github.com/golangci/go-tools@v0.0.0-20190318060251-af6baa5dc196/ssa/ssa.go (about) 1 // Copyright 2013 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package ssa 6 7 // This package defines a high-level intermediate representation for 8 // Go programs using static single-assignment (SSA) form. 9 10 import ( 11 "fmt" 12 "go/ast" 13 exact "go/constant" 14 "go/token" 15 "go/types" 16 "sync" 17 18 "golang.org/x/tools/go/types/typeutil" 19 ) 20 21 // A Program is a partial or complete Go program converted to SSA form. 22 type Program struct { 23 Fset *token.FileSet // position information for the files of this Program 24 imported map[string]*Package // all importable Packages, keyed by import path 25 packages map[*types.Package]*Package // all loaded Packages, keyed by object 26 mode BuilderMode // set of mode bits for SSA construction 27 MethodSets typeutil.MethodSetCache // cache of type-checker's method-sets 28 29 methodsMu sync.Mutex // guards the following maps: 30 methodSets typeutil.Map // maps type to its concrete methodSet 31 runtimeTypes typeutil.Map // types for which rtypes are needed 32 canon typeutil.Map // type canonicalization map 33 bounds map[*types.Func]*Function // bounds for curried x.Method closures 34 thunks map[selectionKey]*Function // thunks for T.Method expressions 35 } 36 37 // A Package is a single analyzed Go package containing Members for 38 // all package-level functions, variables, constants and types it 39 // declares. These may be accessed directly via Members, or via the 40 // type-specific accessor methods Func, Type, Var and Const. 41 // 42 // Members also contains entries for "init" (the synthetic package 43 // initializer) and "init#%d", the nth declared init function, 44 // and unspecified other things too. 45 // 46 type Package struct { 47 Prog *Program // the owning program 48 Pkg *types.Package // the corresponding go/types.Package 49 Members map[string]Member // all package members keyed by name (incl. init and init#%d) 50 values map[types.Object]Value // package members (incl. types and methods), keyed by object 51 init *Function // Func("init"); the package's init function 52 debug bool // include full debug info in this package 53 54 // The following fields are set transiently, then cleared 55 // after building. 56 buildOnce sync.Once // ensures package building occurs once 57 ninit int32 // number of init functions 58 info *types.Info // package type information 59 files []*ast.File // package ASTs 60 } 61 62 // A Member is a member of a Go package, implemented by *NamedConst, 63 // *Global, *Function, or *Type; they are created by package-level 64 // const, var, func and type declarations respectively. 65 // 66 type Member interface { 67 Name() string // declared name of the package member 68 String() string // package-qualified name of the package member 69 RelString(*types.Package) string // like String, but relative refs are unqualified 70 Object() types.Object // typechecker's object for this member, if any 71 Pos() token.Pos // position of member's declaration, if known 72 Type() types.Type // type of the package member 73 Token() token.Token // token.{VAR,FUNC,CONST,TYPE} 74 Package() *Package // the containing package 75 } 76 77 // A Type is a Member of a Package representing a package-level named type. 78 type Type struct { 79 object *types.TypeName 80 pkg *Package 81 } 82 83 // A NamedConst is a Member of a Package representing a package-level 84 // named constant. 85 // 86 // Pos() returns the position of the declaring ast.ValueSpec.Names[*] 87 // identifier. 88 // 89 // NB: a NamedConst is not a Value; it contains a constant Value, which 90 // it augments with the name and position of its 'const' declaration. 91 // 92 type NamedConst struct { 93 object *types.Const 94 Value *Const 95 pkg *Package 96 } 97 98 // A Value is an SSA value that can be referenced by an instruction. 99 type Value interface { 100 // Name returns the name of this value, and determines how 101 // this Value appears when used as an operand of an 102 // Instruction. 103 // 104 // This is the same as the source name for Parameters, 105 // Builtins, Functions, FreeVars, Globals. 106 // For constants, it is a representation of the constant's value 107 // and type. For all other Values this is the name of the 108 // virtual register defined by the instruction. 109 // 110 // The name of an SSA Value is not semantically significant, 111 // and may not even be unique within a function. 112 Name() string 113 114 // If this value is an Instruction, String returns its 115 // disassembled form; otherwise it returns unspecified 116 // human-readable information about the Value, such as its 117 // kind, name and type. 118 String() string 119 120 // Type returns the type of this value. Many instructions 121 // (e.g. IndexAddr) change their behaviour depending on the 122 // types of their operands. 123 Type() types.Type 124 125 // Parent returns the function to which this Value belongs. 126 // It returns nil for named Functions, Builtin, Const and Global. 127 Parent() *Function 128 129 // Referrers returns the list of instructions that have this 130 // value as one of their operands; it may contain duplicates 131 // if an instruction has a repeated operand. 132 // 133 // Referrers actually returns a pointer through which the 134 // caller may perform mutations to the object's state. 135 // 136 // Referrers is currently only defined if Parent()!=nil, 137 // i.e. for the function-local values FreeVar, Parameter, 138 // Functions (iff anonymous) and all value-defining instructions. 139 // It returns nil for named Functions, Builtin, Const and Global. 140 // 141 // Instruction.Operands contains the inverse of this relation. 142 Referrers() *[]Instruction 143 144 // Pos returns the location of the AST token most closely 145 // associated with the operation that gave rise to this value, 146 // or token.NoPos if it was not explicit in the source. 147 // 148 // For each ast.Node type, a particular token is designated as 149 // the closest location for the expression, e.g. the Lparen 150 // for an *ast.CallExpr. This permits a compact but 151 // approximate mapping from Values to source positions for use 152 // in diagnostic messages, for example. 153 // 154 // (Do not use this position to determine which Value 155 // corresponds to an ast.Expr; use Function.ValueForExpr 156 // instead. NB: it requires that the function was built with 157 // debug information.) 158 Pos() token.Pos 159 } 160 161 // An Instruction is an SSA instruction that computes a new Value or 162 // has some effect. 163 // 164 // An Instruction that defines a value (e.g. BinOp) also implements 165 // the Value interface; an Instruction that only has an effect (e.g. Store) 166 // does not. 167 // 168 type Instruction interface { 169 // String returns the disassembled form of this value. 170 // 171 // Examples of Instructions that are Values: 172 // "x + y" (BinOp) 173 // "len([])" (Call) 174 // Note that the name of the Value is not printed. 175 // 176 // Examples of Instructions that are not Values: 177 // "return x" (Return) 178 // "*y = x" (Store) 179 // 180 // (The separation Value.Name() from Value.String() is useful 181 // for some analyses which distinguish the operation from the 182 // value it defines, e.g., 'y = local int' is both an allocation 183 // of memory 'local int' and a definition of a pointer y.) 184 String() string 185 186 // Parent returns the function to which this instruction 187 // belongs. 188 Parent() *Function 189 190 // Block returns the basic block to which this instruction 191 // belongs. 192 Block() *BasicBlock 193 194 // setBlock sets the basic block to which this instruction belongs. 195 setBlock(*BasicBlock) 196 197 // Operands returns the operands of this instruction: the 198 // set of Values it references. 