github.com/gocuntian/go@v0.0.0-20160610041250-fee02d270bf8/src/text/template/exec.go (about)

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package template
     6  
     7  import (
     8  	"bytes"
     9  	"fmt"
    10  	"io"
    11  	"reflect"
    12  	"runtime"
    13  	"sort"
    14  	"strings"
    15  	"text/template/parse"
    16  )
    17  
    18  // maxExecDepth specifies the maximum stack depth of templates within
    19  // templates. This limit is only practically reached by accidentally
    20  // recursive template invocations. This limit allows us to return
    21  // an error instead of triggering a stack overflow.
    22  const maxExecDepth = 100000
    23  
    24  // state represents the state of an execution. It's not part of the
    25  // template so that multiple executions of the same template
    26  // can execute in parallel.
    27  type state struct {
    28  	tmpl  *Template
    29  	wr    io.Writer
    30  	node  parse.Node // current node, for errors
    31  	vars  []variable // push-down stack of variable values.
    32  	depth int        // the height of the stack of executing templates.
    33  }
    34  
    35  // variable holds the dynamic value of a variable such as $, $x etc.
    36  type variable struct {
    37  	name  string
    38  	value reflect.Value
    39  }
    40  
    41  // push pushes a new variable on the stack.
    42  func (s *state) push(name string, value reflect.Value) {
    43  	s.vars = append(s.vars, variable{name, value})
    44  }
    45  
    46  // mark returns the length of the variable stack.
    47  func (s *state) mark() int {
    48  	return len(s.vars)
    49  }
    50  
    51  // pop pops the variable stack up to the mark.
    52  func (s *state) pop(mark int) {
    53  	s.vars = s.vars[0:mark]
    54  }
    55  
    56  // setVar overwrites the top-nth variable on the stack. Used by range iterations.
    57  func (s *state) setVar(n int, value reflect.Value) {
    58  	s.vars[len(s.vars)-n].value = value
    59  }
    60  
    61  // varValue returns the value of the named variable.
    62  func (s *state) varValue(name string) reflect.Value {
    63  	for i := s.mark() - 1; i >= 0; i-- {
    64  		if s.vars[i].name == name {
    65  			return s.vars[i].value
    66  		}
    67  	}
    68  	s.errorf("undefined variable: %s", name)
    69  	return zero
    70  }
    71  
    72  var zero reflect.Value
    73  
    74  // at marks the state to be on node n, for error reporting.
    75  func (s *state) at(node parse.Node) {
    76  	s.node = node
    77  }
    78  
    79  // doublePercent returns the string with %'s replaced by %%, if necessary,
    80  // so it can be used safely inside a Printf format string.
    81  func doublePercent(str string) string {
    82  	if strings.Contains(str, "%") {
    83  		str = strings.Replace(str, "%", "%%", -1)
    84  	}
    85  	return str
    86  }
    87  
    88  // TODO: It would be nice if ExecError was more broken down, but
    89  // the way ErrorContext embeds the template name makes the
    90  // processing too clumsy.
    91  
    92  // ExecError is the custom error type returned when Execute has an
    93  // error evaluating its template. (If a write error occurs, the actual
    94  // error is returned; it will not be of type ExecError.)
    95  type ExecError struct {
    96  	Name string // Name of template.
    97  	Err  error  // Pre-formatted error.
    98  }
    99  
   100  func (e ExecError) Error() string {
   101  	return e.Err.Error()
   102  }
   103  
   104  // errorf records an ExecError and terminates processing.
   105  func (s *state) errorf(format string, args ...interface{}) {
   106  	name := doublePercent(s.tmpl.Name())
   107  	if s.node == nil {
   108  		format = fmt.Sprintf("template: %s: %s", name, format)
   109  	} else {
   110  		location, context := s.tmpl.ErrorContext(s.node)
   111  		format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format)
   112  	}
   113  	panic(ExecError{
   114  		Name: s.tmpl.Name(),
   115  		Err:  fmt.Errorf(format, args...),
   116  	})
   117  }
   118  
   119  // writeError is the wrapper type used internally when Execute has an
   120  // error writing to its output. We strip the wrapper in errRecover.
   121  // Note that this is not an implementation of error, so it cannot escape
   122  // from the package as an error value.
   123  type writeError struct {
   124  	Err error // Original error.
   125  }
   126  
   127  func (s *state) writeError(err error) {
   128  	panic(writeError{
   129  		Err: err,
   130  	})
   131  }
   132  
   133  // errRecover is the handler that turns panics into returns from the top
   134  // level of Parse.
