github.com/golangci/go-tools@v0.0.0-20190318060251-af6baa5dc196/ssa/ssa.go (about)

     1  // Copyright 2013 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ssa
     6  
     7  // This package defines a high-level intermediate representation for
     8  // Go programs using static single-assignment (SSA) form.
     9  
    10  import (
    11  	"fmt"
    12  	"go/ast"
    13  	exact "go/constant"
    14  	"go/token"
    15  	"go/types"
    16  	"sync"
    17  
    18  	"golang.org/x/tools/go/types/typeutil"
    19  )
    20  
    21  // A Program is a partial or complete Go program converted to SSA form.
    22  type Program struct {
    23  	Fset       *token.FileSet              // position information for the files of this Program
    24  	imported   map[string]*Package         // all importable Packages, keyed by import path
    25  	packages   map[*types.Package]*Package // all loaded Packages, keyed by object
    26  	mode       BuilderMode                 // set of mode bits for SSA construction
    27  	MethodSets typeutil.MethodSetCache     // cache of type-checker's method-sets
    28  
    29  	methodsMu    sync.Mutex                 // guards the following maps:
    30  	methodSets   typeutil.Map               // maps type to its concrete methodSet
    31  	runtimeTypes typeutil.Map               // types for which rtypes are needed
    32  	canon        typeutil.Map               // type canonicalization map
    33  	bounds       map[*types.Func]*Function  // bounds for curried x.Method closures
    34  	thunks       map[selectionKey]*Function // thunks for T.Method expressions
    35  }
    36  
    37  // A Package is a single analyzed Go package containing Members for
    38  // all package-level functions, variables, constants and types it
    39  // declares.  These may be accessed directly via Members, or via the
    40  // type-specific accessor methods Func, Type, Var and Const.
    41  //
    42  // Members also contains entries for "init" (the synthetic package
    43  // initializer) and "init#%d", the nth declared init function,
    44  // and unspecified other things too.
    45  //
    46  type Package struct {
    47  	Prog    *Program               // the owning program
    48  	Pkg     *types.Package         // the corresponding go/types.Package
    49  	Members map[string]Member      // all package members keyed by name (incl. init and init#%d)
    50  	values  map[types.Object]Value // package members (incl. types and methods), keyed by object
    51  	init    *Function              // Func("init"); the package's init function
    52  	debug   bool                   // include full debug info in this package
    53  
    54  	// The following fields are set transiently, then cleared
    55  	// after building.
    56  	buildOnce sync.Once   // ensures package building occurs once
    57  	ninit     int32       // number of init functions
    58  	info      *types.Info // package type information
    59  	files     []*ast.File // package ASTs
    60  }
    61  
    62  // A Member is a member of a Go package, implemented by *NamedConst,
    63  // *Global, *Function, or *Type; they are created by package-level
    64  // const, var, func and type declarations respectively.
    65  //
    66  type Member interface {
    67  	Name() string                    // declared name of the package member
    68  	String() string                  // package-qualified name of the package member
    69  	RelString(*types.Package) string // like String, but relative refs are unqualified
    70  	Object() types.Object            // typechecker's object for this member, if any
    71  	Pos() token.Pos                  // position of member's declaration, if known
    72  	Type() types.Type                // type of the package member
    73  	Token() token.Token              // token.{VAR,FUNC,CONST,TYPE}
    74  	Package() *Package               // the containing package
    75  }
    76  
    77  // A Type is a Member of a Package representing a package-level named type.
    78  type Type struct {
    79  	object *types.TypeName
    80  	pkg    *Package
    81  }
    82  
    83  // A NamedConst is a Member of a Package representing a package-level
    84  // named constant.
    85  //
    86  // Pos() returns the position of the declaring ast.ValueSpec.Names[*]
    87  // identifier.
    88  //
    89  // NB: a NamedConst is not a Value; it contains a constant Value, which
    90  // it augments with the name and position of its 'const' declaration.
    91  //
    92  type NamedConst struct {
    93  	object *types.Const
    94  	Value  *Const
    95  	pkg    *Package
    96  }
    97  
    98  // A Value is an SSA value that can be referenced by an instruction.
    99  type Value interface {
   100  	// Name returns the name of this value, and determines how
   101  	// this Value appears when used as an operand of an
   102  	// Instruction.
   103  	//
   104  	// This is the same as the source name for Parameters,
   105  	// Builtins, Functions, FreeVars, Globals.
   106  	// For constants, it is a representation of the constant's value
   107  	// and type.  For all other Values this is the name of the
   108  	// virtual register defined by the instruction.
   109  	//
   110  	// The name of an SSA Value is not semantically significant,
   111  	// and may not even be unique within a function.
   112  	Name() string
   113  
   114  	// If this value is an Instruction, String returns its
   115  	// disassembled form; otherwise it returns unspecified
   116  	// human-readable information about the Value, such as its
   117  	// kind, name and type.
   118  	String() string
   119  
   120  	// Type returns the type of this value.  Many instructions
   121  	// (e.g. IndexAddr) change their behaviour depending on the
   122  	// types of their operands.
   123  	Type() types.Type
   124  
   125  	// Parent returns the function to which this Value belongs.
   126  	// It returns nil for named Functions, Builtin, Const and Global.
   127  	Parent() *Function
   128  
   129  	// Referrers returns the list of instructions that have this
   130  	// value as one of their operands; it may contain duplicates
   131  	// if an instruction has a repeated operand.
   132  	//
   133  	// Referrers actually returns a pointer through which the
   134  	// caller may perform mutations to the object's state.
   135  	//
   136  	// Referrers is currently only defined if Parent()!=nil,
   137  	// i.e. for the function-local values FreeVar, Parameter,
   138  	// Functions (iff anonymous) and all value-defining instructions.
   139  	// It returns nil for named Functions, Builtin, Const and Global.
   140  	//
   141  	// Instruction.Operands contains the inverse of this relation.
   142  	Referrers() *[]Instruction
   143  
   144  	// Pos returns the location of the AST token most closely
   145  	// associated with the operation that gave rise to this value,
   146  	// or token.NoPos if it was not explicit in the source.
   147  	//
   148  	// For each ast.Node type, a particular token is designated as
   149  	// the closest location for the expression, e.g. the Lparen
   150  	// for an *ast.CallExpr.  This permits a compact but
   151  	// approximate mapping from Values to source positions for use
   152  	// in diagnostic messages, for example.
   153  	//
   154  	// (Do not use this position to determine which Value
   155  	// corresponds to an ast.Expr; use Function.ValueForExpr
   156  	// instead.  NB: it requires that the function was built with
   157  	// debug information.)
   158  	Pos() token.Pos
   159  }
   160  
   161  // An Instruction is an SSA instruction that computes a new Value or
   162  // has some effect.
   163  //
   164  // An Instruction that defines a value (e.g. BinOp) also implements
   165  // the Value interface; an Instruction that only has an effect (e.g. Store)
   166  // does not.
   167  //
   168  type Instruction interface {
   169  	// String returns the disassembled form of this value.
   170  	//
   171  	// Examples of Instructions that are Values:
   172  	//       "x + y"     (BinOp)
   173  	//       "len([])"   (Call)
   174  	// Note that the name of the Value is not printed.
   175  	//
   176  	// Examples of Instructions that are not Values:
   177  	//       "return x"  (Return)
   178  	//       "*y = x"    (Store)
   179  	//
   180  	// (The separation Value.Name() from Value.String() is useful
   181  	// for some analyses which distinguish the operation from the
   182  	// value it defines, e.g., 'y = local int' is both an allocation
   183  	// of memory 'local int' and a definition of a pointer y.)
   184  	String() string
   185  
   186  	// Parent returns the function to which this instruction
   187  	// belongs.
   188  	Parent() *Function
   189  
   190  	// Block returns the basic block to which this instruction
   191  	// belongs.
   192  	Block() *BasicBlock
   193  
   194  	// setBlock sets the basic block to which this instruction belongs.
   195  	setBlock(*BasicBlock)
   196  
   197  	// Operands returns the operands of this instruction: the
   198  	// set of Values it references.
   199  	//
   200  	// Specifically, it appends their addresses to rands, a
   201  	// user-provided slice, and returns the resulting slice,
   202  	// permitting avoidance of memory allocation.
   203  	//
   204  	// The operands are appended in undefined order, but the order
   205  	// is consistent for a given Instruction; the addresses are
   206  	// always non-nil but may point to a nil Value.  Clients may
   207  	// store through the pointers, e.g. to effect a value
   208  	// renaming.
   209  	//
   210  	// Value.Referrers is a subset of the inverse of this
   211  	// relation.  (Referrers are not tracked for all types of
   212  	// Values.)
