828  	c.buffering = false
   829  	return n, err
   830  }
   831  
   832  // writeRecordLocked writes a TLS record with the given type and payload to the
   833  // connection and updates the record layer state.
   834  // c.out.Mutex <= L.
   835  func (c *Conn) writeRecordLocked(typ recordType, data []byte) (int, error) {
   836  	b := c.out.newBlock()
   837  	defer c.out.freeBlock(b)
   838  
   839  	var n int
   840  	for len(data) > 0 {
   841  		explicitIVLen := 0
   842  		explicitIVIsSeq := false
   843  
   844  		var cbc cbcMode
   845  		if c.out.version >= VersionTLS11 {
   846  			var ok bool
   847  			if cbc, ok = c.out.cipher.(cbcMode); ok {
   848  				explicitIVLen = cbc.BlockSize()
   849  			}
   850  		}
   851  		if explicitIVLen == 0 {
   852  			if _, ok := c.out.cipher.(cipher.AEAD); ok {
   853  				explicitIVLen = 8
   854  				// The AES-GCM construction in TLS has an
   855  				// explicit nonce so that the nonce can be
   856  				// random. However, the nonce is only 8 bytes
   857  				// which is too small for a secure, random
   858  				// nonce. Therefore we use the sequence number
   859  				// as the nonce.
   860  				explicitIVIsSeq = true
   861  			}
   862  		}
   863  		m := len(data)
   864  		if maxPayload := c.maxPayloadSizeForWrite(typ, explicitIVLen); m > maxPayload {
   865  			m = maxPayload
   866  		}
   867  		b.resize(recordHeaderLen + explicitIVLen + m)
   868  		b.data[0] = byte(typ)
   869  		vers := c.vers
   870  		if vers == 0 {
   871  			// Some TLS servers fail if the record version is
   872  			// greater than TLS 1.0 for the initial ClientHello.
   873  			vers = VersionTLS10
   874  		}
   875  		b.data[1] = byte(vers >> 8)
   876  		b.data[2] = byte(vers)
   877  		b.data[3] = byte(m >> 8)
   878  		b.data[4] = byte(m)
   879  		if explicitIVLen > 0 {
   880  			explicitIV := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen]
   881  			if explicitIVIsSeq {
   882  				copy(explicitIV, c.out.seq[:])
   883  			} else {
   884  				if _, err := io.ReadFull(c.config.rand(), explicitIV); err != nil {
   885  					return n, err
   886  				}
   887  			}
   888  		}
   889  		copy(b.data[recordHeaderLen+explicitIVLen:], data)
   890  		c.out.encrypt(b, explicitIVLen)
   891  		if _, err := c.write(b.data); err != nil {
   892  			return n, err
   893  		}
   894  		n += m
   895  		data = data[m:]
   896  	}
   897  
   898  	if typ == recordTypeChangeCipherSpec {
   899  		if err := c.out.changeCipherSpec(); err != nil {
   900  			return n, c.sendAlertLocked(err.(alert))
   901  		}
   902  	}
   903  
   904  	return n, nil
   905  }
   906  
   907  // writeRecord writes a TLS record with the given type and payload to the
   908  // connection and updates the record layer state.
   909  // L < c.out.Mutex.
   910  func (c *Conn) writeRecord(typ recordType, data []byte) (int, error) {
   911  	c.out.Lock()
   912  	defer c.out.Unlock()
   913  
   914  	return c.writeRecordLocked(typ, data)
   915  }
   916  
   917  // readHandshake reads the next handshake message from
   918  // the record layer.
   919  // c.in.Mutex < L; c.out.Mutex < L.
