github.com/gocuntian/go@v0.0.0-20160610041250-fee02d270bf8/src/text/template/exec.go (about) 1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package template 6 7 import ( 8 "bytes" 9 "fmt" 10 "io" 11 "reflect" 12 "runtime" 13 "sort" 14 "strings" 15 "text/template/parse" 16 ) 17 18 // maxExecDepth specifies the maximum stack depth of templates within 19 // templates. This limit is only practically reached by accidentally 20 // recursive template invocations. This limit allows us to return 21 // an error instead of triggering a stack overflow. 22 const maxExecDepth = 100000 23 24 // state represents the state of an execution. It's not part of the 25 // template so that multiple executions of the same template 26 // can execute in parallel. 27 type state struct { 28 tmpl *Template 29 wr io.Writer 30 node parse.Node // current node, for errors 31 vars []variable // push-down stack of variable values. 32 depth int // the height of the stack of executing templates. 33 } 34 35 // variable holds the dynamic value of a variable such as $, $x etc. 36 type variable struct { 37 name string 38 value reflect.Value 39 } 40 41 // push pushes a new variable on the stack. 42 func (s *state) push(name string, value reflect.Value) { 43 s.vars = append(s.vars, variable{name, value}) 44 } 45 46 // mark returns the length of the variable stack. 47 func (s *state) mark() int { 48 return len(s.vars) 49 } 50 51 // pop pops the variable stack up to the mark. 52 func (s *state) pop(mark int) { 53 s.vars = s.vars[0:mark] 54 } 55 56 // setVar overwrites the top-nth variable on the stack. Used by range iterations. 57 func (s *state) setVar(n int, value reflect.Value) { 58 s.vars[len(s.vars)-n].value = value 59 } 60 61 // varValue returns the value of the named variable. 62 func (s *state) varValue(name string) reflect.Value { 63 for i := s.mark() - 1; i >= 0; i-- { 64 if s.vars[i].name == name { 65 return s.vars[i].value 66 } 67 } 68 s.errorf("undefined variable: %s", name) 69 return zero 70 } 71 72 var zero reflect.Value 73 74 // at marks the state to be on node n, for error reporting. 75 func (s *state) at(node parse.Node) { 76 s.node = node 77 } 78 79 // doublePercent returns the string with %'s replaced by %%, if necessary, 80 // so it can be used safely inside a Printf format string. 81 func doublePercent(str string) string { 82 if strings.Contains(str, "%") { 83 str = strings.Replace(str, "%", "%%", -1) 84 } 85 return str 86 } 87 88 // TODO: It would be nice if ExecError was more broken down, but 89 // the way ErrorContext embeds the template name makes the 90 // processing too clumsy. 91 92 // ExecError is the custom error type returned when Execute has an 93 // error evaluating its template. (If a write error occurs, the actual 94 // error is returned; it will not be of type ExecError.) 95 type ExecError struct { 96 Name string // Name of template. 97 Err error // Pre-formatted error. 98 } 99 100 func (e ExecError) Error() string { 101 return e.Err.Error() 102 } 103 104 // errorf records an ExecError and terminates processing. 105 func (s *state) errorf(format string, args ...interface{}) { 106 name := doublePercent(s.tmpl.Name()) 107 if s.node == nil { 108 format = fmt.Sprintf("template: %s: %s", name, format) 109 } else { 110 location, context := s.tmpl.ErrorContext(s.node) 111 format = fmt.Sprintf("template: %s: executing %q at <%s>: %s", location, name, doublePercent(context), format) 112 } 113 panic(ExecError{ 114 Name: s.tmpl.Name(), 115 Err: fmt.Errorf(format, args...), 116 }) 117 } 118 119 // writeError is the wrapper type used internally when Execute has an 120 // error writing to its output. We strip the wrapper in errRecover. 121 // Note that this is not an implementation of error, so it cannot escape 122 // from the package as an error value. 123 type writeError struct { 124 Err error // Original error. 