   213  	Operands(rands []*Value) []*Value
   214  
   215  	// Pos returns the location of the AST token most closely
   216  	// associated with the operation that gave rise to this
   217  	// instruction, or token.NoPos if it was not explicit in the
   218  	// source.
   219  	//
   220  	// For each ast.Node type, a particular token is designated as
   221  	// the closest location for the expression, e.g. the Go token
   222  	// for an *ast.GoStmt.  This permits a compact but approximate
   223  	// mapping from Instructions to source positions for use in
   224  	// diagnostic messages, for example.
   225  	//
   226  	// (Do not use this position to determine which Instruction
   227  	// corresponds to an ast.Expr; see the notes for Value.Pos.
   228  	// This position may be used to determine which non-Value
   229  	// Instruction corresponds to some ast.Stmts, but not all: If
   230  	// and Jump instructions have no Pos(), for example.)
   231  	Pos() token.Pos
   232  }
   233  
   234  // A Node is a node in the SSA value graph.  Every concrete type that
   235  // implements Node is also either a Value, an Instruction, or both.
   236  //
   237  // Node contains the methods common to Value and Instruction, plus the
   238  // Operands and Referrers methods generalized to return nil for
   239  // non-Instructions and non-Values, respectively.
   240  //
   241  // Node is provided to simplify SSA graph algorithms.  Clients should
   242  // use the more specific and informative Value or Instruction
   243  // interfaces where appropriate.
   244  //
   245  type Node interface {
   246  	// Common methods:
   247  	String() string
   248  	Pos() token.Pos
   249  	Parent() *Function
   250  
   251  	// Partial methods:
   252  	Operands(rands []*Value) []*Value // nil for non-Instructions
   253  	Referrers() *[]Instruction        // nil for non-Values
   254  }
   255  
   256  // Function represents the parameters, results, and code of a function
   257  // or method.
   258  //
   259  // If Blocks is nil, this indicates an external function for which no
   260  // Go source code is available.  In this case, FreeVars and Locals
   261  // are nil too.  Clients performing whole-program analysis must
   262  // handle external functions specially.
   263  //
   264  // Blocks contains the function's control-flow graph (CFG).
   265  // Blocks[0] is the function entry point; block order is not otherwise
   266  // semantically significant, though it may affect the readability of
   267  // the disassembly.
   268  // To iterate over the blocks in dominance order, use DomPreorder().
   269  //
   270  // Recover is an optional second entry point to which control resumes
   271  // after a recovered panic.  The Recover block may contain only a return
   272  // statement, preceded by a load of the function's named return
   273  // parameters, if any.
   274  //
   275  // A nested function (Parent()!=nil) that refers to one or more
   276  // lexically enclosing local variables ("free variables") has FreeVars.
   277  // Such functions cannot be called directly but require a
   278  // value created by MakeClosure which, via its Bindings, supplies
   279  // values for these parameters.
   280  //
   281  // If the function is a method (Signature.Recv() != nil) then the first
   282  // element of Params is the receiver parameter.
   283  //
   284  // A Go package may declare many functions called "init".
   285  // For each one, Object().Name() returns "init" but Name() returns
   286  // "init#1", etc, in declaration order.
   287  //
   288  // Pos() returns the declaring ast.FuncLit.Type.Func or the position
   289  // of the ast.FuncDecl.Name, if the function was explicit in the
   290  // source.  Synthetic wrappers, for which Synthetic != "", may share
   291  // the same position as the function they wrap.
   292  // Syntax.Pos() always returns the position of the declaring "func" token.
   293  //
   294  // Type() returns the function's Signature.
   295  //
   296  type Function struct {
   297  	name      string
   298  	object    types.Object     // a declared *types.Func or one of its wrappers
   299  	method    *types.Selection // info about provenance of synthetic methods
   300  	Signature *types.Signature
   301  	pos       token.Pos
   302  
   303  	Synthetic string        // provenance of synthetic function; "" for true source functions
   304  	syntax    ast.Node      // *ast.Func{Decl,Lit}; replaced with simple ast.Node after build, unless debug mode
   305  	parent    *Function     // enclosing function if anon; nil if global
   306  	Pkg       *Package      // enclosing package; nil for shared funcs (wrappers and error.Error)
   307  	Prog      *Program      // enclosing program
   308  	Params    []*Parameter  // function parameters; for methods, includes receiver
   309  	FreeVars  []*FreeVar    // free variables whose values must be supplied by closure
   310  	Locals    []*Alloc      // local variables of this function
   311  	Blocks    []*BasicBlock // basic blocks of the function; nil => external
   312  	Recover   *BasicBlock   // optional; control transfers here after recovered panic
   313  	AnonFuncs []*Function   // anonymous functions directly beneath this one
   314  	referrers []Instruction // referring instructions (iff Parent() != nil)
   315  
   316  	// The following fields are set transiently during building,
   317  	// then cleared.
   318  	currentBlock *BasicBlock             // where to emit code
   319  	objects      map[types.Object]Value  // addresses of local variables
   320  	namedResults []*Alloc                // tuple of named results
   321  	targets      *targets                // linked stack of branch targets
   322  	lblocks      map[*ast.Object]*lblock // labelled blocks
   323  }
   324  
   325  // BasicBlock represents an SSA basic block.
   326  //
   327  // The final element of Instrs is always an explicit transfer of
   328  // control (If, Jump, Return, or Panic).
   329  //
   330  // A block may contain no Instructions only if it is unreachable,
   331  // i.e., Preds is nil.  Empty blocks are typically pruned.
   332  //
   333  // BasicBlocks and their Preds/Succs relation form a (possibly cyclic)
   334  // graph independent of the SSA Value graph: the control-flow graph or
   335  // CFG.  It is illegal for multiple edges to exist between the same
   336  // pair of blocks.
   337  //
   338  // Each BasicBlock is also a node in the dominator tree of the CFG.
   339  // The tree may be navigated using Idom()/Dominees() and queried using
   340  // Dominates().
   341  //
   342  // The order of Preds and Succs is significant (to Phi and If
   343  // instructions, respectively).
   344  //
   345  type BasicBlock struct {
   346  	Index        int            // index of this block within Parent().Blocks
   347  	Comment      string         // optional label; no semantic significance
   348  	parent       *Function      // parent function
   349  	Instrs       []Instruction  // instructions in order
   350  	Preds, Succs []*BasicBlock  // predecessors and successors
   351  	succs2       [2]*BasicBlock // initial space for Succs
   352  	dom          domInfo        // dominator tree info
   353  	gaps         int            // number of nil Instrs (transient)
   354  	rundefers    int            // number of rundefers (transient)
   355  }
   356  
   357  // Pure values ----------------------------------------
   358  
   359  // A FreeVar represents a free variable of the function to which it
   360  // belongs.
   361  //
   362  // FreeVars are used to implement anonymous functions, whose free
   363  // variables are lexically captured in a closure formed by
   364  // MakeClosure.  The value of such a free var is an Alloc or another
   365  // FreeVar and is considered a potentially escaping heap address, with
   366  // pointer type.
   367  //
   368  // FreeVars are also used to implement bound method closures.  Such a
   369  // free var represents the receiver value and may be of any type that
   370  // has concrete methods.
   371  //
   372  // Pos() returns the position of the value that was captured, which
   373  // belongs to an enclosing function.
   374  //
   375  type FreeVar struct {
   376  	name      string
   377  	typ       types.Type
   378  	pos       token.Pos
   379  	parent    *Function
   380  	referrers []Instruction
   381  
   382  	// Transiently needed during building.
   383  	outer Value // the Value captured from the enclosing context.
   384  }
   385  
   386  // A Parameter represents an input parameter of a function.
   387  //
   388  type Parameter struct {
   389  	name      string
   390  	object    types.Object // a *types.Var; nil for non-source locals
   391  	typ       types.Type
   392  	pos       token.Pos
   393  	parent    *Function
   394  	referrers []Instruction
   395  }
   396  
   397  // A Const represents the value of a constant expression.
   398  //
   399  // The underlying type of a constant may be any boolean, numeric, or
   400  // string type.  In addition, a Const may represent the nil value of
   401  // any reference type---interface, map, channel, pointer, slice, or
   402  // function---but not "untyped nil".
   403  //
   404  // All source-level constant expressions are represented by a Const
   405  // of the same type and value.
   406  //
   407  // Value holds the exact value of the constant, independent of its
   408  // Type(), using the same representation as package go/exact uses for
   409  // constants, or nil for a typed nil value.
   410  //
   411  // Pos() returns token.NoPos.
   412  //
   413  // Example printed form:
   414  // 	42:int
   415  //	"hello":untyped string
   416  //	3+4i:MyComplex
   417  //
   418  type Const struct {
   419  	typ   types.Type
   420  	Value exact.Value
   421  }
   422  
   423  // A Global is a named Value holding the address of a package-level
   424  // variable.
