github.com/gocuntian/go@v0.0.0-20160610041250-fee02d270bf8/src/image/color/ycbcr.go (about)

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package color
     6  
     7  // RGBToYCbCr converts an RGB triple to a Y'CbCr triple.
     8  func RGBToYCbCr(r, g, b uint8) (uint8, uint8, uint8) {
     9  	// The JFIF specification says:
    10  	//	Y' =  0.2990*R + 0.5870*G + 0.1140*B
    11  	//	Cb = -0.1687*R - 0.3313*G + 0.5000*B + 128
    12  	//	Cr =  0.5000*R - 0.4187*G - 0.0813*B + 128
    13  	// http://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'.
    14  
    15  	r1 := int32(r)
    16  	g1 := int32(g)
    17  	b1 := int32(b)
    18  
    19  	// yy is in range [0,0xff].
    20  	yy := (19595*r1 + 38470*g1 + 7471*b1 + 1<<15) >> 16
    21  
    22  	// The bit twiddling below is equivalent to
    23  	//
    24  	// cb := (-11056*r1 - 21712*g1 + 32768*b1 + 257<<15) >> 16
    25  	// if cb < 0 {
    26  	//     cb = 0
    27  	// } else if cb > 0xff {
    28  	//     cb = ^int32(0)
    29  	// }
    30  	//
    31  	// but uses fewer branches and is faster.
    32  	// Note that the uint8 type conversion in the return
    33  	// statement will convert ^int32(0) to 0xff.
    34  	// The code below to compute cr uses a similar pattern.
    35  	cb := -11056*r1 - 21712*g1 + 32768*b1 + 257<<15
    36  	if uint32(cb)&0xff000000 == 0 {
    37  		cb >>= 16
    38  	} else {
    39  		cb = ^(cb >> 31)
    40  	}
    41  
    42  	cr := 32768*r1 - 27440*g1 - 5328*b1 + 257<<15
    43  	if uint32(cr)&0xff000000 == 0 {
    44  		cr >>= 16
    45  	} else {
    46  		cr = ^(cr >> 31)
    47  	}
    48  
    49  	return uint8(yy), uint8(cb), uint8(cr)
    50  }
    51  
    52  // YCbCrToRGB converts a Y'CbCr triple to an RGB triple.
    53  func YCbCrToRGB(y, cb, cr uint8) (uint8, uint8, uint8) {
    54  	// The JFIF specification says:
    55  	//	R = Y' + 1.40200*(Cr-128)
    56  	//	G = Y' - 0.34414*(Cb-128) - 0.71414*(Cr-128)
    57  	//	B = Y' + 1.77200*(Cb-128)
    58  	// http://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'.
    59  
    60  	yy1 := int32(y) * 0x010100 // Convert 0x12 to 0x121200.
    61  	cb1 := int32(cb) - 128
    62  	cr1 := int32(cr) - 128
    63  
    64  	// The bit twiddling below is equivalent to
    65  	//
    66  	// r := (yy1 + 91881*cr1) >> 16
    67  	// if r < 0 {
    68  	//     r = 0
    69  	// } else if r > 0xff {
    70  	//     r = ^int32(0)
    71  	// }
    72  	//
    73  	// but uses fewer branches and is faster.
    74  	// Note that the uint8 type conversion in the return
    75  	// statement will convert ^int32(0) to 0xff.
    76  	// The code below to compute g and b uses a similar pattern.
    77  	r := yy1 + 91881*cr1
    78  	if uint32(r)&0xff000000 == 0 {
    79  		r >>= 16
    80  	} else {
    81  		r = ^(r >> 31)
    82  	}
    83  
    84  	g := yy1 - 22554*cb1 - 46802*cr1
    85  	if uint32(g)&0xff000000 == 0 {
    86  		g >>= 16
    87  	} else {
    88  		g = ^(g >> 31)
    89  	}
    90  
    91  	b := yy1 + 116130*cb1
    92  	if uint32(b)&0xff000000 == 0 {
    93  		b >>= 16
    94  	} else {
    95  		b = ^(b >> 31)
    96  	}
    97  
    98  	return uint8(r), uint8(g), uint8(b)
    99  }
   100  
   101  // YCbCr represents a fully opaque 24-bit Y'CbCr color, having 8 bits each for
   102  // one luma and two chroma components.