   135  func errRecover(errp *error) {
   136  	e := recover()
   137  	if e != nil {
   138  		switch err := e.(type) {
   139  		case runtime.Error:
   140  			panic(e)
   141  		case writeError:
   142  			*errp = err.Err // Strip the wrapper.
   143  		case ExecError:
   144  			*errp = err // Keep the wrapper.
   145  		default:
   146  			panic(e)
   147  		}
   148  	}
   149  }
   150  
   151  // ExecuteTemplate applies the template associated with t that has the given name
   152  // to the specified data object and writes the output to wr.
   153  // If an error occurs executing the template or writing its output,
   154  // execution stops, but partial results may already have been written to
   155  // the output writer.
   156  // A template may be executed safely in parallel.
   157  func (t *Template) ExecuteTemplate(wr io.Writer, name string, data interface{}) error {
   158  	var tmpl *Template
   159  	if t.common != nil {
   160  		tmpl = t.tmpl[name]
   161  	}
   162  	if tmpl == nil {
   163  		return fmt.Errorf("template: no template %q associated with template %q", name, t.name)
   164  	}
   165  	return tmpl.Execute(wr, data)
   166  }
   167  
   168  // Execute applies a parsed template to the specified data object,
   169  // and writes the output to wr.
   170  // If an error occurs executing the template or writing its output,
   171  // execution stops, but partial results may already have been written to
   172  // the output writer.
   173  // A template may be executed safely in parallel.
   174  func (t *Template) Execute(wr io.Writer, data interface{}) error {
   175  	return t.execute(wr, data)
   176  }
   177  
   178  func (t *Template) execute(wr io.Writer, data interface{}) (err error) {
   179  	defer errRecover(&err)
   180  	value := reflect.ValueOf(data)
   181  	state := &state{
   182  		tmpl: t,
   183  		wr:   wr,
   184  		vars: []variable{{"$", value}},
   185  	}
   186  	if t.Tree == nil || t.Root == nil {
   187  		state.errorf("%q is an incomplete or empty template%s", t.Name(), t.DefinedTemplates())
   188  	}
   189  	state.walk(value, t.Root)
   190  	return
   191  }
   192  
   193  // DefinedTemplates returns a string listing the defined templates,
   194  // prefixed by the string "; defined templates are: ". If there are none,
   195  // it returns the empty string. For generating an error message here
   196  // and in html/template.
   197  func (t *Template) DefinedTemplates() string {
   198  	if t.common == nil {
   199  		return ""
   200  	}
   201  	var b bytes.Buffer
   202  	for name, tmpl := range t.tmpl {
   203  		if tmpl.Tree == nil || tmpl.Root == nil {
   204  			continue
   205  		}
   206  		if b.Len() > 0 {
   207  			b.WriteString(", ")
   208  		}
   209  		fmt.Fprintf(&b, "%q", name)
   210  	}
   211  	var s string
   212  	if b.Len() > 0 {
   213  		s = "; defined templates are: " + b.String()
   214  	}
   215  	return s
   216  }
   217  
   218  // Walk functions step through the major pieces of the template structure,
   219  // generating output as they go.
   220  func (s *state) walk(dot reflect.Value, node parse.Node) {
   221  	s.at(node)
   222  	switch node := node.(type) {
   223  	case *parse.ActionNode:
   224  		// Do not pop variables so they persist until next end.
   225  		// Also, if the action declares variables, don't print the result.
   226  		val := s.evalPipeline(dot, node.Pipe)
   227  		if len(node.Pipe.Decl) == 0 {
   228  			s.printValue(node, val)
   229  		}
   230  	case *parse.IfNode:
   231  		s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList)
   232  	case *parse.ListNode:
   233  		for _, node := range node.Nodes {
   234  			s.walk(dot, node)
   235  		}
   236  	case *parse.RangeNode:
   237  		s.walkRange(dot, node)
   238  	case *parse.TemplateNode:
   239  		s.walkTemplate(dot, node)
   240  	case *parse.TextNode:
   241  		if _, err := s.wr.Write(node.Text); err != nil {
   242  			s.writeError(err)
   243  		}
   244  	case *parse.WithNode:
   245  		s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList)
   246  	default:
   247  		s.errorf("unknown node: %s", node)
   248  	}
   249  }
   250  
   251  // walkIfOrWith walks an 'if' or 'with' node. The two control structures
   252  // are identical in behavior except that 'with' sets dot.