   920  func (c *Conn) readHandshake() (interface{}, error) {
   921  	for c.hand.Len() < 4 {
   922  		if err := c.in.err; err != nil {
   923  			return nil, err
   924  		}
   925  		if err := c.readRecord(recordTypeHandshake); err != nil {
   926  			return nil, err
   927  		}
   928  	}
   929  
   930  	data := c.hand.Bytes()
   931  	n := int(data[1])<<16 | int(data[2])<<8 | int(data[3])
   932  	if n > maxHandshake {
   933  		c.sendAlertLocked(alertInternalError)
   934  		return nil, c.in.setErrorLocked(fmt.Errorf("tls: handshake message of length %d bytes exceeds maximum of %d bytes", n, maxHandshake))
   935  	}
   936  	for c.hand.Len() < 4+n {
   937  		if err := c.in.err; err != nil {
   938  			return nil, err
   939  		}
   940  		if err := c.readRecord(recordTypeHandshake); err != nil {
   941  			return nil, err
   942  		}
   943  	}
   944  	data = c.hand.Next(4 + n)
   945  	var m handshakeMessage
   946  	switch data[0] {
   947  	case typeHelloRequest:
   948  		m = new(helloRequestMsg)
   949  	case typeClientHello:
   950  		m = new(clientHelloMsg)
   951  	case typeServerHello:
   952  		m = new(serverHelloMsg)
   953  	case typeNewSessionTicket:
   954  		m = new(newSessionTicketMsg)
   955  	case typeCertificate:
   956  		m = new(certificateMsg)
   957  	case typeCertificateRequest:
   958  		m = &certificateRequestMsg{
   959  			hasSignatureAndHash: c.vers >= VersionTLS12,
   960  		}
   961  	case typeCertificateStatus:
   962  		m = new(certificateStatusMsg)
   963  	case typeServerKeyExchange:
   964  		m = new(serverKeyExchangeMsg)
   965  	case typeServerHelloDone:
   966  		m = new(serverHelloDoneMsg)
   967  	case typeClientKeyExchange:
   968  		m = new(clientKeyExchangeMsg)
   969  	case typeCertificateVerify:
   970  		m = &certificateVerifyMsg{
   971  			hasSignatureAndHash: c.vers >= VersionTLS12,
   972  		}
   973  	case typeNextProtocol:
   974  		m = new(nextProtoMsg)
   975  	case typeFinished:
   976  		m = new(finishedMsg)
   977  	default:
   978  		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   979  	}
   980  
   981  	// The handshake message unmarshallers
   982  	// expect to be able to keep references to data,
   983  	// so pass in a fresh copy that won't be overwritten.
   984  	data = append([]byte(nil), data...)
   985  
   986  	if !m.unmarshal(data) {
   987  		return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage))
   988  	}
   989  	return m, nil
   990  }
   991  
   992  var errClosed = errors.New("tls: use of closed connection")
   993  
   994  // Write writes data to the connection.
   995  func (c *Conn) Write(b []byte) (int, error) {
   996  	// interlock with Close below
   997  	for {
   998  		x := atomic.LoadInt32(&c.activeCall)
   999  		if x&1 != 0 {
  1000  			return 0, errClosed
  1001  		}
  1002  		if atomic.CompareAndSwapInt32(&c.activeCall, x, x+2) {
  1003  			defer atomic.AddInt32(&c.activeCall, -2)
  1004  			break
  1005  		}
  1006  	}
  1007  
  1008  	if err := c.Handshake(); err != nil {
  1009  		return 0, err
  1010  	}
  1011  
  1012  	c.out.Lock()
  1013  	defer c.out.Unlock()
  1014  
  1015  	if err := c.out.err; err != nil {
  1016  		return 0, err
  1017  	}
  1018  
  1019  	if !c.handshakeComplete {
  1020  		return 0, alertInternalError
  1021  	}
  1022  
  1023  	// SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext
  1024  	// attack when using block mode ciphers due to predictable IVs.
  1025  	// This can be prevented by splitting each Application Data
  1026  	// record into two records, effectively randomizing the IV.
  1027  	//
  1028  	// http://www.openssl.org/~bodo/tls-cbc.txt
  1029  	// https://bugzilla.mozilla.org/show_bug.cgi?id=665814
  1030  	// http://www.imperialviolet.org/2012/01/15/beastfollowup.html
  1031  
  1032  	var m int
  1033  	if len(b) > 1 && c.vers <= VersionTLS10 {
  1034  		if _, ok := c.out.cipher.(cipher.BlockMode); ok {
  1035  			n, err := c.writeRecordLocked(recordTypeApplicationData, b[:1])
  1036  			if err != nil {
  1037  				return n, c.out.setErrorLocked(err)
  1038  			}
  1039  			m, b = 1, b[1:]
  1040  		}
  1041  	}
  1042  
  1043  	n, err := c.writeRecordLocked(recordTypeApplicationData, b)
  1044  	return n + m, c.out.setErrorLocked(err)
  1045  }
  1046  
  1047  // handleRenegotiation processes a HelloRequest handshake message.
  1048  // c.in.Mutex <= L
  1049  func (c *Conn) handleRenegotiation() error {
  1050  	msg, err := c.readHandshake()
  1051  	if err != nil {
  1052  		return err
  1053  	}
  1054  
  1055  	_, ok := msg.(*helloRequestMsg)
  1056  	if !ok {
  1057  		c.sendAlert(alertUnexpectedMessage)
  1058  		return alertUnexpectedMessage
  1059  	}
  1060  
  1061  	if !c.isClient {
  1062  		return c.sendAlert(alertNoRenegotiation)
  1063  	}
  1064  
  1065  	switch c.config.Renegotiation {
  1066  	case RenegotiateNever:
  1067  		return c.sendAlert(alertNoRenegotiation)
  1068  	case RenegotiateOnceAsClient:
  1069  		if c.handshakes > 1 {
  1070  			return c.sendAlert(alertNoRenegotiation)
  1071  		}
  1072  	case RenegotiateFreelyAsClient:
  1073  		// Ok.