   103  //
   104  // JPEG, VP8, the MPEG family and other codecs use this color model. Such
   105  // codecs often use the terms YUV and Y'CbCr interchangeably, but strictly
   106  // speaking, the term YUV applies only to analog video signals, and Y' (luma)
   107  // is Y (luminance) after applying gamma correction.
   108  //
   109  // Conversion between RGB and Y'CbCr is lossy and there are multiple, slightly
   110  // different formulae for converting between the two. This package follows
   111  // the JFIF specification at http://www.w3.org/Graphics/JPEG/jfif3.pdf.
   112  type YCbCr struct {
   113  	Y, Cb, Cr uint8
   114  }
   115  
   116  func (c YCbCr) RGBA() (uint32, uint32, uint32, uint32) {
   117  	// This code is a copy of the YCbCrToRGB function above, except that it
   118  	// returns values in the range [0, 0xffff] instead of [0, 0xff]. There is a
   119  	// subtle difference between doing this and having YCbCr satisfy the Color
   120  	// interface by first converting to an RGBA. The latter loses some
   121  	// information by going to and from 8 bits per channel.
   122  	//
   123  	// For example, this code:
   124  	//	const y, cb, cr = 0x7f, 0x7f, 0x7f
   125  	//	r, g, b := color.YCbCrToRGB(y, cb, cr)
   126  	//	r0, g0, b0, _ := color.YCbCr{y, cb, cr}.RGBA()
   127  	//	r1, g1, b1, _ := color.RGBA{r, g, b, 0xff}.RGBA()
   128  	//	fmt.Printf("0x%04x 0x%04x 0x%04x\n", r0, g0, b0)
   129  	//	fmt.Printf("0x%04x 0x%04x 0x%04x\n", r1, g1, b1)
   130  	// prints:
   131  	//	0x7e18 0x808d 0x7db9
   132  	//	0x7e7e 0x8080 0x7d7d
   133  
   134  	yy1 := int32(c.Y) * 0x10100 // Convert 0x12 to 0x121200.
   135  	cb1 := int32(c.Cb) - 128
   136  	cr1 := int32(c.Cr) - 128
   137  	r := (yy1 + 91881*cr1) >> 8
   138  	g := (yy1 - 22554*cb1 - 46802*cr1) >> 8
   139  	b := (yy1 + 116130*cb1) >> 8
   140  	if r < 0 {
   141  		r = 0
   142  	} else if r > 0xffff {
   143  		r = 0xffff
   144  	}
   145  	if g < 0 {
   146  		g = 0
   147  	} else if g > 0xffff {
   148  		g = 0xffff
   149  	}
   150  	if b < 0 {
   151  		b = 0
   152  	} else if b > 0xffff {
   153  		b = 0xffff
   154  	}
   155  	return uint32(r), uint32(g), uint32(b), 0xffff
   156  }
   157  
   158  // YCbCrModel is the Model for Y'CbCr colors.
   159  var YCbCrModel Model = ModelFunc(yCbCrModel)
   160  
   161  func yCbCrModel(c Color) Color {
   162  	if _, ok := c.(YCbCr); ok {
   163  		return c
   164  	}
   165  	r, g, b, _ := c.RGBA()
   166  	y, u, v := RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8))
   167  	return YCbCr{y, u, v}
   168  }
   169  
   170  // NYCbCrA represents a non-alpha-premultiplied Y'CbCr-with-alpha color, having
   171  // 8 bits each for one luma, two chroma and one alpha component.
   172  type NYCbCrA struct {
   173  	YCbCr
   174  	A uint8
   175  }
   176  
   177  func (c NYCbCrA) RGBA() (uint32, uint32, uint32, uint32) {
   178  	// The first part of this method is the same as YCbCr.RGBA.
   179  	yy1 := int32(c.Y) * 0x10100 // Convert 0x12 to 0x121200.
   180  	cb1 := int32(c.Cb) - 128
   181  	cr1 := int32(c.Cr) - 128
   182  	r := (yy1 + 91881*cr1) >> 8
   183  	g := (yy1 - 22554*cb1 - 46802*cr1) >> 8
   184  	b := (yy1 + 116130*cb1) >> 8
   185  	if r < 0 {
   186  		r = 0
   187  	} else if r > 0xffff {
   188  		r = 0xffff
   189  	}
   190  	if g < 0 {
   191  		g = 0
   192  	} else if g > 0xffff {
   193  		g = 0xffff
   194  	}
   195  	if b < 0 {
   196  		b = 0
   197  	} else if b > 0xffff {
   198  		b = 0xffff
   199  	}
   200  
   201  	// The second part of this method applies the alpha.
