github.com/gocuntian/go@v0.0.0-20160610041250-fee02d270bf8/src/go/types/call.go (about)

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // This file implements typechecking of call and selector expressions.
     6  
     7  package types
     8  
     9  import (
    10  	"go/ast"
    11  	"go/token"
    12  )
    13  
    14  func (check *Checker) call(x *operand, e *ast.CallExpr) exprKind {
    15  	check.exprOrType(x, e.Fun)
    16  
    17  	switch x.mode {
    18  	case invalid:
    19  		check.use(e.Args...)
    20  		x.mode = invalid
    21  		x.expr = e
    22  		return statement
    23  
    24  	case typexpr:
    25  		// conversion
    26  		T := x.typ
    27  		x.mode = invalid
    28  		switch n := len(e.Args); n {
    29  		case 0:
    30  			check.errorf(e.Rparen, "missing argument in conversion to %s", T)
    31  		case 1:
    32  			check.expr(x, e.Args[0])
    33  			if x.mode != invalid {
    34  				check.conversion(x, T)
    35  			}
    36  		default:
    37  			check.errorf(e.Args[n-1].Pos(), "too many arguments in conversion to %s", T)
    38  		}
    39  		x.expr = e
    40  		return conversion
    41  
    42  	case builtin:
    43  		id := x.id
    44  		if !check.builtin(x, e, id) {
    45  			x.mode = invalid
    46  		}
    47  		x.expr = e
    48  		// a non-constant result implies a function call
    49  		if x.mode != invalid && x.mode != constant_ {
    50  			check.hasCallOrRecv = true
    51  		}
    52  		return predeclaredFuncs[id].kind
    53  
    54  	default:
    55  		// function/method call
    56  		sig, _ := x.typ.Underlying().(*Signature)
    57  		if sig == nil {
    58  			check.invalidOp(x.pos(), "cannot call non-function %s", x)
    59  			x.mode = invalid
    60  			x.expr = e
    61  			return statement
    62  		}
    63  
    64  		arg, n, _ := unpack(func(x *operand, i int) { check.multiExpr(x, e.Args[i]) }, len(e.Args), false)
    65  		if arg != nil {
    66  			check.arguments(x, e, sig, arg, n)
    67  		} else {
    68  			x.mode = invalid
    69  		}
    70  
    71  		// determine result
    72  		switch sig.results.Len() {
    73  		case 0:
    74  			x.mode = novalue
    75  		case 1:
    76  			x.mode = value
    77  			x.typ = sig.results.vars[0].typ // unpack tuple
    78  		default:
    79  			x.mode = value
    80  			x.typ = sig.results
    81  		}
    82  
    83  		x.expr = e
    84  		check.hasCallOrRecv = true
    85  
    86  		return statement
    87  	}
    88  }
    89  
    90  // use type-checks each argument.
    91  // Useful to make sure expressions are evaluated
    92  // (and variables are "used") in the presence of other errors.
    93  func (check *Checker) use(arg ...ast.Expr) {
    94  	var x operand
    95  	for _, e := range arg {
    96  		check.rawExpr(&x, e, nil)
    97  	}
    98  }
    99  
   100  // useGetter is like use, but takes a getter instead of a list of expressions.
   101  // It should be called instead of use if a getter is present to avoid repeated
   102  // evaluation of the first argument (since the getter was likely obtained via
   103  // unpack, which may have evaluated the first argument already).
   104  func (check *Checker) useGetter(get getter, n int) {
   105  	var x operand
   106  	for i := 0; i < n; i++ {
   107  		get(&x, i)
   108  	}
   109  }
   110  
   111  // A getter sets x as the i'th operand, where 0 <= i < n and n is the total
   112  // number of operands (context-specific, and maintained elsewhere). A getter
   113  // type-checks the i'th operand; the details of the actual check are getter-
   114  // specific.