199 // 200 // Specifically, it appends their addresses to rands, a 201 // user-provided slice, and returns the resulting slice, 202 // permitting avoidance of memory allocation. 203 // 204 // The operands are appended in undefined order, but the order 205 // is consistent for a given Instruction; the addresses are 206 // always non-nil but may point to a nil Value. Clients may 207 // store through the pointers, e.g. to effect a value 208 // renaming. 209 // 210 // Value.Referrers is a subset of the inverse of this 211 // relation. (Referrers are not tracked for all types of 212 // Values.) 213 Operands(rands []*Value) []*Value 214 215 // Pos returns the location of the AST token most closely 216 // associated with the operation that gave rise to this 217 // instruction, or token.NoPos if it was not explicit in the 218 // source. 219 // 220 // For each ast.Node type, a particular token is designated as 221 // the closest location for the expression, e.g. the Go token 222 // for an *ast.GoStmt. This permits a compact but approximate 223 // mapping from Instructions to source positions for use in 224 // diagnostic messages, for example. 225 // 226 // (Do not use this position to determine which Instruction 227 // corresponds to an ast.Expr; see the notes for Value.Pos. 228 // This position may be used to determine which non-Value 229 // Instruction corresponds to some ast.Stmts, but not all: If 230 // and Jump instructions have no Pos(), for example.) 231 Pos() token.Pos 232 } 233 234 // A Node is a node in the SSA value graph. Every concrete type that 235 // implements Node is also either a Value, an Instruction, or both. 236 // 237 // Node contains the methods common to Value and Instruction, plus the 238 // Operands and Referrers methods generalized to return nil for 239 // non-Instructions and non-Values, respectively. 240 // 241 // Node is provided to simplify SSA graph algorithms. Clients should 242 // use the more specific and informative Value or Instruction 243 // interfaces where appropriate. 244 // 245 type Node interface { 246 // Common methods: 247 String() string 248 Pos() token.Pos 249 Parent() *Function 250 251 // Partial methods: 252 Operands(rands []*Value) []*Value // nil for non-Instructions 253 Referrers() *[]Instruction // nil for non-Values 254 } 255 256 // Function represents the parameters, results, and code of a function 257 // or method. 258 // 259 // If Blocks is nil, this indicates an external function for which no 260 // Go source code is available. In this case, FreeVars and Locals 261 // are nil too. Clients performing whole-program analysis must 262 // handle external functions specially. 263 // 264 // Blocks contains the function's control-flow graph (CFG). 265 // Blocks[0] is the function entry point; block order is not otherwise 266 // semantically significant, though it may affect the readability of 267 // the disassembly. 268 // To iterate over the blocks in dominance order, use DomPreorder(). 269 // 270 // Recover is an optional second entry point to which control resumes 271 // after a recovered panic. The Recover block may contain only a return 272 // statement, preceded by a load of the function's named return 273 // parameters, if any. 274 // 275 // A nested function (Parent()!=nil) that refers to one or more 276 // lexically enclosing local variables ("free variables") has FreeVars. 277 // Such functions cannot be called directly but require a 278 // value created by MakeClosure which, via its Bindings, supplies 279 // values for these parameters. 280 // 281 // If the function is a method (Signature.Recv() != nil) then the first 282 // element of Params is the receiver parameter. 283 // 284 // A Go package may declare many functions called "init". 285 // For each one, Object().Name() returns "init" but Name() returns 286 // "init#1", etc, in declaration order. 287 // 288 // Pos() returns the declaring ast.FuncLit.Type.Func or the position 289 // of the ast.FuncDecl.Name, if the function was explicit in the 290 // source. Synthetic wrappers, for which Synthetic != "", may share 291 // the same position as the function they wrap. 292 // Syntax.Pos() always returns the position of the declaring "func" token. 293 // 294 // Type() returns the function's Signature. 295 // 296 type Function struct { 297 name string 298 object types.Object // a declared *types.Func or one of its wrappers 299 method *types.Selection // info about provenance of synthetic methods 300 Signature *types.Signature 301 pos token.Pos 302 303 Synthetic string // provenance of synthetic function; "" for true source functions 304 syntax ast.Node // *ast.Func{Decl,Lit}; replaced with simple ast.Node after build, unless debug mode 305 parent *Function // enclosing function if anon; nil if global 306 Pkg *Package // enclosing package; nil for shared funcs (wrappers and error.Error) 307 Prog *Program // enclosing program 308 Params []*Parameter // function parameters; for methods, includes receiver 309 FreeVars []*FreeVar // free variables whose values must be supplied by closure 310 Locals []*Alloc // local variables of this function 311 Blocks []*BasicBlock // basic blocks of the function; nil => external 312 Recover *BasicBlock // optional; control transfers here after recovered panic 313 AnonFuncs []*Function // anonymous functions directly beneath this one 314 referrers []Instruction // referring instructions (iff Parent() != nil) 315 316 // The following fields are set transiently during building, 317 // then cleared. 318 currentBlock *BasicBlock // where to emit code 319 objects map[types.Object]Value // addresses of local variables 320 namedResults []*Alloc // tuple of named results 321 targets *targets // linked stack of branch targets 322 lblocks map[*ast.Object]*lblock // labelled blocks 323 } 324 325 // BasicBlock represents an SSA basic block. 326 // 327 // The final element of Instrs is always an explicit transfer of 328 // control (If, Jump, Return, or Panic). 329 // 330 // A block may contain no Instructions only if it is unreachable, 331 // i.e., Preds is nil. Empty blocks are typically pruned. 332 // 333 // BasicBlocks and their Preds/Succs relation form a (possibly cyclic) 334 // graph independent of the SSA Value graph: the control-flow graph or 335 // CFG. It is illegal for multiple edges to exist between the same 336 // pair of blocks. 337 // 338 // Each BasicBlock is also a node in the dominator tree of the CFG. 339 // The tree may be navigated using Idom()/Dominees() and queried using 340 // Dominates(). 341 // 342 // The order of Preds and Succs is significant (to Phi and If 343 // instructions, respectively). 344 // 345 type BasicBlock struct { 346 Index int // index of this block within Parent().Blocks 347 Comment string // optional label; no semantic significance 348 parent *Function // parent function 349 Instrs []Instruction // instructions in order 350 Preds, Succs []*BasicBlock // predecessors and successors 351 succs2 [2]*BasicBlock // initial space for Succs 352 dom domInfo // dominator tree info 353 gaps int // number of nil Instrs (transient) 354 rundefers int // number of rundefers (transient) 355 } 356 357 // Pure values ---------------------------------------- 358 359 // A FreeVar represents a free variable of the function to which it 360 // belongs. 361 // 362 // FreeVars are used to implement anonymous functions, whose free 363 // variables are lexically captured in a closure formed by 364 // MakeClosure. The value of such a free var is an Alloc or another 365 // FreeVar and is considered a potentially escaping heap address, with 366 // pointer type. 367 // 368 // FreeVars are also used to implement bound method closures. Such a 369 // free var represents the receiver value and may be of any type that 370 // has concrete methods. 