125 } 126 127 func (s *state) writeError(err error) { 128 panic(writeError{ 129 Err: err, 130 }) 131 } 132 133 // errRecover is the handler that turns panics into returns from the top 134 // level of Parse. 135 func errRecover(errp *error) { 136 e := recover() 137 if e != nil { 138 switch err := e.(type) { 139 case runtime.Error: 140 panic(e) 141 case writeError: 142 *errp = err.Err // Strip the wrapper. 143 case ExecError: 144 *errp = err // Keep the wrapper. 145 default: 146 panic(e) 147 } 148 } 149 } 150 151 // ExecuteTemplate applies the template associated with t that has the given name 152 // to the specified data object and writes the output to wr. 153 // If an error occurs executing the template or writing its output, 154 // execution stops, but partial results may already have been written to 155 // the output writer. 156 // A template may be executed safely in parallel. 157 func (t *Template) ExecuteTemplate(wr io.Writer, name string, data interface{}) error { 158 var tmpl *Template 159 if t.common != nil { 160 tmpl = t.tmpl[name] 161 } 162 if tmpl == nil { 163 return fmt.Errorf("template: no template %q associated with template %q", name, t.name) 164 } 165 return tmpl.Execute(wr, data) 166 } 167 168 // Execute applies a parsed template to the specified data object, 169 // and writes the output to wr. 170 // If an error occurs executing the template or writing its output, 171 // execution stops, but partial results may already have been written to 172 // the output writer. 173 // A template may be executed safely in parallel. 174 func (t *Template) Execute(wr io.Writer, data interface{}) error { 175 return t.execute(wr, data) 176 } 177 178 func (t *Template) execute(wr io.Writer, data interface{}) (err error) { 179 defer errRecover(&err) 180 value := reflect.ValueOf(data) 181 state := &state{ 182 tmpl: t, 183 wr: wr, 184 vars: []variable{{"$", value}}, 185 } 186 if t.Tree == nil || t.Root == nil { 187 state.errorf("%q is an incomplete or empty template%s", t.Name(), t.DefinedTemplates()) 188 } 189 state.walk(value, t.Root) 190 return 191 } 192 193 // DefinedTemplates returns a string listing the defined templates, 194 // prefixed by the string "; defined templates are: ". If there are none, 195 // it returns the empty string. For generating an error message here 196 // and in html/template. 197 func (t *Template) DefinedTemplates() string { 198 if t.common == nil { 199 return "" 200 } 201 var b bytes.Buffer 202 for name, tmpl := range t.tmpl { 203 if tmpl.Tree == nil || tmpl.Root == nil { 204 continue 205 } 206 if b.Len() > 0 { 207 b.WriteString(", ") 208 } 209 fmt.Fprintf(&b, "%q", name) 210 } 211 var s string 212 if b.Len() > 0 { 213 s = "; defined templates are: " + b.String() 214 } 215 return s 216 } 217 218 // Walk functions step through the major pieces of the template structure, 219 // generating output as they go. 220 func (s *state) walk(dot reflect.Value, node parse.Node) { 221 s.at(node) 222 switch node := node.(type) { 223 case *parse.ActionNode: 224 // Do not pop variables so they persist until next end. 225 // Also, if the action declares variables, don't print the result. 226 val := s.evalPipeline(dot, node.Pipe) 227 if len(node.Pipe.Decl) == 0 { 228 s.printValue(node, val) 229 } 230 case *parse.IfNode: 231 s.walkIfOrWith(parse.NodeIf, dot, node.Pipe, node.List, node.ElseList) 232 case *parse.ListNode: 233 for _, node := range node.Nodes { 234 s.walk(dot, node) 235 } 236 case *parse.RangeNode: 237 s.walkRange(dot, node) 238 case *parse.TemplateNode: 239 s.walkTemplate(dot, node) 240 case *parse.TextNode: 241 if _, err := s.wr.Write(node.Text); err != nil { 242 s.writeError(err) 243 } 244 case *parse.WithNode: 245 s.walkIfOrWith(parse.NodeWith, dot, node.Pipe, node.List, node.ElseList) 246 default: 247 s.errorf("unknown node: %s", node) 248 } 249 } 250 251 // walkIfOrWith walks an 'if' or 'with' node. The two control structures 252 // are identical in