   202  	a := uint32(c.A) * 0x101
   203  	return uint32(r) * a / 0xffff, uint32(g) * a / 0xffff, uint32(b) * a / 0xffff, a
   204  }
   205  
   206  // NYCbCrAModel is the Model for non-alpha-premultiplied Y'CbCr-with-alpha
   207  // colors.
   208  var NYCbCrAModel Model = ModelFunc(nYCbCrAModel)
   209  
   210  func nYCbCrAModel(c Color) Color {
   211  	switch c := c.(type) {
   212  	case NYCbCrA:
   213  		return c
   214  	case YCbCr:
   215  		return NYCbCrA{c, 0xff}
   216  	}
   217  	r, g, b, a := c.RGBA()
   218  
   219  	// Convert from alpha-premultiplied to non-alpha-premultiplied.
   220  	if a != 0 {
   221  		r = (r * 0xffff) / a
   222  		g = (g * 0xffff) / a
   223  		b = (b * 0xffff) / a
   224  	}
   225  
   226  	y, u, v := RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8))
   227  	return NYCbCrA{YCbCr{Y: y, Cb: u, Cr: v}, uint8(a >> 8)}
   228  }
   229  
   230  // RGBToCMYK converts an RGB triple to a CMYK quadruple.
   231  func RGBToCMYK(r, g, b uint8) (uint8, uint8, uint8, uint8) {
   232  	rr := uint32(r)
   233  	gg := uint32(g)
   234  	bb := uint32(b)
   235  	w := rr
   236  	if w < gg {
   237  		w = gg
   238  	}
   239  	if w < bb {
   240  		w = bb
   241  	}
   242  	if w == 0 {
   243  		return 0, 0, 0, 0xff
   244  	}
   245  	c := (w - rr) * 0xff / w
   246  	m := (w - gg) * 0xff / w
   247  	y := (w - bb) * 0xff / w
   248  	return uint8(c), uint8(m), uint8(y), uint8(0xff - w)
   249  }
   250  
   251  // CMYKToRGB converts a CMYK quadruple to an RGB triple.
   252  func CMYKToRGB(c, m, y, k uint8) (uint8, uint8, uint8) {
   253  	w := 0xffff - uint32(k)*0x101
   254  	r := (0xffff - uint32(c)*0x101) * w / 0xffff
   255  	g := (0xffff - uint32(m)*0x101) * w / 0xffff
   256  	b := (0xffff - uint32(y)*0x101) * w / 0xffff
   257  	return uint8(r >> 8), uint8(g >> 8), uint8(b >> 8)
   258  }
   259  
   260  // CMYK represents a fully opaque CMYK color, having 8 bits for each of cyan,
   261  // magenta, yellow and black.
   262  //
   263  // It is not associated with any particular color profile.
   264  type CMYK struct {
   265  	C, M, Y, K uint8
   266  }
   267  
   268  func (c CMYK) RGBA() (uint32, uint32, uint32, uint32) {
   269  	// This code is a copy of the CMYKToRGB function above, except that it
   270  	// returns values in the range [0, 0xffff] instead of [0, 0xff].
   271  
   272  	w := 0xffff - uint32(c.K)*0x101
   273  	r := (0xffff - uint32(c.C)*0x101) * w / 0xffff
   274  	g := (0xffff - uint32(c.M)*0x101) * w / 0xffff
   275  	b := (0xffff - uint32(c.Y)*0x101) * w / 0xffff
   276  	return r, g, b, 0xffff
   277  }
   278  
   279  // CMYKModel is the Model for CMYK colors.
   280  var CMYKModel Model = ModelFunc(cmykModel)
   281  
   282  func cmykModel(c Color) Color {
   283  	if _, ok := c.(CMYK); ok {
   284  		return c
   285  	}
   286  	r, g, b, _ := c.RGBA()
   287  	cc, mm, yy, kk := RGBToCMYK(uint8(r>>8), uint8(g>>8), uint8(b>>8))
   288  	return CMYK{cc, mm, yy, kk}
   289  }