371 // 372 // Pos() returns the position of the value that was captured, which 373 // belongs to an enclosing function. 374 // 375 type FreeVar struct { 376 name string 377 typ types.Type 378 pos token.Pos 379 parent *Function 380 referrers []Instruction 381 382 // Transiently needed during building. 383 outer Value // the Value captured from the enclosing context. 384 } 385 386 // A Parameter represents an input parameter of a function. 387 // 388 type Parameter struct { 389 name string 390 object types.Object // a *types.Var; nil for non-source locals 391 typ types.Type 392 pos token.Pos 393 parent *Function 394 referrers []Instruction 395 } 396 397 // A Const represents the value of a constant expression. 398 // 399 // The underlying type of a constant may be any boolean, numeric, or 400 // string type. In addition, a Const may represent the nil value of 401 // any reference type---interface, map, channel, pointer, slice, or 402 // function---but not "untyped nil". 403 // 404 // All source-level constant expressions are represented by a Const 405 // of the same type and value. 406 // 407 // Value holds the exact value of the constant, independent of its 408 // Type(), using the same representation as package go/exact uses for 409 // constants, or nil for a typed nil value. 410 // 411 // Pos() returns token.NoPos. 412 // 413 // Example printed form: 414 // 42:int 415 // "hello":untyped string 416 // 3+4i:MyComplex 417 // 418 type Const struct { 419 typ types.Type 420 Value exact.Value 421 } 422 423 // A Global is a named Value holding the address of a package-level 424 // variable. 425 // 426 // Pos() returns the position of the ast.ValueSpec.Names[*] 427 // identifier. 428 // 429 type Global struct { 430 name string 431 object types.Object // a *types.Var; may be nil for synthetics e.g. init$guard 432 typ types.Type 433 pos token.Pos 434 435 Pkg *Package 436 } 437 438 // A Builtin represents a specific use of a built-in function, e.g. len. 439 // 440 // Builtins are immutable values. Builtins do not have addresses. 441 // Builtins can only appear in CallCommon.Func. 442 // 443 // Name() indicates the function: one of the built-in functions from the 444 // Go spec (excluding "make" and "new") or one of these ssa-defined 445 // intrinsics: 446 // 447 // // wrapnilchk returns ptr if non-nil, panics otherwise. 448 // // (For use in indirection wrappers.) 449 // func ssa:wrapnilchk(ptr *T, recvType, methodName string) *T 450 // 451 // Object() returns a *types.Builtin for built-ins defined by the spec, 452 // nil for others. 453 // 454 // Type() returns a *types.Signature representing the effective 455 // signature of the built-in for this call. 456 // 457 type Builtin struct { 458 name string 459 sig *types.Signature 460 } 461 462 // Value-defining instructions ---------------------------------------- 463 464 // The Alloc instruction reserves space for a variable of the given type, 465 // zero-initializes it, and yields its address. 466 // 467 // Alloc values are always addresses, and have pointer types, so the 468 // type of the allocated variable is actually 469 // Type().Underlying().(*types.Pointer).Elem(). 470 // 471 // If Heap is false, Alloc allocates space in the function's 472 // activation record (frame); we refer to an Alloc(Heap=false) as a 473 // "local" alloc. Each local Alloc returns the same address each time 474 // it is executed within the same activation; the space is 475 // re-initialized to zero. 476 // 477 // If Heap is true, Alloc allocates space in the heap; we 478 // refer to an Alloc(Heap=true) as a "new" alloc. Each new Alloc 479 // returns a different address each time it is executed. 480 // 481 // When Alloc is applied to a channel, map or slice type, it returns 482 // the address of an uninitialized (nil) reference of that kind; store 483 // the result of MakeSlice, MakeMap or MakeChan in that location to 484 // instantiate these types. 485 // 486 // Pos() returns the ast.CompositeLit.Lbrace for a composite literal, 487 // or the ast.CallExpr.Rparen for a call to new() or for a call that 488 // allocates a varargs slice. 489 // 490 // Example printed form: 491 // t0 = local int 492 // t1 = new int 493 // 494 type Alloc struct { 495 register 496 Comment string 497 Heap bool 498 index int // dense numbering; for lifting 499 } 500 501 var _ Instruction = (*Sigma)(nil) 502 var _ Value = (*Sigma)(nil) 503 504 type Sigma struct { 505 register 506 X Value 507 Branch bool 508 } 509 510 func (p *Sigma) Value() Value { 511 v := p.X 512 for { 513 sigma, ok := v.(*Sigma) 514 if !ok { 515 break 516 } 517 v = sigma 518 } 519 return v 520 } 521 522 func (p *Sigma) String() string { 523 return fmt.Sprintf("σ [%s.%t]", relName(p.X, p), p.Branch) 524 } 525 526 // The Phi instruction represents an SSA φ-node, which combines values 527 // that differ across incoming control-flow edges and yields a new 528 // value. Within a block, all φ-nodes must appear before all non-φ 529 // nodes. 530 // 531 // Pos() returns the position of the && or || for short-circuit 532 // control-flow joins, or that of the *Alloc for φ-nodes inserted 533 // during SSA renaming. 534 // 535 // Example printed form: 536 // t2 = phi [0: t0, 1: t1] 537 // 538 type Phi struct { 539 register 540 Comment string // a hint as to its purpose 541 Edges []Value // Edges[i] is value for Block().Preds[i] 542 } 543 544 // The Call instruction represents a function or method call. 545 // 546 // The Call instruction yields the function result if there is exactly 547 // one. Otherwise it returns a tuple, the components of which are 548 // accessed via Extract. 549 // 550 // See CallCommon for generic function call documentation. 551 // 552 // Pos() returns the ast.CallExpr.Lparen, if explicit in the source. 553 // 554 // Example printed form: 555 // t2 = println(t0, t1) 556 // t4 = t3() 557 // t7 = invoke t5.Println(...t6) 558 // 559 type Call struct { 560 register 561 Call CallCommon 562 } 563 564 // The BinOp instruction yields the result of binary operation X Op Y. 565 // 566 // Pos() returns the ast.BinaryExpr.OpPos, if explicit in the source. 567 // 568 // Example printed form: 569 // t1 = t0 + 1:int 570 // 571 type BinOp struct { 572 register 573 // One of: 574 // ADD SUB MUL QUO REM + - * / % 575 // AND OR XOR SHL SHR AND_NOT & | ^ << >> &~ 576 // EQL LSS GTR NEQ LEQ GEQ == != < <= < >= 577 Op token.Token 578 X, Y Value 579 } 580 581 // The UnOp instruction yields the result of Op X. 582 // ARROW is channel receive. 583 // MUL is pointer indirection (load). 584 // XOR is bitwise complement. 585 // SUB is negation. 586 // NOT is logical negation. 587 // 588 // If CommaOk and Op=ARROW, the result is a 2-tuple of the value above 589 // and a boolean indicating the success of the receive. The 590 // components of the tuple are accessed using Extract. 591 // 592 // Pos() returns the ast.UnaryExpr.OpPos, if explicit in the source. 593 // For receive operations (ARROW) implicit in ranging over a channel, 594 // Pos() returns the ast.RangeStmt.For. 595 // For implicit memory loads (STAR), Pos() returns the position of the 596 // most closely associated source-level construct; the details are not 597 // specified. 598 // 599 // Example printed form: 600 // t0 = *x 601 // t2 = <-t1,ok 602 // 603 type UnOp struct { 604 register 605 Op token.Token // One of: NOT SUB ARROW MUL XOR ! - <- * ^ 606 X Value 607 CommaOk bool 608 } 609 610 // The ChangeType instruction applies to X a value-preserving type 611 // change to Type(). 612 // 613 // Type changes are permitted: 614 // - between a named type and its underlying type. 615 // - between two named types of the same underlying type. 616 // - between (possibly named) pointers to identical base types. 