behavior except that 'with' sets dot. 253 func (s *state) walkIfOrWith(typ parse.NodeType, dot reflect.Value, pipe *parse.PipeNode, list, elseList *parse.ListNode) { 254 defer s.pop(s.mark()) 255 val := s.evalPipeline(dot, pipe) 256 truth, ok := isTrue(val) 257 if !ok { 258 s.errorf("if/with can't use %v", val) 259 } 260 if truth { 261 if typ == parse.NodeWith { 262 s.walk(val, list) 263 } else { 264 s.walk(dot, list) 265 } 266 } else if elseList != nil { 267 s.walk(dot, elseList) 268 } 269 } 270 271 // IsTrue reports whether the value is 'true', in the sense of not the zero of its type, 272 // and whether the value has a meaningful truth value. This is the definition of 273 // truth used by if and other such actions. 274 func IsTrue(val interface{}) (truth, ok bool) { 275 return isTrue(reflect.ValueOf(val)) 276 } 277 278 func isTrue(val reflect.Value) (truth, ok bool) { 279 if !val.IsValid() { 280 // Something like var x interface{}, never set. It's a form of nil. 281 return false, true 282 } 283 switch val.Kind() { 284 case reflect.Array, reflect.Map, reflect.Slice, reflect.String: 285 truth = val.Len() > 0 286 case reflect.Bool: 287 truth = val.Bool() 288 case reflect.Complex64, reflect.Complex128: 289 truth = val.Complex() != 0 290 case reflect.Chan, reflect.Func, reflect.Ptr, reflect.Interface: 291 truth = !val.IsNil() 292 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 293 truth = val.Int() != 0 294 case reflect.Float32, reflect.Float64: 295 truth = val.Float() != 0 296 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 297 truth = val.Uint() != 0 298 case reflect.Struct: 299 truth = true // Struct values are always true. 300 default: 301 return 302 } 303 return truth, true 304 } 305 306 func (s *state) walkRange(dot reflect.Value, r *parse.RangeNode) { 307 s.at(r) 308 defer s.pop(s.mark()) 309 val, _ := indirect(s.evalPipeline(dot, r.Pipe)) 310 // mark top of stack before any variables in the body are pushed. 311 mark := s.mark() 312 oneIteration := func(index, elem reflect.Value) { 313 // Set top var (lexically the second if there are two) to the element. 314 if len(r.Pipe.Decl) > 0 { 315 s.setVar(1, elem) 316 } 317 // Set next var (lexically the first if there are two) to the index. 318 if len(r.Pipe.Decl) > 1 { 319 s.setVar(2, index) 320 } 321 s.walk(elem, r.List) 322 s.pop(mark) 323 } 324 switch val.Kind() { 325 case reflect.Array, reflect.Slice: 326 if val.Len() == 0 { 327 break 328 } 329 for i := 0; i < val.Len(); i++ { 330 oneIteration(reflect.ValueOf(i), val.Index(i)) 331 } 332 return 333 case reflect.Map: 334 if val.Len() == 0 { 335 break 336 } 337 for _, key := range sortKeys(val.MapKeys()) { 338 oneIteration(key, val.MapIndex(key)) 339 } 340 return 341 case reflect.Chan: 342 if val.IsNil() { 343 break 344 } 345 i := 0 346 for ; ; i++ { 347 elem, ok := val.Recv() 348 if !ok { 349 break 350 } 351 oneIteration(reflect.ValueOf(i), elem) 352 } 353 if i == 0 { 354 break 355 } 356 return 357 case reflect.Invalid: 358 break // An invalid value is likely a nil map, etc. and acts like an empty map. 359 default: 360 s.errorf("range can't iterate over %v", val) 361 } 362 if r.ElseList != nil { 363 s.walk(dot, r.ElseList) 364 } 365 } 366 367 func (s *state) walkTemplate(dot reflect.Value, t *parse.TemplateNode) { 368 s.at(t) 369 tmpl := s.tmpl.tmpl[t.Name] 370 if tmpl == nil { 371 s.errorf("template %q not defined", t.Name) 372 } 373 if s.depth == maxExecDepth { 374 s.errorf("exceeded maximum template depth (%v)", maxExecDepth) 375 } 376 // Variables declared by the pipeline persist. 377 dot = s.evalPipeline(dot, t.Pipe) 378 newState := *s 379 newState.depth++ 380 newState.tmpl = tmpl 381 // No dynamic scoping: template invocations inherit no variables. 382 newState.vars = []variable{{"$", dot}} 383 newState.walk(dot, tmpl.Root) 384 } 385 386 // Eval functions evaluate pipelines, commands, and their elements and extract 387 // values from the data structure by examining fields, calling methods, and so on. 388 // The printing of those values happens only through walk functions. 