github.com/gonum/lapack@v0.0.0-20181123203213-e4cdc5a0bff9/internal/testdata/netlib/dlaqr5.f (about)

     1  *> \brief \b DLAQR5 performs a single small-bulge multi-shift QR sweep.
     2  *
     3  *  =========== DOCUMENTATION ===========
     4  *
     5  * Online html documentation available at 
     6  *            http://www.netlib.org/lapack/explore-html/ 
     7  *
     8  *> \htmlonly
     9  *> Download DLAQR5 + dependencies 
    10  *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqr5.f"> 
    11  *> [TGZ]</a> 
    12  *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqr5.f"> 
    13  *> [ZIP]</a> 
    14  *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqr5.f"> 
    15  *> [TXT]</a>
    16  *> \endhtmlonly 
    17  *
    18  *  Definition:
    19  *  ===========
    20  *
    21  *       SUBROUTINE DLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS,
    22  *                          SR, SI, H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U,
    23  *                          LDU, NV, WV, LDWV, NH, WH, LDWH )
    24  * 
    25  *       .. Scalar Arguments ..
    26  *       INTEGER            IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV,
    27  *      $                   LDWH, LDWV, LDZ, N, NH, NSHFTS, NV
    28  *       LOGICAL            WANTT, WANTZ
    29  *       ..
    30  *       .. Array Arguments ..
    31  *       DOUBLE PRECISION   H( LDH, * ), SI( * ), SR( * ), U( LDU, * ),
    32  *      $                   V( LDV, * ), WH( LDWH, * ), WV( LDWV, * ),
    33  *      $                   Z( LDZ, * )
    34  *       ..
    35  *  
    36  *
    37  *> \par Purpose:
    38  *  =============
    39  *>
    40  *> \verbatim
    41  *>
    42  *>    DLAQR5, called by DLAQR0, performs a
    43  *>    single small-bulge multi-shift QR sweep.
    44  *> \endverbatim
    45  *
    46  *  Arguments:
    47  *  ==========
    48  *
    49  *> \param[in] WANTT
    50  *> \verbatim
    51  *>          WANTT is logical scalar
    52  *>             WANTT = .true. if the quasi-triangular Schur factor
    53  *>             is being computed.  WANTT is set to .false. otherwise.
    54  *> \endverbatim
    55  *>
    56  *> \param[in] WANTZ
    57  *> \verbatim
    58  *>          WANTZ is logical scalar
    59  *>             WANTZ = .true. if the orthogonal Schur factor is being
    60  *>             computed.  WANTZ is set to .false. otherwise.
    61  *> \endverbatim
    62  *>
    63  *> \param[in] KACC22
    64  *> \verbatim
    65  *>          KACC22 is integer with value 0, 1, or 2.
    66  *>             Specifies the computation mode of far-from-diagonal
    67  *>             orthogonal updates.
    68  *>        = 0: DLAQR5 does not accumulate reflections and does not
    69  *>             use matrix-matrix multiply to update far-from-diagonal
    70  *>             matrix entries.
    71  *>        = 1: DLAQR5 accumulates reflections and uses matrix-matrix
    72  *>             multiply to update the far-from-diagonal matrix entries.
    73  *>        = 2: DLAQR5 accumulates reflections, uses matrix-matrix
    74  *>             multiply to update the far-from-diagonal matrix entries,
    75  *>             and takes advantage of 2-by-2 block structure during
    76  *>             matrix multiplies.
    77  *> \endverbatim
    78  *>
    79  *> \param[in] N
    80  *> \verbatim
    81  *>          N is integer scalar
    82  *>             N is the order of the Hessenberg matrix H upon which this
    83  *>             subroutine operates.
    84  *> \endverbatim
    85  *>
    86  *> \param[in] KTOP
    87  *> \verbatim
    88  *>          KTOP is integer scalar
    89  *> \endverbatim
    90  *>
    91  *> \param[in] KBOT
    92  *> \verbatim
    93  *>          KBOT is integer scalar
    94  *>             These are the first and last rows and columns of an
    95  *>             isolated diagonal block upon which the QR sweep is to be
    96  *>             applied. It is assumed without a check that
    97  *>                       either KTOP = 1  or   H(KTOP,KTOP-1) = 0
    98  *>             and
    99  *>                       either KBOT = N  or   H(KBOT+1,KBOT) = 0.
   100  *> \endverbatim
   101  *>
   102  *> \param[in] NSHFTS
   103  *> \verbatim
   104  *>          NSHFTS is integer scalar
   105  *>             NSHFTS gives the number of simultaneous shifts.  NSHFTS
   106  *>             must be positive and even.
   107  *> \endverbatim
   108  *>
   109  *> \param[in,out] SR
   110  *> \verbatim
   111  *>          SR is DOUBLE PRECISION array of size (NSHFTS)
   112  *> \endverbatim
   113  *>
   114  *> \param[in,out] SI
   115  *> \verbatim
   116  *>          SI is DOUBLE PRECISION array of size (NSHFTS)
   117  *>             SR contains the real parts and SI contains the imaginary
   118  *>             parts of the NSHFTS shifts of origin that define the
   119  *>             multi-shift QR sweep.  On output SR and SI may be
   120  *>             reordered.
   121  *> \endverbatim
   122  *>
   123  *> \param[in,out] H
   124  *> \verbatim
   125  *>          H is DOUBLE PRECISION array of size (LDH,N)
   126  *>             On input H contains a Hessenberg matrix.  On output a
   127  *>             multi-shift QR sweep with shifts SR(J)+i*SI(J) is applied
   128  *>             to the isolated diagonal block in rows and columns KTOP
   129  *>             through KBOT.