   115  type getter func(x *operand, i int)
   116  
   117  // unpack takes a getter get and a number of operands n. If n == 1, unpack
   118  // calls the incoming getter for the first operand. If that operand is
   119  // invalid, unpack returns (nil, 0, false). Otherwise, if that operand is a
   120  // function call, or a comma-ok expression and allowCommaOk is set, the result
   121  // is a new getter and operand count providing access to the function results,
   122  // or comma-ok values, respectively. The third result value reports if it
   123  // is indeed the comma-ok case. In all other cases, the incoming getter and
   124  // operand count are returned unchanged, and the third result value is false.
   125  //
   126  // In other words, if there's exactly one operand that - after type-checking
   127  // by calling get - stands for multiple operands, the resulting getter provides
   128  // access to those operands instead.
   129  //
   130  // If the returned getter is called at most once for a given operand index i
   131  // (including i == 0), that operand is guaranteed to cause only one call of
   132  // the incoming getter with that i.
   133  //
   134  func unpack(get getter, n int, allowCommaOk bool) (getter, int, bool) {
   135  	if n == 1 {
   136  		// possibly result of an n-valued function call or comma,ok value
   137  		var x0 operand
   138  		get(&x0, 0)
   139  		if x0.mode == invalid {
   140  			return nil, 0, false
   141  		}
   142  
   143  		if t, ok := x0.typ.(*Tuple); ok {
   144  			// result of an n-valued function call
   145  			return func(x *operand, i int) {
   146  				x.mode = value
   147  				x.expr = x0.expr
   148  				x.typ = t.At(i).typ
   149  			}, t.Len(), false
   150  		}
   151  
   152  		if x0.mode == mapindex || x0.mode == commaok {
   153  			// comma-ok value
   154  			if allowCommaOk {
   155  				a := [2]Type{x0.typ, Typ[UntypedBool]}
   156  				return func(x *operand, i int) {
   157  					x.mode = value
   158  					x.expr = x0.expr
   159  					x.typ = a[i]
   160  				}, 2, true
   161  			}
   162  			x0.mode = value
   163  		}
   164  
   165  		// single value
   166  		return func(x *operand, i int) {
   167  			if i != 0 {
   168  				unreachable()
   169  			}
   170  			*x = x0
   171  		}, 1, false
   172  	}
   173  
   174  	// zero or multiple values
   175  	return get, n, false
   176  }
   177  
   178  // arguments checks argument passing for the call with the given signature.
   179  // The arg function provides the operand for the i'th argument.
   180  func (check *Checker) arguments(x *operand, call *ast.CallExpr, sig *Signature, arg getter, n int) {
   181  	if call.Ellipsis.IsValid() {
   182  		// last argument is of the form x...
   183  		if !sig.variadic {
   184  			check.errorf(call.Ellipsis, "cannot use ... in call to non-variadic %s", call.Fun)
   185  			check.useGetter(arg, n)
   186  			return
   187  		}
   188  		if len(call.Args) == 1 && n > 1 {
   189  			// f()... is not permitted if f() is multi-valued
   190  			check.errorf(call.Ellipsis, "cannot use ... with %d-valued %s", n, call.Args[0])
   191  			check.useGetter(arg, n)
   192  			return
   193  		}
   194  	}
   195  
   196  	// evaluate arguments
   197  	for i := 0; i < n; i++ {
   198  		arg(x, i)
   199  		if x.mode != invalid {
   200  			var ellipsis token.Pos
   201  			if i == n-1 && call.Ellipsis.IsValid() {
   202  				ellipsis = call.Ellipsis
   203  			}
   204  			check.argument(call.Fun, sig, i, x, ellipsis)
   205  		}
   206  	}
   207  
   208  	// check argument count
   209  	if sig.variadic {
   210  		// a variadic function accepts an "empty"
   211  		// last argument: count one extra
   212  		n++
   213  	}
   214  	if n < sig.params.Len() {
   215  		check.errorf(call.Rparen, "too few arguments in call to %s", call.Fun)
   216  		// ok to continue
   217  	}
   218  }
   219  
   220  // argument checks passing of argument x to the i'th parameter of the given signature.
   221  // If ellipsis is valid, the argument is followed by ... at that position in the call.