389 390 // evalPipeline returns the value acquired by evaluating a pipeline. If the 391 // pipeline has a variable declaration, the variable will be pushed on the 392 // stack. Callers should therefore pop the stack after they are finished 393 // executing commands depending on the pipeline value. 394 func (s *state) evalPipeline(dot reflect.Value, pipe *parse.PipeNode) (value reflect.Value) { 395 if pipe == nil { 396 return 397 } 398 s.at(pipe) 399 for _, cmd := range pipe.Cmds { 400 value = s.evalCommand(dot, cmd, value) // previous value is this one's final arg. 401 // If the object has type interface{}, dig down one level to the thing inside. 402 if value.Kind() == reflect.Interface && value.Type().NumMethod() == 0 { 403 value = reflect.ValueOf(value.Interface()) // lovely! 404 } 405 } 406 for _, variable := range pipe.Decl { 407 s.push(variable.Ident[0], value) 408 } 409 return value 410 } 411 412 func (s *state) notAFunction(args []parse.Node, final reflect.Value) { 413 if len(args) > 1 || final.IsValid() { 414 s.errorf("can't give argument to non-function %s", args[0]) 415 } 416 } 417 418 func (s *state) evalCommand(dot reflect.Value, cmd *parse.CommandNode, final reflect.Value) reflect.Value { 419 firstWord := cmd.Args[0] 420 switch n := firstWord.(type) { 421 case *parse.FieldNode: 422 return s.evalFieldNode(dot, n, cmd.Args, final) 423 case *parse.ChainNode: 424 return s.evalChainNode(dot, n, cmd.Args, final) 425 case *parse.IdentifierNode: 426 // Must be a function. 427 return s.evalFunction(dot, n, cmd, cmd.Args, final) 428 case *parse.PipeNode: 429 // Parenthesized pipeline. The arguments are all inside the pipeline; final is ignored. 430 return s.evalPipeline(dot, n) 431 case *parse.VariableNode: 432 return s.evalVariableNode(dot, n, cmd.Args, final) 433 } 434 s.at(firstWord) 435 s.notAFunction(cmd.Args, final) 436 switch word := firstWord.(type) { 437 case *parse.BoolNode: 438 return reflect.ValueOf(word.True) 439 case *parse.DotNode: 440 return dot 441 case *parse.NilNode: 442 s.errorf("nil is not a command") 443 case *parse.NumberNode: 444 return s.idealConstant(word) 445 case *parse.StringNode: 446 return reflect.ValueOf(word.Text) 447 } 448 s.errorf("can't evaluate command %q", firstWord) 449 panic("not reached") 450 } 451 452 // idealConstant is called to return the value of a number in a context where 453 // we don't know the type. In that case, the syntax of the number tells us 454 // its type, and we use Go rules to resolve. Note there is no such thing as 455 // a uint ideal constant in this situation - the value must be of int type. 456 func (s *state) idealConstant(constant *parse.NumberNode) reflect.Value { 457 // These are ideal constants but we don't know the type 458 // and we have no context. (If it was a method argument, 459 // we'd know what we need.) The syntax guides us to some extent. 460 s.at(constant) 461 switch { 462 case constant.IsComplex: 463 return reflect.ValueOf(constant.Complex128) // incontrovertible. 464 case constant.IsFloat && !isHexConstant(constant.Text) && strings.ContainsAny(constant.Text, ".eE"): 465 return reflect.ValueOf(constant.Float64) 466 case constant.IsInt: 467 n := int(constant.Int64) 468 if int64(n) != constant.Int64 { 469 s.errorf("%s overflows int", constant.Text) 470 } 471 return reflect.ValueOf(n) 472 case constant.IsUint: 473 s.errorf("%s overflows int", constant.Text) 474 } 475 return zero 476 } 477 478 func isHexConstant(s string) bool { 479 return len(s) > 2 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X') 480 } 481 482 func (s *state) evalFieldNode(dot reflect.Value, field *parse.FieldNode, args []parse.Node, final reflect.Value) reflect.Value { 483 s.at(field) 484 return s.evalFieldChain(dot, dot, field, field.Ident, args, final) 485 } 486 487 func (s *state) evalChainNode(dot reflect.Value, chain *parse.ChainNode, args []parse.Node, final reflect.Value) reflect.Value { 488 s.at(chain) 489 if len(chain.Field) == 0 { 490 s.errorf("internal error: no fields in evalChainNode") 491 } 492 if chain.Node.Type() == parse.NodeNil { 493 s.errorf("indirection through explicit nil in %s", chain) 494 } 495 // (pipe).Field1.Field2 has pipe as .Node, fields as .Field. Eval the pipeline, then the fields. 