   130  *> \endverbatim
   131  *>
   132  *> \param[in] LDH
   133  *> \verbatim
   134  *>          LDH is integer scalar
   135  *>             LDH is the leading dimension of H just as declared in the
   136  *>             calling procedure.  LDH.GE.MAX(1,N).
   137  *> \endverbatim
   138  *>
   139  *> \param[in] ILOZ
   140  *> \verbatim
   141  *>          ILOZ is INTEGER
   142  *> \endverbatim
   143  *>
   144  *> \param[in] IHIZ
   145  *> \verbatim
   146  *>          IHIZ is INTEGER
   147  *>             Specify the rows of Z to which transformations must be
   148  *>             applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N
   149  *> \endverbatim
   150  *>
   151  *> \param[in,out] Z
   152  *> \verbatim
   153  *>          Z is DOUBLE PRECISION array of size (LDZ,IHI)
   154  *>             If WANTZ = .TRUE., then the QR Sweep orthogonal
   155  *>             similarity transformation is accumulated into
   156  *>             Z(ILOZ:IHIZ,ILO:IHI) from the right.
   157  *>             If WANTZ = .FALSE., then Z is unreferenced.
   158  *> \endverbatim
   159  *>
   160  *> \param[in] LDZ
   161  *> \verbatim
   162  *>          LDZ is integer scalar
   163  *>             LDA is the leading dimension of Z just as declared in
   164  *>             the calling procedure. LDZ.GE.N.
   165  *> \endverbatim
   166  *>
   167  *> \param[out] V
   168  *> \verbatim
   169  *>          V is DOUBLE PRECISION array of size (LDV,NSHFTS/2)
   170  *> \endverbatim
   171  *>
   172  *> \param[in] LDV
   173  *> \verbatim
   174  *>          LDV is integer scalar
   175  *>             LDV is the leading dimension of V as declared in the
   176  *>             calling procedure.  LDV.GE.3.
   177  *> \endverbatim
   178  *>
   179  *> \param[out] U
   180  *> \verbatim
   181  *>          U is DOUBLE PRECISION array of size
   182  *>             (LDU,3*NSHFTS-3)
   183  *> \endverbatim
   184  *>
   185  *> \param[in] LDU
   186  *> \verbatim
   187  *>          LDU is integer scalar
   188  *>             LDU is the leading dimension of U just as declared in the
   189  *>             in the calling subroutine.  LDU.GE.3*NSHFTS-3.
   190  *> \endverbatim
   191  *>
   192  *> \param[in] NH
   193  *> \verbatim
   194  *>          NH is integer scalar
   195  *>             NH is the number of columns in array WH available for
   196  *>             workspace. NH.GE.1.
   197  *> \endverbatim
   198  *>
   199  *> \param[out] WH
   200  *> \verbatim
   201  *>          WH is DOUBLE PRECISION array of size (LDWH,NH)
   202  *> \endverbatim
   203  *>
   204  *> \param[in] LDWH
   205  *> \verbatim
   206  *>          LDWH is integer scalar
   207  *>             Leading dimension of WH just as declared in the
   208  *>             calling procedure.  LDWH.GE.3*NSHFTS-3.
   209  *> \endverbatim
   210  *>
   211  *> \param[in] NV
   212  *> \verbatim
   213  *>          NV is integer scalar
   214  *>             NV is the number of rows in WV agailable for workspace.
   215  *>             NV.GE.1.
   216  *> \endverbatim
   217  *>
   218  *> \param[out] WV
   219  *> \verbatim
   220  *>          WV is DOUBLE PRECISION array of size
   221  *>             (LDWV,3*NSHFTS-3)
   222  *> \endverbatim
   223  *>
   224  *> \param[in] LDWV
   225  *> \verbatim
   226  *>          LDWV is integer scalar
   227  *>             LDWV is the leading dimension of WV as declared in the
   228  *>             in the calling subroutine.  LDWV.GE.NV.
   229  *> \endverbatim
   230  *
   231  *  Authors:
   232  *  ========
   233  *
   234  *> \author Univ. of Tennessee 
   235  *> \author Univ. of California Berkeley 
   236  *> \author Univ. of Colorado Denver 
   237  *> \author NAG Ltd. 
   238  *
   239  *> \date September 2012
   240  *
   241  *> \ingroup doubleOTHERauxiliary
   242  *
   243  *> \par Contributors:
   244  *  ==================
   245  *>
   246  *>       Karen Braman and Ralph Byers, Department of Mathematics,
   247  *>       University of Kansas, USA
   248  *
   249  *> \par References:
   250  *  ================
   251  *>
   252  *>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
   253  *>       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
   254  *>       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
   255  *>       929--947, 2002.
   256  *>
   257  *  =====================================================================
   258        SUBROUTINE DLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS,
   259       $                   SR, SI, H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U,
   260       $                   LDU, NV, WV, LDWV, NH, WH, LDWH )
   261  *
   262  *  -- LAPACK auxiliary routine (version 3.4.2) --
   263  *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
   264  *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
   265  *     September 2012
   266  *
   267  *     .. Scalar Arguments ..
   268        INTEGER            IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV,
   269       $                   LDWH, LDWV, LDZ, N, NH, NSHFTS, NV
   270        LOGICAL            WANTT, WANTZ
   271  *     ..
   272  *     .. Array Arguments ..
   273        DOUBLE PRECISION   H( LDH, * ), SI( * ), SR( * ), U( LDU, * ),
   274       $                   V( LDV, * ), WH( LDWH, * ), WV( LDWV, * ),
   275       $                   Z( LDZ, * )
   276  *     ..