   253  func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) {
   254  	defer s.pop(s.mark())
   255  	val := s.evalPipeline(dot, pipe)
   256  	truth, ok := isTrue(val)
   257  	if !ok {
   258  		s.errorf("if/with can't use %v", val)
   259  	}
   260  	if truth {
   261  		if typ == parse.NodeWith {
   262  			s.walk(val, list)
   263  		} else {
   264  			s.walk(dot, list)
   265  		}
   266  	} else if elseList != nil {
   267  		s.walk(dot, elseList)
   268  	}
   269  }
   270  
   271  // IsTrue reports whether the value is 'true', in the sense of not the zero of its type,
   272  // and whether the value has a meaningful truth value. This is the definition of
   273  // truth used by if and other such actions.
   274  func IsTrue(val interface{}) (truth, ok bool) {
   275  	return isTrue(reflect.ValueOf(val))
   276  }
   277  
   278  func isTrue(val reflect.Value) (truth, ok bool) {
   279  	if !val.IsValid() {
   280  		// Something like var x interface{}, never set. It's a form of nil.
   281  		return false, true
   282  	}
   283  	switch val.Kind() {
   284  	case reflect.Array, reflect.Map, reflect.Slice, reflect.String:
   285  		truth = val.Len() > 0
   286  	case reflect.Bool:
   287  		truth = val.Bool()
   288  	case reflect.Complex64, reflect.Complex128:
   289  		truth = val.Complex() != 0
   290  	case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Interface:
   291  		truth = !val.IsNil()
   292  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   293  		truth = val.Int() != 0
   294  	case reflect.Float32, reflect.Float64:
   295  		truth = val.Float() != 0
   296  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   297  		truth = val.Uint() != 0
   298  	case reflect.Struct:
   299  		truth = true // Struct values are always true.
   300  	default:
   301  		return
   302  	}
   303  	return truth, true
   304  }
   305  
   306  func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) {
   307  	s.at(r)
   308  	defer s.pop(s.mark())
   309  	val, _ := indirect(s.evalPipeline(dot, r.Pipe))
   310  	// mark top of stack before any variables in the body are pushed.
   311  	mark := s.mark()
   312  	oneIteration := func(index, elem reflect.Value) {
   313  		// Set top var (lexically the second if there are two) to the element.
   314  		if len(r.Pipe.Decl) > 0 {
   315  			s.setVar(1, elem)
   316  		}
   317  		// Set next var (lexically the first if there are two) to the index.
   318  		if len(r.Pipe.Decl) > 1 {
   319  			s.setVar(2, index)
   320  		}
   321  		s.walk(elem, r.List)
   322  		s.pop(mark)
   323  	}
   324  	switch val.Kind() {
   325  	case reflect.Array, reflect.Slice:
   326  		if val.Len() == 0 {
   327  			break
   328  		}
   329  		for i := 0; i < val.Len(); i++ {
   330  			oneIteration(reflect.ValueOf(i), val.Index(i))
   331  		}
   332  		return
   333  	case reflect.Map:
   334  		if val.Len() == 0 {
   335  			break
   336  		}
   337  		for _, key := range sortKeys(val.MapKeys()) {
   338  			oneIteration(key, val.MapIndex(key))
   339  		}
   340  		return
   341  	case reflect.Chan:
   342  		if val.IsNil() {
   343  			break
   344  		}
   345  		i := 0
   346  		for ; ; i++ {
   347  			elem, ok := val.Recv()
   348  			if !ok {
   349  				break
   350  			}
   351  			oneIteration(reflect.ValueOf(i), elem)
   352  		}
   353  		if i == 0 {
   354  			break
   355  		}
   356  		return
   357  	case reflect.Invalid:
   358  		break // An invalid value is likely a nil map, etc. and acts like an empty map.
   359  	default:
   360  		s.errorf("range can't iterate over %v", val)
   361  	}
   362  	if r.ElseList != nil {
   363  		s.walk(dot, r.ElseList)
   364  	}
   365  }
   366  
   367  func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) {
   368  	s.at(t)
   369  	tmpl := s.tmpl.tmpl[t.Name]
   370  	if tmpl == nil {
   371  		s.errorf("template %q not defined", t.Name)
   372  	}
   373  	if s.depth == maxExecDepth {
   374  		s.errorf("exceeded maximum template depth (%v)", maxExecDepth)
   375  	}
   376  	// Variables declared by the pipeline persist.