   425  //
   426  // Pos() returns the position of the ast.ValueSpec.Names[*]
   427  // identifier.
   428  //
   429  type Global struct {
   430  	name   string
   431  	object types.Object // a *types.Var; may be nil for synthetics e.g. init$guard
   432  	typ    types.Type
   433  	pos    token.Pos
   434  
   435  	Pkg *Package
   436  }
   437  
   438  // A Builtin represents a specific use of a built-in function, e.g. len.
   439  //
   440  // Builtins are immutable values.  Builtins do not have addresses.
   441  // Builtins can only appear in CallCommon.Func.
   442  //
   443  // Name() indicates the function: one of the built-in functions from the
   444  // Go spec (excluding "make" and "new") or one of these ssa-defined
   445  // intrinsics:
   446  //
   447  //   // wrapnilchk returns ptr if non-nil, panics otherwise.
   448  //   // (For use in indirection wrappers.)
   449  //   func ssa:wrapnilchk(ptr *T, recvType, methodName string) *T
   450  //
   451  // Object() returns a *types.Builtin for built-ins defined by the spec,
   452  // nil for others.
   453  //
   454  // Type() returns a *types.Signature representing the effective
   455  // signature of the built-in for this call.
   456  //
   457  type Builtin struct {
   458  	name string
   459  	sig  *types.Signature
   460  }
   461  
   462  // Value-defining instructions  ----------------------------------------
   463  
   464  // The Alloc instruction reserves space for a variable of the given type,
   465  // zero-initializes it, and yields its address.
   466  //
   467  // Alloc values are always addresses, and have pointer types, so the
   468  // type of the allocated variable is actually
   469  // Type().Underlying().(*types.Pointer).Elem().
   470  //
   471  // If Heap is false, Alloc allocates space in the function's
   472  // activation record (frame); we refer to an Alloc(Heap=false) as a
   473  // "local" alloc.  Each local Alloc returns the same address each time
   474  // it is executed within the same activation; the space is
   475  // re-initialized to zero.
   476  //
   477  // If Heap is true, Alloc allocates space in the heap; we
   478  // refer to an Alloc(Heap=true) as a "new" alloc.  Each new Alloc
   479  // returns a different address each time it is executed.
   480  //
   481  // When Alloc is applied to a channel, map or slice type, it returns
   482  // the address of an uninitialized (nil) reference of that kind; store
   483  // the result of MakeSlice, MakeMap or MakeChan in that location to
   484  // instantiate these types.
   485  //
   486  // Pos() returns the ast.CompositeLit.Lbrace for a composite literal,
   487  // or the ast.CallExpr.Rparen for a call to new() or for a call that
   488  // allocates a varargs slice.
   489  //
   490  // Example printed form:
   491  // 	t0 = local int
   492  // 	t1 = new int
   493  //
   494  type Alloc struct {
   495  	register
   496  	Comment string
   497  	Heap    bool
   498  	index   int // dense numbering; for lifting
   499  }
   500  
   501  var _ Instruction = (*Sigma)(nil)
   502  var _ Value = (*Sigma)(nil)
   503  
   504  type Sigma struct {
   505  	register
   506  	X      Value
   507  	Branch bool
   508  }
   509  
   510  func (p *Sigma) Value() Value {
   511  	v := p.X
   512  	for {
   513  		sigma, ok := v.(*Sigma)
   514  		if !ok {
   515  			break
   516  		}
   517  		v = sigma
   518  	}
   519  	return v
   520  }
   521  
   522  func (p *Sigma) String() string {
   523  	return fmt.Sprintf("σ [%s.%t]", relName(p.X, p), p.Branch)
   524  }
   525  
   526  // The Phi instruction represents an SSA φ-node, which combines values
   527  // that differ across incoming control-flow edges and yields a new
   528  // value.  Within a block, all φ-nodes must appear before all non-φ
   529  // nodes.
   530  //
   531  // Pos() returns the position of the && or || for short-circuit
   532  // control-flow joins, or that of the *Alloc for φ-nodes inserted
   533  // during SSA renaming.
   534  //
   535  // Example printed form:
   536  // 	t2 = phi [0: t0, 1: t1]
   537  //
   538  type Phi struct {
   539  	register
   540  	Comment string  // a hint as to its purpose
   541  	Edges   []Value // Edges[i] is value for Block().Preds[i]
   542  }
   543  
   544  // The Call instruction represents a function or method call.
   545  //
   546  // The Call instruction yields the function result if there is exactly
   547  // one.  Otherwise it returns a tuple, the components of which are
   548  // accessed via Extract.
   549  //
   550  // See CallCommon for generic function call documentation.
   551  //
   552  // Pos() returns the ast.CallExpr.Lparen, if explicit in the source.
   553  //
   554  // Example printed form:
   555  // 	t2 = println(t0, t1)
   556  // 	t4 = t3()
   557  // 	t7 = invoke t5.Println(...t6)
   558  //
   559  type Call struct {
   560  	register
   561  	Call CallCommon
   562  }
   563  
   564  // The BinOp instruction yields the result of binary operation X Op Y.
   565  //
   566  // Pos() returns the ast.BinaryExpr.OpPos, if explicit in the source.
   567  //
   568  // Example printed form:
   569  // 	t1 = t0 + 1:int
   570  //
   571  type BinOp struct {
   572  	register
   573  	// One of:
   574  	// ADD SUB MUL QUO REM          + - * / %
   575  	// AND OR XOR SHL SHR AND_NOT   & | ^ << >> &~
   576  	// EQL LSS GTR NEQ LEQ GEQ      == != < <= < >=
   577  	Op   token.Token
   578  	X, Y Value
   579  }
   580  
   581  // The UnOp instruction yields the result of Op X.
   582  // ARROW is channel receive.
   583  // MUL is pointer indirection (load).
   584  // XOR is bitwise complement.
   585  // SUB is negation.
   586  // NOT is logical negation.
   587  //
   588  // If CommaOk and Op=ARROW, the result is a 2-tuple of the value above
   589  // and a boolean indicating the success of the receive.  The
   590  // components of the tuple are accessed using Extract.
   591  //
   592  // Pos() returns the ast.UnaryExpr.OpPos, if explicit in the source.
   593  // For receive operations (ARROW) implicit in ranging over a channel,
   594  // Pos() returns the ast.RangeStmt.For.
   595  // For implicit memory loads (STAR), Pos() returns the position of the
   596  // most closely associated source-level construct; the details are not
   597  // specified.
   598  //
   599  // Example printed form:
   600  // 	t0 = *x
   601  // 	t2 = <-t1,ok
   602  //
   603  type UnOp struct {
   604  	register
   605  	Op      token.Token // One of: NOT SUB ARROW MUL XOR ! - <- * ^
   606  	X       Value
   607  	CommaOk bool
   608  }
   609  
   610  // The ChangeType instruction applies to X a value-preserving type
   611  // change to Type().
   612  //
   613  // Type changes are permitted:
   614  //    - between a named type and its underlying type.
   615  //    - between two named types of the same underlying type.
   616  //    - between (possibly named) pointers to identical base types.
   617  //    - from a bidirectional channel to a read- or write-channel,
   618  //      optionally adding/removing a name.
   619  //
   620  // This operation cannot fail dynamically.
   621  //
   622  // Pos() returns the ast.CallExpr.Lparen, if the instruction arose
   623  // from an explicit conversion in the source.
   624  //
   625  // Example printed form:
   626  // 	t1 = changetype *int <- IntPtr (t0)
   627  //
   628  type ChangeType struct {
   629  	register
   630  	X Value
   631  }
   632  
   633  // The Convert instruction yields the conversion of value X to type
   634  // Type().  One or both of those types is basic (but possibly named).
   635  //
   636  // A conversion may change the value and representation of its operand.
   637  // Conversions are permitted:
   638  //    - between real numeric types.
   639  //    - between complex numeric types.
   640  //    - between string and []byte or []rune.
   641  //    - between pointers and unsafe.Pointer.
   642  //    - between unsafe.Pointer and uintptr.
   643  //    - from (Unicode) integer to (UTF-8) string.
   644  // A conversion may imply a type name change also.
   645  //
   646  // This operation cannot fail dynamically.
   647  //
   648  // Conversions of untyped string/number/bool constants to a specific
   649  // representation are eliminated during SSA construction.
   650  //
   651  // Pos() returns the ast.CallExpr.Lparen, if the instruction arose
   652  // from an explicit conversion in the source.