617 // - from a bidirectional channel to a read- or write-channel, 618 // optionally adding/removing a name. 619 // 620 // This operation cannot fail dynamically. 621 // 622 // Pos() returns the ast.CallExpr.Lparen, if the instruction arose 623 // from an explicit conversion in the source. 624 // 625 // Example printed form: 626 // t1 = changetype *int <- IntPtr (t0) 627 // 628 type ChangeType struct { 629 register 630 X Value 631 } 632 633 // The Convert instruction yields the conversion of value X to type 634 // Type(). One or both of those types is basic (but possibly named). 635 // 636 // A conversion may change the value and representation of its operand. 637 // Conversions are permitted: 638 // - between real numeric types. 639 // - between complex numeric types. 640 // - between string and []byte or []rune. 641 // - between pointers and unsafe.Pointer. 642 // - between unsafe.Pointer and uintptr. 643 // - from (Unicode) integer to (UTF-8) string. 644 // A conversion may imply a type name change also. 645 // 646 // This operation cannot fail dynamically. 647 // 648 // Conversions of untyped string/number/bool constants to a specific 649 // representation are eliminated during SSA construction. 650 // 651 // Pos() returns the ast.CallExpr.Lparen, if the instruction arose 652 // from an explicit conversion in the source. 653 // 654 // Example printed form: 655 // t1 = convert []byte <- string (t0) 656 // 657 type Convert struct { 658 register 659 X Value 660 } 661 662 // ChangeInterface constructs a value of one interface type from a 663 // value of another interface type known to be assignable to it. 664 // This operation cannot fail. 665 // 666 // Pos() returns the ast.CallExpr.Lparen if the instruction arose from 667 // an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the 668 // instruction arose from an explicit e.(T) operation; or token.NoPos 669 // otherwise. 670 // 671 // Example printed form: 672 // t1 = change interface interface{} <- I (t0) 673 // 674 type ChangeInterface struct { 675 register 676 X Value 677 } 678 679 // MakeInterface constructs an instance of an interface type from a 680 // value of a concrete type. 681 // 682 // Use Program.MethodSets.MethodSet(X.Type()) to find the method-set 683 // of X, and Program.Method(m) to find the implementation of a method. 684 // 685 // To construct the zero value of an interface type T, use: 686 // NewConst(exact.MakeNil(), T, pos) 687 // 688 // Pos() returns the ast.CallExpr.Lparen, if the instruction arose 689 // from an explicit conversion in the source. 690 // 691 // Example printed form: 692 // t1 = make interface{} <- int (42:int) 693 // t2 = make Stringer <- t0 694 // 695 type MakeInterface struct { 696 register 697 X Value 698 } 699 700 // The MakeClosure instruction yields a closure value whose code is 701 // Fn and whose free variables' values are supplied by Bindings. 702 // 703 // Type() returns a (possibly named) *types.Signature. 704 // 705 // Pos() returns the ast.FuncLit.Type.Func for a function literal 706 // closure or the ast.SelectorExpr.Sel for a bound method closure. 707 // 708 // Example printed form: 709 // t0 = make closure anon@1.2 [x y z] 710 // t1 = make closure bound$(main.I).add [i] 711 // 712 type MakeClosure struct { 713 register 714 Fn Value // always a *Function 715 Bindings []Value // values for each free variable in Fn.FreeVars 716 } 717 718 // The MakeMap instruction creates a new hash-table-based map object 719 // and yields a value of kind map. 720 // 721 // Type() returns a (possibly named) *types.Map. 722 // 723 // Pos() returns the ast.CallExpr.Lparen, if created by make(map), or 724 // the ast.CompositeLit.Lbrack if created by a literal. 725 // 726 // Example printed form: 727 // t1 = make map[string]int t0 728 // t1 = make StringIntMap t0 729 // 730 type MakeMap struct { 731 register 732 Reserve Value // initial space reservation; nil => default 733 } 734 735 // The MakeChan instruction creates a new channel object and yields a 736 // value of kind chan. 737 // 738 // Type() returns a (possibly named) *types.Chan. 739 // 740 // Pos() returns the ast.CallExpr.Lparen for the make(chan) that 741 // created it. 742 // 743 // Example printed form: 744 // t0 = make chan int 0 745 // t0 = make IntChan 0 746 // 747 type MakeChan struct { 748 register 749 Size Value // int; size of buffer; zero => synchronous. 750 } 751 752 // The MakeSlice instruction yields a slice of length Len backed by a 753 // newly allocated array of length Cap. 754 // 755 // Both Len and Cap must be non-nil Values of integer type. 756 // 757 // (Alloc(types.Array) followed by Slice will not suffice because 758 // Alloc can only create arrays of constant length.) 759 // 760 // Type() returns a (possibly named) *types.Slice. 761 // 762 // Pos() returns the ast.CallExpr.Lparen for the make([]T) that 763 // created it. 764 // 765 // Example printed form: 766 // t1 = make []string 1:int t0 767 // t1 = make StringSlice 1:int t0 768 // 769 type MakeSlice struct { 770 register 771 Len Value 772 Cap Value 773 } 774 775 // The Slice instruction yields a slice of an existing string, slice 776 // or *array X between optional integer bounds Low and High. 777 // 778 // Dynamically, this instruction panics if X evaluates to a nil *array 779 // pointer. 780 // 781 // Type() returns string if the type of X was string, otherwise a 782 // *types.Slice with the same element type as X. 783 // 784 // Pos() returns the ast.SliceExpr.Lbrack if created by a x[:] slice 785 // operation, the ast.CompositeLit.Lbrace if created by a literal, or 786 // NoPos if not explicit in the source (e.g. a variadic argument slice). 787 // 788 // Example printed form: 789 // t1 = slice t0[1:] 790 // 791 type Slice struct { 792 register 793 X Value // slice, string, or *array 794 Low, High, Max Value // each may be nil 795 } 796 797 // The FieldAddr instruction yields the address of Field of *struct X. 798 // 799 // The field is identified by its index within the field list of the 800 // struct type of X. 801 // 802 // Dynamically, this instruction panics if X evaluates to a nil 803 // pointer. 804 // 805 // Type() returns a (possibly named) *types.Pointer. 806 // 807 // Pos() returns the position of the ast.SelectorExpr.Sel for the 808 // field, if explicit in the source. 809 // 810 // Example printed form: 811 // t1 = &t0.name [#1] 812 // 813 type FieldAddr struct { 814 register 815 X Value // *struct 816 Field int // index into X.Type().Deref().(*types.Struct).Fields 817 } 818 819 // The Field instruction yields the Field of struct X. 820 // 821 // The field is identified by its index within the field list of the 822 // struct type of X; by using numeric indices we avoid ambiguity of 823 // package-local identifiers and permit compact representations. 824 // 825 // Pos() returns the position of the ast.SelectorExpr.Sel for the 826 // field, if explicit in the source. 827 // 828 // Example printed form: 829 // t1 = t0.name [#1] 830 // 831 type Field struct { 832 register 833 X Value // struct 834 Field int // index into X.Type().(*types.Struct).Fields 835 } 836 837 // The IndexAddr instruction yields the address of the element at 838 // index Index of collection X. Index is an integer expression. 839 // 840 // The elements of maps and strings are not addressable; use Lookup or 841 // MapUpdate instead. 842 // 843 // Dynamically, this instruction panics if X evaluates to a nil *array 844 // pointer. 845 // 846 // Type() returns a (possibly named) *types.Pointer. 847 // 848 // Pos() returns the ast.IndexExpr.Lbrack for the index operation, if 849 // explicit in the source. 850 // 851 // Example printed form: 852 // t2 = &t0[t1] 853 // 854 type IndexAddr struct { 855 register 856 X Value // slice or *array, 857 Index Value // numeric index 858 } 859 860 // The Index instruction yields element Index of array X. 861 // 862 // Pos() returns the ast.IndexExpr.Lbrack for the index operation, if 863 // explicit in the source. 