   377  	dot = s.evalPipeline(dot, t.Pipe)
   378  	newState := *s
   379  	newState.depth++
   380  	newState.tmpl = tmpl
   381  	// No dynamic scoping: template invocations inherit no variables.
   382  	newState.vars = []variable{{"$", dot}}
   383  	newState.walk(dot, tmpl.Root)
   384  }
   385  
   386  // Eval functions evaluate pipelines, commands, and their elements and extract
   387  // values from the data structure by examining fields, calling methods, and so on.
   388  // The printing of those values happens only through walk functions.
   389  
   390  // evalPipeline returns the value acquired by evaluating a pipeline. If the
   391  // pipeline has a variable declaration, the variable will be pushed on the
   392  // stack. Callers should therefore pop the stack after they are finished
   393  // executing commands depending on the pipeline value.
   394  func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) {
   395  	if pipe == nil {
   396  		return
   397  	}
   398  	s.at(pipe)
   399  	for _, cmd := range pipe.Cmds {
   400  		value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg.
   401  		// If the object has type interface{}, dig down one level to the thing inside.
   402  		if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 {
   403  			value = reflect.ValueOf(value.Interface()) // lovely!
   404  		}
   405  	}
   406  	for _, variable := range pipe.Decl {
   407  		s.push(variable.Ident[0], value)
   408  	}
   409  	return value
   410  }
   411  
   412  func (s *state) notAFunction(args []parse.Node, final reflect.Value) {
   413  	if len(args) > 1 || final.IsValid() {
   414  		s.errorf("can't give argument to non-function %s", args[0])
   415  	}
   416  }
   417  
   418  func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value {
   419  	firstWord := cmd.Args[0]
   420  	switch n := firstWord.(type) {
   421  	case *parse.FieldNode:
   422  		return s.evalFieldNode(dot, n, cmd.Args, final)
   423  	case *parse.ChainNode:
   424  		return s.evalChainNode(dot, n, cmd.Args, final)
   425  	case *parse.IdentifierNode:
   426  		// Must be a function.
   427  		return s.evalFunction(dot, n, cmd, cmd.Args, final)
   428  	case *parse.PipeNode:
   429  		// Parenthesized pipeline. The arguments are all inside the pipeline; final is ignored.
   430  		return s.evalPipeline(dot, n)
   431  	case *parse.VariableNode:
   432  		return s.evalVariableNode(dot, n, cmd.Args, final)
   433  	}
   434  	s.at(firstWord)
   435  	s.notAFunction(cmd.Args, final)
   436  	switch word := firstWord.(type) {
   437  	case *parse.BoolNode:
   438  		return reflect.ValueOf(word.True)
   439  	case *parse.DotNode:
   440  		return dot
   441  	case *parse.NilNode:
   442  		s.errorf("nil is not a command")
   443  	case *parse.NumberNode:
   444  		return s.idealConstant(word)
   445  	case *parse.StringNode:
   446  		return reflect.ValueOf(word.Text)
   447  	}
   448  	s.errorf("can't evaluate command %q", firstWord)
   449  	panic("not reached")
   450  }
   451  
   452  // idealConstant is called to return the value of a number in a context where
   453  // we don't know the type. In that case, the syntax of the number tells us
   454  // its type, and we use Go rules to resolve. Note there is no such thing as
   455  // a uint ideal constant in this situation - the value must be of int type.
   456  func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value {
   457  	// These are ideal constants but we don't know the type
   458  	// and we have no context.  (If it was a method argument,
   459  	// we'd know what we need.) The syntax guides us to some extent.
   460  	s.at(constant)
   461  	switch {
   462  	case constant.IsComplex:
   463  		return reflect.ValueOf(constant.Complex128) // incontrovertible.
   464  	case constant.IsFloat && !isHexConstant(constant.Text) && strings.ContainsAny(constant.Text, ".eE"):
   465  		return reflect.ValueOf(constant.Float64)
   466  	case constant.IsInt:
   467  		n := int(constant.Int64)
   468  		if int64(n) != constant.Int64 {
   469  			s.errorf("%s overflows int", constant.Text)
   470  		}
   471  		return reflect.ValueOf(n)
   472  	case constant.IsUint:
   473  		s.errorf("%s overflows int", constant.Text)
   474  	}
   475  	return zero
   476  }
   477  
   478  func isHexConstant(s string) bool {
   479  	return len(s) > 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X')
   480  }
   481  
   482  func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value {
   483  	s.at(field)
   484  	return s.evalFieldChain(dot, dot, field, field.Ident, args, final)
   485  }
   486  
   487  func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value {
   488  	s.at(chain)
   489  	if len(chain.Field) == 0 {
   490  		s.errorf("internal error: no fields in evalChainNode")
   491  	}
   492  	if chain.Node.Type() == parse.NodeNil {
   493  		s.errorf("indirection through explicit nil in %s", chain)
   494  	}
   495  	// (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields.