   653  //
   654  // Example printed form:
   655  // 	t1 = convert []byte <- string (t0)
   656  //
   657  type Convert struct {
   658  	register
   659  	X Value
   660  }
   661  
   662  // ChangeInterface constructs a value of one interface type from a
   663  // value of another interface type known to be assignable to it.
   664  // This operation cannot fail.
   665  //
   666  // Pos() returns the ast.CallExpr.Lparen if the instruction arose from
   667  // an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the
   668  // instruction arose from an explicit e.(T) operation; or token.NoPos
   669  // otherwise.
   670  //
   671  // Example printed form:
   672  // 	t1 = change interface interface{} <- I (t0)
   673  //
   674  type ChangeInterface struct {
   675  	register
   676  	X Value
   677  }
   678  
   679  // MakeInterface constructs an instance of an interface type from a
   680  // value of a concrete type.
   681  //
   682  // Use Program.MethodSets.MethodSet(X.Type()) to find the method-set
   683  // of X, and Program.Method(m) to find the implementation of a method.
   684  //
   685  // To construct the zero value of an interface type T, use:
   686  // 	NewConst(exact.MakeNil(), T, pos)
   687  //
   688  // Pos() returns the ast.CallExpr.Lparen, if the instruction arose
   689  // from an explicit conversion in the source.
   690  //
   691  // Example printed form:
   692  // 	t1 = make interface{} <- int (42:int)
   693  // 	t2 = make Stringer <- t0
   694  //
   695  type MakeInterface struct {
   696  	register
   697  	X Value
   698  }
   699  
   700  // The MakeClosure instruction yields a closure value whose code is
   701  // Fn and whose free variables' values are supplied by Bindings.
   702  //
   703  // Type() returns a (possibly named) *types.Signature.
   704  //
   705  // Pos() returns the ast.FuncLit.Type.Func for a function literal
   706  // closure or the ast.SelectorExpr.Sel for a bound method closure.
   707  //
   708  // Example printed form:
   709  // 	t0 = make closure anon@1.2 [x y z]
   710  // 	t1 = make closure bound$(main.I).add [i]
   711  //
   712  type MakeClosure struct {
   713  	register
   714  	Fn       Value   // always a *Function
   715  	Bindings []Value // values for each free variable in Fn.FreeVars
   716  }
   717  
   718  // The MakeMap instruction creates a new hash-table-based map object
   719  // and yields a value of kind map.
   720  //
   721  // Type() returns a (possibly named) *types.Map.
   722  //
   723  // Pos() returns the ast.CallExpr.Lparen, if created by make(map), or
   724  // the ast.CompositeLit.Lbrack if created by a literal.
   725  //
   726  // Example printed form:
   727  // 	t1 = make map[string]int t0
   728  // 	t1 = make StringIntMap t0
   729  //
   730  type MakeMap struct {
   731  	register
   732  	Reserve Value // initial space reservation; nil => default
   733  }
   734  
   735  // The MakeChan instruction creates a new channel object and yields a
   736  // value of kind chan.
   737  //
   738  // Type() returns a (possibly named) *types.Chan.
   739  //
   740  // Pos() returns the ast.CallExpr.Lparen for the make(chan) that
   741  // created it.
   742  //
   743  // Example printed form:
   744  // 	t0 = make chan int 0
   745  // 	t0 = make IntChan 0
   746  //
   747  type MakeChan struct {
   748  	register
   749  	Size Value // int; size of buffer; zero => synchronous.
   750  }
   751  
   752  // The MakeSlice instruction yields a slice of length Len backed by a
   753  // newly allocated array of length Cap.
   754  //
   755  // Both Len and Cap must be non-nil Values of integer type.
   756  //
   757  // (Alloc(types.Array) followed by Slice will not suffice because
   758  // Alloc can only create arrays of constant length.)
   759  //
   760  // Type() returns a (possibly named) *types.Slice.
   761  //
   762  // Pos() returns the ast.CallExpr.Lparen for the make([]T) that
   763  // created it.
   764  //
   765  // Example printed form:
   766  // 	t1 = make []string 1:int t0
   767  // 	t1 = make StringSlice 1:int t0
   768  //
   769  type MakeSlice struct {
   770  	register
   771  	Len Value
   772  	Cap Value
   773  }
   774  
   775  // The Slice instruction yields a slice of an existing string, slice
   776  // or *array X between optional integer bounds Low and High.
   777  //
   778  // Dynamically, this instruction panics if X evaluates to a nil *array
   779  // pointer.
   780  //
   781  // Type() returns string if the type of X was string, otherwise a
   782  // *types.Slice with the same element type as X.
   783  //
   784  // Pos() returns the ast.SliceExpr.Lbrack if created by a x[:] slice
   785  // operation, the ast.CompositeLit.Lbrace if created by a literal, or
   786  // NoPos if not explicit in the source (e.g. a variadic argument slice).
   787  //
   788  // Example printed form:
   789  // 	t1 = slice t0[1:]
   790  //
   791  type Slice struct {
   792  	register
   793  	X              Value // slice, string, or *array
   794  	Low, High, Max Value // each may be nil
   795  }
   796  
   797  // The FieldAddr instruction yields the address of Field of *struct X.
   798  //
   799  // The field is identified by its index within the field list of the
   800  // struct type of X.
   801  //
   802  // Dynamically, this instruction panics if X evaluates to a nil
   803  // pointer.
   804  //
   805  // Type() returns a (possibly named) *types.Pointer.
   806  //
   807  // Pos() returns the position of the ast.SelectorExpr.Sel for the
   808  // field, if explicit in the source.
   809  //
   810  // Example printed form:
   811  // 	t1 = &t0.name [#1]
   812  //
   813  type FieldAddr struct {
   814  	register
   815  	X     Value // *struct
   816  	Field int   // index into X.Type().Deref().(*types.Struct).Fields
   817  }
   818  
   819  // The Field instruction yields the Field of struct X.
   820  //
   821  // The field is identified by its index within the field list of the
   822  // struct type of X; by using numeric indices we avoid ambiguity of
   823  // package-local identifiers and permit compact representations.
   824  //
   825  // Pos() returns the position of the ast.SelectorExpr.Sel for the
   826  // field, if explicit in the source.
   827  //
   828  // Example printed form:
   829  // 	t1 = t0.name [#1]
   830  //
   831  type Field struct {
   832  	register
   833  	X     Value // struct
   834  	Field int   // index into X.Type().(*types.Struct).Fields
   835  }
   836  
   837  // The IndexAddr instruction yields the address of the element at
   838  // index Index of collection X.  Index is an integer expression.
   839  //
   840  // The elements of maps and strings are not addressable; use Lookup or
   841  // MapUpdate instead.
   842  //
   843  // Dynamically, this instruction panics if X evaluates to a nil *array
   844  // pointer.
   845  //
   846  // Type() returns a (possibly named) *types.Pointer.
   847  //
   848  // Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
   849  // explicit in the source.
   850  //
   851  // Example printed form:
   852  // 	t2 = &t0[t1]
   853  //
   854  type IndexAddr struct {
   855  	register
   856  	X     Value // slice or *array,
   857  	Index Value // numeric index
   858  }
   859  
   860  // The Index instruction yields element Index of array X.
   861  //
   862  // Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
   863  // explicit in the source.
   864  //
   865  // Example printed form:
   866  // 	t2 = t0[t1]
   867  //
   868  type Index struct {
   869  	register
   870  	X     Value // array
   871  	Index Value // integer index
   872  }
   873  
   874  // The Lookup instruction yields element Index of collection X, a map
   875  // or string.  Index is an integer expression if X is a string or the
   876  // appropriate key type if X is a map.
   877  //
   878  // If CommaOk, the result is a 2-tuple of the value above and a
   879  // boolean indicating the result of a map membership test for the key.
   880  // The components of the tuple are accessed using Extract.
   881  //
   882  // Pos() returns the ast.IndexExpr.Lbrack, if explicit in the source.
   883  //
   884  // Example printed form:
   885  // 	t2 = t0[t1]
   886  // 	t5 = t3[t4],ok
   887  //
   888  type Lookup struct {
   889  	register
   890  	X       Value // string or map
   891  	Index   Value // numeric or key-typed index
   892  	CommaOk bool  // return a value,ok pair
   893  }
   894  
   895  // SelectState is a helper for Select.
   896  // It represents one goal state and its corresponding communication.
   897  //
   898  type SelectState struct {
   899  	Dir       types.ChanDir // direction of case (SendOnly or RecvOnly)
   900  	Chan      Value         // channel to use (for send or receive)
   901  	Send      Value         // value to send (for send)
   902  	Pos       token.Pos     // position of token.ARROW
   903  	DebugNode ast.Node      // ast.SendStmt or ast.UnaryExpr(<-) [debug mode]
   904  }
   905  
   906  // The Select instruction tests whether (or blocks until) one
   907  // of the specified sent or received states is entered.