864 // 865 // Example printed form: 866 // t2 = t0[t1] 867 // 868 type Index struct { 869 register 870 X Value // array 871 Index Value // integer index 872 } 873 874 // The Lookup instruction yields element Index of collection X, a map 875 // or string. Index is an integer expression if X is a string or the 876 // appropriate key type if X is a map. 877 // 878 // If CommaOk, the result is a 2-tuple of the value above and a 879 // boolean indicating the result of a map membership test for the key. 880 // The components of the tuple are accessed using Extract. 881 // 882 // Pos() returns the ast.IndexExpr.Lbrack, if explicit in the source. 883 // 884 // Example printed form: 885 // t2 = t0[t1] 886 // t5 = t3[t4],ok 887 // 888 type Lookup struct { 889 register 890 X Value // string or map 891 Index Value // numeric or key-typed index 892 CommaOk bool // return a value,ok pair 893 } 894 895 // SelectState is a helper for Select. 896 // It represents one goal state and its corresponding communication. 897 // 898 type SelectState struct { 899 Dir types.ChanDir // direction of case (SendOnly or RecvOnly) 900 Chan Value // channel to use (for send or receive) 901 Send Value // value to send (for send) 902 Pos token.Pos // position of token.ARROW 903 DebugNode ast.Node // ast.SendStmt or ast.UnaryExpr(<-) [debug mode] 904 } 905 906 // The Select instruction tests whether (or blocks until) one 907 // of the specified sent or received states is entered. 908 // 909 // Let n be the number of States for which Dir==RECV and T_i (0<=i<n) 910 // be the element type of each such state's Chan. 911 // Select returns an n+2-tuple 912 // (index int, recvOk bool, r_0 T_0, ... r_n-1 T_n-1) 913 // The tuple's components, described below, must be accessed via the 914 // Extract instruction. 915 // 916 // If Blocking, select waits until exactly one state holds, i.e. a 917 // channel becomes ready for the designated operation of sending or 918 // receiving; select chooses one among the ready states 919 // pseudorandomly, performs the send or receive operation, and sets 920 // 'index' to the index of the chosen channel. 921 // 922 // If !Blocking, select doesn't block if no states hold; instead it 923 // returns immediately with index equal to -1. 924 // 925 // If the chosen channel was used for a receive, the r_i component is 926 // set to the received value, where i is the index of that state among 927 // all n receive states; otherwise r_i has the zero value of type T_i. 928 // Note that the receive index i is not the same as the state 929 // index index. 930 // 931 // The second component of the triple, recvOk, is a boolean whose value 932 // is true iff the selected operation was a receive and the receive 933 // successfully yielded a value. 934 // 935 // Pos() returns the ast.SelectStmt.Select. 936 // 937 // Example printed form: 938 // t3 = select nonblocking [<-t0, t1<-t2] 939 // t4 = select blocking [] 940 // 941 type Select struct { 942 register 943 States []*SelectState 944 Blocking bool 945 } 946 947 // The Range instruction yields an iterator over the domain and range 948 // of X, which must be a string or map. 949 // 950 // Elements are accessed via Next. 951 // 952 // Type() returns an opaque and degenerate "rangeIter" type. 953 // 954 // Pos() returns the ast.RangeStmt.For. 955 // 956 // Example printed form: 957 // t0 = range "hello":string 958 // 959 type Range struct { 960 register 961 X Value // string or map 962 } 963 964 // The Next instruction reads and advances the (map or string) 965 // iterator Iter and returns a 3-tuple value (ok, k, v). If the 966 // iterator is not exhausted, ok is true and k and v are the next 967 // elements of the domain and range, respectively. Otherwise ok is 968 // false and k and v are undefined. 969 // 970 // Components of the tuple are accessed using Extract. 971 // 972 // The IsString field distinguishes iterators over strings from those 973 // over maps, as the Type() alone is insufficient: consider 974 // map[int]rune. 975 // 976 // Type() returns a *types.Tuple for the triple (ok, k, v). 977 // The types of k and/or v may be types.Invalid. 978 // 979 // Example printed form: 980 // t1 = next t0 981 // 982 type Next struct { 983 register 984 Iter Value 985 IsString bool // true => string iterator; false => map iterator. 986 } 987 988 // The TypeAssert instruction tests whether interface value X has type 989 // AssertedType. 990 // 991 // If !CommaOk, on success it returns v, the result of the conversion 992 // (defined below); on failure it panics. 993 // 994 // If CommaOk: on success it returns a pair (v, true) where v is the 995 // result of the conversion; on failure it returns (z, false) where z 996 // is AssertedType's zero value. The components of the pair must be 997 // accessed using the Extract instruction. 998 // 999 // If AssertedType is a concrete type, TypeAssert checks whether the 1000 // dynamic type in interface X is equal to it, and if so, the result 1001 // of the conversion is a copy of the value in the interface. 1002 // 1003 // If AssertedType is an interface, TypeAssert checks whether the 1004 // dynamic type of the interface is assignable to it, and if so, the 1005 // result of the conversion is a copy of the interface value X. 1006 // If AssertedType is a superinterface of X.Type(), the operation will 1007 // fail iff the operand is nil. (Contrast with ChangeInterface, which 1008 // performs no nil-check.) 1009 // 1010 // Type() reflects the actual type of the result, possibly a 1011 // 2-types.Tuple; AssertedType is the asserted type. 1012 // 1013 // Pos() returns the ast.CallExpr.Lparen if the instruction arose from 1014 // an explicit T(e) conversion; the ast.TypeAssertExpr.Lparen if the 1015 // instruction arose from an explicit e.(T) operation; or the 1016 // ast.CaseClause.Case if the instruction arose from a case of a 1017 // type-switch statement. 1018 // 1019 // Example printed form: 1020 // t1 = typeassert t0.(int) 1021 // t3 = typeassert,ok t2.(T) 1022 // 1023 type TypeAssert struct { 1024 register 1025 X Value 1026 AssertedType types.Type 1027 CommaOk bool 1028 } 1029 1030 // The Extract instruction yields component Index of Tuple. 1031 // 1032 // This is used to access the results of instructions with multiple 1033 // return values, such as Call, TypeAssert, Next, UnOp(ARROW) and 1034 // IndexExpr(Map). 1035 // 1036 // Example printed form: 1037 // t1 = extract t0 #1 1038 // 1039 type Extract struct { 1040 register 1041 Tuple Value 1042 Index int 1043 } 1044 1045 // Instructions executed for effect. They do not yield a value. -------------------- 1046 1047 // The Jump instruction transfers control to the sole successor of its 1048 // owning block. 1049 // 1050 // A Jump must be the last instruction of its containing BasicBlock. 1051 // 1052 // Pos() returns NoPos. 1053 // 1054 // Example printed form: 1055 // jump done 1056 // 1057 type Jump struct { 1058 anInstruction 1059 } 1060 1061 // The If instruction transfers control to one of the two successors 1062 // of its owning block, depending on the boolean Cond: the first if 1063 // true, the second if false. 1064 // 1065 // An If instruction must be the last instruction of its containing 1066 // BasicBlock. 1067 // 1068 // Pos() returns NoPos. 1069 // 1070 // Example printed form: 1071 // if t0 goto done else body 1072 // 1073 type If struct { 1074 anInstruction 1075 Cond Value 1076 } 1077 1078 // The Return instruction returns values and control back to the calling 1079 // function. 1080 // 1081 // len(Results) is always equal to the number of results in the 1082 // function's signature. 