   496  	pipe := s.evalArg(dot, nil, chain.Node)
   497  	return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final)
   498  }
   499  
   500  func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value {
   501  	// $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields.
   502  	s.at(variable)
   503  	value := s.varValue(variable.Ident[0])
   504  	if len(variable.Ident) == 1 {
   505  		s.notAFunction(args, final)
   506  		return value
   507  	}
   508  	return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final)
   509  }
   510  
   511  // evalFieldChain evaluates .X.Y.Z possibly followed by arguments.
   512  // dot is the environment in which to evaluate arguments, while
   513  // receiver is the value being walked along the chain.
   514  func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value {
   515  	n := len(ident)
   516  	for i := 0; i < n-1; i++ {
   517  		receiver = s.evalField(dot, ident[i], node, nil, zero, receiver)
   518  	}
   519  	// Now if it's a method, it gets the arguments.
   520  	return s.evalField(dot, ident[n-1], node, args, final, receiver)
   521  }
   522  
   523  func (s *state) evalFunction(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value {
   524  	s.at(node)
   525  	name := node.Ident
   526  	function, ok := findFunction(name, s.tmpl)
   527  	if !ok {
   528  		s.errorf("%q is not a defined function", name)
   529  	}
   530  	return s.evalCall(dot, function, cmd, name, args, final)
   531  }
   532  
   533  // evalField evaluates an expression like (.Field) or (.Field arg1 arg2).
   534  // The 'final' argument represents the return value from the preceding
   535  // value of the pipeline, if any.
   536  func (s *state) evalField(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value {
   537  	if !receiver.IsValid() {
   538  		return zero
   539  	}
   540  	typ := receiver.Type()
   541  	receiver, isNil := indirect(receiver)
   542  	// Unless it's an interface, need to get to a value of type *T to guarantee
   543  	// we see all methods of T and *T.
   544  	ptr := receiver
   545  	if ptr.Kind() != reflect.Interface && ptr.CanAddr() {
   546  		ptr = ptr.Addr()
   547  	}
   548  	if method := ptr.MethodByName(fieldName); method.IsValid() {
   549  		return s.evalCall(dot, method, node, fieldName, args, final)
   550  	}
   551  	hasArgs := len(args) > 1 || final.IsValid()
   552  	// It's not a method; must be a field of a struct or an element of a map.
   553  	switch receiver.Kind() {
   554  	case reflect.Struct:
   555  		tField, ok := receiver.Type().FieldByName(fieldName)
   556  		if ok {
   557  			if isNil {
   558  				s.errorf("nil pointer evaluating %s.%s", typ, fieldName)
   559  			}
   560  			field := receiver.FieldByIndex(tField.Index)
   561  			if tField.PkgPath != "" { // field is unexported
   562  				s.errorf("%s is an unexported field of struct type %s", fieldName, typ)
   563  			}
   564  			// If it's a function, we must call it.
   565  			if hasArgs {
   566  				s.errorf("%s has arguments but cannot be invoked as function", fieldName)
   567  			}
   568  			return field
   569  		}
   570  	case reflect.Map:
   571  		if isNil {
   572  			s.errorf("nil pointer evaluating %s.%s", typ, fieldName)
   573  		}
   574  		// If it's a map, attempt to use the field name as a key.
   575  		nameVal := reflect.ValueOf(fieldName)
   576  		if nameVal.Type().AssignableTo(receiver.Type().Key()) {
   577  			if hasArgs {
   578  				s.errorf("%s is not a method but has arguments", fieldName)
   579  			}
   580  			result := receiver.MapIndex(nameVal)
   581  			if !result.IsValid() {
   582  				switch s.tmpl.option.missingKey {
   583  				case mapInvalid:
   584  					// Just use the invalid value.