   908  //
   909  // Let n be the number of States for which Dir==RECV and T_i (0<=i<n)
   910  // be the element type of each such state's Chan.
   911  // Select returns an n+2-tuple
   912  //    (index int, recvOk bool, r_0 T_0, ... r_n-1 T_n-1)
   913  // The tuple's components, described below, must be accessed via the
   914  // Extract instruction.
   915  //
   916  // If Blocking, select waits until exactly one state holds, i.e. a
   917  // channel becomes ready for the designated operation of sending or
   918  // receiving; select chooses one among the ready states
   919  // pseudorandomly, performs the send or receive operation, and sets
   920  // 'index' to the index of the chosen channel.
   921  //
   922  // If !Blocking, select doesn't block if no states hold; instead it
   923  // returns immediately with index equal to -1.
   924  //
   925  // If the chosen channel was used for a receive, the r_i component is
   926  // set to the received value, where i is the index of that state among
   927  // all n receive states; otherwise r_i has the zero value of type T_i.
   928  // Note that the receive index i is not the same as the state
   929  // index index.
   930  //
   931  // The second component of the triple, recvOk, is a boolean whose value
   932  // is true iff the selected operation was a receive and the receive
   933  // successfully yielded a value.
   934  //
   935  // Pos() returns the ast.SelectStmt.Select.
   936  //
   937  // Example printed form:
   938  // 	t3 = select nonblocking [<-t0, t1<-t2]
   939  // 	t4 = select blocking []
   940  //
   941  type Select struct {
   942  	register
   943  	States   []*SelectState
   944  	Blocking bool
   945  }
   946  
   947  // The Range instruction yields an iterator over the domain and range
   948  // of X, which must be a string or map.
   949  //
   950  // Elements are accessed via Next.
   951  //
   952  // Type() returns an opaque and degenerate "rangeIter" type.
   953  //
   954  // Pos() returns the ast.RangeStmt.For.
   955  //
   956  // Example printed form:
   957  // 	t0 = range "hello":string
   958  //
   959  type Range struct {
   960  	register
   961  	X Value // string or map
   962  }
   963  
   964  // The Next instruction reads and advances the (map or string)
   965  // iterator Iter and returns a 3-tuple value (ok, k, v).  If the
   966  // iterator is not exhausted, ok is true and k and v are the next
   967  // elements of the domain and range, respectively.  Otherwise ok is
   968  // false and k and v are undefined.
   969  //
   970  // Components of the tuple are accessed using Extract.
   971  //
   972  // The IsString field distinguishes iterators over strings from those
   973  // over maps, as the Type() alone is insufficient: consider
   974  // map[int]rune.
   975  //
   976  // Type() returns a *types.Tuple for the triple (ok, k, v).
   977  // The types of k and/or v may be types.Invalid.
   978  //
   979  // Example printed form:
   980  // 	t1 = next t0
   981  //
   982  type Next struct {
   983  	register
   984  	Iter     Value
   985  	IsString bool // true => string iterator; false => map iterator.
   986  }
   987  
   988  // The TypeAssert instruction tests whether interface value X has type
   989  // AssertedType.
   990  //
   991  // If !CommaOk, on success it returns v, the result of the conversion
   992  // (defined below); on failure it panics.
   993  //
   994  // If CommaOk: on success it returns a pair (v, true) where v is the
   995  // result of the conversion; on failure it returns (z, false) where z
   996  // is AssertedType's zero value.  The components of the pair must be
   997  // accessed using the Extract instruction.
   998  //
   999  // If AssertedType is a concrete type, TypeAssert checks whether the
  1000  // dynamic type in interface X is equal to it, and if so, the result
  1001  // of the conversion is a copy of the value in the interface.
  1002  //
  1003  // If AssertedType is an interface, TypeAssert checks whether the
  1004  // dynamic type of the interface is assignable to it, and if so, the
  1005  // result of the conversion is a copy of the interface value X.
  1006  // If AssertedType is a superinterface of X.Type(), the operation will
  1007  // fail iff the operand is nil.  (Contrast with ChangeInterface, which
  1008  // performs no nil-check.)
  1009  //
  1010  // Type() reflects the actual type of the result, possibly a
  1011  // 2-types.Tuple; AssertedType is the asserted type.
  1012  //
  1013  // Pos() returns the ast.CallExpr.Lparen if the instruction arose from
  1014  // an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the
  1015  // instruction arose from an explicit e.(T) operation; or the
  1016  // ast.CaseClause.Case if the instruction arose from a case of a
  1017  // type-switch statement.
  1018  //
  1019  // Example printed form:
  1020  // 	t1 = typeassert t0.(int)
  1021  // 	t3 = typeassert,ok t2.(T)
  1022  //
  1023  type TypeAssert struct {
  1024  	register
  1025  	X            Value
  1026  	AssertedType types.Type
  1027  	CommaOk      bool
  1028  }
  1029  
  1030  // The Extract instruction yields component Index of Tuple.
  1031  //
  1032  // This is used to access the results of instructions with multiple
  1033  // return values, such as Call, TypeAssert, Next, UnOp(ARROW) and
  1034  // IndexExpr(Map).
  1035  //
  1036  // Example printed form:
  1037  // 	t1 = extract t0 #1
  1038  //
  1039  type Extract struct {
  1040  	register
  1041  	Tuple Value
  1042  	Index int
  1043  }
  1044  
  1045  // Instructions executed for effect.  They do not yield a value. --------------------
  1046  
  1047  // The Jump instruction transfers control to the sole successor of its
  1048  // owning block.
  1049  //
  1050  // A Jump must be the last instruction of its containing BasicBlock.
  1051  //
  1052  // Pos() returns NoPos.
  1053  //
  1054  // Example printed form:
  1055  // 	jump done
  1056  //
  1057  type Jump struct {
  1058  	anInstruction
  1059  }
  1060  
  1061  // The If instruction transfers control to one of the two successors
  1062  // of its owning block, depending on the boolean Cond: the first if
  1063  // true, the second if false.
  1064  //
  1065  // An If instruction must be the last instruction of its containing
  1066  // BasicBlock.
  1067  //
  1068  // Pos() returns NoPos.
  1069  //
  1070  // Example printed form:
  1071  // 	if t0 goto done else body
  1072  //
  1073  type If struct {
  1074  	anInstruction
  1075  	Cond Value
  1076  }
  1077  
  1078  // The Return instruction returns values and control back to the calling
  1079  // function.
  1080  //
  1081  // len(Results) is always equal to the number of results in the
  1082  // function's signature.
  1083  //
  1084  // If len(Results) > 1, Return returns a tuple value with the specified
  1085  // components which the caller must access using Extract instructions.
  1086  //
  1087  // There is no instruction to return a ready-made tuple like those
  1088  // returned by a "value,ok"-mode TypeAssert, Lookup or UnOp(ARROW) or
  1089  // a tail-call to a function with multiple result parameters.
  1090  //
  1091  // Return must be the last instruction of its containing BasicBlock.
  1092  // Such a block has no successors.
  1093  //
  1094  // Pos() returns the ast.ReturnStmt.Return, if explicit in the source.
  1095  //
  1096  // Example printed form:
  1097  // 	return
  1098  // 	return nil:I, 2:int
  1099  //
  1100  type Return struct {
  1101  	anInstruction
  1102  	Results []Value
  1103  	pos     token.Pos
  1104  }
  1105  
  1106  // The RunDefers instruction pops and invokes the entire stack of
  1107  // procedure calls pushed by Defer instructions in this function.
  1108  //
  1109  // It is legal to encounter multiple 'rundefers' instructions in a
  1110  // single control-flow path through a function; this is useful in
  1111  // the combined init() function, for example.
  1112  //
  1113  // Pos() returns NoPos.
  1114  //
  1115  // Example printed form:
  1116  //	rundefers
  1117  //
  1118  type RunDefers struct {
  1119  	anInstruction
  1120  }
  1121  
  1122  // The Panic instruction initiates a panic with value X.
  1123  //
  1124  // A Panic instruction must be the last instruction of its containing
  1125  // BasicBlock, which must have no successors.
  1126  //
  1127  // NB: 'go panic(x)' and 'defer panic(x)' do not use this instruction;
  1128  // they are treated as calls to a built-in function.
  1129  //
  1130  // Pos() returns the ast.CallExpr.Lparen if this panic was explicit
  1131  // in the source.
  1132  //
  1133  // Example printed form:
  1134  // 	panic t0
  1135  //
  1136  type Panic struct {
  1137  	anInstruction
  1138  	X   Value // an interface{}
  1139  	pos token.Pos
  1140  }
  1141  
  1142  // The Go instruction creates a new goroutine and calls the specified
  1143  // function within it.