1083 // 1084 // If len(Results) > 1, Return returns a tuple value with the specified 1085 // components which the caller must access using Extract instructions. 1086 // 1087 // There is no instruction to return a ready-made tuple like those 1088 // returned by a "value,ok"-mode TypeAssert, Lookup or UnOp(ARROW) or 1089 // a tail-call to a function with multiple result parameters. 1090 // 1091 // Return must be the last instruction of its containing BasicBlock. 1092 // Such a block has no successors. 1093 // 1094 // Pos() returns the ast.ReturnStmt.Return, if explicit in the source. 1095 // 1096 // Example printed form: 1097 // return 1098 // return nil:I, 2:int 1099 // 1100 type Return struct { 1101 anInstruction 1102 Results []Value 1103 pos token.Pos 1104 } 1105 1106 // The RunDefers instruction pops and invokes the entire stack of 1107 // procedure calls pushed by Defer instructions in this function. 1108 // 1109 // It is legal to encounter multiple 'rundefers' instructions in a 1110 // single control-flow path through a function; this is useful in 1111 // the combined init() function, for example. 1112 // 1113 // Pos() returns NoPos. 1114 // 1115 // Example printed form: 1116 // rundefers 1117 // 1118 type RunDefers struct { 1119 anInstruction 1120 } 1121 1122 // The Panic instruction initiates a panic with value X. 1123 // 1124 // A Panic instruction must be the last instruction of its containing 1125 // BasicBlock, which must have no successors. 1126 // 1127 // NB: 'go panic(x)' and 'defer panic(x)' do not use this instruction; 1128 // they are treated as calls to a built-in function. 1129 // 1130 // Pos() returns the ast.CallExpr.Lparen if this panic was explicit 1131 // in the source. 1132 // 1133 // Example printed form: 1134 // panic t0 1135 // 1136 type Panic struct { 1137 anInstruction 1138 X Value // an interface{} 1139 pos token.Pos 1140 } 1141 1142 // The Go instruction creates a new goroutine and calls the specified 1143 // function within it. 1144 // 1145 // See CallCommon for generic function call documentation. 1146 // 1147 // Pos() returns the ast.GoStmt.Go. 1148 // 1149 // Example printed form: 1150 // go println(t0, t1) 1151 // go t3() 1152 // go invoke t5.Println(...t6) 1153 // 1154 type Go struct { 1155 anInstruction 1156 Call CallCommon 1157 pos token.Pos 1158 } 1159 1160 // The Defer instruction pushes the specified call onto a stack of 1161 // functions to be called by a RunDefers instruction or by a panic. 1162 // 1163 // See CallCommon for generic function call documentation. 1164 // 1165 // Pos() returns the ast.DeferStmt.Defer. 1166 // 1167 // Example printed form: 1168 // defer println(t0, t1) 1169 // defer t3() 1170 // defer invoke t5.Println(...t6) 1171 // 1172 type Defer struct { 1173 anInstruction 1174 Call CallCommon 1175 pos token.Pos 1176 } 1177 1178 // The Send instruction sends X on channel Chan. 1179 // 1180 // Pos() returns the ast.SendStmt.Arrow, if explicit in the source. 1181 // 1182 // Example printed form: 1183 // send t0 <- t1 1184 // 1185 type Send struct { 1186 anInstruction 1187 Chan, X Value 1188 pos token.Pos 1189 } 1190 1191 // The Store instruction stores Val at address Addr. 1192 // Stores can be of arbitrary types. 1193 // 1194 // Pos() returns the position of the source-level construct most closely 1195 // associated with the memory store operation. 1196 // Since implicit memory stores are numerous and varied and depend upon 1197 // implementation choices, the details are not specified. 1198 // 1199 // Example printed form: 1200 // *x = y 1201 // 1202 type Store struct { 1203 anInstruction 1204 Addr Value 1205 Val Value 1206 pos token.Pos 1207 } 1208 1209 // The BlankStore instruction is emitted for assignments to the blank 1210 // identifier. 1211 // 1212 // BlankStore is a pseudo-instruction: it has no dynamic effect. 1213 // 1214 // Pos() returns NoPos. 1215 // 1216 // Example printed form: 1217 // _ = t0 1218 // 1219 type BlankStore struct { 1220 anInstruction 1221 Val Value 1222 } 1223 1224 // The MapUpdate instruction updates the association of Map[Key] to 1225 // Value. 1226 // 1227 // Pos() returns the ast.KeyValueExpr.Colon or ast.IndexExpr.Lbrack, 1228 // if explicit in the source. 1229 // 1230 // Example printed form: 1231 // t0[t1] = t2 1232 // 1233 type MapUpdate struct { 1234 anInstruction 1235 Map Value 1236 Key Value 1237 Value Value 1238 pos token.Pos 1239 } 1240 1241 // A DebugRef instruction maps a source-level expression Expr to the 1242 // SSA value X that represents the value (!IsAddr) or address (IsAddr) 1243 // of that expression. 1244 // 1245 // DebugRef is a pseudo-instruction: it has no dynamic effect. 1246 // 1247 // Pos() returns Expr.Pos(), the start position of the source-level 1248 // expression. This is not the same as the "designated" token as 1249 // documented at Value.Pos(). e.g. CallExpr.Pos() does not return the 1250 // position of the ("designated") Lparen token. 1251 // 1252 // If Expr is an *ast.Ident denoting a var or func, Object() returns 1253 // the object; though this information can be obtained from the type 1254 // checker, including it here greatly facilitates debugging. 1255 // For non-Ident expressions, Object() returns nil. 1256 // 1257 // DebugRefs are generated only for functions built with debugging 1258 // enabled; see Package.SetDebugMode() and the GlobalDebug builder 1259 // mode flag. 1260 // 1261 // DebugRefs are not emitted for ast.Idents referring to constants or 1262 // predeclared identifiers, since they are trivial and numerous. 1263 // Nor are they emitted for ast.ParenExprs. 1264 // 1265 // (By representing these as instructions, rather than out-of-band, 1266 // consistency is maintained during transformation passes by the 1267 // ordinary SSA renaming machinery.) 1268 // 1269 // Example printed form: 1270 // ; *ast.CallExpr @ 102:9 is t5 1271 // ; var x float64 @ 109:72 is x 1272 // ; address of *ast.CompositeLit @ 216:10 is t0 1273 // 1274 type DebugRef struct { 1275 anInstruction 1276 Expr ast.Expr // the referring expression (never *ast.ParenExpr) 1277 object types.Object // the identity of the source var/func 1278 IsAddr bool // Expr is addressable and X is the address it denotes 1279 X Value // the value or address of Expr 1280 } 1281 1282 // Embeddable mix-ins and helpers for common parts of other structs. ----------- 1283 1284 // register is a mix-in embedded by all SSA values that are also 1285 // instructions, i.e. virtual registers, and provides a uniform 1286 // implementation of most of the Value interface: Value.Name() is a 1287 // numbered register (e.g. "t0"); the other methods are field accessors. 1288 // 1289 // Temporary names are automatically assigned to each register on 1290 // completion of building a function in SSA form. 1291 // 1292 // Clients must not assume that the 'id' value (and the Name() derived 1293 // from it) is unique within a function. As always in this API, 1294 // semantics are determined only by identity; names exist only to 1295 // facilitate debugging. 1296 // 1297 type register struct { 1298 anInstruction 1299 num int // "name" of virtual register, e.g. "t0". Not guaranteed unique. 1300 typ types.Type // type of virtual register 1301 pos token.Pos // position of source expression, or NoPos 1302 referrers []Instruction 1303 } 1304 1305 // anInstruction is a mix-in embedded by all Instructions. 1306 // It provides the implementations of the Block and setBlock methods. 1307 type anInstruction struct { 1308 block *BasicBlock // the basic block of this instruction 1309 } 1310 1311 // CallCommon is contained by Go, Defer and Call to hold the 1312 // common parts of a function or method call. 1313 // 1314 // Each CallCommon exists in one of two modes, function call and 1315 // interface method invocation, or "call" and "invoke" for short. 