   277  *
   278  *  ================================================================
   279  *     .. Parameters ..
   280        DOUBLE PRECISION   ZERO, ONE
   281        PARAMETER          ( ZERO = 0.0d0, ONE = 1.0d0 )
   282  *     ..
   283  *     .. Local Scalars ..
   284        DOUBLE PRECISION   ALPHA, BETA, H11, H12, H21, H22, REFSUM,
   285       $                   SAFMAX, SAFMIN, SCL, SMLNUM, SWAP, TST1, TST2,
   286       $                   ULP
   287        INTEGER            I, I2, I4, INCOL, J, J2, J4, JBOT, JCOL, JLEN,
   288       $                   JROW, JTOP, K, K1, KDU, KMS, KNZ, KRCOL, KZS,
   289       $                   M, M22, MBOT, MEND, MSTART, MTOP, NBMPS, NDCOL,
   290       $                   NS, NU
   291        LOGICAL            ACCUM, BLK22, BMP22
   292  *     ..
   293  *     .. External Functions ..
   294        DOUBLE PRECISION   DLAMCH
   295        EXTERNAL           DLAMCH
   296  *     ..
   297  *     .. Intrinsic Functions ..
   298  *
   299        INTRINSIC          ABS, DBLE, MAX, MIN, MOD
   300  *     ..
   301  *     .. Local Arrays ..
   302        DOUBLE PRECISION   VT( 3 )
   303  *     ..
   304  *     .. External Subroutines ..
   305        EXTERNAL           DGEMM, DLABAD, DLACPY, DLAQR1, DLARFG, DLASET,
   306       $                   DTRMM
   307  *     ..
   308  *     .. Executable Statements ..
   309  *
   310  *     ==== If there are no shifts, then there is nothing to do. ====
   311  *
   312        IF( NSHFTS.LT.2 )
   313       $   RETURN
   314  *
   315  *     ==== If the active block is empty or 1-by-1, then there
   316  *     .    is nothing to do. ====
   317  *
   318        IF( KTOP.GE.KBOT )
   319       $   RETURN
   320  *
   321  *     ==== Shuffle shifts into pairs of real shifts and pairs
   322  *     .    of complex conjugate shifts assuming complex
   323  *     .    conjugate shifts are already adjacent to one
   324  *     .    another. ====
   325  *
   326        DO 10 I = 1, NSHFTS - 2, 2
   327           IF( SI( I ).NE.-SI( I+1 ) ) THEN
   328  *
   329              SWAP = SR( I )
   330              SR( I ) = SR( I+1 )
   331              SR( I+1 ) = SR( I+2 )
   332              SR( I+2 ) = SWAP
   333  *
   334              SWAP = SI( I )
   335              SI( I ) = SI( I+1 )
   336              SI( I+1 ) = SI( I+2 )
   337              SI( I+2 ) = SWAP
   338           END IF
   339     10 CONTINUE
   340  *
   341  *     ==== NSHFTS is supposed to be even, but if it is odd,
   342  *     .    then simply reduce it by one.  The shuffle above
   343  *     .    ensures that the dropped shift is real and that
   344  *     .    the remaining shifts are paired. ====
   345  *
   346        NS = NSHFTS - MOD( NSHFTS, 2 )
   347  *
   348  *     ==== Machine constants for deflation ====
   349  *
   350        SAFMIN = DLAMCH( 'SAFE MINIMUM' )
   351        SAFMAX = ONE / SAFMIN
   352        CALL DLABAD( SAFMIN, SAFMAX )
   353        ULP = DLAMCH( 'PRECISION' )
   354        SMLNUM = SAFMIN*( DBLE( N ) / ULP )
   355  *
   356  *     ==== Use accumulated reflections to update far-from-diagonal
   357  *     .    entries ? ====
   358  *
   359        ACCUM = ( KACC22.EQ.1 ) .OR. ( KACC22.EQ.2 )
   360  *
   361  *     ==== If so, exploit the 2-by-2 block structure? ====
   362  *
   363        BLK22 = ( NS.GT.2 ) .AND. ( KACC22.EQ.2 )
   364  *
   365  *     ==== clear trash ====
   366  *
   367        IF( KTOP+2.LE.KBOT )
   368       $   H( KTOP+2, KTOP ) = ZERO
   369  *
   370  *     ==== NBMPS = number of 2-shift bulges in the chain ====
   371  *
   372        NBMPS = NS / 2
   373  *
   374  *     ==== KDU = width of slab ====
   375  *
   376        KDU = 6*NBMPS - 3
   377  *
   378  *     ==== Create and chase chains of NBMPS bulges ====
   379  *
   380        DO 220 INCOL = 3*( 1-NBMPS ) + KTOP - 1, KBOT - 2, 3*NBMPS - 2
   381           NDCOL = INCOL + KDU
   382           IF( ACCUM )
   383       $      CALL DLASET( 'ALL', KDU, KDU, ZERO, ONE, U, LDU )