  1144  //
  1145  // See CallCommon for generic function call documentation.
  1146  //
  1147  // Pos() returns the ast.GoStmt.Go.
  1148  //
  1149  // Example printed form:
  1150  // 	go println(t0, t1)
  1151  // 	go t3()
  1152  // 	go invoke t5.Println(...t6)
  1153  //
  1154  type Go struct {
  1155  	anInstruction
  1156  	Call CallCommon
  1157  	pos  token.Pos
  1158  }
  1159  
  1160  // The Defer instruction pushes the specified call onto a stack of
  1161  // functions to be called by a RunDefers instruction or by a panic.
  1162  //
  1163  // See CallCommon for generic function call documentation.
  1164  //
  1165  // Pos() returns the ast.DeferStmt.Defer.
  1166  //
  1167  // Example printed form:
  1168  // 	defer println(t0, t1)
  1169  // 	defer t3()
  1170  // 	defer invoke t5.Println(...t6)
  1171  //
  1172  type Defer struct {
  1173  	anInstruction
  1174  	Call CallCommon
  1175  	pos  token.Pos
  1176  }
  1177  
  1178  // The Send instruction sends X on channel Chan.
  1179  //
  1180  // Pos() returns the ast.SendStmt.Arrow, if explicit in the source.
  1181  //
  1182  // Example printed form:
  1183  // 	send t0 <- t1
  1184  //
  1185  type Send struct {
  1186  	anInstruction
  1187  	Chan, X Value
  1188  	pos     token.Pos
  1189  }
  1190  
  1191  // The Store instruction stores Val at address Addr.
  1192  // Stores can be of arbitrary types.
  1193  //
  1194  // Pos() returns the position of the source-level construct most closely
  1195  // associated with the memory store operation.
  1196  // Since implicit memory stores are numerous and varied and depend upon
  1197  // implementation choices, the details are not specified.
  1198  //
  1199  // Example printed form:
  1200  // 	*x = y
  1201  //
  1202  type Store struct {
  1203  	anInstruction
  1204  	Addr Value
  1205  	Val  Value
  1206  	pos  token.Pos
  1207  }
  1208  
  1209  // The BlankStore instruction is emitted for assignments to the blank
  1210  // identifier.
  1211  //
  1212  // BlankStore is a pseudo-instruction: it has no dynamic effect.
  1213  //
  1214  // Pos() returns NoPos.
  1215  //
  1216  // Example printed form:
  1217  //	_ = t0
  1218  //
  1219  type BlankStore struct {
  1220  	anInstruction
  1221  	Val Value
  1222  }
  1223  
  1224  // The MapUpdate instruction updates the association of Map[Key] to
  1225  // Value.
  1226  //
  1227  // Pos() returns the ast.KeyValueExpr.Colon or ast.IndexExpr.Lbrack,
  1228  // if explicit in the source.
  1229  //
  1230  // Example printed form:
  1231  //	t0[t1] = t2
  1232  //
  1233  type MapUpdate struct {
  1234  	anInstruction
  1235  	Map   Value
  1236  	Key   Value
  1237  	Value Value
  1238  	pos   token.Pos
  1239  }
  1240  
  1241  // A DebugRef instruction maps a source-level expression Expr to the
  1242  // SSA value X that represents the value (!IsAddr) or address (IsAddr)
  1243  // of that expression.
  1244  //
  1245  // DebugRef is a pseudo-instruction: it has no dynamic effect.
  1246  //
  1247  // Pos() returns Expr.Pos(), the start position of the source-level
  1248  // expression.  This is not the same as the "designated" token as
  1249  // documented at Value.Pos(). e.g. CallExpr.Pos() does not return the
  1250  // position of the ("designated") Lparen token.
  1251  //
  1252  // If Expr is an *ast.Ident denoting a var or func, Object() returns
  1253  // the object; though this information can be obtained from the type
  1254  // checker, including it here greatly facilitates debugging.
  1255  // For non-Ident expressions, Object() returns nil.
  1256  //
  1257  // DebugRefs are generated only for functions built with debugging
  1258  // enabled; see Package.SetDebugMode() and the GlobalDebug builder
  1259  // mode flag.
  1260  //
  1261  // DebugRefs are not emitted for ast.Idents referring to constants or
  1262  // predeclared identifiers, since they are trivial and numerous.
  1263  // Nor are they emitted for ast.ParenExprs.
  1264  //
  1265  // (By representing these as instructions, rather than out-of-band,
  1266  // consistency is maintained during transformation passes by the
  1267  // ordinary SSA renaming machinery.)
  1268  //
  1269  // Example printed form:
  1270  //      ; *ast.CallExpr @ 102:9 is t5
  1271  //      ; var x float64 @ 109:72 is x
  1272  //      ; address of *ast.CompositeLit @ 216:10 is t0
  1273  //
  1274  type DebugRef struct {
  1275  	anInstruction
  1276  	Expr   ast.Expr     // the referring expression (never *ast.ParenExpr)
  1277  	object types.Object // the identity of the source var/func
  1278  	IsAddr bool         // Expr is addressable and X is the address it denotes
  1279  	X      Value        // the value or address of Expr
  1280  }
  1281  
  1282  // Embeddable mix-ins and helpers for common parts of other structs. -----------
  1283  
  1284  // register is a mix-in embedded by all SSA values that are also
  1285  // instructions, i.e. virtual registers, and provides a uniform
  1286  // implementation of most of the Value interface: Value.Name() is a
  1287  // numbered register (e.g. "t0"); the other methods are field accessors.
  1288  //
  1289  // Temporary names are automatically assigned to each register on
  1290  // completion of building a function in SSA form.
  1291  //
  1292  // Clients must not assume that the 'id' value (and the Name() derived
  1293  // from it) is unique within a function.  As always in this API,
  1294  // semantics are determined only by identity; names exist only to
  1295  // facilitate debugging.
  1296  //
  1297  type register struct {
  1298  	anInstruction
  1299  	num       int        // "name" of virtual register, e.g. "t0".  Not guaranteed unique.
  1300  	typ       types.Type // type of virtual register
  1301  	pos       token.Pos  // position of source expression, or NoPos
  1302  	referrers []Instruction
  1303  }
  1304  
  1305  // anInstruction is a mix-in embedded by all Instructions.
  1306  // It provides the implementations of the Block and setBlock methods.
  1307  type anInstruction struct {
  1308  	block *BasicBlock // the basic block of this instruction
  1309  }
  1310  
  1311  // CallCommon is contained by Go, Defer and Call to hold the
  1312  // common parts of a function or method call.
  1313  //
  1314  // Each CallCommon exists in one of two modes, function call and
  1315  // interface method invocation, or "call" and "invoke" for short.
  1316  //
  1317  // 1. "call" mode: when Method is nil (!IsInvoke), a CallCommon
  1318  // represents an ordinary function call of the value in Value,
  1319  // which may be a *Builtin, a *Function or any other value of kind
  1320  // 'func'.
  1321  //
  1322  // Value may be one of:
  1323  //    (a) a *Function, indicating a statically dispatched call
  1324  //        to a package-level function, an anonymous function, or
  1325  //        a method of a named type.
  1326  //    (b) a *MakeClosure, indicating an immediately applied
  1327  //        function literal with free variables.
  1328  //    (c) a *Builtin, indicating a statically dispatched call
  1329  //        to a built-in function.
  1330  //    (d) any other value, indicating a dynamically dispatched
  1331  //        function call.
  1332  // StaticCallee returns the identity of the callee in cases
  1333  // (a) and (b), nil otherwise.
  1334  //
  1335  // Args contains the arguments to the call.  If Value is a method,
  1336  // Args[0] contains the receiver parameter.
  1337  //
  1338  // Example printed form:
  1339  // 	t2 = println(t0, t1)
  1340  // 	go t3()
  1341  //	defer t5(...t6)
  1342  //
  1343  // 2. "invoke" mode: when Method is non-nil (IsInvoke), a CallCommon
  1344  // represents a dynamically dispatched call to an interface method.
  1345  // In this mode, Value is the interface value and Method is the
  1346  // interface's abstract method.  Note: an abstract method may be
  1347  // shared by multiple interfaces due to embedding; Value.Type()
  1348  // provides the specific interface used for this call.
  1349  //
  1350  // Value is implicitly supplied to the concrete method implementation
  1351  // as the receiver parameter; in other words, Args[0] holds not the
  1352  // receiver but the first true argument.
  1353  //
  1354  // Example printed form:
  1355  // 	t1 = invoke t0.String()
  1356  // 	go invoke t3.Run(t2)
  1357  // 	defer invoke t4.Handle(...t5)
  1358  //
  1359  // For all calls to variadic functions (Signature().Variadic()),
  1360  // the last element of Args is a slice.