   585  				case mapZeroValue:
   586  					result = reflect.Zero(receiver.Type().Elem())
   587  				case mapError:
   588  					s.errorf("map has no entry for key %q", fieldName)
   589  				}
   590  			}
   591  			return result
   592  		}
   593  	}
   594  	s.errorf("can't evaluate field %s in type %s", fieldName, typ)
   595  	panic("not reached")
   596  }
   597  
   598  var (
   599  	errorType       = reflect.TypeOf((*error)(nil)).Elem()
   600  	fmtStringerType = reflect.TypeOf((*fmt.Stringer)(nil)).Elem()
   601  )
   602  
   603  // evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so
   604  // it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0]
   605  // as the function itself.
   606  func (s *state) evalCall(dot, fun reflect.Value, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value {
   607  	if args != nil {
   608  		args = args[1:] // Zeroth arg is function name/node; not passed to function.
   609  	}
   610  	typ := fun.Type()
   611  	numIn := len(args)
   612  	if final.IsValid() {
   613  		numIn++
   614  	}
   615  	numFixed := len(args)
   616  	if typ.IsVariadic() {
   617  		numFixed = typ.NumIn() - 1 // last arg is the variadic one.
   618  		if numIn < numFixed {
   619  			s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args))
   620  		}
   621  	} else if numIn < typ.NumIn()-1 || !typ.IsVariadic() && numIn != typ.NumIn() {
   622  		s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), len(args))
   623  	}
   624  	if !goodFunc(typ) {
   625  		// TODO: This could still be a confusing error; maybe goodFunc should provide info.
   626  		s.errorf("can't call method/function %q with %d results", name, typ.NumOut())
   627  	}
   628  	// Build the arg list.
   629  	argv := make([]reflect.Value, numIn)
   630  	// Args must be evaluated. Fixed args first.
   631  	i := 0
   632  	for ; i < numFixed && i < len(args); i++ {
   633  		argv[i] = s.evalArg(dot, typ.In(i), args[i])
   634  	}
   635  	// Now the ... args.
   636  	if typ.IsVariadic() {
   637  		argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice.
   638  		for ; i < len(args); i++ {
   639  			argv[i] = s.evalArg(dot, argType, args[i])
   640  		}
   641  	}
   642  	// Add final value if necessary.
   643  	if final.IsValid() {
   644  		t := typ.In(typ.NumIn() - 1)
   645  		if typ.IsVariadic() {
   646  			if numIn-1 < numFixed {
   647  				// The added final argument corresponds to a fixed parameter of the function.
   648  				// Validate against the type of the actual parameter.
   649  				t = typ.In(numIn - 1)
   650  			} else {
   651  				// The added final argument corresponds to the variadic part.
   652  				// Validate against the type of the elements of the variadic slice.
   653  				t = t.Elem()
   654  			}
   655  		}
   656  		argv[i] = s.validateType(final, t)
   657  	}
   658  	result := fun.Call(argv)
   659  	// If we have an error that is not nil, stop execution and return that error to the caller.
   660  	if len(result) == 2 && !result[1].IsNil() {
   661  		s.at(node)
   662  		s.errorf("error calling %s: %s", name, result[1].Interface().(error))
   663  	}
   664  	return result[0]
   665  }
   666  
   667  // canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero.
   668  func canBeNil(typ reflect.Type) bool {
   669  	switch typ.Kind() {
   670  	case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice:
   671  		return true
   672  	}
   673  	return false
   674  }
   675  
   676  // validateType guarantees that the value is valid and assignable to the type.
   677  func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value {
   678  	if !value.IsValid() {
   679  		if typ == nil || canBeNil(typ) {
   680  			// An untyped nil interface{}. Accept as a proper nil value.
   681  			return reflect.Zero(typ)
   682  		}
   683  		s.errorf("invalid value; expected %s", typ)
   684  	}
   685  	if typ != nil && !value.Type().AssignableTo(typ) {
   686  		if value.Kind() == reflect.Interface && !value.IsNil() {
   687  			value = value.Elem()
   688  			if value.Type().AssignableTo(typ) {
   689  				return value
   690  			}
   691  			// fallthrough
   692  		}
   693  		// Does one dereference or indirection work? We could do more, as we
   694  		// do with method receivers, but that gets messy and method receivers
   695  		// are much more constrained, so it makes more sense there than here.
   696  		// Besides, one is almost always all you need.