   384  *
   385  *        ==== Near-the-diagonal bulge chase.  The following loop
   386  *        .    performs the near-the-diagonal part of a small bulge
   387  *        .    multi-shift QR sweep.  Each 6*NBMPS-2 column diagonal
   388  *        .    chunk extends from column INCOL to column NDCOL
   389  *        .    (including both column INCOL and column NDCOL). The
   390  *        .    following loop chases a 3*NBMPS column long chain of
   391  *        .    NBMPS bulges 3*NBMPS-2 columns to the right.  (INCOL
   392  *        .    may be less than KTOP and and NDCOL may be greater than
   393  *        .    KBOT indicating phantom columns from which to chase
   394  *        .    bulges before they are actually introduced or to which
   395  *        .    to chase bulges beyond column KBOT.)  ====
   396  *
   397           DO 150 KRCOL = INCOL, MIN( INCOL+3*NBMPS-3, KBOT-2 )
   398  *
   399  *           ==== Bulges number MTOP to MBOT are active double implicit
   400  *           .    shift bulges.  There may or may not also be small
   401  *           .    2-by-2 bulge, if there is room.  The inactive bulges
   402  *           .    (if any) must wait until the active bulges have moved
   403  *           .    down the diagonal to make room.  The phantom matrix
   404  *           .    paradigm described above helps keep track.  ====
   405  *
   406              MTOP = MAX( 1, ( ( KTOP-1 )-KRCOL+2 ) / 3+1 )
   407              MBOT = MIN( NBMPS, ( KBOT-KRCOL ) / 3 )
   408              M22 = MBOT + 1
   409              BMP22 = ( MBOT.LT.NBMPS ) .AND. ( KRCOL+3*( M22-1 ) ).EQ.
   410       $              ( KBOT-2 )
   411  *
   412  *           ==== Generate reflections to chase the chain right
   413  *           .    one column.  (The minimum value of K is KTOP-1.) ====
   414  *
   415              DO 20 M = MTOP, MBOT
   416                 K = KRCOL + 3*( M-1 )
   417                 IF( K.EQ.KTOP-1 ) THEN
   418                    CALL DLAQR1( 3, H( KTOP, KTOP ), LDH, SR( 2*M-1 ),
   419       $                         SI( 2*M-1 ), SR( 2*M ), SI( 2*M ),
   420       $                         V( 1, M ) )
   421                    ALPHA = V( 1, M )
   422                    CALL DLARFG( 3, ALPHA, V( 2, M ), 1, V( 1, M ) )
   423                 ELSE
   424                    BETA = H( K+1, K )
   425                    V( 2, M ) = H( K+2, K )
   426                    V( 3, M ) = H( K+3, K )
   427                    CALL DLARFG( 3, BETA, V( 2, M ), 1, V( 1, M ) )
   428  *
   429  *                 ==== A Bulge may collapse because of vigilant
   430  *                 .    deflation or destructive underflow.  In the
   431  *                 .    underflow case, try the two-small-subdiagonals
   432  *                 .    trick to try to reinflate the bulge.  ====
   433  *
   434                    IF( H( K+3, K ).NE.ZERO .OR. H( K+3, K+1 ).NE.
   435       $                ZERO .OR. H( K+3, K+2 ).EQ.ZERO ) THEN
   436  *
   437  *                    ==== Typical case: not collapsed (yet). ====
   438  *
   439                       H( K+1, K ) = BETA
   440                       H( K+2, K ) = ZERO
   441                       H( K+3, K ) = ZERO
   442                    ELSE
   443  *
   444  *                    ==== Atypical case: collapsed.  Attempt to
   445  *                    .    reintroduce ignoring H(K+1,K) and H(K+2,K).
   446  *                    .    If the fill resulting from the new
   447  *                    .    reflector is too large, then abandon it.
   448  *                    .    Otherwise, use the new one. ====
   449  *
   450                       CALL DLAQR1( 3, H( K+1, K+1 ), LDH, SR( 2*M-1 ),
   451       $                            SI( 2*M-1 ), SR( 2*M ), SI( 2*M ),
   452       $                            VT )
   453                       ALPHA = VT( 1 )
   454                       CALL DLARFG( 3, ALPHA, VT( 2 ), 1, VT( 1 ) )
   455                       REFSUM = VT( 1 )*( H( K+1, K )+VT( 2 )*
   456       $                        H( K+2, K ) )
   457  *
   458                       IF( ABS( H( K+2, K )-REFSUM*VT( 2 ) )+
   459       $                   ABS( REFSUM*VT( 3 ) ).GT.ULP*
   460       $                   ( ABS( H( K, K ) )+ABS( H( K+1,
   461       $                   K+1 ) )+ABS( H( K+2, K+2 ) ) ) ) THEN
   462  *
   463  *                       ==== Starting a new bulge here would
   464  *                       .    create non-negligible fill.  Use
   465  *                       .    the old one with trepidation. ====
   466  *
   467                          H( K+1, K ) = BETA
   468                          H( K+2, K ) = ZERO
   469                          H( K+3, K ) = ZERO
   470                       ELSE
   471  *
   472  *                       ==== Stating a new bulge here would
   473  *                       .    create only negligible fill.