496 pipe := s.evalArg(dot, nil, chain.Node) 497 return s.evalFieldChain(dot, pipe, chain, chain.Field, args, final) 498 } 499 500 func (s *state) evalVariableNode(dot reflect.Value, variable *parse.VariableNode, args []parse.Node, final reflect.Value) reflect.Value { 501 // $x.Field has $x as the first ident, Field as the second. Eval the var, then the fields. 502 s.at(variable) 503 value := s.varValue(variable.Ident[0]) 504 if len(variable.Ident) == 1 { 505 s.notAFunction(args, final) 506 return value 507 } 508 return s.evalFieldChain(dot, value, variable, variable.Ident[1:], args, final) 509 } 510 511 // evalFieldChain evaluates .X.Y.Z possibly followed by arguments. 512 // dot is the environment in which to evaluate arguments, while 513 // receiver is the value being walked along the chain. 514 func (s *state) evalFieldChain(dot, receiver reflect.Value, node parse.Node, ident []string, args []parse.Node, final reflect.Value) reflect.Value { 515 n := len(ident) 516 for i := 0; i < n-1; i++ { 517 receiver = s.evalField(dot, ident[i], node, nil, zero, receiver) 518 } 519 // Now if it's a method, it gets the arguments. 520 return s.evalField(dot, ident[n-1], node, args, final, receiver) 521 } 522 523 func (s *state) evalFunction(dot reflect.Value, node *parse.IdentifierNode, cmd parse.Node, args []parse.Node, final reflect.Value) reflect.Value { 524 s.at(node) 525 name := node.Ident 526 function, ok := findFunction(name, s.tmpl) 527 if !ok { 528 s.errorf("%q is not a defined function", name) 529 } 530 return s.evalCall(dot, function, cmd, name, args, final) 531 } 532 533 // evalField evaluates an expression like (.Field) or (.Field arg1 arg2). 534 // The 'final' argument represents the return value from the preceding 535 // value of the pipeline, if any. 536 func (s *state) evalField(dot reflect.Value, fieldName string, node parse.Node, args []parse.Node, final, receiver reflect.Value) reflect.Value { 537 if !receiver.IsValid() { 538 return zero 539 } 540 typ := receiver.Type() 541 receiver, isNil := indirect(receiver) 542 // Unless it's an interface, need to get to a value of type *T to guarantee 543 // we see all methods of T and *T. 544 ptr := receiver 545 if ptr.Kind() != reflect.Interface && ptr.CanAddr() { 546 ptr = ptr.Addr() 547 } 548 if method := ptr.MethodByName(fieldName); method.IsValid() { 549 return s.evalCall(dot, method, node, fieldName, args, final) 550 } 551 hasArgs := len(args) > 1 || final.IsValid() 552 // It's not a method; must be a field of a struct or an element of a map. 553 switch receiver.Kind() { 554 case reflect.Struct: 555 tField, ok := receiver.Type().FieldByName(fieldName) 556 if ok { 557 if isNil { 558 s.errorf("nil pointer evaluating %s.%s", typ, fieldName) 559 } 560 field := receiver.FieldByIndex(tField.Index) 561 if tField.PkgPath != "" { // field is unexported 562 s.errorf("%s is an unexported field of struct type %s", fieldName, typ) 563 } 564 // If it's a function, we must call it. 565 if hasArgs { 566 s.errorf("%s has arguments but cannot be invoked as function", fieldName) 567 } 568 return field 569 } 570 case reflect.Map: 571 if isNil { 572 s.errorf("nil pointer evaluating %s.%s", typ, fieldName) 573 } 574 // If it's a map, attempt to use the field name as a key. 575 nameVal := reflect.ValueOf(fieldName) 576 if nameVal.Type().AssignableTo(receiver.Type().Key()) { 577 if hasArgs { 578 s.errorf("%s is not a method but has arguments", fieldName) 579 } 580 result := receiver.MapIndex(nameVal) 581 if !result.IsValid() { 582 switch s.tmpl.option.missingKey { 583 case mapInvalid: 584 // Just use the invalid value. 