github.com/golangci/go-tools@v0.0.0-20190318060251-af6baa5dc196/ssa/dom.go (about) 1 // Copyright 2013 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package ssa 6 7 // This file defines algorithms related to dominance. 8 9 // Dominator tree construction ---------------------------------------- 10 // 11 // We use the algorithm described in Lengauer & Tarjan. 1979. A fast 12 // algorithm for finding dominators in a flowgraph. 13 // http://doi.acm.org/10.1145/357062.357071 14 // 15 // We also apply the optimizations to SLT described in Georgiadis et 16 // al, Finding Dominators in Practice, JGAA 2006, 17 // http://jgaa.info/accepted/2006/GeorgiadisTarjanWerneck2006.10.1.pdf 18 // to avoid the need for buckets of size > 1. 19 20 import ( 21 "bytes" 22 "fmt" 23 "math/big" 24 "os" 25 "sort" 26 ) 27 28 // Idom returns the block that immediately dominates b: 29 // its parent in the dominator tree, if any. 30 // Neither the entry node (b.Index==0) nor recover node 31 // (b==b.Parent().Recover()) have a parent. 32 // 33 func (b *BasicBlock) Idom() *BasicBlock { return b.dom.idom } 34 35 // Dominees returns the list of blocks that b immediately dominates: 36 // its children in the dominator tree. 37 // 38 func (b *BasicBlock) Dominees() []*BasicBlock { return b.dom.children } 39 40 // Dominates reports whether b dominates c. 41 func (b *BasicBlock) Dominates(c *BasicBlock) bool { 42 return b.dom.pre <= c.dom.pre && c.dom.post <= b.dom.post 43 } 44 45 type byDomPreorder []*BasicBlock 46 47 func (a byDomPreorder) Len() int { return len(a) } 48 func (a byDomPreorder) Swap(i, j int) { a[i], a[j] = a[j], a[i] } 49 func (a byDomPreorder) Less(i, j int) bool { return a[i].dom.pre < a[j].dom.pre } 50 51 // DomPreorder returns a new slice containing the blocks of f in 52 // dominator tree preorder. 53 // 54 func (f *Function) DomPreorder() []*BasicBlock { 55 n := len(f.Blocks) 56 order := make(byDomPreorder, n, n) 57 copy(order, f.Blocks) 58 sort.Sort(order) 59 return order 60 } 61 62 // domInfo contains a BasicBlock's dominance information. 63 type domInfo struct { 64 idom *BasicBlock // immediate dominator (parent in domtree) 65 children []*BasicBlock // nodes immediately dominated by this one 66 pre, post int32 // pre- and post-order numbering within domtree 67 } 68 69 // ltState holds the working state for Lengauer-Tarjan algorithm 70 // (during which domInfo.pre is repurposed for CFG DFS preorder number). 71 type ltState struct { 72 // Each slice is indexed by b.Index. 73 sdom []*BasicBlock // b's semidominator 74 parent []*BasicBlock // b's parent in DFS traversal of CFG 75 ancestor []*BasicBlock // b's ancestor with least sdom 76 } 77 78 // dfs implements the depth-first search part of the LT algorithm. 79 func (lt *ltState) dfs(v *BasicBlock, i int32, preorder []*BasicBlock) int32 { 80 preorder[i] = v 81 v.dom.pre = i // For now: DFS preorder of spanning tree of CFG 82 i++ 83 lt.sdom[v.Index] = v 84 lt.link(nil, v) 85 for _, w := range v.Succs { 86 if lt.sdom[w.Index] == nil { 87 lt.parent[w.Index] = v 88 i = lt.dfs(w, i, preorder) 89 } 90 } 91 return i 92 } 93 94 // eval implements the EVAL part of the LT algorithm. 95 func (lt *ltState) eval(v *BasicBlock) *BasicBlock { 96 // TODO(adonovan): opt: do path compression per simple LT. 97 u := v 98 for ; lt.ancestor[v.Index] != nil; v = lt.ancestor[v.Index] { 99 if lt.sdom[v.Index].dom.pre < lt.sdom[u.Index].dom.pre { 100 u = v 101 } 102 } 103 return u 104 } 105 106 // link implements the LINK part of the LT algorithm. 