  1361  //
  1362  type CallCommon struct {
  1363  	Value  Value       // receiver (invoke mode) or func value (call mode)
  1364  	Method *types.Func // abstract method (invoke mode)
  1365  	Args   []Value     // actual parameters (in static method call, includes receiver)
  1366  	pos    token.Pos   // position of CallExpr.Lparen, iff explicit in source
  1367  }
  1368  
  1369  // IsInvoke returns true if this call has "invoke" (not "call") mode.
  1370  func (c *CallCommon) IsInvoke() bool {
  1371  	return c.Method != nil
  1372  }
  1373  
  1374  func (c *CallCommon) Pos() token.Pos { return c.pos }
  1375  
  1376  // Signature returns the signature of the called function.
  1377  //
  1378  // For an "invoke"-mode call, the signature of the interface method is
  1379  // returned.
  1380  //
  1381  // In either "call" or "invoke" mode, if the callee is a method, its
  1382  // receiver is represented by sig.Recv, not sig.Params().At(0).
  1383  //
  1384  func (c *CallCommon) Signature() *types.Signature {
  1385  	if c.Method != nil {
  1386  		return c.Method.Type().(*types.Signature)
  1387  	}
  1388  	return c.Value.Type().Underlying().(*types.Signature)
  1389  }
  1390  
  1391  // StaticCallee returns the callee if this is a trivially static
  1392  // "call"-mode call to a function.
  1393  func (c *CallCommon) StaticCallee() *Function {
  1394  	switch fn := c.Value.(type) {
  1395  	case *Function:
  1396  		return fn
  1397  	case *MakeClosure:
  1398  		return fn.Fn.(*Function)
  1399  	}
  1400  	return nil
  1401  }
  1402  
  1403  // Description returns a description of the mode of this call suitable
  1404  // for a user interface, e.g., "static method call".
  1405  func (c *CallCommon) Description() string {
  1406  	switch fn := c.Value.(type) {
  1407  	case *Builtin:
  1408  		return "built-in function call"
  1409  	case *MakeClosure:
  1410  		return "static function closure call"
  1411  	case *Function:
  1412  		if fn.Signature.Recv() != nil {
  1413  			return "static method call"
  1414  		}
  1415  		return "static function call"
  1416  	}
  1417  	if c.IsInvoke() {
  1418  		return "dynamic method call" // ("invoke" mode)
  1419  	}
  1420  	return "dynamic function call"
  1421  }
  1422  
  1423  // The CallInstruction interface, implemented by *Go, *Defer and *Call,
  1424  // exposes the common parts of function-calling instructions,
  1425  // yet provides a way back to the Value defined by *Call alone.
  1426  //
  1427  type CallInstruction interface {
  1428  	Instruction
  1429  	Common() *CallCommon // returns the common parts of the call
  1430  	Value() *Call        // returns the result value of the call (*Call) or nil (*Go, *Defer)
  1431  }
  1432  
  1433  func (s *Call) Common() *CallCommon  { return &s.Call }
  1434  func (s *Defer) Common() *CallCommon { return &s.Call }
  1435  func (s *Go) Common() *CallCommon    { return &s.Call }
  1436  
  1437  func (s *Call) Value() *Call  { return s }
  1438  func (s *Defer) Value() *Call { return nil }
  1439  func (s *Go) Value() *Call    { return nil }
  1440  
  1441  func (v *Builtin) Type() types.Type        { return v.sig }
  1442  func (v *Builtin) Name() string            { return v.name }
  1443  func (*Builtin) Referrers() *[]Instruction { return nil }
  1444  func (v *Builtin) Pos() token.Pos          { return token.NoPos }
  1445  func (v *Builtin) Object() types.Object    { return types.Universe.Lookup(v.name) }
  1446  func (v *Builtin) Parent() *Function       { return nil }
  1447  
  1448  func (v *FreeVar) Type() types.Type          { return v.typ }
  1449  func (v *FreeVar) Name() string              { return v.name }
  1450  func (v *FreeVar) Referrers() *[]Instruction { return &v.referrers }
  1451  func (v *FreeVar) Pos() token.Pos            { return v.pos }
  1452  func (v *FreeVar) Parent() *Function         { return v.parent }
  1453  
  1454  func (v *Global) Type() types.Type                     { return v.typ }
  1455  func (v *Global) Name() string                         { return v.name }
  1456  func (v *Global) Parent() *Function                    { return nil }
  1457  func (v *Global) Pos() token.Pos                       { return v.pos }
  1458  func (v *Global) Referrers() *[]Instruction            { return nil }
  1459  func (v *Global) Token() token.Token                   { return token.VAR }
  1460  func (v *Global) Object() types.Object                 { return v.object }
  1461  func (v *Global) String() string                       { return v.RelString(nil) }
  1462  func (v *Global) Package() *Package                    { return v.Pkg }
  1463  func (v *Global) RelString(from *types.Package) string { return relString(v, from) }
  1464  
  1465  func (v *Function) Name() string         { return v.name }
  1466  func (v *Function) Type() types.Type     { return v.Signature }
  1467  func (v *Function) Pos() token.Pos       { return v.pos }
  1468  func (v *Function) Token() token.Token   { return token.FUNC }
  1469  func (v *Function) Object() types.Object { return v.object }
  1470  func (v *Function) String() string       { return v.RelString(nil) }
  1471  func (v *Function) Package() *Package    { return v.Pkg }
  1472  func (v *Function) Parent() *Function    { return v.parent }
  1473  func (v *Function) Referrers() *[]Instruction {
  1474  	if v.parent != nil {
  1475  		return &v.referrers
  1476  	}
  1477  	return nil
  1478  }
  1479  
  1480  func (v *Parameter) Type() types.Type          { return v.typ }
  1481  func (v *Parameter) Name() string              { return v.name }
  1482  func (v *Parameter) Object() types.Object      { return v.object }
  1483  func (v *Parameter) Referrers() *[]Instruction { return &v.referrers }
  1484  func (v *Parameter) Pos() token.Pos            { return v.pos }
  1485  func (v *Parameter) Parent() *Function         { return v.parent }
  1486  
  1487  func (v *Alloc) Type() types.Type          { return v.typ }
  1488  func (v *Alloc) Referrers() *[]Instruction { return &v.referrers }
  1489  func (v *Alloc) Pos() token.Pos            { return v.pos }
  1490  
  1491  func (v *register) Type() types.Type          { return v.typ }
  1492  func (v *register) setType(typ types.Type)    { v.typ = typ }
  1493  func (v *register) Name() string              { return fmt.Sprintf("t%d", v.num) }
  1494  func (v *register) setNum(num int)            { v.num = num }
  1495  func (v *register) Referrers() *[]Instruction { return &v.referrers }
  1496  func (v *register) Pos() token.Pos            { return v.pos }
  1497  func (v *register) setPos(pos token.Pos)      { v.pos = pos }
  1498  
  1499  func (v *anInstruction) Parent() *Function          { return v.block.parent }
  1500  func (v *anInstruction) Block() *BasicBlock         { return v.block }
  1501  func (v *anInstruction) setBlock(block *BasicBlock) { v.block = block }
  1502  func (v *anInstruction) Referrers() *[]Instruction  { return nil }
  1503  
  1504  func (t *Type) Name() string                         { return t.object.Name() }
  1505  func (t *Type) Pos() token.Pos                       { return t.object.Pos() }
  1506  func (t *Type) Type() types.Type                     { return t.object.Type() }
  1507  func (t *Type) Token() token.Token                   { return token.TYPE }
  1508  func (t *Type) Object() types.Object                 { return t.object }
  1509  func (t *Type) String() string                       { return t.RelString(nil) }
  1510  func (t *Type) Package() *Package                    { return t.pkg }
  1511  func (t *Type) RelString(from *types.Package) string { return relString(t, from) }
  1512  
  1513  func (c *NamedConst) Name() string                         { return c.object.Name() }
  1514  func (c *NamedConst) Pos() token.Pos                       { return c.object.Pos() }
  1515  func (c *NamedConst) String() string                       { return c.RelString(nil) }
  1516  func (c *NamedConst) Type() types.Type                     { return c.object.Type() }
  1517  func (c *NamedConst) Token() token.Token                   { return token.CONST }
  1518  func (c *NamedConst) Object() types.Object                 { return c.object }
  1519  func (c *NamedConst) Package() *Package                    { return c.pkg }
  1520  func (c *NamedConst) RelString(from *types.Package) string { return relString(c, from) }
  1521  
  1522  // Func returns the package-level function of the specified name,
  1523  // or nil if not found.