585 case mapZeroValue: 586 result = reflect.Zero(receiver.Type().Elem()) 587 case mapError: 588 s.errorf("map has no entry for key %q", fieldName) 589 } 590 } 591 return result 592 } 593 } 594 s.errorf("can't evaluate field %s in type %s", fieldName, typ) 595 panic("not reached") 596 } 597 598 var ( 599 errorType = reflect.TypeOf((*error)(nil)).Elem() 600 fmtStringerType = reflect.TypeOf((*fmt.Stringer)(nil)).Elem() 601 ) 602 603 // evalCall executes a function or method call. If it's a method, fun already has the receiver bound, so 604 // it looks just like a function call. The arg list, if non-nil, includes (in the manner of the shell), arg[0] 605 // as the function itself. 606 func (s *state) evalCall(dot, fun reflect.Value, node parse.Node, name string, args []parse.Node, final reflect.Value) reflect.Value { 607 if args != nil { 608 args = args[1:] // Zeroth arg is function name/node; not passed to function. 609 } 610 typ := fun.Type() 611 numIn := len(args) 612 if final.IsValid() { 613 numIn++ 614 } 615 numFixed := len(args) 616 if typ.IsVariadic() { 617 numFixed = typ.NumIn() - 1 // last arg is the variadic one. 618 if numIn < numFixed { 619 s.errorf("wrong number of args for %s: want at least %d got %d", name, typ.NumIn()-1, len(args)) 620 } 621 } else if numIn < typ.NumIn()-1 || !typ.IsVariadic() && numIn != typ.NumIn() { 622 s.errorf("wrong number of args for %s: want %d got %d", name, typ.NumIn(), len(args)) 623 } 624 if !goodFunc(typ) { 625 // TODO: This could still be a confusing error; maybe goodFunc should provide info. 626 s.errorf("can't call method/function %q with %d results", name, typ.NumOut()) 627 } 628 // Build the arg list. 629 argv := make([]reflect.Value, numIn) 630 // Args must be evaluated. Fixed args first. 631 i := 0 632 for ; i < numFixed && i < len(args); i++ { 633 argv[i] = s.evalArg(dot, typ.In(i), args[i]) 634 } 635 // Now the ... args. 636 if typ.IsVariadic() { 637 argType := typ.In(typ.NumIn() - 1).Elem() // Argument is a slice. 638 for ; i < len(args); i++ { 639 argv[i] = s.evalArg(dot, argType, args[i]) 640 } 641 } 642 // Add final value if necessary. 643 if final.IsValid() { 644 t := typ.In(typ.NumIn() - 1) 645 if typ.IsVariadic() { 646 if numIn-1 < numFixed { 647 // The added final argument corresponds to a fixed parameter of the function. 648 // Validate against the type of the actual parameter. 649 t = typ.In(numIn - 1) 650 } else { 651 // The added final argument corresponds to the variadic part. 652 // Validate against the type of the elements of the variadic slice. 653 t = t.Elem() 654 } 655 } 656 argv[i] = s.validateType(final, t) 657 } 658 result := fun.Call(argv) 659 // If we have an error that is not nil, stop execution and return that error to the caller. 660 if len(result) == 2 && !result[1].IsNil() { 661 s.at(node) 662 s.errorf("error calling %s: %s", name, result[1].Interface().(error)) 663 } 664 return result[0] 665 } 666 667 // canBeNil reports whether an untyped nil can be assigned to the type. See reflect.Zero. 668 func canBeNil(typ reflect.Type) bool { 669 switch typ.Kind() { 670 case reflect.Chan, reflect.Func, reflect.Interface, reflect.Map, reflect.Ptr, reflect.Slice: 671 return true 672 } 673 return false 674 } 675 676 // validateType guarantees that the value is valid and assignable to the type. 677 func (s *state) validateType(value reflect.Value, typ reflect.Type) reflect.Value { 678 if !value.IsValid() { 679 if typ == nil || canBeNil(typ) { 680 // An untyped nil interface{}. Accept as a proper nil value. 