   474  *                       .    Replace the old reflector with
   475  *                       .    the new one. ====
   476  *
   477                          H( K+1, K ) = H( K+1, K ) - REFSUM
   478                          H( K+2, K ) = ZERO
   479                          H( K+3, K ) = ZERO
   480                          V( 1, M ) = VT( 1 )
   481                          V( 2, M ) = VT( 2 )
   482                          V( 3, M ) = VT( 3 )
   483                       END IF
   484                    END IF
   485                 END IF
   486     20       CONTINUE
   487  *
   488  *           ==== Generate a 2-by-2 reflection, if needed. ====
   489  *
   490              K = KRCOL + 3*( M22-1 )
   491              IF( BMP22 ) THEN
   492                 IF( K.EQ.KTOP-1 ) THEN
   493                    CALL DLAQR1( 2, H( K+1, K+1 ), LDH, SR( 2*M22-1 ),
   494       $                         SI( 2*M22-1 ), SR( 2*M22 ), SI( 2*M22 ),
   495       $                         V( 1, M22 ) )
   496                    BETA = V( 1, M22 )
   497                    CALL DLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) )
   498                 ELSE
   499                    BETA = H( K+1, K )
   500                    V( 2, M22 ) = H( K+2, K )
   501                    CALL DLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) )
   502                    H( K+1, K ) = BETA
   503                    H( K+2, K ) = ZERO
   504                 END IF
   505              END IF
   506  *
   507  *           ==== Multiply H by reflections from the left ====
   508  *
   509              IF( ACCUM ) THEN
   510                 JBOT = MIN( NDCOL, KBOT )
   511              ELSE IF( WANTT ) THEN
   512                 JBOT = N
   513              ELSE
   514                 JBOT = KBOT
   515              END IF
   516              DO 40 J = MAX( KTOP, KRCOL ), JBOT
   517                 MEND = MIN( MBOT, ( J-KRCOL+2 ) / 3 )
   518                 DO 30 M = MTOP, MEND
   519                    K = KRCOL + 3*( M-1 )
   520                    REFSUM = V( 1, M )*( H( K+1, J )+V( 2, M )*
   521       $                     H( K+2, J )+V( 3, M )*H( K+3, J ) )
   522                    H( K+1, J ) = H( K+1, J ) - REFSUM
   523                    H( K+2, J ) = H( K+2, J ) - REFSUM*V( 2, M )
   524                    H( K+3, J ) = H( K+3, J ) - REFSUM*V( 3, M )
   525     30          CONTINUE
   526     40       CONTINUE
   527              IF( BMP22 ) THEN
   528                 K = KRCOL + 3*( M22-1 )
   529                 DO 50 J = MAX( K+1, KTOP ), JBOT
   530                    REFSUM = V( 1, M22 )*( H( K+1, J )+V( 2, M22 )*
   531       $                     H( K+2, J ) )
   532                    H( K+1, J ) = H( K+1, J ) - REFSUM
   533                    H( K+2, J ) = H( K+2, J ) - REFSUM*V( 2, M22 )
   534     50          CONTINUE
   535              END IF
   536  *
   537  *           ==== Multiply H by reflections from the right.
   538  *           .    Delay filling in the last row until the
   539  *           .    vigilant deflation check is complete. ====
   540  *
   541              IF( ACCUM ) THEN
   542                 JTOP = MAX( KTOP, INCOL )
   543              ELSE IF( WANTT ) THEN
   544                 JTOP = 1
   545              ELSE
   546                 JTOP = KTOP
   547              END IF
   548              DO 90 M = MTOP, MBOT
   549                 IF( V( 1, M ).NE.ZERO ) THEN
   550                    K = KRCOL + 3*( M-1 )
   551                    DO 60 J = JTOP, MIN( KBOT, K+3 )
   552                       REFSUM = V( 1, M )*( H( J, K+1 )+V( 2, M )*
   553       $                        H( J, K+2 )+V( 3, M )*H( J, K+3 ) )
   554                       H( J, K+1 ) = H( J, K+1 ) - REFSUM
   555                       H( J, K+2 ) = H( J, K+2 ) - REFSUM*V( 2, M )
   556                       H( J, K+3 ) = H( J, K+3 ) - REFSUM*V( 3, M )
   557     60             CONTINUE
   558  *
   559                    IF( ACCUM ) THEN
   560  *
   561  *                    ==== Accumulate U. (If necessary, update Z later
   562  *                    .    with with an efficient matrix-matrix
   563  *                    .    multiply.) ====
   564  *
   565                       KMS = K - INCOL
   566                       DO 70 J = MAX( 1, KTOP-INCOL ), KDU
   567                          REFSUM = V( 1, M )*( U( J, KMS+1 )+V( 2, M )*
   568       $                           U( J, KMS+2 )+V( 3, M )*U( J, KMS+3 ) )
   569                          U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM
   570                          U( J, KMS+2 ) = U( J, KMS+2 ) - REFSUM*V( 2, M )
   571                          U( J, KMS+3 ) = U( J, KMS+3 ) - REFSUM*V( 3, M )
   572     70                CONTINUE
   573                    ELSE IF( WANTZ ) THEN
   574  *
   575  *                    ==== U is not accumulated, so update Z