  1524  //
  1525  func (p *Package) Func(name string) (f *Function) {
  1526  	f, _ = p.Members[name].(*Function)
  1527  	return
  1528  }
  1529  
  1530  // Var returns the package-level variable of the specified name,
  1531  // or nil if not found.
  1532  //
  1533  func (p *Package) Var(name string) (g *Global) {
  1534  	g, _ = p.Members[name].(*Global)
  1535  	return
  1536  }
  1537  
  1538  // Const returns the package-level constant of the specified name,
  1539  // or nil if not found.
  1540  //
  1541  func (p *Package) Const(name string) (c *NamedConst) {
  1542  	c, _ = p.Members[name].(*NamedConst)
  1543  	return
  1544  }
  1545  
  1546  // Type returns the package-level type of the specified name,
  1547  // or nil if not found.
  1548  //
  1549  func (p *Package) Type(name string) (t *Type) {
  1550  	t, _ = p.Members[name].(*Type)
  1551  	return
  1552  }
  1553  
  1554  func (v *Call) Pos() token.Pos       { return v.Call.pos }
  1555  func (s *Defer) Pos() token.Pos      { return s.pos }
  1556  func (s *Go) Pos() token.Pos         { return s.pos }
  1557  func (s *MapUpdate) Pos() token.Pos  { return s.pos }
  1558  func (s *Panic) Pos() token.Pos      { return s.pos }
  1559  func (s *Return) Pos() token.Pos     { return s.pos }
  1560  func (s *Send) Pos() token.Pos       { return s.pos }
  1561  func (s *Store) Pos() token.Pos      { return s.pos }
  1562  func (s *BlankStore) Pos() token.Pos { return token.NoPos }
  1563  func (s *If) Pos() token.Pos         { return token.NoPos }
  1564  func (s *Jump) Pos() token.Pos       { return token.NoPos }
  1565  func (s *RunDefers) Pos() token.Pos  { return token.NoPos }
  1566  func (s *DebugRef) Pos() token.Pos   { return s.Expr.Pos() }
  1567  
  1568  // Operands.
  1569  
  1570  func (v *Alloc) Operands(rands []*Value) []*Value {
  1571  	return rands
  1572  }
  1573  
  1574  func (v *BinOp) Operands(rands []*Value) []*Value {
  1575  	return append(rands, &v.X, &v.Y)
  1576  }
  1577  
  1578  func (c *CallCommon) Operands(rands []*Value) []*Value {
  1579  	rands = append(rands, &c.Value)
  1580  	for i := range c.Args {
  1581  		rands = append(rands, &c.Args[i])
  1582  	}
  1583  	return rands
  1584  }
  1585  
  1586  func (s *Go) Operands(rands []*Value) []*Value {
  1587  	return s.Call.Operands(rands)
  1588  }
  1589  
  1590  func (s *Call) Operands(rands []*Value) []*Value {
  1591  	return s.Call.Operands(rands)
  1592  }
  1593  
  1594  func (s *Defer) Operands(rands []*Value) []*Value {
  1595  	return s.Call.Operands(rands)
  1596  }
  1597  
  1598  func (v *ChangeInterface) Operands(rands []*Value) []*Value {
  1599  	return append(rands, &v.X)
  1600  }
  1601  
  1602  func (v *ChangeType) Operands(rands []*Value) []*Value {
  1603  	return append(rands, &v.X)
  1604  }
  1605  
  1606  func (v *Convert) Operands(rands []*Value) []*Value {
  1607  	return append(rands, &v.X)
  1608  }
  1609  
  1610  func (s *DebugRef) Operands(rands []*Value) []*Value {
  1611  	return append(rands, &s.X)
  1612  }
  1613  
  1614  func (v *Extract) Operands(rands []*Value) []*Value {
  1615  	return append(rands, &v.Tuple)
  1616  }
  1617  
  1618  func (v *Field) Operands(rands []*Value) []*Value {
  1619  	return append(rands, &v.X)
  1620  }
  1621  
  1622  func (v *FieldAddr) Operands(rands []*Value) []*Value {
  1623  	return append(rands, &v.X)
  1624  }
  1625  
  1626  func (s *If) Operands(rands []*Value) []*Value {
  1627  	return append(rands, &s.Cond)
  1628  }
  1629  
  1630  func (v *Index) Operands(rands []*Value) []*Value {
  1631  	return append(rands, &v.X, &v.Index)
  1632  }
  1633  
  1634  func (v *IndexAddr) Operands(rands []*Value) []*Value {
  1635  	return append(rands, &v.X, &v.Index)
  1636  }
  1637  
  1638  func (*Jump) Operands(rands []*Value) []*Value {
  1639  	return rands
  1640  }
  1641  
  1642  func (v *Lookup) Operands(rands []*Value) []*Value {
  1643  	return append(rands, &v.X, &v.Index)
  1644  }
  1645  
  1646  func (v *MakeChan) Operands(rands []*Value) []*Value {
  1647  	return append(rands, &v.Size)
  1648  }
  1649  
  1650  func (v *MakeClosure) Operands(rands []*Value) []*Value {
  1651  	rands = append(rands, &v.Fn)
  1652  	for i := range v.Bindings {
  1653  		rands = append(rands, &v.Bindings[i])
  1654  	}
  1655  	return rands
  1656  }
  1657  
  1658  func (v *MakeInterface) Operands(rands []*Value) []*Value {
  1659  	return append(rands, &v.X)
  1660  }
  1661  
  1662  func (v *MakeMap) Operands(rands []*Value) []*Value {
  1663  	return append(rands, &v.Reserve)
  1664  }
  1665  
  1666  func (v *MakeSlice) Operands(rands []*Value) []*Value {
  1667  	return append(rands, &v.Len, &v.Cap)
  1668  }
  1669  
  1670  func (v *MapUpdate) Operands(rands []*Value) []*Value {
  1671  	return append(rands, &v.Map, &v.Key, &v.Value)
  1672  }
  1673  
  1674  func (v *Next) Operands(rands []*Value) []*Value {
  1675  	return append(rands, &v.Iter)
  1676  }
  1677  
  1678  func (s *Panic) Operands(rands []*Value) []*Value {
  1679  	return append(rands, &s.X)
  1680  }
  1681  
  1682  func (v *Sigma) Operands(rands []*Value) []*Value {
  1683  	return append(rands, &v.X)
  1684  }
  1685  
  1686  func (v *Phi) Operands(rands []*Value) []*Value {
  1687  	for i := range v.Edges {
  1688  		rands = append(rands, &v.Edges[i])
  1689  	}
  1690  	return rands
  1691  }
  1692  
  1693  func (v *Range) Operands(rands []*Value) []*Value {
  1694  	return append(rands, &v.X)
  1695  }
  1696  
  1697  func (s *Return) Operands(rands []*Value) []*Value {
  1698  	for i := range s.Results {
  1699  		rands = append(rands, &s.Results[i])
  1700  	}
  1701  	return rands
  1702  }
  1703  
  1704  func (*RunDefers) Operands(rands []*Value) []*Value {
  1705  	return rands
  1706  }
  1707  
  1708  func (v *Select) Operands(rands []*Value) []*Value {
  1709  	for i := range v.States {
  1710  		rands = append(rands, &v.States[i].Chan, &v.States[i].Send)
  1711  	}
  1712  	return rands
  1713  }
  1714  
  1715  func (s *Send) Operands(rands []*Value) []*Value {
  1716  	return append(rands, &s.Chan, &s.X)
  1717  }
  1718  
  1719  func (v *Slice) Operands(rands []*Value) []*Value {
  1720  	return append(rands, &v.X, &v.Low, &v.High, &v.Max)
  1721  }
  1722  
  1723  func (s *Store) Operands(rands []*Value) []*Value {
  1724  	return append(rands, &s.Addr, &s.Val)
  1725  }
  1726  
  1727  func (s *BlankStore) Operands(rands []*Value) []*Value {
  1728  	return append(rands, &s.Val)
  1729  }
  1730  
  1731  func (v *TypeAssert) Operands(rands []*Value) []*Value {
  1732  	return append(rands, &v.X)
  1733  }
  1734  
  1735  func (v *UnOp) Operands(rands []*Value) []*Value {
  1736  	return append(rands, &v.X)
  1737  }
  1738  
  1739  // Non-Instruction Values:
  1740  func (v *Builtin) Operands(rands []*Value) []*Value   { return rands }
  1741  func (v *FreeVar) Operands(rands []*Value) []*Value   { return rands }
  1742  func (v *Const) Operands(rands []*Value) []*Value     { return rands }
  1743  func (v *Function) Operands(rands []*Value) []*Value  { return rands }
  1744  func (v *Global) Operands(rands []*Value) []*Value    { return rands }
  1745  func (v *Parameter) Operands(rands []*Value) []*Value { return rands }