681 return reflect.Zero(typ) 682 } 683 s.errorf("invalid value; expected %s", typ) 684 } 685 if typ != nil && !value.Type().AssignableTo(typ) { 686 if value.Kind() == reflect.Interface && !value.IsNil() { 687 value = value.Elem() 688 if value.Type().AssignableTo(typ) { 689 return value 690 } 691 // fallthrough 692 } 693 // Does one dereference or indirection work? We could do more, as we 694 // do with method receivers, but that gets messy and method receivers 695 // are much more constrained, so it makes more sense there than here. 696 // Besides, one is almost always all you need. 697 switch { 698 case value.Kind() == reflect.Ptr && value.Type().Elem().AssignableTo(typ): 699 value = value.Elem() 700 if !value.IsValid() { 701 s.errorf("dereference of nil pointer of type %s", typ) 702 } 703 case reflect.PtrTo(value.Type()).AssignableTo(typ) && value.CanAddr(): 704 value = value.Addr() 705 default: 706 s.errorf("wrong type for value; expected %s; got %s", typ, value.Type()) 707 } 708 } 709 return value 710 } 711 712 func (s *state) evalArg(dot reflect.Value, typ reflect.Type, n parse.Node) reflect.Value { 713 s.at(n) 714 switch arg := n.(type) { 715 case *parse.DotNode: 716 return s.validateType(dot, typ) 717 case *parse.NilNode: 718 if canBeNil(typ) { 719 return reflect.Zero(typ) 720 } 721 s.errorf("cannot assign nil to %s", typ) 722 case *parse.FieldNode: 723 return s.validateType(s.evalFieldNode(dot, arg, []parse.Node{n}, zero), typ) 724 case *parse.VariableNode: 725 return s.validateType(s.evalVariableNode(dot, arg, nil, zero), typ) 726 case *parse.PipeNode: 727 return s.validateType(s.evalPipeline(dot, arg), typ) 728 case *parse.IdentifierNode: 729 return s.validateType(s.evalFunction(dot, arg, arg, nil, zero), typ) 730 case *parse.ChainNode: 731 return s.validateType(s.evalChainNode(dot, arg, nil, zero), typ) 732 } 733 switch typ.Kind() { 734 case reflect.Bool: 735 return s.evalBool(typ, n) 736 case reflect.Complex64, reflect.Complex128: 737 return s.evalComplex(typ, n) 738 case reflect.Float32, reflect.Float64: 739 return s.evalFloat(typ, n) 740 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 741 return s.evalInteger(typ, n) 742 case reflect.Interface: 743 if typ.NumMethod() == 0 { 744 return s.evalEmptyInterface(dot, n) 745 } 746 case reflect.String: 747 return s.evalString(typ, n) 748 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 749 return s.evalUnsignedInteger(typ, n) 750 } 751 s.errorf("can't handle %s for arg of type %s", n, typ) 752 panic("not reached") 753 } 754 755 func (s *state) evalBool(typ reflect.Type, n parse.Node) reflect.Value { 756 s.at(n) 757 if n, ok := n.(*parse.BoolNode); ok { 758 value := reflect.New(typ).Elem() 759 value.SetBool(n.True) 760 return value 761 } 762 s.errorf("expected bool; found %s", n) 763 panic("not reached") 764 } 765 766 func (s *state) evalString(typ reflect.Type, n parse.Node) reflect.Value { 767 s.at(n) 768 if n, ok := n.(*parse.StringNode); ok { 769 value := reflect.New(typ).Elem() 770 value.SetString(n.Text) 771 return value 772 } 773 s.errorf("expected string; found %s", n) 774 panic("not reached") 775 } 776 777 func (s *state) evalInteger(typ reflect.Type, n parse.Node) reflect.Value { 778 s.at(n) 779 if n, ok := n.(*parse.NumberNode); ok && n.IsInt { 780 value := reflect.New(typ).Elem() 781 value.SetInt(n.Int64) 782 return value 783 } 784 s.errorf("expected integer; found %s", n) 785 panic("not reached") 786 } 787 788 func (s *state) evalUnsignedInteger(typ reflect.Type, n parse.Node) reflect.Value { 789 s.at(n) 790 if n, ok := n.(*parse.NumberNode); ok && n.IsUint { 791 value := reflect.New(typ).Elem() 792 value.SetUint(n.Uint64) 793 return value 794 } 795 s.errorf("expected unsigned integer; found %s", n) 796 panic("not reached") 797 } 798 799 func (s *state) evalFloat(typ reflect.Type, n parse.Node) reflect.Value { 800 s.at(n) 801 if n, ok := n.(*parse.NumberNode); ok && n.IsFloat { 802 value := reflect.New(typ).Elem() 803 value.SetFloat(n.Float64) 804 return value 805 } 806 s.errorf("expected float; found %s", n) 807 panic("not reached") 808 } 809 810 func (s *state) evalComplex(typ reflect.Type, n parse.Node) reflect.Value { 811 if n, ok := n.