107 func (lt *ltState) link(v, w *BasicBlock) { 108 lt.ancestor[w.Index] = v 109 } 110 111 // buildDomTree computes the dominator tree of f using the LT algorithm. 112 // Precondition: all blocks are reachable (e.g. optimizeBlocks has been run). 113 // 114 func buildDomTree(f *Function) { 115 // The step numbers refer to the original LT paper; the 116 // reordering is due to Georgiadis. 117 118 // Clear any previous domInfo. 119 for _, b := range f.Blocks { 120 b.dom = domInfo{} 121 } 122 123 n := len(f.Blocks) 124 // Allocate space for 5 contiguous [n]*BasicBlock arrays: 125 // sdom, parent, ancestor, preorder, buckets. 126 space := make([]*BasicBlock, 5*n, 5*n) 127 lt := ltState{ 128 sdom: space[0:n], 129 parent: space[n : 2*n], 130 ancestor: space[2*n : 3*n], 131 } 132 133 // Step 1. Number vertices by depth-first preorder. 134 preorder := space[3*n : 4*n] 135 root := f.Blocks[0] 136 prenum := lt.dfs(root, 0, preorder) 137 recover := f.Recover 138 if recover != nil { 139 lt.dfs(recover, prenum, preorder) 140 } 141 142 buckets := space[4*n : 5*n] 143 copy(buckets, preorder) 144 145 // In reverse preorder... 146 for i := int32(n) - 1; i > 0; i-- { 147 w := preorder[i] 148 149 // Step 3. Implicitly define the immediate dominator of each node. 150 for v := buckets[i]; v != w; v = buckets[v.dom.pre] { 151 u := lt.eval(v) 152 if lt.sdom[u.Index].dom.pre < i { 153 v.dom.idom = u 154 } else { 155 v.dom.idom = w 156 } 157 } 158 159 // Step 2. Compute the semidominators of all nodes. 160 lt.sdom[w.Index] = lt.parent[w.Index] 161 for _, v := range w.Preds { 162 u := lt.eval(v) 163 if lt.sdom[u.Index].dom.pre < lt.sdom[w.Index].dom.pre { 164 lt.sdom[w.Index] = lt.sdom[u.Index] 165 } 166 } 167 168 lt.link(lt.parent[w.Index], w) 169 170 if lt.parent[w.Index] == lt.sdom[w.Index] { 171 w.dom.idom = lt.parent[w.Index] 172 } else { 173 buckets[i] = buckets[lt.sdom[w.Index].dom.pre] 174 buckets[lt.sdom[w.Index].dom.pre] = w 175 } 176 } 177 178 // The final 'Step 3' is now outside the loop. 179 for v := buckets[0]; v != root; v = buckets[v.dom.pre] { 180 v.dom.idom = root 181 } 182 183 // Step 4. Explicitly define the immediate dominator of each 184 // node, in preorder. 185 for _, w := range preorder[1:] { 186 if w == root || w == recover { 187 w.dom.idom = nil 188 } else { 189 if w.dom.idom != lt.sdom[w.Index] { 190 w.dom.idom = w.dom.idom.dom.idom 191 } 192 // Calculate Children relation as inverse of Idom. 193 w.dom.idom.dom.children = append(w.dom.idom.dom.children, w) 194 } 195 } 196 197 pre, post := numberDomTree(root, 0, 0) 198 if recover != nil { 199 numberDomTree(recover, pre, post) 200 } 201 202 // printDomTreeDot(os.Stderr, f) // debugging 203 // printDomTreeText(os.Stderr, root, 0) // debugging 204 205 if f.Prog.mode&SanityCheckFunctions != 0 { 206 sanityCheckDomTree(f) 207 } 208 } 209 210 // numberDomTree sets the pre- and post-order numbers of a depth-first 211 // traversal of the dominator tree rooted at v. These are used to 212 // answer dominance queries in constant time. 213 // 214 func numberDomTree(v *BasicBlock, pre, post int32) (int32, int32) { 215 v.dom.pre = pre 216 pre++ 217 for _, child := range v.dom.children { 218 pre, post = numberDomTree(child, pre, post) 219 } 220 v.dom.post = post 221 post++ 222 return pre, post 223 } 224 225 // Testing utilities ---------------------------------------- 226 227 // sanityCheckDomTree checks the correctness of the dominator tree 228 // computed by the LT algorithm by comparing against the dominance 229 // relation computed by a naive Kildall-style forward dataflow 230 // analysis (Algorithm 10.16 from the "Dragon" book). 