   576  *                    .    now by multiplying by reflections
   577  *                    .    from the right. ====
   578  *
   579                       DO 80 J = ILOZ, IHIZ
   580                          REFSUM = V( 1, M )*( Z( J, K+1 )+V( 2, M )*
   581       $                           Z( J, K+2 )+V( 3, M )*Z( J, K+3 ) )
   582                          Z( J, K+1 ) = Z( J, K+1 ) - REFSUM
   583                          Z( J, K+2 ) = Z( J, K+2 ) - REFSUM*V( 2, M )
   584                          Z( J, K+3 ) = Z( J, K+3 ) - REFSUM*V( 3, M )
   585     80                CONTINUE
   586                    END IF
   587                 END IF
   588     90       CONTINUE
   589  *
   590  *           ==== Special case: 2-by-2 reflection (if needed) ====
   591  *
   592              K = KRCOL + 3*( M22-1 )
   593              IF( BMP22 ) THEN
   594                 IF ( V( 1, M22 ).NE.ZERO ) THEN
   595                    DO 100 J = JTOP, MIN( KBOT, K+3 )
   596                       REFSUM = V( 1, M22 )*( H( J, K+1 )+V( 2, M22 )*
   597       $                        H( J, K+2 ) )
   598                       H( J, K+1 ) = H( J, K+1 ) - REFSUM
   599                       H( J, K+2 ) = H( J, K+2 ) - REFSUM*V( 2, M22 )
   600    100             CONTINUE
   601  *
   602                    IF( ACCUM ) THEN
   603                       KMS = K - INCOL
   604                       DO 110 J = MAX( 1, KTOP-INCOL ), KDU
   605                          REFSUM = V( 1, M22 )*( U( J, KMS+1 )+
   606       $                           V( 2, M22 )*U( J, KMS+2 ) )
   607                          U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM
   608                          U( J, KMS+2 ) = U( J, KMS+2 ) -
   609       $                                  REFSUM*V( 2, M22 )
   610    110             CONTINUE
   611                    ELSE IF( WANTZ ) THEN
   612                       DO 120 J = ILOZ, IHIZ
   613                          REFSUM = V( 1, M22 )*( Z( J, K+1 )+V( 2, M22 )*
   614       $                           Z( J, K+2 ) )
   615                          Z( J, K+1 ) = Z( J, K+1 ) - REFSUM
   616                          Z( J, K+2 ) = Z( J, K+2 ) - REFSUM*V( 2, M22 )
   617    120                CONTINUE
   618                    END IF
   619                 END IF
   620              END IF
   621  *
   622  *           ==== Vigilant deflation check ====
   623  *
   624              MSTART = MTOP
   625              IF( KRCOL+3*( MSTART-1 ).LT.KTOP )
   626       $         MSTART = MSTART + 1
   627              MEND = MBOT
   628              IF( BMP22 )
   629       $         MEND = MEND + 1
   630              IF( KRCOL.EQ.KBOT-2 )
   631       $         MEND = MEND + 1
   632              DO 130 M = MSTART, MEND
   633                 K = MIN( KBOT-1, KRCOL+3*( M-1 ) )
   634  *
   635  *              ==== The following convergence test requires that
   636  *              .    the tradition small-compared-to-nearby-diagonals
   637  *              .    criterion and the Ahues & Tisseur (LAWN 122, 1997)
   638  *              .    criteria both be satisfied.  The latter improves
   639  *              .    accuracy in some examples. Falling back on an
   640  *              .    alternate convergence criterion when TST1 or TST2
   641  *              .    is zero (as done here) is traditional but probably
   642  *              .    unnecessary. ====
   643  *
   644                 IF( H( K+1, K ).NE.ZERO ) THEN
   645                    TST1 = ABS( H( K, K ) ) + ABS( H( K+1, K+1 ) )
   646                    IF( TST1.EQ.ZERO ) THEN
   647                       IF( K.GE.KTOP+1 )
   648       $                  TST1 = TST1 + ABS( H( K, K-1 ) )
   649                       IF( K.GE.KTOP+2 )
   650       $                  TST1 = TST1 + ABS( H( K, K-2 ) )
   651                       IF( K.GE.KTOP+3 )
   652       $                  TST1 = TST1 + ABS( H( K, K-3 ) )
   653                       IF( K.LE.KBOT-2 )
   654       $                  TST1 = TST1 + ABS( H( K+2, K+1 ) )
   655                       IF( K.LE.KBOT-3 )
   656       $                  TST1 = TST1 + ABS( H( K+3, K+1 ) )
   657                       IF( K.LE.KBOT-4 )
   658       $                  TST1 = TST1 + ABS( H( K+4, K+1 ) )
   659                    END IF
   660                    IF( ABS( H( K+1, K ) ).LE.MAX( SMLNUM, ULP*TST1 ) )
   661       $                 THEN
   662                       H12 = MAX( ABS( H( K+1, K ) ), ABS( H( K, K+1 ) ) )
   663                       H21 = MIN( ABS( H( K+1, K ) ), ABS( H( K, K+1 ) ) )
   664                       H11 = MAX( ABS( H( K+1, K+1 ) ),
   665       $                     ABS( H( K, K )-H( K+1, K+1 ) ) )
   666                       H22 = MIN( ABS( H( K+1, K+1 ) ),
   667       $                     ABS( H( K, K )-H( K+1, K+1 ) ) )