   222  func (check *Checker) argument(fun ast.Expr, sig *Signature, i int, x *operand, ellipsis token.Pos) {
   223  	check.singleValue(x)
   224  	if x.mode == invalid {
   225  		return
   226  	}
   227  
   228  	n := sig.params.Len()
   229  
   230  	// determine parameter type
   231  	var typ Type
   232  	switch {
   233  	case i < n:
   234  		typ = sig.params.vars[i].typ
   235  	case sig.variadic:
   236  		typ = sig.params.vars[n-1].typ
   237  		if debug {
   238  			if _, ok := typ.(*Slice); !ok {
   239  				check.dump("%s: expected unnamed slice type, got %s", sig.params.vars[n-1].Pos(), typ)
   240  			}
   241  		}
   242  	default:
   243  		check.errorf(x.pos(), "too many arguments")
   244  		return
   245  	}
   246  
   247  	if ellipsis.IsValid() {
   248  		// argument is of the form x... and x is single-valued
   249  		if i != n-1 {
   250  			check.errorf(ellipsis, "can only use ... with matching parameter")
   251  			return
   252  		}
   253  		if _, ok := x.typ.Underlying().(*Slice); !ok {
   254  			check.errorf(x.pos(), "cannot use %s as parameter of type %s", x, typ)
   255  			return
   256  		}
   257  	} else if sig.variadic && i >= n-1 {
   258  		// use the variadic parameter slice's element type
   259  		typ = typ.(*Slice).elem
   260  	}
   261  
   262  	check.assignment(x, typ, check.sprintf("argument to %s", fun))
   263  }
   264  
   265  func (check *Checker) selector(x *operand, e *ast.SelectorExpr) {
   266  	// these must be declared before the "goto Error" statements
   267  	var (
   268  		obj      Object
   269  		index    []int
   270  		indirect bool
   271  	)
   272  
   273  	sel := e.Sel.Name
   274  	// If the identifier refers to a package, handle everything here
   275  	// so we don't need a "package" mode for operands: package names
   276  	// can only appear in qualified identifiers which are mapped to
   277  	// selector expressions.
   278  	if ident, ok := e.X.(*ast.Ident); ok {
   279  		_, obj := check.scope.LookupParent(ident.Name, check.pos)
   280  		if pkg, _ := obj.(*PkgName); pkg != nil {
   281  			assert(pkg.pkg == check.pkg)
   282  			check.recordUse(ident, pkg)
   283  			pkg.used = true
   284  			exp := pkg.imported.scope.Lookup(sel)
   285  			if exp == nil {
   286  				if !pkg.imported.fake {
   287  					check.errorf(e.Pos(), "%s not declared by package %s", sel, ident)
   288  				}
   289  				goto Error
   290  			}
   291  			if !exp.Exported() {
   292  				check.errorf(e.Pos(), "%s not exported by package %s", sel, ident)
   293  				// ok to continue
   294  			}
   295  			check.recordUse(e.Sel, exp)
   296  			// Simplified version of the code for *ast.Idents:
   297  			// - imported objects are always fully initialized
   298  			switch exp := exp.(type) {
   299  			case *Const:
   300  				assert(exp.Val() != nil)
   301  				x.mode = constant_
   302  				x.typ = exp.typ
   303  				x.val = exp.val
   304  			case *TypeName:
   305  				x.mode = typexpr
   306  				x.typ = exp.typ
   307  			case *Var:
   308  				x.mode = variable
   309  				x.typ = exp.typ
   310  			case *Func:
   311  				x.mode = value
   312  				x.typ = exp.typ
   313  			case *Builtin:
   314  				x.mode = builtin
   315  				x.typ = exp.typ
   316  				x.id = exp.id
   317  			default:
   318  				unreachable()
   319  			}
   320  			x.expr = e
   321  			return
   322  		}
   323  	}
   324  
   325  	check.exprOrType(x, e.X)
   326  	if x.mode == invalid {
   327  		goto Error
   328  	}
   329  
   330  	obj, index, indirect = LookupFieldOrMethod(x.typ, x.mode == variable, check.pkg, sel)
   331  	if obj == nil {
   332  		switch {
   333  		case index != nil:
   334  			// TODO(gri) should provide actual type where the conflict happens
   335  			check.invalidOp(e.Pos(), "ambiguous selector %s", sel)
   336  		case indirect:
   337  			check.invalidOp(e.Pos(), "%s is not in method set of %s", sel, x.typ)
   338  		default:
   339  			check.invalidOp(e.Pos(), "%s has no field or method %s", x, sel)
   340  		}
   341  		goto Error
   342  	}
   343  
   344  	if x.mode == typexpr {
   345  		// method expression
   346  		m, _ := obj.(*Func)
   347  		if m == nil {
   348  			check.invalidOp(e.Pos(), "%s has no method %s", x, sel)
   349  			goto Error
   350  		}
   351  
   352  		check.recordSelection(e, MethodExpr, x.typ, m, index, indirect)
   353  
   354  		// the receiver type becomes the type of the first function
   355  		// argument of the method expression's function type
   356  		var params []*Var
   357  		sig := m.typ.(*Signature)
   358  		if sig.params != nil {
   359  			params = sig.params.vars
   360  		}
   361  		x.mode = value
   362  		x.typ = &Signature{
   363  			params:   NewTuple(append([]*Var{NewVar(token.NoPos, check.pkg, "", x.typ)}, params...)...),
   364  			results:  sig.results,
   365  			variadic: sig.variadic,
   366  		}
   367  
   368  		check.addDeclDep(m)
   369  
   370  	} else {
   371  		// regular selector
   372  		switch obj := obj.(type) {
   373  		case *Var:
   374  			check.recordSelection(e, FieldVal, x.typ, obj, index, indirect)
   375  			if x.mode == variable || indirect {
   376  				x.mode = variable
   377  			} else {
   378  				x.mode = value
   379  			}
   380  			x.typ = obj.typ
   381  
   382  		case *Func:
   383  			// TODO(gri) If we needed to take into account the receiver's
   384  			// addressability, should we report the type &(x.typ) instead?
   385  			check.recordSelection(e, MethodVal, x.typ, obj, index, indirect)
   386  
   387  			if debug {
   388  				// Verify that LookupFieldOrMethod and MethodSet.Lookup agree.
   389  				typ := x.typ
   390  				if x.mode == variable {
   391  					// If typ is not an (unnamed) pointer or an interface,
   392  					// use *typ instead, because the method set of *typ
   393  					// includes the methods of typ.
   394  					// Variables are addressable, so we can always take their
   395  					// address.
   396  					if _, ok := typ.(*Pointer); !ok && !IsInterface(typ) {
   397  						typ = &Pointer{base: typ}
   398  					}
   399  				}
   400  				// If we created a synthetic pointer type above, we will throw
   401  				// away the method set computed here after use.
   402  				// TODO(gri) Method set computation should probably always compute
   403  				// both, the value and the pointer receiver method set and represent
   404  				// them in a single structure.
   405  				// TODO(gri) Consider also using a method set cache for the lifetime
   406  				// of checker once we rely on MethodSet lookup instead of individual
   407  				// lookup.
   408  				mset := NewMethodSet(typ)
   409  				if m := mset.Lookup(check.pkg, sel); m == nil || m.obj != obj {
   410  					check.dump("%s: (%s).%v -> %s", e.Pos(), typ, obj.name, m)
   411  					check.dump("%s\n", mset)
   412  					panic("method sets and lookup don't agree")
   413  				}
   414  			}
   415  
   416  			x.mode = value
   417  
   418  			// remove receiver
   419  			sig := *obj.typ.(*Signature)
   420  			sig.recv = nil
   421  			x.typ = &sig
   422  
   423  			check.addDeclDep(obj)
   424  
   425  		default:
   426  			unreachable()
   427  		}
   428  	}
   429  
   430  	// everything went well
   431  	x.expr = e
   432  	return
   433  
   434  Error:
   435  	x.mode = invalid
   436  	x.expr = e
   437  }