1316 // 1317 // 1. "call" mode: when Method is nil (!IsInvoke), a CallCommon 1318 // represents an ordinary function call of the value in Value, 1319 // which may be a *Builtin, a *Function or any other value of kind 1320 // 'func'. 1321 // 1322 // Value may be one of: 1323 // (a) a *Function, indicating a statically dispatched call 1324 // to a package-level function, an anonymous function, or 1325 // a method of a named type. 1326 // (b) a *MakeClosure, indicating an immediately applied 1327 // function literal with free variables. 1328 // (c) a *Builtin, indicating a statically dispatched call 1329 // to a built-in function. 1330 // (d) any other value, indicating a dynamically dispatched 1331 // function call. 1332 // StaticCallee returns the identity of the callee in cases 1333 // (a) and (b), nil otherwise. 1334 // 1335 // Args contains the arguments to the call. If Value is a method, 1336 // Args[0] contains the receiver parameter. 1337 // 1338 // Example printed form: 1339 // t2 = println(t0, t1) 1340 // go t3() 1341 // defer t5(...t6) 1342 // 1343 // 2. "invoke" mode: when Method is non-nil (IsInvoke), a CallCommon 1344 // represents a dynamically dispatched call to an interface method. 1345 // In this mode, Value is the interface value and Method is the 1346 // interface's abstract method. Note: an abstract method may be 1347 // shared by multiple interfaces due to embedding; Value.Type() 1348 // provides the specific interface used for this call. 1349 // 1350 // Value is implicitly supplied to the concrete method implementation 1351 // as the receiver parameter; in other words, Args[0] holds not the 1352 // receiver but the first true argument. 1353 // 1354 // Example printed form: 1355 // t1 = invoke t0.String() 1356 // go invoke t3.Run(t2) 1357 // defer invoke t4.Handle(...t5) 1358 // 1359 // For all calls to variadic functions (Signature().Variadic()), 1360 // the last element of Args is a slice. 1361 // 1362 type CallCommon struct { 1363 Value Value // receiver (invoke mode) or func value (call mode) 1364 Method *types.Func // abstract method (invoke mode) 1365 Args []Value // actual parameters (in static method call, includes receiver) 1366 pos token.Pos // position of CallExpr.Lparen, iff explicit in source 1367 } 1368 1369 // IsInvoke returns true if this call has "invoke" (not "call") mode. 1370 func (c *CallCommon) IsInvoke() bool { 1371 return c.Method != nil 1372 } 1373 1374 func (c *CallCommon) Pos() token.Pos { return c.pos } 1375 1376 // Signature returns the signature of the called function. 1377 // 1378 // For an "invoke"-mode call, the signature of the interface method is 1379 // returned. 1380 // 1381 // In either "call" or "invoke" mode, if the callee is a method, its 1382 // receiver is represented by sig.Recv, not sig.Params().At(0). 1383 // 1384 func (c *CallCommon) Signature() *types.Signature { 1385 if c.Method != nil { 1386 return c.Method.Type().(*types.Signature) 1387 } 1388 return c.Value.Type().Underlying().(*types.Signature) 1389 } 1390 1391 // StaticCallee returns the callee if this is a trivially static 1392 // "call"-mode call to a function. 1393 func (c *CallCommon) StaticCallee() *Function { 1394 switch fn := c.Value.(type) { 1395 case *Function: 1396 return fn 1397 case *MakeClosure: 1398 return fn.Fn.(*Function) 1399 } 1400 return nil 1401 } 1402 1403 // Description returns a description of the mode of this call suitable 1404 // for a user interface, e.g., "static method call". 1405 func (c *CallCommon) Description() string { 1406 switch fn := c.Value.(type) { 1407 case *Builtin: 1408 return "built-in function call" 1409 case *MakeClosure: 1410 return "static function closure call" 1411 case *Function: 1412 if fn.Signature.Recv() != nil { 1413 return "static method call" 1414 } 1415 return "static function call" 1416 } 1417 if c.IsInvoke() { 1418 return "dynamic method call" // ("invoke" mode) 1419 } 1420 return "dynamic function call" 1421 } 1422 1423 // The CallInstruction interface, implemented by *Go, *Defer and *Call, 1424 // exposes the common parts of function-calling instructions, 1425 // yet provides a way back to the Value defined by *Call alone. 1426 // 1427 type CallInstruction interface { 1428 Instruction 1429 Common() *CallCommon // returns the common parts of the call 1430 Value() *Call // returns the result value of the call (*Call) or nil (*Go, *Defer) 1431 } 1432 1433 func (s *Call) Common() *CallCommon { return &s.Call } 1434 func (s *Defer) Common() *CallCommon { return &s.Call } 1435 func (s *Go) Common() *CallCommon { return &s.Call } 1436 1437 func (s *Call) Value() *Call { return s } 1438 func (s *Defer) Value() *Call { return nil } 1439 func (s *Go) Value() *Call { return nil } 1440 1441 func (v *Builtin) Type() types.Type { return v.sig } 1442 func (v *Builtin) Name() string { return v.name } 1443 func (*Builtin) Referrers() *[]Instruction { return nil } 1444 func (v *Builtin) Pos() token.Pos { return token.NoPos } 1445 func (v *Builtin) Object() types.Object { return types.Universe.Lookup(v.name) } 1446 func (v *Builtin) Parent() *Function { return nil } 1447 1448 func (v *FreeVar) Type() types.Type { return v.typ } 1449 func (v *FreeVar) Name() string { return v.name } 1450 func (v *FreeVar) Referrers() *[]Instruction { return &v.referrers } 1451 func (v *FreeVar) Pos() token.Pos { return v.pos } 1452 func (v *FreeVar) Parent() *Function { return v.parent } 1453 1454 func (v *Global) Type() types.Type { return v.typ } 1455 func (v *Global) Name() string { return v.name } 1456 func (v *Global) Parent() *Function { return nil } 1457 func (v *Global) Pos() token.Pos { return v.pos } 1458 func (v *Global) Referrers() *[]Instruction { return nil } 1459 func (v *Global) Token() token.Token { return token.VAR } 1460 func (v *Global) Object() types.Object { return v.object } 1461 func (v *Global) String() string { return v.RelString(nil) } 1462 func (v *Global) Package() *Package { return v.Pkg } 1463 func (v *Global) RelString(from *types.Package) string { return relString(v, from) } 1464 1465 func (v *Function) Name() string { return v.name } 1466 func (v *Function) Type() types.Type { return v.Signature } 1467 func (v *Function) Pos() token.Pos { return v.pos } 1468 func (v *Function) Token() token.Token { return token.FUNC } 1469 func (v *Function) Object() types.Object { return v.object } 1470 func (v *Function) String() string { return v.RelString(nil) } 1471 func (v *Function) Package() *Package { return v.Pkg } 1472 func (v *Function) Parent() *Function { return v.parent } 1473 func (v *Function) Referrers() *[]Instruction { 1474 if v.parent != nil { 1475 return &v.referrers 1476 } 1477 return nil 1478 } 1479 1480 func (v *Parameter) Type() types.Type { return v.typ } 1481 func (v *Parameter) Name() string { return v.name } 1482 func (v *Parameter) Object() types.Object { return v.object } 1483 func (v *Parameter) Referrers() *[]Instruction { return &v.referrers } 1484 func (v *Parameter) Pos() token.Pos { return v.pos } 1485 func (v *Parameter) Parent() *Function { return v.parent } 1486 1487 func (v *Alloc) Type() types.Type { return v.typ } 1488 func (v *Alloc) Referrers() *[]Instruction { return &v.referrers } 1489 func (v *Alloc) Pos() token.Pos { return v.pos } 1490 1491 func (v *register) Type() types.Type { return v.typ } 1492 func (v *register) setType(typ types.Type) { v.typ = typ } 1493 func (v *register) Name() string { return fmt.Sprintf("t%d", v.num) } 1494 func (v *register) setNum(num int) { v.num = num } 1495 func (v *register) Referrers() *[]Instruction { return &v.referrers } 1496 func (v *register) Pos() token.Pos { return v.pos } 1497 func (v *register) setPos(pos token.Pos) { v.pos = pos } 1498 1499 func (v *anInstruction) Parent() *Function { return v.block.parent } 1500 func (v *anInstruction) Block() *BasicBlock { return