   668                       SCL = H11 + H12
   669                       TST2 = H22*( H11 / SCL )
   670  *
   671                       IF( TST2.EQ.ZERO .OR. H21*( H12 / SCL ).LE.
   672       $                   MAX( SMLNUM, ULP*TST2 ) )H( K+1, K ) = ZERO
   673                    END IF
   674                 END IF
   675    130       CONTINUE
   676  *
   677  *           ==== Fill in the last row of each bulge. ====
   678  *
   679              MEND = MIN( NBMPS, ( KBOT-KRCOL-1 ) / 3 )
   680              DO 140 M = MTOP, MEND
   681                 K = KRCOL + 3*( M-1 )
   682                 REFSUM = V( 1, M )*V( 3, M )*H( K+4, K+3 )
   683                 H( K+4, K+1 ) = -REFSUM
   684                 H( K+4, K+2 ) = -REFSUM*V( 2, M )
   685                 H( K+4, K+3 ) = H( K+4, K+3 ) - REFSUM*V( 3, M )
   686    140       CONTINUE
   687  *
   688  *           ==== End of near-the-diagonal bulge chase. ====
   689  *
   690    150    CONTINUE
   691  *
   692  *        ==== Use U (if accumulated) to update far-from-diagonal
   693  *        .    entries in H.  If required, use U to update Z as
   694  *        .    well. ====
   695  *
   696           IF( ACCUM ) THEN
   697              IF( WANTT ) THEN
   698                 JTOP = 1
   699                 JBOT = N
   700              ELSE
   701                 JTOP = KTOP
   702                 JBOT = KBOT
   703              END IF
   704              IF( ( .NOT.BLK22 ) .OR. ( INCOL.LT.KTOP ) .OR.
   705       $          ( NDCOL.GT.KBOT ) .OR. ( NS.LE.2 ) ) THEN
   706  *
   707  *              ==== Updates not exploiting the 2-by-2 block
   708  *              .    structure of U.  K1 and NU keep track of
   709  *              .    the location and size of U in the special
   710  *              .    cases of introducing bulges and chasing
   711  *              .    bulges off the bottom.  In these special
   712  *              .    cases and in case the number of shifts
   713  *              .    is NS = 2, there is no 2-by-2 block
   714  *              .    structure to exploit.  ====
   715  *
   716                 K1 = MAX( 1, KTOP-INCOL )
   717                 NU = ( KDU-MAX( 0, NDCOL-KBOT ) ) - K1 + 1
   718  *
   719  *              ==== Horizontal Multiply ====
   720  *
   721                 DO 160 JCOL = MIN( NDCOL, KBOT ) + 1, JBOT, NH
   722                    JLEN = MIN( NH, JBOT-JCOL+1 )
   723                    CALL DGEMM( 'C', 'N', NU, JLEN, NU, ONE, U( K1, K1 ),
   724       $                        LDU, H( INCOL+K1, JCOL ), LDH, ZERO, WH,
   725       $                        LDWH )
   726                    CALL DLACPY( 'ALL', NU, JLEN, WH, LDWH,
   727       $                         H( INCOL+K1, JCOL ), LDH )
   728    160          CONTINUE
   729  *
   730  *              ==== Vertical multiply ====
   731  *
   732                 DO 170 JROW = JTOP, MAX( KTOP, INCOL ) - 1, NV
   733                    JLEN = MIN( NV, MAX( KTOP, INCOL )-JROW )
   734                    CALL DGEMM( 'N', 'N', JLEN, NU, NU, ONE,
   735       $                        H( JROW, INCOL+K1 ), LDH, U( K1, K1 ),
   736       $                        LDU, ZERO, WV, LDWV )
   737                    CALL DLACPY( 'ALL', JLEN, NU, WV, LDWV,
   738       $                         H( JROW, INCOL+K1 ), LDH )
   739    170          CONTINUE
   740  *
   741  *              ==== Z multiply (also vertical) ====
   742  *
   743                 IF( WANTZ ) THEN
   744                    DO 180 JROW = ILOZ, IHIZ, NV
   745                       JLEN = MIN( NV, IHIZ-JROW+1 )
   746                       CALL DGEMM( 'N', 'N', JLEN, NU, NU, ONE,
   747       $                           Z( JROW, INCOL+K1 ), LDZ, U( K1, K1 ),
   748       $                           LDU, ZERO, WV, LDWV )
   749                       CALL DLACPY( 'ALL', JLEN, NU, WV, LDWV,
   750       $                            Z( JROW, INCOL+K1 ), LDZ )
   751    180             CONTINUE
   752                 END IF
   753              ELSE
   754  *
   755  *              ==== Updates exploiting U's 2-by-2 block structure.
   756  *              .    (I2, I4, J2, J4 are the last rows and columns
   757  *              .    of the blocks.) ====
   758  *
   759                 I2 = ( KDU+1 ) / 2
   760                 I4 = KDU
   761                 J2 = I4 - I2
   762                 J4 = KDU
   763  *
   764  *              ==== KZS and KNZ deal with the band of zeros
   765  *              .    along the diagonal of one of the triangular
   766  *              .    blocks. ====
   767  *
   768                 KZS = ( J4-J2 ) - ( NS+1 )
   769                 KNZ = NS + 1
   770  *
   771  *              ==== Horizontal multiply ====
   772  *
   773                 DO 190 JCOL = MIN( NDCOL, KBOT ) + 1, JBOT, NH
   774                    JLEN = MIN( NH, JBOT-JCOL+1 )
   775  *
   776  *                 ==== Copy bottom of H to top+KZS of scratch ====
   777  *                  (The first KZS rows get multiplied by zero.) ====
   778  *
   779                    CALL DLACPY( 'ALL', KNZ, JLEN, H( INCOL+1+J2, JCOL ),
   780       $                         LDH, WH( KZS+1, 1 ), LDWH )
   781  *
   782  *                 ==== Multiply by U21**T ====
   783  *
   784                    CALL DLASET( 'ALL', KZS, JLEN, ZERO, ZERO, WH, LDWH )
   785                    CALL DTRMM( 'L', 'U', 'C', 'N', KNZ, JLEN, ONE,
   786       $                        U( J2+1, 1+KZS ), LDU, WH( KZS+1, 1 ),
   787       $                        LDWH )
   788  *
   789  *                 ==== Multiply top of H by U11**T ====
   790  *
   791                    CALL DGEMM( 'C', 'N', I2, JLEN, J2, ONE, U, LDU,
   792       $                        H( INCOL+1, JCOL ), LDH, ONE, WH, LDWH )