   697  		switch {
   698  		case value.Kind() == reflect.Ptr && value.Type().Elem().AssignableTo(typ):
   699  			value = value.Elem()
   700  			if !value.IsValid() {
   701  				s.errorf("dereference of nil pointer of type %s", typ)
   702  			}
   703  		case reflect.PtrTo(value.Type()).AssignableTo(typ) && value.CanAddr():
   704  			value = value.Addr()
   705  		default:
   706  			s.errorf("wrong type for value; expected %s; got %s", typ, value.Type())
   707  		}
   708  	}
   709  	return value
   710  }
   711  
   712  func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value {
   713  	s.at(n)
   714  	switch arg := n.(type) {
   715  	case *parse.DotNode:
   716  		return s.validateType(dot, typ)
   717  	case *parse.NilNode:
   718  		if canBeNil(typ) {
   719  			return reflect.Zero(typ)
   720  		}
   721  		s.errorf("cannot assign nil to %s", typ)
   722  	case *parse.FieldNode:
   723  		return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, zero), typ)
   724  	case *parse.VariableNode:
   725  		return s.validateType(s.evalVariableNode(dot, arg, nil, zero), typ)
   726  	case *parse.PipeNode:
   727  		return s.validateType(s.evalPipeline(dot, arg), typ)
   728  	case *parse.IdentifierNode:
   729  		return s.validateType(s.evalFunction(dot, arg, arg, nil, zero), typ)
   730  	case *parse.ChainNode:
   731  		return s.validateType(s.evalChainNode(dot, arg, nil, zero), typ)
   732  	}
   733  	switch typ.Kind() {
   734  	case reflect.Bool:
   735  		return s.evalBool(typ, n)
   736  	case reflect.Complex64, reflect.Complex128:
   737  		return s.evalComplex(typ, n)
   738  	case reflect.Float32, reflect.Float64:
   739  		return s.evalFloat(typ, n)
   740  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   741  		return s.evalInteger(typ, n)
   742  	case reflect.Interface:
   743  		if typ.NumMethod() == 0 {
   744  			return s.evalEmptyInterface(dot, n)
   745  		}
   746  	case reflect.String:
   747  		return s.evalString(typ, n)
   748  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   749  		return s.evalUnsignedInteger(typ, n)
   750  	}
   751  	s.errorf("can't handle %s for arg of type %s", n, typ)
   752  	panic("not reached")
   753  }
   754  
   755  func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value {
   756  	s.at(n)
   757  	if n, ok := n.(*parse.BoolNode); ok {
   758  		value := reflect.New(typ).Elem()
   759  		value.SetBool(n.True)
   760  		return value
   761  	}
   762  	s.errorf("expected bool; found %s", n)
   763  	panic("not reached")
   764  }
   765  
   766  func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value {
   767  	s.at(n)
   768  	if n, ok := n.(*parse.StringNode); ok {
   769  		value := reflect.New(typ).Elem()
   770  		value.SetString(n.Text)
   771  		return value
   772  	}
   773  	s.errorf("expected string; found %s", n)
   774  	panic("not reached")
   775  }
   776  
   777  func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value {
   778  	s.at(n)
   779  	if n, ok := n.(*parse.NumberNode); ok && n.IsInt {
   780  		value := reflect.New(typ).Elem()
   781  		value.SetInt(n.Int64)
   782  		return value
   783  	}
   784  	s.errorf("expected integer; found %s", n)
   785  	panic("not reached")
   786  }
   787  
   788  func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value {
   789  	s.at(n)
   790  	if n, ok := n.(*parse.NumberNode); ok && n.IsUint {
   791  		value := reflect.New(typ).Elem()
   792  		value.SetUint(n.Uint64)
   793  		return value
   794  	}
   795  	s.errorf("expected unsigned integer; found %s", n)
   796  	panic("not reached")
   797  }
   798  
   799  func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value {
   800  	s.at(n)
   801  	if n, ok := n.(*parse.NumberNode); ok && n.IsFloat {
   802  		value := reflect.New(typ).Elem()
   803  		value.SetFloat(n.Float64)
   804  		return value
   805  	}
   806  	s.errorf("expected float; found %s", n)
   807  	panic("not reached")
   808  }
   809  
   810  func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value {
   811  	if n, ok := n.(*parse.NumberNode); ok && n.IsComplex {
   812  		value := reflect.New(typ).Elem()
   813  		value.SetComplex(n.Complex128)
   814  		return value
   815  	}
   816  	s.errorf("expected complex; found %s", n)
   817  	panic("not reached")
   818  }
   819  
   820  func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value {
   821  	s.at(n)
   822  	switch n := n.(type) {
   823  	case *parse.BoolNode:
   824  		return reflect.ValueOf(n.True)
   825  	case *parse.DotNode:
   826  		return dot
   827  	case *parse.FieldNode:
   828  		return s.evalFieldNode(dot, n, nil, zero)
   829  	case *parse.IdentifierNode:
   830  		return s.evalFunction(dot, n, n, nil, zero)
   831  	case *parse.NilNode:
   832  		// NilNode is handled in evalArg, the only place that calls here.