  1074  	default:
  1075  		c.sendAlert(alertInternalError)
  1076  		return errors.New("tls: unknown Renegotiation value")
  1077  	}
  1078  
  1079  	c.handshakeMutex.Lock()
  1080  	defer c.handshakeMutex.Unlock()
  1081  
  1082  	c.handshakeComplete = false
  1083  	if c.handshakeErr = c.clientHandshake(); c.handshakeErr == nil {
  1084  		c.handshakes++
  1085  	}
  1086  	return c.handshakeErr
  1087  }
  1088  
  1089  // Read can be made to time out and return a net.Error with Timeout() == true
  1090  // after a fixed time limit; see SetDeadline and SetReadDeadline.
  1091  func (c *Conn) Read(b []byte) (n int, err error) {
  1092  	if err = c.Handshake(); err != nil {
  1093  		return
  1094  	}
  1095  	if len(b) == 0 {
  1096  		// Put this after Handshake, in case people were calling
  1097  		// Read(nil) for the side effect of the Handshake.
  1098  		return
  1099  	}
  1100  
  1101  	c.in.Lock()
  1102  	defer c.in.Unlock()
  1103  
  1104  	// Some OpenSSL servers send empty records in order to randomize the
  1105  	// CBC IV. So this loop ignores a limited number of empty records.
  1106  	const maxConsecutiveEmptyRecords = 100
  1107  	for emptyRecordCount := 0; emptyRecordCount <= maxConsecutiveEmptyRecords; emptyRecordCount++ {
  1108  		for c.input == nil && c.in.err == nil {
  1109  			if err := c.readRecord(recordTypeApplicationData); err != nil {
  1110  				// Soft error, like EAGAIN
  1111  				return 0, err
  1112  			}
  1113  			if c.hand.Len() > 0 {
  1114  				// We received handshake bytes, indicating the
  1115  				// start of a renegotiation.
  1116  				if err := c.handleRenegotiation(); err != nil {
  1117  					return 0, err
  1118  				}
  1119  			}
  1120  		}
  1121  		if err := c.in.err; err != nil {
  1122  			return 0, err
  1123  		}
  1124  
  1125  		n, err = c.input.Read(b)
  1126  		if c.input.off >= len(c.input.data) {
  1127  			c.in.freeBlock(c.input)
  1128  			c.input = nil
  1129  		}
  1130  
  1131  		// If a close-notify alert is waiting, read it so that
  1132  		// we can return (n, EOF) instead of (n, nil), to signal
  1133  		// to the HTTP response reading goroutine that the
  1134  		// connection is now closed. This eliminates a race
  1135  		// where the HTTP response reading goroutine would
  1136  		// otherwise not observe the EOF until its next read,
  1137  		// by which time a client goroutine might have already
  1138  		// tried to reuse the HTTP connection for a new
  1139  		// request.
  1140  		// See https://codereview.appspot.com/76400046
  1141  		// and https://golang.org/issue/3514
  1142  		if ri := c.rawInput; ri != nil &&
  1143  			n != 0 && err == nil &&
  1144  			c.input == nil && len(ri.data) > 0 && recordType(ri.data[0]) == recordTypeAlert {
  1145  			if recErr := c.readRecord(recordTypeApplicationData); recErr != nil {
  1146  				err = recErr // will be io.EOF on closeNotify
  1147  			}
  1148  		}
  1149  
  1150  		if n != 0 || err != nil {
  1151  			return n, err
  1152  		}
  1153  	}
  1154  
  1155  	return 0, io.ErrNoProgress
  1156  }
  1157  
  1158  // Close closes the connection.
  1159  func (c *Conn) Close() error {
  1160  	// Interlock with Conn.Write above.
  1161  	var x int32
  1162  	for {
  1163  		x = atomic.LoadInt32(&c.activeCall)
  1164  		if x&1 != 0 {
  1165  			return errClosed
  1166  		}
  1167  		if atomic.CompareAndSwapInt32(&c.activeCall, x, x|1) {
  1168  			break
  1169  		}
  1170  	}
  1171  	if x != 0 {
  1172  		// io.Writer and io.Closer should not be used concurrently.
  1173  		// If Close is called while a Write is currently in-flight,
  1174  		// interpret that as a sign that this Close is really just
  1175  		// being used to break the Write and/or clean up resources and
  1176  		// avoid sending the alertCloseNotify, which may block
  1177  		// waiting on handshakeMutex or the c.out mutex.