231 // 232 func sanityCheckDomTree(f *Function) { 233 n := len(f.Blocks) 234 235 // D[i] is the set of blocks that dominate f.Blocks[i], 236 // represented as a bit-set of block indices. 237 D := make([]big.Int, n) 238 239 one := big.NewInt(1) 240 241 // all is the set of all blocks; constant. 242 var all big.Int 243 all.Set(one).Lsh(&all, uint(n)).Sub(&all, one) 244 245 // Initialization. 246 for i, b := range f.Blocks { 247 if i == 0 || b == f.Recover { 248 // A root is dominated only by itself. 249 D[i].SetBit(&D[0], 0, 1) 250 } else { 251 // All other blocks are (initially) dominated 252 // by every block. 253 D[i].Set(&all) 254 } 255 } 256 257 // Iteration until fixed point. 258 for changed := true; changed; { 259 changed = false 260 for i, b := range f.Blocks { 261 if i == 0 || b == f.Recover { 262 continue 263 } 264 // Compute intersection across predecessors. 265 var x big.Int 266 x.Set(&all) 267 for _, pred := range b.Preds { 268 x.And(&x, &D[pred.Index]) 269 } 270 x.SetBit(&x, i, 1) // a block always dominates itself. 271 if D[i].Cmp(&x) != 0 { 272 D[i].Set(&x) 273 changed = true 274 } 275 } 276 } 277 278 // Check the entire relation. O(n^2). 279 // The Recover block (if any) must be treated specially so we skip it. 280 ok := true 281 for i := 0; i < n; i++ { 282 for j := 0; j < n; j++ { 283 b, c := f.Blocks[i], f.Blocks[j] 284 if c == f.Recover { 285 continue 286 } 287 actual := b.Dominates(c) 288 expected := D[j].Bit(i) == 1 289 if actual != expected { 290 fmt.Fprintf(os.Stderr, "dominates(%s, %s)==%t, want %t\n", b, c, actual, expected) 291 ok = false 292 } 293 } 294 } 295 296 preorder := f.DomPreorder() 297 for _, b := range f.Blocks { 298 if got := preorder[b.dom.pre]; got != b { 299 fmt.Fprintf(os.Stderr, "preorder[%d]==%s, want %s\n", b.dom.pre, got, b) 300 ok = false 301 } 302 } 303 304 if !ok { 305 panic("sanityCheckDomTree failed for " + f.String()) 306 } 307 308 } 309 310 // Printing functions ---------------------------------------- 311 312 // printDomTree prints the dominator tree as text, using indentation. 313 func printDomTreeText(buf *bytes.Buffer, v *BasicBlock, indent int) { 314 fmt.Fprintf(buf, "%*s%s\n", 4*indent, "", v) 315 for _, child := range v.dom.children { 316 printDomTreeText(buf, child, indent+1) 317 } 318 } 319 320 // printDomTreeDot prints the dominator tree of f in AT&T GraphViz 321 // (.dot) format. 322 func printDomTreeDot(buf *bytes.Buffer, f *Function) { 323 fmt.Fprintln(buf, "//", f) 324 fmt.Fprintln(buf, "digraph domtree {") 325 for i, b := range f.Blocks { 326 v := b.dom 327 fmt.Fprintf(buf, "\tn%d [label=\"%s (%d, %d)\",shape=\"rectangle\"];\n", v.pre, b, v.pre, v.post) 328 // TODO(adonovan): improve appearance of edges 329 // belonging to both dominator tree and CFG. 330 331 // Dominator tree edge. 332 if i != 0 { 333 fmt.Fprintf(buf, "\tn%d -> n%d [style=\"solid\",weight=100];\n", v.idom.dom.pre, v.pre) 334 } 335 // CFG edges. 336 for _, pred := range b.Preds { 337 fmt.Fprintf(buf, "\tn%d -> n%d [style=\"dotted\",weight=0];\n", pred.dom.pre, v.pre) 338 } 339 } 340 fmt.Fprintln(buf, "}") 341 }