   793  *
   794  *                 ==== Copy top of H to bottom of WH ====
   795  *
   796                    CALL DLACPY( 'ALL', J2, JLEN, H( INCOL+1, JCOL ), LDH,
   797       $                         WH( I2+1, 1 ), LDWH )
   798  *
   799  *                 ==== Multiply by U21**T ====
   800  *
   801                    CALL DTRMM( 'L', 'L', 'C', 'N', J2, JLEN, ONE,
   802       $                        U( 1, I2+1 ), LDU, WH( I2+1, 1 ), LDWH )
   803  *
   804  *                 ==== Multiply by U22 ====
   805  *
   806                    CALL DGEMM( 'C', 'N', I4-I2, JLEN, J4-J2, ONE,
   807       $                        U( J2+1, I2+1 ), LDU,
   808       $                        H( INCOL+1+J2, JCOL ), LDH, ONE,
   809       $                        WH( I2+1, 1 ), LDWH )
   810  *
   811  *                 ==== Copy it back ====
   812  *
   813                    CALL DLACPY( 'ALL', KDU, JLEN, WH, LDWH,
   814       $                         H( INCOL+1, JCOL ), LDH )
   815    190          CONTINUE
   816  *
   817  *              ==== Vertical multiply ====
   818  *
   819                 DO 200 JROW = JTOP, MAX( INCOL, KTOP ) - 1, NV
   820                    JLEN = MIN( NV, MAX( INCOL, KTOP )-JROW )
   821  *
   822  *                 ==== Copy right of H to scratch (the first KZS
   823  *                 .    columns get multiplied by zero) ====
   824  *
   825                    CALL DLACPY( 'ALL', JLEN, KNZ, H( JROW, INCOL+1+J2 ),
   826       $                         LDH, WV( 1, 1+KZS ), LDWV )
   827  *
   828  *                 ==== Multiply by U21 ====
   829  *
   830                    CALL DLASET( 'ALL', JLEN, KZS, ZERO, ZERO, WV, LDWV )
   831                    CALL DTRMM( 'R', 'U', 'N', 'N', JLEN, KNZ, ONE,
   832       $                        U( J2+1, 1+KZS ), LDU, WV( 1, 1+KZS ),
   833       $                        LDWV )
   834  *
   835  *                 ==== Multiply by U11 ====
   836  *
   837                    CALL DGEMM( 'N', 'N', JLEN, I2, J2, ONE,
   838       $                        H( JROW, INCOL+1 ), LDH, U, LDU, ONE, WV,
   839       $                        LDWV )
   840  *
   841  *                 ==== Copy left of H to right of scratch ====
   842  *
   843                    CALL DLACPY( 'ALL', JLEN, J2, H( JROW, INCOL+1 ), LDH,
   844       $                         WV( 1, 1+I2 ), LDWV )
   845  *
   846  *                 ==== Multiply by U21 ====
   847  *
   848                    CALL DTRMM( 'R', 'L', 'N', 'N', JLEN, I4-I2, ONE,
   849       $                        U( 1, I2+1 ), LDU, WV( 1, 1+I2 ), LDWV )
   850  *
   851  *                 ==== Multiply by U22 ====
   852  *
   853                    CALL DGEMM( 'N', 'N', JLEN, I4-I2, J4-J2, ONE,
   854       $                        H( JROW, INCOL+1+J2 ), LDH,
   855       $                        U( J2+1, I2+1 ), LDU, ONE, WV( 1, 1+I2 ),
   856       $                        LDWV )
   857  *
   858  *                 ==== Copy it back ====
   859  *
   860                    CALL DLACPY( 'ALL', JLEN, KDU, WV, LDWV,
   861       $                         H( JROW, INCOL+1 ), LDH )
   862    200          CONTINUE
   863  *
   864  *              ==== Multiply Z (also vertical) ====
   865  *
   866                 IF( WANTZ ) THEN
   867                    DO 210 JROW = ILOZ, IHIZ, NV
   868                       JLEN = MIN( NV, IHIZ-JROW+1 )
   869  *
   870  *                    ==== Copy right of Z to left of scratch (first
   871  *                    .     KZS columns get multiplied by zero) ====
   872  *
   873                       CALL DLACPY( 'ALL', JLEN, KNZ,
   874       $                            Z( JROW, INCOL+1+J2 ), LDZ,
   875       $                            WV( 1, 1+KZS ), LDWV )
   876  *
   877  *                    ==== Multiply by U12 ====
   878  *
   879                       CALL DLASET( 'ALL', JLEN, KZS, ZERO, ZERO, WV,
   880       $                            LDWV )
   881                       CALL DTRMM( 'R', 'U', 'N', 'N', JLEN, KNZ, ONE,
   882       $                           U( J2+1, 1+KZS ), LDU, WV( 1, 1+KZS ),
   883       $                           LDWV )
   884  *
   885  *                    ==== Multiply by U11 ====
   886  *
   887                       CALL DGEMM( 'N', 'N', JLEN, I2, J2, ONE,
   888       $                           Z( JROW, INCOL+1 ), LDZ, U, LDU, ONE,
   889       $                           WV, LDWV )
   890  *
   891  *                    ==== Copy left of Z to right of scratch ====
   892  *
   893                       CALL DLACPY( 'ALL', JLEN, J2, Z( JROW, INCOL+1 ),
   894       $                            LDZ, WV( 1, 1+I2 ), LDWV )
   895  *
   896  *                    ==== Multiply by U21 ====
   897  *
   898                       CALL DTRMM( 'R', 'L', 'N', 'N', JLEN, I4-I2, ONE,
   899       $                           U( 1, I2+1 ), LDU, WV( 1, 1+I2 ),
   900       $                           LDWV )
   901  *
   902  *                    ==== Multiply by U22 ====
   903  *
   904                       CALL DGEMM( 'N', 'N', JLEN, I4-I2, J4-J2, ONE,
   905       $                           Z( JROW, INCOL+1+J2 ), LDZ,
   906       $                           U( J2+1, I2+1 ), LDU, ONE,
   907       $                           WV( 1, 1+I2 ), LDWV )
   908  *
   909  *                    ==== Copy the result back to Z ====
   910  *
   911                       CALL DLACPY( 'ALL', JLEN, KDU, WV, LDWV,
   912       $                            Z( JROW, INCOL+1 ), LDZ )
   913    210             CONTINUE
   914                 END IF
   915              END IF
   916           END IF
   917    220 CONTINUE
   918  *
   919  *     ==== End of DLAQR5 ====
   920  *
   921        END