v.block } 1501 func (v *anInstruction) setBlock(block *BasicBlock) { v.block = block } 1502 func (v *anInstruction) Referrers() *[]Instruction { return nil } 1503 1504 func (t *Type) Name() string { return t.object.Name() } 1505 func (t *Type) Pos() token.Pos { return t.object.Pos() } 1506 func (t *Type) Type() types.Type { return t.object.Type() } 1507 func (t *Type) Token() token.Token { return token.TYPE } 1508 func (t *Type) Object() types.Object { return t.object } 1509 func (t *Type) String() string { return t.RelString(nil) } 1510 func (t *Type) Package() *Package { return t.pkg } 1511 func (t *Type) RelString(from *types.Package) string { return relString(t, from) } 1512 1513 func (c *NamedConst) Name() string { return c.object.Name() } 1514 func (c *NamedConst) Pos() token.Pos { return c.object.Pos() } 1515 func (c *NamedConst) String() string { return c.RelString(nil) } 1516 func (c *NamedConst) Type() types.Type { return c.object.Type() } 1517 func (c *NamedConst) Token() token.Token { return token.CONST } 1518 func (c *NamedConst) Object() types.Object { return c.object } 1519 func (c *NamedConst) Package() *Package { return c.pkg } 1520 func (c *NamedConst) RelString(from *types.Package) string { return relString(c, from) } 1521 1522 // Func returns the package-level function of the specified name, 1523 // or nil if not found. 1524 // 1525 func (p *Package) Func(name string) (f *Function) { 1526 f, _ = p.Members[name].(*Function) 1527 return 1528 } 1529 1530 // Var returns the package-level variable of the specified name, 1531 // or nil if not found. 1532 // 1533 func (p *Package) Var(name string) (g *Global) { 1534 g, _ = p.Members[name].(*Global) 1535 return 1536 } 1537 1538 // Const returns the package-level constant of the specified name, 1539 // or nil if not found. 1540 // 1541 func (p *Package) Const(name string) (c *NamedConst) { 1542 c, _ = p.Members[name].(*NamedConst) 1543 return 1544 } 1545 1546 // Type returns the package-level type of the specified name, 1547 // or nil if not found. 1548 // 1549 func (p *Package) Type(name string) (t *Type) { 1550 t, _ = p.Members[name].(*Type) 1551 return 1552 } 1553 1554 func (v *Call) Pos() token.Pos { return v.Call.pos } 1555 func (s *Defer) Pos() token.Pos { return s.pos } 1556 func (s *Go) Pos() token.Pos { return s.pos } 1557 func (s *MapUpdate) Pos() token.Pos { return s.pos } 1558 func (s *Panic) Pos() token.Pos { return s.pos } 1559 func (s *Return) Pos() token.Pos { return s.pos } 1560 func (s *Send) Pos() token.Pos { return s.pos } 1561 func (s *Store) Pos() token.Pos { return s.pos } 1562 func (s *BlankStore) Pos() token.Pos { return token.NoPos } 1563 func (s *If) Pos() token.Pos { return token.NoPos } 1564 func (s *Jump) Pos() token.Pos { return token.NoPos } 1565 func (s *RunDefers) Pos() token.Pos { return token.NoPos } 1566 func (s *DebugRef) Pos() token.Pos { return s.Expr.Pos() } 1567 1568 // Operands. 1569 1570 func (v *Alloc) Operands(rands []*Value) []*Value { 1571 return rands 1572 } 1573 1574 func (v *BinOp) Operands(rands []*Value) []*Value { 1575 return append(rands, &v.X, &v.Y) 1576 } 1577 1578 func (c *CallCommon) Operands(rands []*Value) []*Value { 1579 rands = append(rands, &c.Value) 1580 for i := range c.Args { 1581 rands = append(rands, &c.Args[i]) 1582 } 1583 return rands 1584 } 1585 1586 func (s *Go) Operands(rands []*Value) []*Value { 1587 return s.Call.Operands(rands) 1588 } 1589 1590 func (s *Call) Operands(rands []*Value) []*Value { 1591 return s.Call.Operands(rands) 1592 } 1593 1594 func (s *Defer) Operands(rands []*Value) []*Value { 1595 return s.Call.Operands(rands) 1596 } 1597 1598 func (v *ChangeInterface) Operands(rands []*Value) []*Value { 1599 return append(rands, &v.X) 1600 } 1601 1602 func (v *ChangeType) Operands(rands []*Value) []*Value { 1603 return append(rands, &v.X) 1604 } 1605 1606 func (v *Convert) Operands(rands []*Value) []*Value { 1607 return append(rands, &v.X) 1608 } 1609 1610 func (s *DebugRef) Operands(rands []*Value) []*Value { 1611 return append(rands, &s.X) 1612 } 1613 1614 func (v *Extract) Operands(rands []*Value) []*Value { 1615 return append(rands, &v.Tuple) 1616 } 1617 1618 func (v *Field) Operands(rands []*Value) []*Value { 1619 return append(rands, &v.X) 1620 } 1621 1622 func (v *FieldAddr) Operands(rands []*Value) []*Value { 1623 return append(rands, &v.X) 1624 } 1625 1626 func (s *If) Operands(rands []*Value) []*Value { 1627 return append(rands, &s.Cond) 1628 } 1629 1630 func (v *Index) Operands(rands []*Value) []*Value { 1631 return append(rands, &v.X, &v.Index) 1632 } 1633 1634 func (v *IndexAddr) Operands(rands []*Value) []*Value { 1635 return append(rands, &v.X, &v.Index) 1636 } 1637 1638 func (*Jump) Operands(rands []*Value) []*Value { 1639 return rands 1640 } 1641 1642 func (v *Lookup) Operands(rands []*Value) []*Value { 1643 return append(rands, &v.X, &v.Index) 1644 } 1645 1646 func (v *MakeChan) Operands(rands []*Value) []*Value { 1647 return append(rands, &v.Size) 1648 } 1649 1650 func (v *MakeClosure) Operands(rands []*Value) []*Value { 1651 rands = append(rands, &v.Fn) 1652 for i := range v.Bindings { 1653 rands = append(rands, &v.Bindings[i]) 1654 } 1655 return rands 1656 } 1657 1658 func (v *MakeInterface) Operands(rands []*Value) []*Value { 1659 return append(rands, &v.X) 1660 } 1661 1662 func (v *MakeMap) Operands(rands []*Value) []*Value { 1663 return append(rands, &v.Reserve) 1664 } 1665 1666 func (v *MakeSlice) Operands(rands []*Value) []*Value { 1667 return append(rands, &v.Len, &v.Cap) 1668 } 1669 1670 func (v *MapUpdate) Operands(rands []*Value) []*Value { 1671 return append(rands, &v.Map, &v.Key, &v.Value) 1672 } 1673 1674 func (v *Next) Operands(rands []*Value) []*Value { 1675 return append(rands, &v.Iter) 1676 } 1677 1678 func (s *Panic) Operands(rands []*Value) []*Value { 1679 return append(rands, &s.X) 1680 } 1681 1682 func (v *Sigma) Operands(rands []*Value) []*Value { 1683 return append(rands, &v.X) 1684 } 1685 1686 func (v *Phi) Operands(rands []*Value) []*Value { 1687 for i := range v.Edges { 1688 rands = append(rands, &v.Edges[i]) 1689 } 1690 return rands 1691 } 1692 1693 func (v *Range) Operands(rands []*Value) []*Value { 1694 return append(rands, &v.X) 1695 } 1696 1697 func (s *Return) Operands(rands []*Value) []*Value { 1698 for i := range s.Results { 1699 rands = append(rands, &s.Results[i]) 1700 } 1701 return rands 1702 } 1703 1704 func (*RunDefers) Operands(rands []*Value) []*Value { 1705 return rands 1706 } 1707 1708 func (v *Select) Operands(rands []*Value) []*Value { 1709 for i := range v.States { 1710 rands = append(rands, &v.States[i].Chan, &v.States[i].Send) 1711 } 1712 return rands 1713 } 1714 1715 func (s *Send) Operands(rands []*Value) []*Value { 1716 return append(rands, &s.Chan, &s.X) 1717 } 1718 1719 func (v *Slice) Operands(rands []*Value) []*Value { 1720 return append(rands, &v.X, &v.Low, &v.High, &v.Max) 1721 } 1722 1723 func (s *Store) Operands(rands []*Value) []*Value { 1724 return append(rands, &s.Addr, &s.Val) 1725 } 1726 1727 func (s *BlankStore) Operands(rands []*Value) []*Value { 1728 return append(rands, &s.Val) 1729 } 1730 1731 func (v *TypeAssert) Operands(rands []*Value) []*Value { 1732 return append(rands, &v.X) 1733 } 1734 1735 func (v *UnOp) Operands(rands []*Value) []*Value { 1736 return append(rands, &v.X) 1737 } 1738 1739 // Non-Instruction Values: 1740 func (v *Builtin) Operands(rands []*Value) []*Value { return rands } 1741 func (v *FreeVar) Operands(rands []*Value) []*Value { return rands } 1742 func (v *Const) Operands(rands []*Value) []*Value { return rands } 1743 func (v *Function) Operands(rands []*Value) []*Value { return rands } 1744 func (v *Global) Operands(rands []*Value) []*Value { return rands } 1745 func (v *Parameter) Operands(rands []*Value) []*Value { return rands }