  1178  		return c.conn.Close()
  1179  	}
  1180  
  1181  	var alertErr error
  1182  
  1183  	c.handshakeMutex.Lock()
  1184  	defer c.handshakeMutex.Unlock()
  1185  	if c.handshakeComplete {
  1186  		alertErr = c.sendAlert(alertCloseNotify)
  1187  	}
  1188  
  1189  	if err := c.conn.Close(); err != nil {
  1190  		return err
  1191  	}
  1192  	return alertErr
  1193  }
  1194  
  1195  // Handshake runs the client or server handshake
  1196  // protocol if it has not yet been run.
  1197  // Most uses of this package need not call Handshake
  1198  // explicitly: the first Read or Write will call it automatically.
  1199  func (c *Conn) Handshake() error {
  1200  	// c.handshakeErr and c.handshakeComplete are protected by
  1201  	// c.handshakeMutex. In order to perform a handshake, we need to lock
  1202  	// c.in also and c.handshakeMutex must be locked after c.in.
  1203  	//
  1204  	// However, if a Read() operation is hanging then it'll be holding the
  1205  	// lock on c.in and so taking it here would cause all operations that
  1206  	// need to check whether a handshake is pending (such as Write) to
  1207  	// block.
  1208  	//
  1209  	// Thus we take c.handshakeMutex first and, if we find that a handshake
  1210  	// is needed, then we unlock, acquire c.in and c.handshakeMutex in the
  1211  	// correct order, and check again.
  1212  	c.handshakeMutex.Lock()
  1213  	defer c.handshakeMutex.Unlock()
  1214  
  1215  	for i := 0; i < 2; i++ {
  1216  		if i == 1 {
  1217  			c.handshakeMutex.Unlock()
  1218  			c.in.Lock()
  1219  			defer c.in.Unlock()
  1220  			c.handshakeMutex.Lock()
  1221  		}
  1222  
  1223  		if err := c.handshakeErr; err != nil {
  1224  			return err
  1225  		}
  1226  		if c.handshakeComplete {
  1227  			return nil
  1228  		}
  1229  	}
  1230  
  1231  	if c.isClient {
  1232  		c.handshakeErr = c.clientHandshake()
  1233  	} else {
  1234  		c.handshakeErr = c.serverHandshake()
  1235  	}
  1236  	if c.handshakeErr == nil {
  1237  		c.handshakes++
  1238  	}
  1239  	return c.handshakeErr
  1240  }
  1241  
  1242  // ConnectionState returns basic TLS details about the connection.
  1243  func (c *Conn) ConnectionState() ConnectionState {
  1244  	c.handshakeMutex.Lock()
  1245  	defer c.handshakeMutex.Unlock()
  1246  
  1247  	var state ConnectionState
  1248  	state.HandshakeComplete = c.handshakeComplete
  1249  	if c.handshakeComplete {
  1250  		state.Version = c.vers
  1251  		state.NegotiatedProtocol = c.clientProtocol
  1252  		state.DidResume = c.didResume
  1253  		state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback
  1254  		state.CipherSuite = c.cipherSuite
  1255  		state.PeerCertificates = c.peerCertificates
  1256  		state.VerifiedChains = c.verifiedChains
  1257  		state.ServerName = c.serverName
  1258  		state.SignedCertificateTimestamps = c.scts
  1259  		state.OCSPResponse = c.ocspResponse
  1260  		if !c.didResume {
  1261  			if c.clientFinishedIsFirst {
  1262  				state.TLSUnique = c.clientFinished[:]
  1263  			} else {
  1264  				state.TLSUnique = c.serverFinished[:]
  1265  			}
  1266  		}
  1267  	}
  1268  
  1269  	return state
  1270  }
  1271  
  1272  // OCSPResponse returns the stapled OCSP response from the TLS server, if
  1273  // any. (Only valid for client connections.)
  1274  func (c *Conn) OCSPResponse() []byte {
  1275  	c.handshakeMutex.Lock()
  1276  	defer c.handshakeMutex.Unlock()
  1277  
  1278  	return c.ocspResponse
  1279  }
  1280  
  1281  // VerifyHostname checks that the peer certificate chain is valid for
  1282  // connecting to host. If so, it returns nil; if not, it returns an error
  1283  // describing the problem.
  1284  func (c *Conn) VerifyHostname(host string) error {
  1285  	c.handshakeMutex.Lock()
  1286  	defer c.handshakeMutex.Unlock()
  1287  	if !c.isClient {
  1288  		return errors.New("tls: VerifyHostname called on TLS server connection")
  1289  	}
  1290  	if !c.handshakeComplete {
  1291  		return errors.New("tls: handshake has not yet been performed")
  1292  	}
  1293  	if len(c.verifiedChains) == 0 {
  1294  		return errors.New("tls: handshake did not verify certificate chain")
  1295  	}
  1296  	return c.peerCertificates[0].VerifyHostname(host)
  1297  }