   833  		s.errorf("evalEmptyInterface: nil (can't happen)")
   834  	case *parse.NumberNode:
   835  		return s.idealConstant(n)
   836  	case *parse.StringNode:
   837  		return reflect.ValueOf(n.Text)
   838  	case *parse.VariableNode:
   839  		return s.evalVariableNode(dot, n, nil, zero)
   840  	case *parse.PipeNode:
   841  		return s.evalPipeline(dot, n)
   842  	}
   843  	s.errorf("can't handle assignment of %s to empty interface argument", n)
   844  	panic("not reached")
   845  }
   846  
   847  // indirect returns the item at the end of indirection, and a bool to indicate if it's nil.
   848  func indirect(v reflect.Value) (rv reflect.Value, isNil bool) {
   849  	for ; v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface; v = v.Elem() {
   850  		if v.IsNil() {
   851  			return v, true
   852  		}
   853  	}
   854  	return v, false
   855  }
   856  
   857  // printValue writes the textual representation of the value to the output of
   858  // the template.
   859  func (s *state) printValue(n parse.Node, v reflect.Value) {
   860  	s.at(n)
   861  	iface, ok := printableValue(v)
   862  	if !ok {
   863  		s.errorf("can't print %s of type %s", n, v.Type())
   864  	}
   865  	_, err := fmt.Fprint(s.wr, iface)
   866  	if err != nil {
   867  		s.writeError(err)
   868  	}
   869  }
   870  
   871  // printableValue returns the, possibly indirected, interface value inside v that
   872  // is best for a call to formatted printer.
   873  func printableValue(v reflect.Value) (interface{}, bool) {
   874  	if v.Kind() == reflect.Ptr {
   875  		v, _ = indirect(v) // fmt.Fprint handles nil.
   876  	}
   877  	if !v.IsValid() {
   878  		return "<no value>", true
   879  	}
   880  
   881  	if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) {
   882  		if v.CanAddr() && (reflect.PtrTo(v.Type()).Implements(errorType) || reflect.PtrTo(v.Type()).Implements(fmtStringerType)) {
   883  			v = v.Addr()
   884  		} else {
   885  			switch v.Kind() {
   886  			case reflect.Chan, reflect.Func:
   887  				return nil, false
   888  			}
   889  		}
   890  	}
   891  	return v.Interface(), true
   892  }
   893  
   894  // Types to help sort the keys in a map for reproducible output.
   895  
   896  type rvs []reflect.Value
   897  
   898  func (x rvs) Len() int      { return len(x) }
   899  func (x rvs) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
   900  
   901  type rvInts struct{ rvs }
   902  
   903  func (x rvInts) Less(i, j int) bool { return x.rvs[i].Int() < x.rvs[j].Int() }
   904  
   905  type rvUints struct{ rvs }
   906  
   907  func (x rvUints) Less(i, j int) bool { return x.rvs[i].Uint() < x.rvs[j].Uint() }
   908  
   909  type rvFloats struct{ rvs }
   910  
   911  func (x rvFloats) Less(i, j int) bool { return x.rvs[i].Float() < x.rvs[j].Float() }
   912  
   913  type rvStrings struct{ rvs }
   914  
   915  func (x rvStrings) Less(i, j int) bool { return x.rvs[i].String() < x.rvs[j].String() }
   916  
   917  // sortKeys sorts (if it can) the slice of reflect.Values, which is a slice of map keys.
   918  func sortKeys(v []reflect.Value) []reflect.Value {
   919  	if len(v) <= 1 {
   920  		return v
   921  	}
   922  	switch v[0].Kind() {
   923  	case reflect.Float32, reflect.Float64:
   924  		sort.Sort(rvFloats{v})
   925  	case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
   926  		sort.Sort(rvInts{v})
   927  	case reflect.String:
   928  		sort.Sort(rvStrings{v})
   929  	case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
   930  		sort.Sort(rvUints{v})
   931  	}
   932  	return v
   933  }