(*parse.NumberNode); ok && n.IsComplex { 812 value := reflect.New(typ).Elem() 813 value.SetComplex(n.Complex128) 814 return value 815 } 816 s.errorf("expected complex; found %s", n) 817 panic("not reached") 818 } 819 820 func (s *state) evalEmptyInterface(dot reflect.Value, n parse.Node) reflect.Value { 821 s.at(n) 822 switch n := n.(type) { 823 case *parse.BoolNode: 824 return reflect.ValueOf(n.True) 825 case *parse.DotNode: 826 return dot 827 case *parse.FieldNode: 828 return s.evalFieldNode(dot, n, nil, zero) 829 case *parse.IdentifierNode: 830 return s.evalFunction(dot, n, n, nil, zero) 831 case *parse.NilNode: 832 // NilNode is handled in evalArg, the only place that calls here. 833 s.errorf("evalEmptyInterface: nil (can't happen)") 834 case *parse.NumberNode: 835 return s.idealConstant(n) 836 case *parse.StringNode: 837 return reflect.ValueOf(n.Text) 838 case *parse.VariableNode: 839 return s.evalVariableNode(dot, n, nil, zero) 840 case *parse.PipeNode: 841 return s.evalPipeline(dot, n) 842 } 843 s.errorf("can't handle assignment of %s to empty interface argument", n) 844 panic("not reached") 845 } 846 847 // indirect returns the item at the end of indirection, and a bool to indicate if it's nil. 848 func indirect(v reflect.Value) (rv reflect.Value, isNil bool) { 849 for ; v.Kind() == reflect.Ptr || v.Kind() == reflect.Interface; v = v.Elem() { 850 if v.IsNil() { 851 return v, true 852 } 853 } 854 return v, false 855 } 856 857 // printValue writes the textual representation of the value to the output of 858 // the template. 859 func (s *state) printValue(n parse.Node, v reflect.Value) { 860 s.at(n) 861 iface, ok := printableValue(v) 862 if !ok { 863 s.errorf("can't print %s of type %s", n, v.Type()) 864 } 865 _, err := fmt.Fprint(s.wr, iface) 866 if err != nil { 867 s.writeError(err) 868 } 869 } 870 871 // printableValue returns the, possibly indirected, interface value inside v that 872 // is best for a call to formatted printer. 873 func printableValue(v reflect.Value) (interface{}, bool) { 874 if v.Kind() == reflect.Ptr { 875 v, _ = indirect(v) // fmt.Fprint handles nil. 876 } 877 if !v.IsValid() { 878 return "<no value>", true 879 } 880 881 if !v.Type().Implements(errorType) && !v.Type().Implements(fmtStringerType) { 882 if v.CanAddr() && (reflect.PtrTo(v.Type()).Implements(errorType) || reflect.PtrTo(v.Type()).Implements(fmtStringerType)) { 883 v = v.Addr() 884 } else { 885 switch v.Kind() { 886 case reflect.Chan, reflect.Func: 887 return nil, false 888 } 889 } 890 } 891 return v.Interface(), true 892 } 893 894 // Types to help sort the keys in a map for reproducible output. 895 896 type rvs []reflect.Value 897 898 func (x rvs) Len() int { return len(x) } 899 func (x rvs) Swap(i, j int) { x[i], x[j] = x[j], x[i] } 900 901 type rvInts struct{ rvs } 902 903 func (x rvInts) Less(i, j int) bool { return x.rvs[i].Int() < x.rvs[j].Int() } 904 905 type rvUints struct{ rvs } 906 907 func (x rvUints) Less(i, j int) bool { return x.rvs[i].Uint() < x.rvs[j].Uint() } 908 909 type rvFloats struct{ rvs } 910 911 func (x rvFloats) Less(i, j int) bool { return x.rvs[i].Float() < x.rvs[j].Float() } 912 913 type rvStrings struct{ rvs } 914 915 func (x rvStrings) Less(i, j int) bool { return x.rvs[i].String() < x.rvs[j].String() } 916 917 // sortKeys sorts (if it can) the slice of reflect.Values, which is a slice of map keys. 918 func sortKeys(v []reflect.Value) []reflect.Value { 919 if len(v) <= 1 { 920 return v 921 } 922 switch v[0].Kind() { 923 case reflect.Float32, reflect.Float64: 924 sort.Sort(rvFloats{v}) 925 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 926 sort.Sort(rvInts{v}) 927 case reflect.String: 928 sort.Sort(rvStrings{v}) 929 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 930 sort.Sort(rvUints{v}) 931 } 932 return v 933 }